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Repulsion of resonance states and exceptional points
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Level repulsion is associated with exceptional points which are square root singularities of the energies as
functions of a(complex interaction parameter. This is also valid for resonance state energies. Using this
concept it is argued that level anticrossifgossing must imply crossinganticrossing of the corresponding
widths of the resonance states. Further, it is shown that an encircling of an exceptional point induces a phase
change of one wave function but not of the other. An experimental setup is discussed where this phase
behavior, which differs from the one encountered at a diabolic point, can be observed.

PACS numbe(s): 84.40—-x, 03.65—w, 02.30.Dk

The dependence on parameters of the energies and widtksgality for our specific purpose when the restriction to a two-
of resonance states has always been a central focus of intelimensional problem is made. For easy illustration we begin
est in virtually all domains of physics. One particular aspectwith the discussion of
is the repulsion of levels in the complex energy plane. A
level repulsion in the complex energy plane can appear as a He ( € 0) AU( w; 0 )UT 1
crossing of, say, their real parts, since the corresponding 0 e
imaginary parts still can avoid each other; likewise, a genu-
ine repulsion of the real parts can imply a crossing of thewith
imaginary parts. These aspects have been discussed in a va-

0 wo

riety of contexts: in nuclear and particle physics, for electro- cos¢ —sing

magnetic resonatof4,2], and in results found for absorptive U(¢)=( sing  cos ) (2
media in solid state physi¢8]. An investigation on a more

theoretical footing is found ifi4]. This is, up to a similarity transformation, the most general

The purpose of the present paper is twofold. First, weform of a real two-dimensional Hamilton matrix of the type
demonstrate that the various types of crossing and/or antH,+\H,;. We emphasize again that our aim is not in par-
crossing can be understood from a common principle. Theyicular directed at a physical model that is describable by a
are related to each other by the position of particular singulatwo-dimensional problem although there may exist interest-
points of the spectrum, which are called exceptional pointéng problems in our special context. The example has been
(EP) [5]. The second aspect deals with the fact that, if an ERhosen for illustration, while the physical application that we
is encircled, the phases of the associated wave functiorfave in mind is in general an infinite-dimensional situation.
change in a particular way which is different from the phase The eigenvalues dfi are given by
behavior when a genuine degeneracy of lev@ldiabolic
point) is encircled 6]. At an EP two levels coalesce, but, as ELA\)= atetAortoy) R 3
is discussed below, an EP is not to be confused with a genu- L 2 -
ine degeneracy of two resonant states. The fact that there are
different types of coalescence of resonance states wak¥here
pointed out in[4]. However, in the quoted paper, the type of
singularity, in fact the concept of an EP was not explicitly
employed; rather the effect upon the Green’s function or the
scattering amplitude was elaborated, which is of lesser inter- 1 12
e;t here. Qenume_ degenergmes (_)f resonance .states have been + 2N (€1— €) (w1~ 05)COS 2(4 _ (4
discussed in the literature, including an associated phase be- 2
havior of the wave functions involvel?,8]. However, the
subject of the present paper which is a generalization an€learly, when¢=0 the spectrum is given by the two lines
further expansion of a previous publicatip®] addresses a
thoroughly different situation. ERN) =€t Aoy, k=1,2

All essential aspects of exceptional points can be illus-
trated on an elementary level with a two-level model. In fact,which intersect at the point of degeneraky —(e;— €,)/
for finite- or infinite-dimensional problems an isolated ex- (w;—w;). When the coupling between the two levels is
ceptional point can be described locally by a two-turned on by switching orp, the degeneracy is lifted and an
dimensional problen10]. In other words, even though a avoided level crossing occurs. Now the two levels coalesce
high or infinite dimensional problem is globally more com- in the complex\ plane whereR vanishes. This happens at
plex than the two-dimensional problem, we do not lose genthe complex conjugate points
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At these points, the two levelg, (\) are connected by a . -0.2
square-root branch point; in fact the two levels are the valuest . 223
of one analytic function on two different Riemann sheets. 02 040c08 S -0.35
Obviously, this connection is not of the type encountered at @ ¢

genuine diabolic point. We stress again that the same natur me A
of singularity prevails also in aN-dimensional matrix prob- | g Lo, 02T 0co.s
lem of the typeHy+AH;. 1.9 -0.2

The question arises as to whether the existence of the EP? .4 -0.3
is of physical interest in addition to their pertinent associa-1-2 —0.4—//\
tion with level repulsion. Before we turn to actual proposals 02040608 1" -0.5

of encircling an EP in an experiment we first discuss for- ) , ) ,
FIG. 1. Level repulsion(width crossing and level crossing

mally the various effects of encircling an EP. Obviously, we . _

obtain the same information by comparing the results of two(chlth repU|s'°r).f°r sm"’.‘"er.(mp’ #=0.35) and Iarger(bott_om,_

different sweeps over appropriate valueshofthe one b n=0.5) absorptionw which is chosen such that the EP lies just
. PS O Pppropria * BY helow the reak axis in the former and just above in the latter case.

