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Repulsion of resonance states and exceptional points
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~Received 23 July 1999!

Level repulsion is associated with exceptional points which are square root singularities of the energies as
functions of a~complex! interaction parameter. This is also valid for resonance state energies. Using this
concept it is argued that level anticrossing~crossing! must imply crossing~anticrossing! of the corresponding
widths of the resonance states. Further, it is shown that an encircling of an exceptional point induces a phase
change of one wave function but not of the other. An experimental setup is discussed where this phase
behavior, which differs from the one encountered at a diabolic point, can be observed.

PACS number~s!: 84.40.2x, 03.65.2w, 02.30.Dk
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The dependence on parameters of the energies and w
of resonance states has always been a central focus of i
est in virtually all domains of physics. One particular asp
is the repulsion of levels in the complex energy plane.
level repulsion in the complex energy plane can appear
crossing of, say, their real parts, since the correspond
imaginary parts still can avoid each other; likewise, a ge
ine repulsion of the real parts can imply a crossing of
imaginary parts. These aspects have been discussed in
riety of contexts: in nuclear and particle physics, for elect
magnetic resonators@1,2#, and in results found for absorptiv
media in solid state physics@3#. An investigation on a more
theoretical footing is found in@4#.

The purpose of the present paper is twofold. First,
demonstrate that the various types of crossing and/or a
crossing can be understood from a common principle. T
are related to each other by the position of particular sing
points of the spectrum, which are called exceptional po
~EP! @5#. The second aspect deals with the fact that, if an
is encircled, the phases of the associated wave funct
change in a particular way which is different from the pha
behavior when a genuine degeneracy of levels~a diabolic
point! is encircled@6#. At an EP two levels coalesce, but, a
is discussed below, an EP is not to be confused with a ge
ine degeneracy of two resonant states. The fact that there
different types of coalescence of resonance states
pointed out in@4#. However, in the quoted paper, the type
singularity, in fact the concept of an EP was not explici
employed; rather the effect upon the Green’s function or
scattering amplitude was elaborated, which is of lesser in
est here. Genuine degeneracies of resonance states have
discussed in the literature, including an associated phase
havior of the wave functions involved@7,8#. However, the
subject of the present paper which is a generalization
further expansion of a previous publication@9# addresses a
thoroughly different situation.

All essential aspects of exceptional points can be ill
trated on an elementary level with a two-level model. In fa
for finite- or infinite-dimensional problems an isolated e
ceptional point can be described locally by a tw
dimensional problem@10#. In other words, even though
high or infinite dimensional problem is globally more com
plex than the two-dimensional problem, we do not lose g
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erality for our specific purpose when the restriction to a tw
dimensional problem is made. For easy illustration we be
with the discussion of

H5S e1 0

0 e2
D 1lUS v1 0

0 v2
DU† ~1!

with

U~f!5S cosf 2sinf

sinf cosf D . ~2!

This is, up to a similarity transformation, the most gene
form of a real two-dimensional Hamilton matrix of the typ
H01lH1. We emphasize again that our aim is not in pa
ticular directed at a physical model that is describable b
two-dimensional problem although there may exist intere
ing problems in our special context. The example has b
chosen for illustration, while the physical application that w
have in mind is in general an infinite-dimensional situatio

The eigenvalues ofH are given by

E1,2~l!5
e11e21l~v11v2!

2
6R, ~3!

where

R5H S e12e2

2 D 2

1S l~v12v2!

2 D 2

1
1

2
l~e12e2!~v12v2!cos 2fJ 1/2

. ~4!

Clearly, whenf50 the spectrum is given by the two line

Ek
0~l!5ek1lvk , k51,2

which intersect at the point of degeneracyl52(e12e2)/
(v12v2). When the coupling between the two levels
turned on by switching onf, the degeneracy is lifted and a
avoided level crossing occurs. Now the two levels coale
in the complexl plane whereR vanishes. This happens a
the complex conjugate points
929 ©2000 The American Physical Society
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lc52
e12e2

v12v2
exp~62if!. ~5!

At these points, the two levelsEk(l) are connected by a
square-root branch point; in fact the two levels are the val
of one analytic function on two different Riemann shee
Obviously, this connection is not of the type encountered
genuine diabolic point. We stress again that the same na
of singularity prevails also in anN-dimensional matrix prob-
lem of the typeH01lH1.

