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Lattice-switch Monte Carlo method

A. D. Bruce, A. N. Jackson, G. J. Ackland, and N. B. Wilding
Department of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland, United Kingdom
(Received 20 August 1999

We present a Monte Carlo method for the direct evaluation of the difference between the free energies of
two crystal structures. The method is built on a lattice-switch transformation that maps a configuration of one
structure onto a candidate configuration of the other by “switching” one set of lattice vectors for the other,
while keeping the displacements with respect to the lattice sites constant. The sampling of the displacement
configurations is biased, multicanonically, to favor paths leadirgatewayarrangements for which the Monte
Carlo switch to the candidate configuration will be accepted. The configurations of both structures can then be
efficiently sampled in a single process, and the difference between their free energies evaluated from their
measured probabilities. We explore and exploit the method in the context of extensive studies of systems of
hard spheres. We show that the efficiency of the method is controlled by the extent to which the switch
conserves correlated microstructure. We also show how, microscopically, the procedure works: the system
finds gateway arrangements which fulfill the sampling bias intelligently. We establish, with high precision, the
differences between the free energies of the two close packed strutftcesnd hcp in both the constant
density and the constant pressure ensembles.

PACS numbsd(s): 05.10.Ln, 65.50+m, 64.70.Kb

[. INTRODUCTION one phase to that of the other. Both categories of path em-
brace many further subcategories. Thus, a reference-state-
Let us pose the problem. We are presented with a materigdath may run through a space of thermodynamic coordinates
whose chemical composition is known; we are provided withor through a space of model parameters. An interphase path
a model of the interatomic interactions; and we have identiinay be “physically motivated’—modeling authentically the
fied two candidate crystalline structures. How should we pro€onfigurations through which a system actually passes in the
ceed to determine which structure will be favored undercourse of a phase transformation or it may be “computation-
given conditions? Of course, equilibrium statistical mechan-ally motivated” (“nonphysical”’)—designed, pragmatically,
ics tells us what we must do, in principle: the favored struc-to deliver a result.
ture will be that which has thgreater a priori probabilityor The sampling procedures used to explore the chosen path
configurational weighor, in equivalent thermodynamic par- also fall, broadly, into one or other of two categories — we
lance, lower free energy Thus the task is t@omparethe  will call them multistage and single stage. The multistage
configurational weights ofdetermine thalifferencebetween  approach entails aseriesof independent simulations each of
the free energies pthe candidate structures. which explores a different point on the path; the simulations
A variety of approximate strategies exist for addressingmay determine simply the derivative of the free energy at
this problem1]. But it is clear that if one desires a technique each point[the integration methodIM)] or the difference
that is both generally applicable and relialitbat is, has between the free energies of adjacent poifike overlap
quantifiable uncertainti¢®ne must look to the Monte Carlo method. The single-stage approach involves, in esseame
(MC) method[2], the standard computational tool for deal- simulation exploring thentire path.
ing with many-body systemis3]. There are very many ways in which one can respond to
The application of MC methods to the study of phase-these strategic choices. Many of them are represented in the
behavior presents a generic problpb]: the free energy of large literature devoted to this problef@—14]. But all of
a phase cannot be expresseda practically useful formmas  them, in our view, lack one or more of the characteristics
a canonical average over the associated configurations; fre@enerality, transparency, precisjaf a definitively satisfac-
energy-estimation inevitably entails simulations that visit atory solution to such a fundamental and simply posed prob-
substantially wider spectrum of configurations, which to-lem.
gether form gpaththrough configuration spa¢é]. The stra- In seeking that solution it seems to us there are gaod
tegic choices to be made concern the path itself—ultimatelypriori grounds for favoring an inter phase path, explored by
the physical character of the additional configurationssingle-stage sampling. The prejudice on the choice of path
sampled—and the sampling procedure. reflects the fact that, in using a reference state path, one has
An acceptable path will fall into one or other of two to determine, separately, the absolute free energies of each
categories—we will call them reference-state and interphasphase. These absolute free energies are typically very
paths. A reference-state path linksomprises sets of con- large—arbitrarily so in the vicinity of a phase boundary—
figurations that interpolate betweetine configuration space compared to the quantititheir difference which is actually
associated with each phase to the configuration space assu-interest. In contrast, using an interphase path allows one to
ciated with some reference systé¢ifi whose free energy is focus directly on this quantity. The priori preference for a
known. An interphase path links the configuration space obingle-stage sampling rests on the transparency with which
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FIG. 1. Schematic representations of the dif-
ferent ways in which multicanonical sampling
methods can be used to achieve interphase cross-
ing. In the conventional approad® the sam-
pling algorithm is biased so as to enhance the
probability of themixedphase states lying along
a path(the heavy dark linglinking the two re-
gions of configuration space. In the lattice-switch
method (b) the bias is constructed so as to en-
hance the probability of the subsets of stdtee
white island$, within the single-phase regions,
from which the switch operationthe large
dashed arroywill be accepted.
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the associated uncertaintiésrror bounds are prescribed. ing interphase configurations are then genericalhomoge-
We shall return to these points in Sec. V. With these strategioeous comprising two coexisting regiongone of each
choices made, one is left with two tasks—one conceptuaphase, separated by an interface. On this path, it is the free
(designing the interphase pathnd the other practicdfor-  energy cost of this interface that provides the ergodic barrier
mulating the sampling algorithm which has to be surmounted by multicanonical weighting
The practical issue is relatively easily addressed. In recerjl]. The passage along the pdthe motion of the interfage
years, the Monte Carlo toolkit has been significantly en-involves processes which differ only in scale from those al-
hanced to provide a range of extended samplingeady represented in the microscopic dynamics of a single
technigues—multicanonicdll5], expanded ensemblel6],  phase. This approach is illustrated schematically in Fig). 1
and simulated temperirld.7]. These method&vhose origins It has been successfully used in studies of phase behavior in
can be traced back to much earlier pioneering wdr&])  ferromagnets[22], fluids [23], and lattice gauge theories
allow one to construct a MC procedure that will traverse[24].
virtually any desired path through configuration space. Here In the context ofstructural phase behavior it is clear that
we adopt the multicanonical framework. In this framework, this kind of strategy will seldom be fruitfyl25,26. In such
the desired path is represented as a discrete series of maystems a traverse through an inhomogeneous two-phase
rostates, defined by some chosen macroscopic propgity (necessarily noncrystallipgegion will involve substantial,
in the multicanonical sampling procedure each macrostate ighysically slow, restructuring—vulnerable to further ergodic
visited with a probability that is enhanced, or diminished,traps, and compounding the intrinsic slowness of the multi-
with respect to its canonical value, by an amount that iscanonical sampling process. To the two genaratiori pref-
controlled by amulticanonical weightthe set of weights is erences expressed above we thus add a third, specific to the
constructed so that, while the canonical probabilities varystructural context: the interphase path should comprise mac-
vastly over the path, the multicanonical probabilities are esrostates that are single phase and crystalline. This paper
sentially constant, allowing the whole path to be negotiatedshows how to identify, build, and exploit a path of this kind.
in one simulation. The key ideas are simple. In any crystalline configuration
The core issue is, then, theéesign of the interphase each atomic position coordinate may be expressed as the sum
path—at heart, the choice of an appropriate order parameter a lattice vector and a displacement vector. The configura-
[19]. The choice is important: it determines, impliciflg0],  tion space associated with each structure, individually, may
the nature of the configurations sampled during the interbe explored by standard MC procedures which stochastically
phase traverse, the MC time required for that traverse, andpdate the displacement vectors while keeping the lattice
thence the statistical quality of the final results. vectors constant. Iprinciple the passage from one phase to
Outside the context oftructuratphase behavior—in the the other may be accomplished by a lattice swittB) in
case of liquid-gas phase behavior, for example—the choiceshich one entire set of lattice vectors is replaced with the
is clear and a multicanonical strategy is securely in placeother, while the displacement vectors are held fixed. For-
The order parameter is identified with that—the density—mally this LS can be incorporated into the MC procedure
associated with the accompanying critical point. The resultsimply by treating the lattice type as an additional stochastic



