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The authors establish the third-frequency-moment sum rules for the density-density reponse matrix of
electronic multilayer structures modeled as an arrayNoparallel two-dimensional2D) electron-plasma
monolayers. Layer densities and spacings between adjacent layers need not be equal. Contact is made with
previously established sum rules for the isolated 2D electron liquid and type-1 infinite superlattices. The case
of the equal-density bilayer is considered and its third frequency-moment-sum-rules for the in-phase and
out-of-phase inverse dielectric functions are formulated.

PACS numbds): 05.20-y, 52.25.Ub

Satisfaction of the third-frequency-moment sum rule hasapproximation (RPA) bring about a remarkable long-
been recognizefil] as an important test of the reliability of wavelength energy gapw?(q=0)>0] in the out-of-phase
model dynamical theories of plasmas in a strongly correlate@coustic plasma mode of electronic bilayers; by contrast, no
Coulomb liquid phase. To dateZ2 sum rules for the external Such energy gap is predicted by the mean field theory ap-

density-density response functign(which describes the re- proachgs of Ref[_14] Whi(.:h either (i focus_on intralayer
orrelations and ignore interlayer correlations beyond the

sponse of the system to an external scalar potential perturb%P A (when it is physically not justifiabjeor (i) take ac-

“0[‘) and its Inverse dielectric fun_ct|on relative e} 1 count of the latter, but not in a way that structurally satisfies
+ X ¢ have been derived and extensively analyzed for a vag,o third-frequency-moment sum rule.

riety of strongly coupled plasma configurations, most nota-  The electronic multilayer model to be considered here
bly: (i) the three-dimensiona3D) one-component plasma consists of an array ol quasi-two-dimensional infinitely
(OCP [1-4, (ii) the 2D electron liquid1,5-7, (iii) binary  thin electron-plasma layers, each of large but bounded area
ionic mixtures in a neutralizing unlforr_n backg_rounﬁﬂ,g], V,p and parallel to thexy plane;ny=N,/V,p is the mean
and(iv) type-1 semiconductor superlattice@mprised of an  greal density of the 2D electron liquid in layek(A
infinite number of equal-density 2D electron or hole layers—1 2 N). The Coulomb interaction energy for the sys-
with the same spacind between adjacent layergL0]. tem is”B(r) = e/[r?+|za— zg|?]Y? with Fourier transform

In this Brief Report, we establish from first principles &"B(q) = (2me?/q)exp(=qlza—zg)); r is the separation dis-
sum rules which apply not only tv) above, but more gen- tance andqg the wave number in thay plane;z, and zg
erally to electronic multilayer structures where the number ofgcate |ayersA and B along thez axis.
layers isfinite and where areal densities and spacings be- \ye begin by introducing the external density-density re-

tween adjacent layerseed not be equalThis is the main  gponse matrixy(q,») defined through the consitutive rela-
goal. The formulation of the in-phase and out-of-phage  tjon

sum rules for the special case of the equal-density electronic
bilayer (consisting of two quasi-2D electron or hole liquids
separated by a fixed distandein a double quantum well
follows. The strong coupling limit of the latter, which is
satisfied by the quasilocalized char@@LC) theory of Ref. linking the average particle density response in layer
[11] and which is built into Ortner’s interpolation formula A to perturbing external scalar potentialﬁ)B(q,w)

[12] for the inverse dielectric function, is especially timely in _ = b . .
view of the significance of interlayer interactions in the sum_q)(q’w'zs)‘ B=12,...N. The generalized relatiofi5]

rule and the need to further resolf2,13 conflicting theo-

retical predictiong11,14 concerning the role of interlayer [67Y(q,0)]"B= 5AB+§C: 49,0 ¢%%q), (2
interactions in the dispersion of the out-of-phase plasma

mode: thew® sum rule conserving QLC theofit1] predicts  for the inverse dielectric matrix then follows from the rela-
that strong interlayer correlations beyond the random-phasgonship between the external and screened density-density