The question arises as to whether the existence of the
is of physical interest in addition to their pertinent assoc
tion with level repulsion. Before we turn to actual propos
of encircling an EP in an experiment we first discuss f
mally the various effects of encircling an EP. Obviously, w
obtain the same information by comparing the results of t
different sweeps over appropriate values ofl, the one by
passing an EP on its left-hand side and the other on its ri
hand side. In principle, this can be achieved by choos
complex values ofl. In order to get closer to an actua
experimental situation we expand the Hamiltonian by c
sidering the enlarged model

H5S e1 0

0 e2
D 1lU~f1!S v1 0

0 v2
DU†~f1!

2 imU~f2!S s1 0

0 s2
DU†~f2!. ~6!

The additional term (m real! can be used to describe an a
sorption while adhering to real values ofl. Also, the unper-
turbed energiesek may be chosen complex, that is includin
a width. The EP of the enlarged model are situated at

lc5S 211 ime62if2
s12s2

e12e2
De62if1

e12e2

v12v2
. ~7!

In an experimental situation a judicious choice of the
additional parameters can move one of the EP in thel plane
close to the real axis. In fact, we now demonstrate that
position of an EP can be arranged in various ways to lie
above or below the reall axis. The different effect of thes
two situations for the energies, when sweeping over real
ues ofl, turns out to be anticrossing for the real and cro
ing for the imaginary parts in the one case, and crossing
the real and anticrossing for the imaginary parts in the oth

In Fig. 1 we illustrate the real and imaginary parts of t
energies as a function of the real parameterl for two differ-
ent values ofm. For simplicity, the choicef250,s151, and
s250 was made. Other choices lead qualitatively to
same result ifs1Þs2. Also, if the unperturbed energies a
chosen complex, either in addition or instead of the cho
just made, the qualitative picture remains. The switch
from level avoidance to level crossing of the real parts—a
associated with it the switching from crossing to avoidan
of the related imaginary parts—is effected by the slipping
the EP over the reall axis. Within the model considere
here it can be achieved by starting with different unperturb
widths and/or an absorptive part of the Hamiltonian wh
couples to the two channels with different strength. In Fig
s
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it is demonstrated for a four-dimensional model that o
findings are not just the fluke of a two-dimension
model @11#.

The top row shows a usual level repulsion among the f
levels together with the exceptional points without abso
tion, i.e., for a real symmetric Hamiltonian, while in the bo
tom row the absorption has been made sufficiently strong
enforce the crossing of all levels; the last EP which has
slipped over the real axis with increasing absorption lies
l'25.5. Note the symmetric positions of the EP with r
spect to the real axis in the top row which prevails for
self-adjoint Hamiltonian@12#. Also note that the crossing o
the real axis by an EP can happen in either direction; thi
why, in the particular case considered, two EP are left in
lower half plane for the absorptive Hamiltonian.

We present a topological argument why either the r
parts or the imaginary parts must cross when energy tra
tories of an absorptive Hamiltonian pass the vicinity of
EP. We denote bylcrossthe real part of an EP and follow th

FIG. 1. Level repulsion~width crossing! and level crossing
~width repulsion! for smaller ~top, m50.35) and larger~bottom,
m50.5) absorptionm which is chosen such that the EP lies ju
below the reall axis in the former and just above in the latter cas
The other parameters aree151,e252,v151,v2521,f150.2.

FIG. 2. Effect of strong absorption in an arbitrary four-lev
model. Complex conjugate pairs of EPs of a nonabsorptive Ha
tonian ~top left! lead to genuine level repulsion~top right!. The
absorption moves one member of each pair of EPs either into
upper or lowerl plane~bottom left! thereby effecting level cross
ing ~bottom right!.
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trajectories E1,2(l) for real values ofl in the interval
@lcross2d,lcross1d#. In Fig. 3 the complex number
E1,2(lcross2d) are indicated byA andA8. By definition they
have different real and imaginary parts. The end points of
trajectories, which are atE1,2(lcross1d) and denoted byB
andB8, must schematically be situated as indicated, since
consider the vicinity of a square root singularity. Schema
cally we may assume the singularity to be in the middle
the square like figure. Whenl is sweeping over the interva
@lcross2d,lcross1d# the energy trajectory starting atA can
move toB in which caseA8 must move toB8 ~dotted lines!.
This is the case of width crossing and level avoidance. T
other possibility is that the end points are interchanged wh
is level crossing and width avoidance~dashed lines!. Only in
the special case where the parameterl moves straight
through an EP will both, the real and imaginary part, cro
Since it is a square root singularity the angles between th
and out trajectories at the EP must be at 90° in the ene
plane~solid lines!.