908 BRUCE, JACKSON, ACKLAND, AND WILDING PRE 61

variable. In practicehis interphase “path”(blind leap will discrepancy between the results, near melting, reported in
not work. Implemented this way the LS will map a “typi- our initial study[30] and those—also using LS—reported
cal” configuration of one structure onto an “untypical” recently by Pronk and Frenkg31]: the fault was ours, stem-
(high-energy conjugate configuratioh27]; the associated ming from a failure to recognize the consequences of center-
MC step will generally be rejected. To make it work the LS 0f-mass drift. We also show that the method can be extended
needs to be extended to include two segments of “path’straightforwardly—in this case at least—to the constant-
(each lying entirely within one phasehich connect the sets Pressure ensemble.

of equilibrium configurations with the special configurations  1h€ paper is structured as follows. Section Il sets out the
(we will call them gateway configurationgrom which a theoretical framework. We define the model, the competing

successful LS can be initiatei®8]. These path-segments structures, and the associated configurational weights: in the

may be labeled by an “order parameter” which measures th&ase of hard sphere systems the latter are purely entropic. We

mismatch between the energies of the configurations "nkehdentify an appropriate form of lattice-switch transformation:

by LS. This order parameter has a high value for the equi- ere, it is designed to capitalize on the clqse—packed layers
common to both structures. To bias the displacement sam-

librium configurations, lying at one end of a path segment:~ . ; "
these configurations are not energy match2] to their pling we need to define an appropriate measure of the “en-
of the lattice switch; we will see that the number

conjugates. It has a low value for the gateway configuration§'9Y €OSt’ _ :
at the other end: gateway configuratiqméatever other at- of pairs (?f overla_lppmg spheres greated by thg t_ransformatlon
tributes they may hayeare necessarily energy matched to fulfills this role simply and effectively. The efficiency of the

their conjugates. Multicanonical weights are attached to thénethOd also potentially depends on the choice of representa-

macrostates of this order parameter, so that the multicanon"-f)n of both the lattice-to-lattice mapping and the particle

cal sampling procedure explores both path segments evenl |sp_lacements: we d_iscuss the principles involved in_ the
surmounting the probabilistic barrier which, in this case, re-, hoice of representat_lon._Sectlpn lll provides computational
flects thesmallnessof the statistical weight of the gateway implementation dgtalls, mc]udmg_ the procgdure; l.Jse(.j to
configurations. Together, the multicanonical sampling andEVOI\.’e an appropriate muIt|canon.|caI sa_mpllng distribution.
the lattice switch provide a configuration space “look andSectlon \Y qontal_ns our'results. Finally, in Sec. V, we offer
leap” [Fig. 1(b)] which visits both phases while remaining at °Yf conclus_|ons in relation to both the hard sphere system
all times crystalline and the lattice-switch method.
The LS method was introduced by us and described in
outline form in an earlier brief communicatidi80]. Since Il. FORMULATION
that time it has been applied by two other grolipd,31. A. The model system
The present paper has three principal objectives. ) , . ,
The first objective(with which we have already engaged W€ »con5|de_:r a sy_stgm afl particles, of spgtlal coord_l-
in the preceding discussidis to explain the core idea more nates{r}, confined within a volume/, and subject to peri-
fully: the “idea” (biased sampling to facilitate a global co- odic boundary conditions. The interactions are those of hard
ordinate changerepresents, we believe, a significantly new spheres of diameteD; the configurational energy is of the

form of extended sampling, which merits further exposure. form

unique and the microscopic character of the gateway con-

cantly on the extent to which it conserves correlated micro- Q (N,V)=H

(even intelligent way. extends over all particle pairs. The associated entropy den-
model itself[32]. The relative stability of the two closed-

easily be lost in statistical uncertainties. Discrepandege, tem. In general, the entropy of a phase measures the weight
the constant-density ensemble, both near the melting densitgte a constraint that identifies a configuration as “belonging

Our second objective is to achieve a deeper understanding 0 if ry=DVi,j,
figurations which the system locates in response to the mulwherer;; :|Fi—Fj|. The total configurational weight associ-
structure. And we find that the gateway configurations have i
Our third objective is to extend our study of the phasesity is
packed (fcc and hcp structures is particularly finely bal-
in relative termg between a recent IM studylO] and its  of the configurations satisfying some constraint that is char-
and at the close-packed limit. In so doing we resolve theo” a given crystalline phase. One can do so—very naturally,

o otherwise,

D

H) @(r;—D), )

of how the process works—in particular the implications of E({F})z
the form chosen for the LS operation adoptéid is not
ticanonical weighting, tailored to support that operation. Weated with this system is
show that the efficiency of the LS operation depends signifi-
f dr,
\

features which reflect the specific nature of the lattice-switch
transformation we adopt, in a microscopically intelligible where ®(x)=1(0) for x=0(<0), and the product oij)
behavior of hard spheres. This problem is of enduring inter-
est, displaying a richness that belies the simplicity of the 1