passing an EP on its left-hand side and the other on its righ

. . ! . 2 LI"he other parameters atg=1,6,=2,0,=1,0,= —1,;=0.2.
hand side. In principle, this can be achieved by choosing P 7 hem S01= he 41

g%neprlifr)l(er\wlﬂluiistugzi\(.)nlT/vgrg%;g dgtiteclhoasﬁriltt)onigﬂ g;tléﬁln itis demonstrated 'for a four-dimensional mod_el tha_t our
sidering the enlarged model findings are not just the fluke of a two-dimensional
model[11].
0 The top row shows a usual level repulsion among the four
)UT(¢1) levels together with the exceptional points without absorp-
Wy tion, i.e., for a real symmetric Hamiltonian, while in the bot-
tom row the absorption has been made sufficiently strong to
0 )UT(¢2). 6) er_lforce the crossing of QII Ie_vel_s; the Ie_lst EP Whic_h ha_s just
oy slipped over the real axis with increasing absorption lies at
N~ —5.5. Note the symmetric positions of the EP with re-
The additional term 4 rea) can be used to describe an ab- spect to the real axis in the top row which prevails for a
sorption while adhering to real values »f Also, the unper- self-adjoint Hamiltoniar{12]. Also note that the crossing of
turbed energies, may be chosen complex, that is including the real axis by an EP can happen in either direction,; this is
a width. The EP of the enlarged model are situated at why, in the particular case considered, two EP are left in the
lower half plane for the absorptive Hamiltonian.
€1 € We present a topological argument why either the real
el ———=_ (7 parts or the imaginary parts must cross when energy trajec-
w1~ Wy . X . R L
tories of an absorptive Hamiltonian pass the vicinity of an
the real part of an EP and follow the

(&5}
0

(61 ; (
H= +AU(¢1)
0 €y

—iMU(¢z)(

01
0

2ig, 71792

A =
¢ €17 €

—1+ipe*

In an experimental situation a judicious choice of theseFP- We denote bicross
additional parameters can move one of the EP inxthpdane

close to the real axis. In fact, we now demonstrate that the Z ~ .
position of an EP can be arranged in various ways to lie just 3 < !
above or below the real axis. The different effect of these w % g 0
two situations for the energies, when sweeping over real val- -1
ues of\, turns out to be anticrossing for the real and cross- -1 U

ing for the imaginary parts in the one case, and crossing for -4 -2 0 2 4

the real and anticrossing for the imaginary parts in the other. Re A
In Fig. 1 we illustrate the real and imaginary parts of the 20
energies as a function of the real paramatdor two differ- 4 10'
ent values ofx. For simplicity, the choice,=0,0,=1, and ) g < 0
0,=0 was made. Other choices lead qualitatively to the ¢ 1 =
same result ifoy # o,. Also, if the unperturbed energies are 0 -10
chosen complex, either in addition or instead of the choice ~* -20 .
just made, the qualitative picture remains. The switching ~6-4-2 2 i 168 "0 =3 N O}» >
S] e

from level avoidance to level crossing of the real parts—and
associated with it the switching from crossing to avoidance [, 2. Effect of strong absorption in an arbitrary four-level
of the related imaginary parts—is effected by the slipping 0fmodel. Complex conjugate pairs of EPs of a nonabsorptive Hamil-
the EP over the real axis. Within the model considered tonian (top left) lead to genuine level repulsioftop right. The
here it can be achieved by starting with different unperturbecbsorption moves one member of each pair of EPs either into the
widths and/or an absorptive part of the Hamiltonian whichupper or lower\ plane(bottom lefy thereby effecting level cross-
couples to the two channels with different strength. In Fig. 2ing (bottom righj.
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Re E for the wave functions behind the repulsion. In turn, if the
levels do cross, the wave functions pertaining to the same
levels will not undergo this rotation. As a consequence, be-
hind the crossing or anticrossing the bottom level is associ-
ated withy; while the wave function of the top level is ¢,
for the crossing and- ¢, for the anticrossing. This intuitive
argument does not really specify which of the two wave
functions changes its sign; what matters is the relative
change of one of the wave functions. Which one it is in the
final comparison depends on the sense of direction by which
the EP is encircled.

To confirm more formally the statement about the phases
we consider the two situations displayed in Fig. 1. We pa-
rametrize the state vectors by the complex arjleiz.,

cosé —siné 9
N=| . , N)= ,

M= gl = o (©
ImE
" with

FIG. 3. Schematic energy trajectories in the complex energy

plane. Explanations in main text. tand(N\) =[N\ (w1— w,)SiN 2¢,— i u(o1— 05,)sin 2¢,]/
trajectoriesE; (\) for real values of\ in the interval [E:(NM)—Ex(N) +e1— €2t Moy~ wy)
[Neross™ OsAgrosst 6]. In Fig. 3 the complex numbers . B
E1 A Aeross— 6) are indicated byA andA’. By definition they XC0S 2y~ i (01~ 02)COS 2po]. (10