The different behavior of the energy trajectories, depe
ing on a left-hand or right-hand side passage of an EP, is
reflected in a different behavior of the corresponding wa
functions. It can be intuitively argued, and we confirm th
formally below, that we should expect the phase ofone but
not the otherwave function to be different when comparin
them behind the point of anticrossing and crossing of th
real parts~Fig. 1!. In fact, for the situation of level avoid
ance, it is well known that the wave functions after the po
of repulsion are basically as if the levels would have cros
but for a minus sign of one. In the vicinity of the point o
repulsion the eigenvectors can be parametrized by an anga
which ranges from 0 top/2 whenl is sweeping over the
repulsion point. Denoting byc1 andc2 the wave functions
of the top and bottom level before the repulsion, resp
tively, we have

c top5c1 cosa2c2 sina,
~8!

cbot5c1 sina1c2 cosa

FIG. 3. Schematic energy trajectories in the complex ene
plane. Explanations in main text.
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for the wave functions behind the repulsion. In turn, if t
levels do cross, the wave functions pertaining to the sa
levels will not undergo this rotation. As a consequence,
hind the crossing or anticrossing the bottom level is ass
ated withc1 while the wave function of the top level is1c2
for the crossing and2c2 for the anticrossing. This intuitive
argument does not really specify which of the two wa
functions changes its sign; what matters is the relat
change of one of the wave functions. Which one it is in t
final comparison depends on the sense of direction by wh
the EP is encircled.

To confirm more formally the statement about the pha
we consider the two situations displayed in Fig. 1. We p
rametrize the state vectors by the complex angleu, viz.,

c1~l!5S cosu

sinu D , c2~l!5S 2sinu

cosu D , ~9!

with

tanu~l!5@l~v12v2!sin 2f12 im~s12s2!sin 2f2#/

@E1~l!2E2~l!1e12e21l~v12v2!

3cos 2f12 im~s12s2!cos 2f2#. ~10!

For the value ofm ~andf250) which yields the anticrossing
we read off from Eq.~10! the expected result:u(0)50 and
u(l)→f1 for l@u(e12e2)/(v12v2)u. In obtaining this re-
sult use is made ofE12E252R→l(v12v2) for l
@u(e12e2)/(v12v2)u. For the other value ofm yielding
the crossing of the levels we now have to observe that
crossed into the other sheet of the square root which me
E12E2522R→2l(v12v2). As a consequence we fin
this time tanu→tan(f11p/2) which confirms the result
This consideration also clarifies that it is the square root s
gularity that brings about this particular phase change. T
values ofl which exceedlcrossget us into different Riemann
sheets depending on whether we pass the EP on its r
hand or left-hand side.

The different cases as illustrated in Fig. 1 have alrea
been experimentally established in an electromagnetic r
nator@13#. Two coupled resonators have been used as exp
mental setup. The levels of the one have been tuned b
parameter which plays the role of our parameterl. As a
second parameter, the coupling strength between the res
tors has been controllable; we denote this quantity byx. For
fixed absorption which is achieved by suitable antennas
necessary different widths have been adjusted. The situa
has also been modeled by two levels, however, without
erence to the existence of EPs. With the parametrization u
in the present paper it corresponds to the choicem50,f1
5p/4, andek5Ek2 iGk/2 with DG5G12G2Þ0. The ex-
ceptional points are then situated at

lc52DE2 iDG6 ix

with DE5e12e2. In this way, the differenceDG and/or the
couplingx can be adjusted such that one EP lies just ab
or below the reall axis thus giving rise to the two case
illustrated in Fig. 1. The equipment used in@13# did not
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allow a measurement of the phases of the wave functio
i.e., of the field strengths. It appears, however, that this
possible@14#.

We stress that exceptional points are a universal phen
enon in contrast to diabolic points. While diabolic poin
may arise when two real parameters are suitably chosen
Hamiltonian, exceptional points always occur whene
there is level repulsion. The physically interesting aspec
of course the access to one or more of these points in
experiment. It was demonstrated that this is achievable
dissipative resonators. It is expected that it should be p
s,
is

-

a
r
is
an
in
s-

sible in a variety of other systems, systems where interac
resonances prevail. The present paper focuses on level c
ing or anticrossing and related phase behavior for the a
ciated wave functions. Interference effects between the
distinct cases—left-hand and right-hand passage of an E
and statistical aspects for a large number of resonance s
will be the subject of forthcoming considerations.

The author acknowledges useful discussions with P
von Brentano as well as the warm hospitality of the Theo
Group of the Max Planck Institute at Heidelberg where m
of this paper was written.
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