A picY S(N,V)= I Q(N,V). @3
anced: the entropy differend83] is so small(smaller than We are concerned with the entropy of specific phdtes
the entropy change at freezing by of order #pthat it can  two familiar crystalline close-packed structures this sys-
predecessorg9] provided the motivation for our develop- acteristic of that phase. It is therefore necessary in principle
ment of the LS method. In this paper we present results italthough in practice the issue is typically skirtéd formu-
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and in the traditions of lattice dynamif34]—by decompos- In the close-packed limit the configurational intedrag.
ing the particle position coordinates into a sum of “lattice” (5)] may be rewritter] 38] as the product of two terms:
and “displacement” vectors:

Q(N,V,a)=Qn(N,V)Q, (8
=R+ U; . . -
n=R @ The first term here is defined by
Here{R},=R",i=1,... N is a set of fixedconfiguration- PREN
independentvectors associated with the crystalline structure Qo(N,V)= {E (9a)

labeleda. We will refer to them as “lattice vectors.” But we

use this term a little loosely: more precisely, we mean the sej;iih
of vectors identified by the orthodox crystallographic lattice,
convolved with the orthodox badi85,36]. The other vectors e=1-7p, (9b)

{J} represent displacements with respect to the “lattice”

sites; the symmetry of the structures of interest here ensurddhe associated contribution to the entropy is logarithmically
that these displacements have zero ensemble average. Thigergent in the close-packed linfi89], but independent of
framework provides us with a number of ways of identifying the phase. The second contribution to the configurational in-
the configurations to be associated with structureFirst,  tegral is defined by
one might adopt the criterion that all particle displacements,

with respect to the associated lattice sites, lie within some o.-T1 “ di
nominatedspatial cutoff, chosen to be sufficiently large that a1 o
the results are independent of its specific value. This crite-

rion has the merit that it does not stray beyond the concept&here[40]

of equilibrium statistical mechanics. Alternatively one might

identify the relevant configurations as the set that are acces- Ui =U; — Uj=ul|nff + 0} (100

sible from somemember of the sefthe perfect crystalline

state, for examplewithin some nominatedemporalcutoff.  while n{! is a unit vector from lattice sitgto nearest neigh-
The merit ofthis choice is that it is a quasiformal expression por |attice site. The associated contribution to the entropy is
of what, in practice, computer simulation attacks on thisfinite, but depends on the phase through the geometry of the
problem actuallydo, albeit implicitly: the free energy as- nearest neighbor vectors. It may be visualized as that of a set
signed to a phasen, for example, IM-based studiesepre-  of hard dodecahedrat1].

sents the weight of the configuration space sampled on the Now let us recall that the quantity of immediate interest is
time scale of the simulation. The result should be indepenthe difference between the entropy densities of the two
dent of that time scale provided(the scalgis long enough  phases. It may be written as

that the configuration space of each structure is effectively
sampled, but still short compared to interphase crossing
times. Whichever view one takds practice we adopt the
latter: see Sec. lll Aone may write, for the configurational
weight associated with structure where

<H> Ol +1[1+0(e)], (109
ij

As,z=s(N,V,a)—s(N,V,B)= %In Rap(N,V), (12)

Q(N,V,a) P(aN,V)

Q(N,V,a) H Ldu, <1—1[> ®(r;;—D), (5) RQB(N,V)—Q(N,V'B) AN (12)
where [, signifies integration subject to the chosen configu-Here P(«|N,V) is the probability that a system, free to ex-
rational constraint. plore the joint configuration space of the two structuiasd

In the thermodynamicN— o) limit, the associated en- Visiting configurations with the appropriate probabilities—all
tropy density equal in this casewill be found in some configuration of
structurea.
1 In the constant density ensemble, then, the computational
S(N’V'“)Eﬁan(N'V’“) (6)  task is to determine the ratio defined by Ed2). In the

constant pressure ensemble we require the fatjg(N,P*)
depends only on the particle number density, which we writedf the partition functions
in the dimensionless form

Z(N,P*,a)=J’ dVQ(N,V,a)e PV, (13

: (7)
pce  \2/D° whereP* is a measure of the pressyd?]. The associated

) . _ thermodynamic potential is the Gibbs free energy density
where pcp, the number density at close packing, providesyefined by

the natural scale. The range of interest to us here extends
from the melting density=0.736[37] through to the close-

1
~ * = — — *
packed limitp=1. 9(N,P*, ) NIn 2(N,P%) (149
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FIG. 4. The LS transformation applied to a “typical” configu-
ration. The crosses identify the “lattice sites”; the small circles
locate the sphere centers in this configuration of displacenfahts
This configuration is realizabl@ives no overlapsin the fcc struc-
ture; under the LS transformation it is mapped onto(amrealiz-

ble hcp configuration with three overlapping pairs of hard spheres
?shown with dashed boundarje§ hus, for this configuration, the

FIG. 2. Schematic representations of the two close-packe
structures. The structures differ only in regard to the stacking z
pattern of the close-packed+y) planes which are of the form ©Overlap order parametevt({u}) =3 [Eq. (16)].
ABCABGC - - for fcc (uppe) and ABAB-: - - for hcp (lower). The

vector labeled is instrumental in defining the LS operation, shown @ppropriate translation vector”: one should not think of the

in Fig. 3. planes as “sliding through” the intermediate states.
Figure 3 shows the application only to tperfectcrystal
so that, in analogy with Eq11), configurations where energy-matching is guaranfd&l In

general(that is, for “typical” configurations: see Fig. 4 for
. . 1 . an examplgthe two configurations related by the LS opera-
Agap=9g(N,P*,a)=g(N,P”, )= — 5 InRp(N,P). tion will not be energy matched: since adjacent planes are
(15) translated differently, the translations may—indeed, with
overwhelming probabilitywill—map a realizable configura-
tion (of one structurg in which there are no overlapping
spheres, onto an unrealizable configuratiohthe othey in
The two close-packed structures of interest here arguhich there are overlaps. A MC lattice switch “move” will
shown schematically in Fig. 2. In principle there are manype rejected formostconfigurations. But not quite all: gate-
transformations which will map one set of lattice vectors intOWay configurationgconfigurations that are energy matched
the other; we shall consider the criteria guiding the choice i29] to their conjugatésmust exist, in significant measure. In
Sec. IIC. The mapping used in most of the work reportedparticular, it is clear on grounds of continuity that configu-
here is shown schematically in Fig. 3. This scheme exploitgations “close enough” to perfect-crystal form must fall into
the fact that the two structures differ only in respect of thethis category. One might thereforehoosethese “small-
stacking pattern of the close-packed planes. A suitable trangtisplacement” configurations to act as the gateway states,
formation can then be constructed that entails, simpins-  and define a multicanonical weighting procedure accord-
lating appropriate close-packed planes. By “translate” weingly. However, one can avoid having to make this explicit
mean, more precisely, “relocate at a position defined by arthoice, and, instead, let the systdimd gateway configura-
tions itself. To do so we must define a measure of the mis-
match between the energies of the configurations linked by
the transformation.
In the present context that mismatch is quantified by the
number of pairs of overlapping spheres created by the trans-

formation. To that end leM ({u},a) denote the number of

overlapping pairs associated with the displacemquft‘ﬁ
within the structuren. And define[44]