nA(q,w)=—e§ *B(0,0)Pp(q, o) 1)
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response matricdd5]; Kronecker deltas”B is an element of  the random-phase  approximation(RPA);  S*8(q’)
the(NXI\!) identity matrix. _ 2[1/(NANB)1/2]<n§/nB,qr>—(NANB)1’25q/ is the structure
We wish to evaluate the=1,3 frquency-moment matrix fynction. Equation(8) is the principal result of the present
elements report. Its classical counterpart is readily obtained by observ-
1 ing that in thez—0 limit the first right-hand-side term of
VY-V | 1 SAB Eq. (8) vanishes andE,;,)=kgT.
{0)™(a) wJ_mdww Im X0, @) © Going to the isolated 2D layer limitN=1, A=B=1,
|za—2z5|=0), one readily recovers from E¢B) the correct
in the exact high-frequency expansion 2D w®-sum rule coefficient reported in Refgl] and [6].
o AB 5 AB Going to the opposite limit—o) and letting the mean
Rex""(q,0—)=— (Lo )(w) areal densities and spacings between layers be equal, the
ensuing periodicity of the resulting type-1 superlattice con-
~ (U@ = (@) figuratignp aIIowstyone to invokeg grl? additiF:)naI Fourier
transformation along thez axis, i.e., x(9,9;,0)
=3 % B(q,0)exd —iq(za—z)], and one readily recovers
the superlattice»® sum rule coefficient reported in R¢1L.0].
1 w _ An especially interesting structure is the equal-density
Im ¥*B(q, w) = ——f dte“y[nf(t),n%,(0)]), (5  (ni=n,=n) bilayer consisting of two identical 2D electron
2hVop) —= liquids segarated by distancethe interaction potentials are
o _ _ L o1(r)=e’/r andp*¥(r)=e?/(r?+d?)Y2with Fourier trans-
wh|(.:h.|s derived follovx_/lng the standard application of the ¢y, dYq) = dop(q) = 27€?/q and $*¥(q) = d,p(q)e” 9.
statistical-mechanical-linear-response procedure of Kubo tgor this particular case where the inverse dielectric matrix
electronic multilayersing=X; exp(~iqg-X) is the Fourier can be diagnolized, we proceed directly to the calculation of
transform of the local-density operatot® refers to particlé  the frequency-moment-sum rules for the resulting in-phase
in layer A), and the angle brackets denote averaging over thé+) and out-of-phasé—) elementse ;(q,»). From Egs.
equilibrium ensemble. (2), (6), (8), and B

Thel=1 f sum rule coefficient
e M (g,0)=[e g0 ][ g% (10

The appropriate starting point for the calculation is the
multilayer fluctuation-dissipation theorem

1
(w)"B= ([AA,nB 1y=—(nk?’m)&"B  (6)  one readily obtains
iAVyp - 47 A
readily results from substituting E¢B) into Eq.(3) and per- fﬁ do wIme:'(g,0)=—mw5p(q)(1xe 9%, (11)

forming the routine commutator algebra for the Hamiltonian
and local-density operators.

The more involved calculation of tHe=3 sum rule coef- fm dw »3Im sgl(q,w)
ficient -
1 = — Tjy(q) (1= e {(fig%/2m)?
()™ =g =) " +3(02Im)(Egn) + wFo(@) (16~ %)
is carried out by repeated use of Heisenberg’s equation fol- +D™(q)=D*q)}, (12

lowed by some lengthy commutator algebra. We obtain wherew,p(q) =[ 2me?ng/m]Y2 andD(q) andD(q) are

_ dint f ilibri i lation functi
<w3>AB(q) - _ (1/m) mqZ{(ﬁqZ/Zm)25AB+ 3(q2/m) S)A(gzg)ssze(l;:) [esgrg(sq)o_%(igl] !Ll:rlum pair correlation tunctions
X(Eyin) 9%+ 05p(Q) 030(q)

(9-9")?
11, _ 2 11, A’
x e~ dza= 28l 4 DAB(q)}, (8) D (Q)—wzo(Q)(lNzD)%} P°q’ [g™(la—a'])
where (Eyn) = (LUmN2)2((q-pf)?)/? is the expectation —gM(q')—g¥q)e 9, (13
value of the 2D kinetic energy per particle for an interacting ,
system, w55(q) =[27e’n,q/m]*? is the 2D plasma fre- (9-9")
quency of layer, and D¥(a)= 03p(a) (W2p) 2 — 307
el q/
D*%a) xg'A|q—q')e . (14)
1 In conclusion, we have established the general third-
— ARy AB/ ~7\ cAB ' y
_szog [(a-a")"q ]{¢ (9")$™(a—a’)) frequency-moment sum rules for type-1 electronic multilay-

ers consisting of a finite number of parallel 2D electron-
_ AB T ,AC/ 1\ <AC/ 1 plasma monolayers; layer densities and spacings between
A ; Ne/nad™(q")S™(a )] ©) adjacent layers need not be equal. Finally, we observe that
only the interlayer correlations survive in tlgg=0 limit of
is the contribution due to Coulomb correlations beyondEq. (9):
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The correspondence between E@kb) and (16) and theq
DAX(0)= —(e?/2m) X, \nc/na =0 energy gap that emerges in the QLC description of
C#A . . . . .
plasma mode dispersion in equal-density bilayers] and
o AC dlzamz] superlatticed 16] suggests the existence of the gap in the
X fo dg ?S*“(q)e 9z, (15 QLC description of all type-1 multilayer structures exhibit-
ing strong interlayer Coulomb interactions.

DAB(0) = (e?/2m fwd PShB(q)e 97zl (A£B).
(0= ) 0 a9 (@) ( ) This work was partially supported by U.S. Department of
(16) Energy Grant No. DE-FG02-98ER54491.
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