have different real and imaginary parts. The end points of th
trajectories, which are & 5(\cosst ) and denoted byB
andB’, must schematically be situated as indicated, since w N .
consider the vicinity of a square root singularity. Schemati-e(ﬁ)ﬁd’l for A>|(§61_:E2)/_(“él:‘é’g|' ;\n ob'Ealnmg ;h's r}\e-
cally we may assume the singularity to be in the middle ofoUlt USE IS made Ofk;—E;=sR— (w1—wj) for

the square like figure. Whex is sweeping over the interval t>>h|(€1_ 62')/(w1f_thw2)l|. Flor the othehr Vahie Og‘ yleldltr;19t
[Neross— Oy A crosst 0] the energy trajectory starting &t can € crossing of Ihe Ievels we now have to observe that we
move toB in which caseA’ must move tB’ (dotted lines. crossed into the other sheet of the square root which means

This is the case of width crossing and level avoidance. Th(.Ehl._tEZZ _tzrgét_)\(war_ “;5) Ars]. ahconsfgquerltr:]e we filrt1d
other possibility is that the end points are interchanged whic is time tard—tan(¢,+ m/2) which confirms the result.

is level crossing and width avoidanegashed lines Only in his consideration also clarifies that it is the square root sin-
the special case where the parameiermoves straight gularity that brings about this particular phase change. The

through an EP will both, the real and imaginary part, crossyalues ofx which exceed ¢ossget us into different Riemann

Since it is a square root singularity the angles between the iBheets depending on whether we pass the EP on its right-

- ; - d or left-hand side.
and out trajectories at the EP must be at 90° in the energ an : . -
plane(solid lines. The different cases as illustrated in Fig. 1 have already

The different behavior of the energy trajectories, dependpef“n[igﬁ)e_lt'mema”% edstabhsh?d mhan etl)ectromagnetlc reso-
ing on a left-hand or right-hand side passage of an EP, is alggtori-tal. Two coupled resonators have been used as exper-

reflected in a different behavior of the corresponding Wavéﬂental tsetupr.]_Trr]]e Ilevelfhof tr:e o?e have beeer: tLX]ed by a
functions. It can be intuitively argued, and we confirm this Parameter which piays the role ol our parameieras a

formally below, that we should expect the phaseoné but second parameter, the coupling strength between the resona-

not the otherwave function to be different when comparing tprs has been contrpllal_)le; we denote th'$ quantity byor
them behind the point of anticrossing and crossing of theilleed absorption which is achieved by suitable antennas the

real parts(Fig. 1). In fact, for the situation of level avoid- necessary different widths have been adjusted. The situation
ance, it is well known that the wave functions after the pointhas alsct) k?[ﬁen ”?‘ide'ed l;yEt;vo \ll\e}xﬁltsﬁ however,t W'ﬂ:.om ref- d
of repulsion are basically as if the levels would have crosse&retﬂce o the ?X'S enc_et 0 S Id te ?ﬁrarrr]]e .”Z% lon use
but for a minus sign of one. In the vicinity of the point of In the present paper it corresponds to the chqice0,¢;

repulsion the eigenvectors can be parametrized by an angle — /4, and e =E—il'y/2 with AI'=I', =T',#0. The ex-
which ranges from 0 tar/2 when\ is sweeping over the CePtional points are then situated at

repulsion point. Denoting bys; and ¢, the wave functions

of the top and bottom level before the repulsion, respec-
tively, we have

or the value ofx (and¢,=0) which yields the anticrossing
For the val (and hich yields the anticrossi
we read off from Eq(10) the expected resul#(0)=0 and

A= —AE—iAT +ix

with AE=€;— €,. In this way, the differencAl” and/or the
Urop= Y1 COSa— ¢, Sina, couplingx can be adjusted such that one EP lies just above
(8) or below the real\ axis thus giving rise to the two cases
Ypor= 1 SiNa+ i, COSa illustrated in Fig. 1. The equipment used [ih3] did not
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allow a measurement of the phases of the wave functionsible in a variety of other systems, systems where interacting
i.e., of the field strengths. It appears, however, that this igesonances prevail. The present paper focuses on level cross-
possible[14]. ing or anticrossing and related phase behavior for the asso-

We stress that exceptional points are a universal phenonfiated wave functions. Interference effects between the two
enon in contrast to diabolic points. While diabolic points diStinct cases—left-hand and right-hand passage of an EP—

may arise when two real parameters are suitably chosen ir16‘,:{1d statistical aspects for a large number of resonance states

N ) . will be the subject of forthcoming considerations.
Hamiltonian, exceptional points always occur whenever

there is level repulsion. The physically interesting aspect is The author acknowledges useful discussions with Peter
of course the access to one or more of these points in avon Brentano as well as the warm hospitality of the Theory
experiment. It was demonstrated that this is achievable iiGroup of the Max Planck Institute at Heidelberg where most
dissipative resonators. It is expected that it should be possf this paper was written.
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