B. The lattice-switch method

~
Q
aQ

e, o] 1ol
OO

M({u}p)=M{u},hep —M({u},feo). 16
FIG. 3. The LS transformation applied to the perfect-crystal () ({u}.hep ({u}fec) (16)

configuration. The diagram shows 6 close-packaey) layers. . - . . )

[The additional bracketed layer at the bottom is the periodic image>inceM ({u}, @) will necessarily be zero for any realizable
of the layer at the top.The circles show the boundaries of hard Set of displacements of structuse theoverlap order param-
spheres located at the sites of the two close-packed structures. @fer M is necessarily=0(=<0) for realizable configurations
this realization of the fce-hcp lattice switch, the top pair of planes of the fcc (hcp structure. Figure 4 provides a concrete ex-
are left unaltered, while the other pairs of planes are relocated bgmple. The gateway configurations may then be identified
translations, specified by the vectorst (white arrows and t  (withoutprejudging their microscopic charactas the set of

(black arrows. The vectort is identified in Fig. 2. configurations for whichM=0: a displacement patteffu}
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for which M=0 is realizable inboth structures(energy @ successful LS may be launched. Since the multicanonical

matchedl. A LS MC step initiated from anM =0 configu-  Simulations traverse this path only slowlgssentially diffu-
ration will be accepted; if initiated from outside this set of Sively, at bestthe gains here are potentially substantial. It is
configurations it will be rejected. intuitively clear that the scheme described above will fulfill
The sampling algorithm must thus be multicanonicallythis criterion well: in this representation, the LS translates
customized so as to enhance the probability along a notion&lose-packed planes bodily, so it can create overlaps only
line in M space, extending from the “equilibriumM val- ~ between spheres associated watifferent planes. But it is
ues(reflecting the number of overlaps created by a LS acting/seful to explore other schemes—partly to check that there is
on atypical configuration through to theM=0 gateway NO significantly better alternative, but principally to under-

Conﬁgurations_ This aim is realized by augmenting the sysstand the different factors that control the efficiency. We
tem energy function Eq1): have done so; the results are to be found in Sec. IV A.

There is a second—Iless obvious—generalization of the
EQrH—E{rH)+ pMEu)=E{r} (17)  framework. In the simple realization, the particle positions
are written in the “lattice plus displacement” representation
where (M), M=0,£1,=2--- constitute a set of multica- provided by Eq(4). The LS operation then maps a configu-
nonical weightg15]. These weights need to be chosen so agation of one structure onto a configuration of the other with
to allow the system to access thg=0 gateway configura- the sameset of displacements. This is unnecessarily restric-
tions, and thencéhrough the L$the full joint configuration  tive. More generally we are at liberty to write, in place of Eq.
space of the two structures. Thiesiredratio of configura-  (4),
tional weights, which reflects theanonical distribution

P(MIN,V) [Eg. (12)] may then be estimated from theea- r=Re+Te.q, (19
sured multicanonicatlistribution,P(M|N,V,{ 7(M)}) with . .
the identification wherer,R% andu are now column vectors with\8 ele-

ments andl'“ is a 3N X 3N non-singular matrix, whose form
(possibly{u}-dependentis at our disposal. Equatiof®) is

/\/12>O PMINV) then replaced by
7?/fcc,hc[{ N, V) =
2, PIMINY) ANV, =]1 f du; -detT“(H) O(r;—D). (20)
I a 1]
> P(M|N,V {n(M)})e” M From the standpoint of thstandard single-phase part of the
_M=0 MC procedure, this change in representation is equivalent to

. Changil g the form of the configurational energy:
P(M N,V, n M ei(M)

A

E{r)—E({r})—In[detT*], 21
18 ({rH)—E{r} —Inf ] (21
This change introduces some computational overheads,

Here the exponential reweighting of the multicanonical dis-, , . L S
o . . : . which I ntial if th& transformation is n
tribution folds out the bias associated with the weights ch could be substantial if th& transformation is not

whose residual effects are then simply as desired—the rlocal. The potential pay off lies in the LS part of the MC

: . yrocedure. One might hope to be able to tune the form of the
Q;’t\:ﬁ:lﬁ{;ze ergodic barier between the two branches of th- iy 56 that “typical” configurations of the one struc-

ture are mappetby LS) into “typical” configurations of the
. . . . other. In the case of the hard sphere problem, however, our
C. Representations: tuning the lattice switch results(Sec. IV A) suggest that there is little to be gained

We have presented the LS method in its simplesfiere by this kind of tuning.
realization—the one we have used for most of the studies
reported here. We now outline two important respg4s in . IMPLEMENTATION
which some degree of generalization is possible, and may be
desirable, in subsequent applications. Both involve the
choice ofrepresentatiorof the LS transformation. First we consider the procedure for MC sampling of the

We have already alluded to the first point: there are manyarticle displacements, for a given structuset of lattice
forms of lattice-to-lattice mapping. It is clear that the effi- vectorg. As discussed in Sec. Il A this sampling should, in
ciency of the method will depend significantly upon the map-principle, satisfy some appropriate configurational constraint
ping chosen. Evidently the choice should be made so as tel6]. In our original studie$30] we chose to implement this
match up, as closely as possible, #reergyof the two con-  constraintexplicitly, through our sampling distribution: can-
figurations it links. In the context of hard spheres this aim isdidate displacements were drawn from a flétop hat”)
realized by choosing the mapping which gives the smallestlistribution. This procedure can be made to work. But the
equilibrium overlap countmean| M| value, which gives a  constraint explicitly breaks the translational invariance; and
measure of the entropic barrier that has to be negotiated byne must deal with the consequences. In particular the con-
the multicanonical procedure. The smaller this barrier, thdigurational integral effectively being evaluated thdapends
shorter is the path to the gateway configurations from whichupon the location of the center of mass and thence upon the

A. Monte Carlo procedures
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top-hat cutoff; this dependence sets in when the displace 30 e I A m e s e p e p
ment acquired by the center of mass, in the course of its slow
diffusive motion, becomes comparable with the top-hat cut-

off. One can avoid this problem simply by fixing the center

of mass. Our failure to do so in R¢B80] led to results which

differ significantly from those we present here. In the studies
reported here we have chosen the “implicit” realization of 20
the configurational constraifipractically, but not conceptu-

ally equivalent to ignoring jtwhich restgSec. Il A) on time <
scales. Spheres were chosen at random, andctieaigeso g
the current displacement drawn from a uniform distribution. &
The displacement update is accepted according to the Me
tropolis prescriptior] 3] 10

pa({u}—{u'H=min{Lexd —AE{rH]} (22

whereE({F}) is defined in Eq(17) [47]. In addition to the
constraint that the update should yield a realizable configu-
ration of the current phase, this acceptance probability re-
flects the chosen weights which are defii&gc. Il B ex-
plains how on the space of the overlap order parametér
[Eq. (16)]. To minimize the computational time spent deter-

mining how a proposed move affects the value/of we tem of N=216 hard spheres. The points marked VS are the results

used a local overlap array, holding information on WhIChof the first 3 iterations of the visited-states algorithm, initiated from

neighbors of a given sphere currently overlap with thatan fcc equilibrium state. The points marked TP emerge from one

sphere in the conjugate configuration generated by a LS. gppjication of the transition probability method. The solid line
The representation of the close-packed limit provided byghows a refinedusablé set of weights.

Eqg. (103 can be handled with only minor amendments: the
constraintr;;>D identifying realizable configurations is re- checked(it is already knowh The LS is performed ifand
placed by a constraint on the scaled displacement-differendenly if) the gateway conditiolM =0 is satisfied.
coordinatesu“ >—1. The overlap order paramet@neasur- . )
ing the number of times the hard sphere constraint is violated B. Calculating the weights
in the conjugate configurations redefined accordingly. In The determination of an acceptable set of multicanonical
this limit particle “interactions™ (encounters may occur  weights[15] can be accomplished in a number of ways—
only between immediate neighbors. At other densities weone, seemingly, entirely systematic. We describe briefly the
allowed for the possibility of encounters between nominakechniques we have used in the present study. Figure 5 pro-
second neighbors. We found, however, that although thides some illustration. For further details and references to
number of such encounters grows rapidly with the approaclther work the reader is referred to Ref$5,26,50,51
to the melting density, the consequences for the relative en- The simplest method is the visited-staiS) technique
tropy of the two structures is insignificant under the condi-[50]. In this approach a suitable set of weights is evolved
tions studied herg48]. through an iterative procesFig. 5), the next set of weights

In addition to particle moves the constant-pressure simudepending upon the distribution of teverlap order pa-
lations require updates of the simulation-cell parameters. lfiameter over the macrostates visited using the current set of
such an updatémplemented on average once per swep weights. This process is repeated until the weights yield a
trial set of cell parameters are selected, and accepted WiﬂiﬁstributionP(M|N,V,{n(M)}) that is effectively flat. This

FIG. 5. lllustration of the weight-generation process, for a sys-

probability [49] method proved quite adequate for our smallest system.
For larger systems, however, we found it more efficient to

pa(V—V')=min{1,exg — AE({r})— P*AV appeal to the transition probabilitff P) method[50]. In the
simplest realization of this method the simulation is initiated

+NIn(V'/V) ]}, (23 from a “cold” (zero displacementonfiguration(a member

) ] _ _ of the M =0 macrostatefor one structure. In the course of
whereV" is the volume associated with the trial parametersits subsequent evolution towards equilibrium for that struc-
Note that this kind of update—a dilation—chandge§[r})  ture the numbers of transitions between differg@vt mac-
both trivially (so as to forbid moves causing “real” over- rostates are recorded, and subsequently used to construct an
laps and more subtly through changes in the count of theestimator of the macrostate-transition-probability matrix.
overlaps in the conjugate configuration. A volume updateThis TP matrix can be used to estimate the macrostate prob-
thus requires recalculation of the entire local overlap array.ability distribution and thence to provide an estimate for a set

Now consider the lattice switch. The switch may be of weights(Fig. 5), which can in turn be refined via VS. For
viewed as an updating of the “lattice” type, regarded as a our intermediate size system this method worked well.
stochastic variable. The prescription for such an update is In the case of our largest system we found it necessary to
quite simple. After every particle update the valuefdfis  modify the method somewhat, so as to limit the rate at which
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the simulation passes throught space. One way of doing ~ TABLE I. The efficiency of different lattice mapping$or N

this is to constrain the system to macrostates with overlap-1728 andp=0.7778), as measured by the number of overlaps
order parameters below some “barrier” value, which is (per sphergthat they generate. Refer to the text for details.
gradually incremente¢moved “out” in M spacg, at inter-

vals of the order of the equilibration time. mapping description effect m=MIN

By fiat the two structures have the same weights Adr 1 (0,~1,+1) fcc—hcep 0.1501)
=0. In principle, the weights as_sociated _With the two struc- 2 (0,28, — 21) fec— hep 0.1881)
tures for nonzero|M| are different [i.e., n(M)a&_n 3 (0.3, 30) foo fec 0.1941)
(—M)], and have to be evolved separaFer. In practice .the 4 ran’ do’m-plane fee hep 0.37%2)
weights of the two structures are very similar—a reflection 5 random-site fee-hep 0.8203)

of the similarity of the entropies of the two phases. Conse-
quently, one set of weights provides an excellent first ap-

proximation to the other, for refinement by VS. in Fig. 3, and used throughout this work: the notation (0,
—t,+ f) signifies that the three pairs of planes counting from

the top of Fig. 3 are translated respectively by 6, and+ t.

The specific form of the LS operation we have chosenA similar convention is used to label mappings 2 and 3. In
(Fig. 3 imposes restrictions on the geometry of the systenmapping 4(“random-plane”) an hcp configuration is gener-
simulated: with normal periodic boundary conditions the sys-ated by taking an fcc configuration and restacking its close-
tem must comprise integral multiples of 6 close-packedPacked planes in a random order, in an hcp pattern. In map-
planes. It is possible to avoid this restriction by using morePing 5 (“random-site”) an hcp configuration is generated by
elaborate boundary conditioi$4], but we chose to avoid Mapping the particle displacements in an fcc configuration
this complication and simulate systems comprising 6 randomly on to the sites of an hcp lattice.
=216, 12=1728, and 18=5832 spheres. Simulations were ~ 1he random-site mappingrumber 3 shows the largest
performed at two densities, namelysee Eq. (7)] P overlap count. On(_e can account for its va]ue, ra'Fher well, py

~ o regarding the particle displacements as isotropic, Gaussian,
=0.7778[47], andp=1, the close-packed limit. _ and independent of structufg2], and estimating the prob-

The maximum step size for displacement updating wagpijity that two particles associated with nearest-neighbor
chosen so as to minimize the autocorrelatmn_ time of th%ites, and with displacements dravandomlyfrom this dis-
overlap order paramet€Eq. 16. We fouDd amaximum step b tion. will overlap.
size of 0.1® produced the best results@t 0.7778, while a Using the random-plane mappin@gumber 4 cuts the
value close to unity was found to be appropriate in the closegverlap count by a factor ofa little more thah 2 with re-
packed limit, in the representati¢and scaled uni}ggiven in  spect to random site. This efficiency gain simply reflects the
Eq. (109. fact that of the @& potential overlaps between near-

A significant proportion of our simulation time was de- neighbors, only the ® associated with neighbors in different
voted to the process of weight-determination. For our largestpbut adjacentplanes can now contribute.

C. Simulation details

system we used favionte Carlo sweepeMCS) to generate Mapping 3 simply generates one fcc configuration from
a first (TP) estimate of the weights, with a furthenBl0®  another(it is useful only because it is informativets over-
MCS devoted to weight-refinement using VS. lap count is cut by a further factor of 2. This reflects the fact

The free-energy differences of interest were then deterthat this mappingsimilar to mappings 1 and)2noves close-
mined by further simulations in the multicanonically packed planes impairs, thus guaranteeing no overlaps be-
weighted ensemble. For each syst@ensity, and sizewe  tween the two members of each pair.
performed a series of runs each long on the scale of the Mappings 2 and 1 show further—smaller but still practi-
autocorrelation time of the overlap order parameter. Each ofally useful—cuts in the overlap count. The origin of these
these runs then provides an independent estimate of thgains is more interesting. It is clear that they must reflect the
(logarithm of the probability ratio requiredEg. (18)]. The  size of the translation vector used: mappings 1 through 3
standard deviation of these estimates provides a basis fejiffer only in this respect. This vector controls the extent of
assigning an associated statistical uncertainty. Implementinghe shear which the mapping introduces between successive
this stage required simulation times ranging from2.5  pairs of planes. The following interpretation seems reason-

x 108 MCS for N=216 to~4x 10" MCS for N=5832. able. The displacement patterns in adjacent planes will be
correlated to some extent, with undulations in one surface
IV. RESULTS (the zcomponents of the displacementsatched to undula-

tions in its neighbor. The smaller the shear, the more closely
these undulations wilemainmatched to one anothén the

As discussed in Sec. Il C the LS operation can be imple€onjugate configurationand the smaller the overlap count.
mented with different choices of representation of the latticeWith increasing shear, this advantage is lost and the behavior
mapping or the patrticle displacemefd®]. The efficiency of  should(and indeed dogsapproach the limiftone quarter of
a lattice mapping is measuréihversely by the equilibrium  the overlap count for mapping) ®ne would expect in the
overlap count. Table | shows results for a variety of map-absence of such correlations. The fact that this “approach”
pings, chosen to expose the different factors that control thes already apparent in the performance of mapping 2 is con-
mapping efficiency. Mapping number 1 is the one describedistent with the fact that the measured correlation length of

A. The effects of the representation
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larity between the overlap counts for the two structuf&sc.
IV C). It shows, moreover, that any simgi3] tuning of the
displacement representati@the choice oflf matrix) is likely
to be of no advantage hefg4].

e FCC
© gateway
o HCP

B. How it works: the gateway configurations

A LS operation will work (be accepted as a MC move
only when launched from a small subset of the configura-
tions actually visited: these, by definition, are the “gateway
configurations.” As noted earlier, one could ident#ypriori
configurations(those characterized by “small enough” dis-
placements which fall into this set. But we have elected,
rather, to let the systeitthe algorithm identify them on the
basis of their defining characteristic—that they have zero
overlap order parametei [28]. It is then interesting to
investigate thamicroscopiccharacteristics of the configura-
tions picked out by this constraint. Figure 6 shows the dis-
tribution of the separatiod between adjacent close-packed
€ (x-y) planeg55], for M macrostates corresponding to equi-
packed planes in a system of 216 spherepa0.7778, in the librium fcc, equilibrium hcp, and gateway\(=0) regions.
equilibrium hcp and fcc macrostates, and in the gatews$<0) ~ The macrostates corresponding to the equilibrium crystal
macrostate. The separation is measured with respect to the equiliBtryctures have similar, near-Gaussiandistributions. In
rium separatioml, and is expressed in units of the sphere separationsontrast, for the gateway macrostate the distribution is bimo-
& [57]. dal: in this macrostate, some planes are systematically

moved closer to one another, whiie equal measujeothers
the surface undulations at the density concerned is found tgre shifted apart. On closer examination one finds that it is
be close to the magnitude of the translation ved¢tor the planes which arganslated togetheby the LS[e.g., the

These results help to clarify the factors which control thepair of planes markedi) in Fig. 3] that fall into the first
overlap count of the mappinqumber 1 we have actually category, while the planes that ar@nslated differentiyby
used. It is tempting to attribute the overlaps to the fact thathe LS[e.g., the pair of planes markéid) in Fig. 3] fall into
the LS (fcc—hcp, say maps each particle from an environ- the second. The evolution, with , of the mean plane sepa-
ment in which adjacent close-packed planes have differemation (for both categoriesis shown in Fig. 7a). The behav-
stacking labelgA and C, sayto one in which they have the ior thus unearthed is entirely reasonable. The LS operation
same labe(C, say. The results for mappings 1-3 show that canonly create overlaps between neighboring planes which
it would be misleading to think this way. The overlaps sim-are translated by different amour{tsheared with respect to
ply reflect the numbers of particles that “see” a new adja-one another The algorithm resolves the task set by the bias
cent close packed plan@respective of its label and the towards M=0 by moving these pairs of plandthe ones
extent to which it is “new.” This is the reason for the simi- vulnerable to overlapsfurther apart, at the expense of a

04

FIG. 6. Distribution of the separatiahbetween adjacent close-
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FIG. 7. (a) The mean value of the separatidrbetween adjacent close-packed planes in a system of 216 spheres0at778, for
macrostates of differeni1. The separation is measured with respect to the equilibrium sepadtiorunits of 6 [57]. Category(i) planes
(see Fig. 3 are translated together by LS; categ@ry planes are translated through different amounts by(bSThe evolution withM of
thec/a ratio [58] in a constanpressureensemblgwith the same parameters @]. The horizontal line marks the ideal-close-packed value.
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' ' ' ' ' TABLE Il. The difference in the entropy densities of the fcc and
hcp structureshs= A s hep[EQ. (11)]; the associated uncertainties
oN=18 2 are in parenthesis. The results of the present WBi) supercede
o N=12° those of Ref[30]. The results of Refl64] supercede those of Ref.
°N=6’ [10]. IM stands for integration method; SM is the lattice shear
method of Refs[14,63.
fcc ——

§ plpcp N As(10 %kg) Method Ref.
v 0.731 512 8510) SM [14]
g 0.736 12000 230100 IM [64]
hep 0.736 12096 8720 IM [62]
0.739 512 90(4) LS [14]
l 0.7778 216 1324) LS [31]
0.7778 1728 1124) LS [31]
0.7778 1728 1134) IM [31]
0 o > - 0.7778 216 1333) LS PW
D - 01 02 0.7778 1728 1133) LS PW
0.7778 5832 11@3) LS PW
FIG. 8. The probability distribution of the overlap order param- 1.0 12000 260100 IM [64]
eter per particlem=M/N, for systems of three differei values 1.0 512 110(20) SM [14]
at p=0.7778. The lines provide Gaussian guides to the eye; the 1.0 64 91(5) LS [14]
statistical uncertainties on the data points are smaller than the sym-1 g 216 107(4) LS [14]
bol size. The entropy difference is identified from the logarithm of | 512 1193) LS [14]
the ratio of the integrat_ed weights of the _two peaks. The hcp peak 1.0 1000 1134) LS [14]
for the largest system is not visible on this scale. 10 216 131(3) LS PW
1728 1253) LS PW

compression of the othef$6]. In simulations conducted at
constant pressure this effetill present is supported by a

second. Figure (b) shows that the algorithm now exploits reflection of the exceptionally delicate balance between the
the additional degrees of freedoftie shapeof the simula- o entropy densities.

tion cell) to locate gateway states with values of tta ratio Figure 8 allows one teeethat fcc is the thermodynami-
enhanced above the ideal close-packed veBe Again, the  cqjly preferred structure. This conclusion is expressed quan-
advantages with respect to the switch are clear. titatively in the results gathered in Table II. Our results at

Itis tempting to say that the.sampllng IS |ntell|ge_qt. In any5=0.7778 correct those of our earlier wofB0O], as ex-
event it is clear that the algorithm locates and utilizes con-

fiqurations which it would be difficult to exploit explicitly in plained in Sec. lll A. They are in full accord with the results
gurations whic ou'd be dIticult to exploit explicitly (both LS- and IM-basedreported by Pronk and Frenkel
the design of the switch operation.

[31]. The close correspondence between the resultdNfor
=1728 andN=5132 confirms that the former system is al-
ready representative of the thermodynamic limit. Table I
The essential output of a LS simulation is in the form ofalso shows the results of our studies at the close-packed
the normalized probability distribution of the overlap-orderlimit, using the hard-dodecahedron representatidru.
parameter, reweighted to remove the bias in the multicanonic10a]. Our results seem at variance with the IM-based result
cally weighted distribution actually measured. Figure 8of Woodcock[64], even allowing for the large uncertainty
shows the results for this distributiofat p=0.7778) for ~attached to that result. They are close to thidesed on LS
three differentN values. As one would expect the distribu- réported by Mau and Hudd4]. But the differencegfor the
tions each comprise two peakene associated with each Smaller systems, particulajlappear to be statistically sig-
phasé each of which isnearly Gaussiar{59] and sharpens nificant [65]._ Figure 9 gives an a_lternatlve view of these
with increasingN [60]. Note the close correspondence be_results_. It utilizes the parametrization of the measured pres-
tween the equilibrium overlap counts for the two structuresSure difference between the two phases provided by Speedy
This result is notequiredby definition, or any obvious sym- [66] to determine the entropy difference, as a function of
metry. Rather it should be seen as a further manifestatioensity.giventhe entropy difference at a chosen reference
(the smallness of the entropy difference between the phaseensity; we have used the results of the present work at
is the prime ongof the similarity of the local particle envi- =0.7778.
ronments in the two structures. Table 11l shows the results of our studies in the constant
The relative weights of the two peaks is a direct measurgressure ensemble. The quantity of interest here is the differ-
of the difference between the entropies of the two structuresnce between the Gibbs free energy densities at the chosen
[Egs.(11), (12), (18)]. Since the entropies are extensive thepressure, which follows from the relevant distribution with
ratio of the peak weights grows exponentially wkh[61];  the aid of Eq.(15). In fact the Gibbs free energy density
the fact thafin this case, at least for our smaller systethe  differenceAg for a given pressure, and the entropy density
two peaks can even be displayed on the same scale isdifferenceAs at a physical density that is the thermodynamic

C. Entropies of crystalline structures
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0.0014 : T TABLE lIl. The difference in the gibbs free energy densities of
the fcc and hcp structureSg= A gy nep [EQ. (15)]; the associated
L uncertainties are in parenthesi®" gives the pressurgl2] in units
g of kgT/D3.
0.0012 + r
n * _ ~ ~ _
_ N P*(D 9 Phep Pree N Ag(10 °kgT)
x
prd 0.001 L 14.58 0.777€l) 0.777%31) 216 —-113 (4)
PP 14.58 0.7778) 0.77742) 1728 —112 ©)
>3
/
/
0.0008 -/’ First, the lengths. In the experiments reported in [R&J]
e AL S the colloidal particles have diameters of order 10m and
o FW the samples comprise crystallites with linear dimensions of
0.0006 . . order 10°° m. The number of particles in such a crystallite
07 0.8 0.9 1 (N~10°) is large compared to those in our simulation,

P/Pcp which is (as we have seersufficient to allow us tadeduce
) . - properties of the thermodynamic limit. But it isot large
FIG. 9. The difference in the entropy densities of the fcc andengugh to guarantee that the behavior displayed will actually
hep structuresAs=Asinep [EQ. (11)], as a function of reduced pe that of the thermodynamic limit. To see this—and its
densityp. The data points are as given in Table II. The solid line is principal implications—one needs to consider the stability of
the result of an integration of the pressures of the phig@lsNote  the perfect fcc crystal with respect to hcp-type stacking
that this line passes through our resultpat 0.7778 byconstruc-  faults. Following Ref[69] we may introduce a parameter
tion. [70] measuring the probability that a chosen close-packed
plane sits within an fcc environment as distinct from the hcp
conjugate of that pressure for one of the phases, differ environment. A simple argumeriAppendix A using the
magnitude[67]) by terms that arsecond ordein the pres- pseudospin parametrization of stacking patterns provided in
sure difference between the two phases. That pressure diffeiRef. [14] then yields the result
ence is extremely smdl66], as is the difference between the
measured densities of the two structuf€able Ill). In these
circumstances one would expect the magnituda gfto fall =5
on the As plot in Fig. 9; and indeed, within the residual
uncertainties, it does.

N, As
2

1+ tan}{ ) , (24

whereN, is the number of particles in a close packed layer

and As (a function ofp) is the fcc-hcp entropy difference
per particle, as given ifand in the units of Table Il. The
In the work described here we have been concerned botlfiermodynamic ideal¢=1) is thus realized only to the ex-
with a systemof long-standing interest—the hard spheretent thatN, As is large compared to unity. For the length
crystal—and amethod—Iattice-switch Monte Carlo— with scales given abovéy, As=1. The obvious implications are
potentially wide applicability. We divide our concluding dis- qualitatively consistent with the observations reported in
cussion accordingly. Ref. [69] which showa values(deduced from Bragg scat-
The full agreement between the present work and that offering intensities ranging from 0.5[signaling essentially
Ref.[31] leaves little doubt that the equilibrium entropy dif- random-hexagonal-close packirighcp] through toa=0.8.
ference between the two close-packed structures has finally The observed spread  values reflects, presumably, the
been established securely and with high precision—at leasssue of time scales. The smallness of the entropy difference
at one density. Although a small discrepancy with respect tgwhich supplies the kinetic driving force towards the equilib-
the results of Ref[14] remains, the accord of our close- rium state¢ suggests that the equilibrium behavior will be
packed limit results with those established using pressurebserved only in samples which are grown sufficiently
difference measurement86] suggests that the curve in Fig. slowly and(or) given sufficient time for subsequent anneal-
9 provides a relatively complete and trustworthy picture ofing [71]. The results of Ref.69] do indeed suggest a corre-
the density dependence. lation between observed value and the slowness of the
Notwithstanding the simplicity of the model, these resultsgrowth process. Experiments done in micrograviig2],
do have implications for experimentally realizable systemswhere growth processes are greatly accelerated, yield essen-
The immediate relevance to atomic systems is ten(i68s tially randomly close-packed crystals.
but the model has been widely used to account for the be- Now let us turn to the lattice-switch method. There are
havior of assemblies of “hard,” “spherical” colloidal par- two questions here. One, does the method represent a signifi-
ticles[32]. Since the predicted entropy-density difference iscant advance with respect to existing methods? Two, is it
so small there are potentially many wafresidual interac- generally applicable?
tions between the spheres; polydispepsity which the ap- The main alternative methodthe benchmark against
plicability of the theory may be compromised. But, of these,which others need to be assessé&d probably integration
it seems that the most significant issues to be addressed awng a reference path, of which the work reported in Ref.
to do with scales—length and time. [31] represents, to our knowledge, the most refined example.

V. DISCUSSION: REVIEW AND PROSPECTS
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If one compares the two techniqu@ss and IM) on the basis the Royal Society of Edinburgh. A.D.B. acknowledges help-
of precision-for-computational-buck there seems to be ndul discussions with Dr. Mike Evans.

clear winner in the hard-sphere studies to date: R&f]

reports calculations using both methods that achieve compa-

rable levels of precision on the basis of comparable compu- APPENDIX A: DISPLACEMENT ENTROPY VERSUS
tational time. But one should note that the entropy difference STACKING ENTROPY

ultimately determined is somé&ur orders of magnitude
smaller[73] than the separate entropies of the two phase
determined by IM. One can see this as a testimony to th
care with which the recent IM studies have been carried Ompseudo-spir(lsing-like) variable o, where o;=1 signifies

or (as suggested in Seg.ds a strong indicator that another that layeri has an fcc environmenthe two immediately

approach using an interphase path is called for. There ar&djacent layers are not aligned with one andtvenile o

also two other counts—both somewhat subjective—on_~ implies an hcp environmentadjacent planes are

which we suggest that the LS approach is superior. First, i<I;1Iigned with one another The probability of a particular

seems to us relatively illuminatingpy comparison with IM stacking sequencés) (if these variables may properly be
to read-off the result for a free energy difference direCtlyregarded as annealethen satisfies

from a figure similar to Fig. 8 whiclshowswhat it means
Secondly it also seems to us that LS wins in regard to the InP({o}|N,V)=S(N,V,{o})+ const, (A1)
transparency of the uncertainties to be attached to its results.
The LS error bounds represent purely statistical uncertaintieghereS(N,V,{o}) measures the entropy associated with the
associated with the measurement of the relative weights afonfigurations(displacementsconsistent with the particular
two distribution peaks. The IM error bounds have to aggrestructure{c}. Following Ref.[14] this entropy(we will refer
gate the uncertainties associated with different stages of thg it here as “displacement entropy¢an usefully be written
integration process. in the form of an expansion:

As regards the second question, we expect that the
method will, with appropriate extensions, be widely appli-
cable. The first extension must clearly be to accommodate S(N,V,{a})=Nso+Nlh2 Ui+NiJ<iE> oot
soft potentials. The LS operation will then need gateway . (A2)
configurations in which the energies of the two structures

(measured with respect to their ground-state energies—or infhe expansion is effectively ordered in thenge of the en-
deedany fixed reference energyare closely matchef43].  tropic interlayer “interactions™: the ellipsis represents con-
The “overlap order parameter” will need to be redefined triputions from interactiongmicroscopically, displacement-
accordingly. With no more than this degree of elaborationdisplacement correlation functionextending over more
the method should be applicable immediately to investigatghan 4 layers. The analysis of Réfl4] indicates that the
the widespread “competition” between fcc and hcp orderingseries converges quickly, except close to melting. If we ne-
in the phase behavior of the elemeftd]. glect the interaction terms altogether we may make the iden-
More generally, moving beyond the space of fcc-heptification
structures, the choice of lattice-to-lattice mapping will re-

Consider a system & hard spheres arrangedi) close-
acked layers oN, particles. Following Ref[14] one may
conveniently index each of the close-packed layers with a

quire some thought. Mappings which preserve the relative 1

positions of significant subsets of the particléee analog of h=S N [SINV{o=+1}) =S8N,V {o=—1})]

the close-packed planeare likely to be optimal. The license L

to choose ones representation of the displaceméEpes. AStec hep

[l C) may also prove useful. Simple transformati$s3] will T (A3)

help if the mapping takes particles between environments in
which the spectrum of single-particle displacements is sigand, from Eq.(Al),
nificantly different. In such cases one might envisage using a

MC-annealing procedure to refine the choice of representa- 1

tion. The use of normal coordinates has some advantages <U>=N{Uz}i P({o}IN,V)oi=tani{N h]
here—but possibly not enough to offset the fact that the in- ’

teraction potential is nonlocal when expressed in Fourier N, ASieenep

space. =tanh ———— (A4)

from which Eq.(24) follows. The correspondence with a 1D
paramagnet is clear. The familiar competitidoetween ori-

A.N.J. acknowledges the support of the EPSRC. N.B.Wentation energy and entropis played out here as a compe-
acknowledges the financial support of the Royal Societyition between displacement entropy and stacking entropy,
(Grant No. 1907§ the EPSRQGrant No. GR/L9141pand  with N, playing the role of an inverse temperature.
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