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Spatiotemporal structure of isodiffracting ultrashort electromagnetic pulses
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We present a model of isodiffracting single-cycle and few-cycle ultrashort electromagnetic pulses. The
model is based on exact solutions of the time-dependent paraxial wave equation with space-time coupling
effects included. The spatiotemporal structure of these pulses is characterized by a scaling parameter which
relates off-axis pulse shapes to the axial temporal waveforms. Depending on the spectrum a pulse may
transform itself from a single-cycle pulse to a multicycle pulse along the radial coordinate. This model is also
used to describe recirculating pulses in a curved mirror cavity resonator. The Gouy phase shift contributes an
absolute phase that results in a pulse-to-pulse temporal instability.

PACS numbgs): 42.25.Bs, 42.65.Re, 41.20.Jb, 42.60.Da

[. INTRODUCTION are characteristics that depend on the particular choice of
pulse spectrum.

The propagation of ultrashort laser pulses and other ultra- Our purpose in this paper is to provide detailed results for
wideband electromagnetic pulses is a subject of great curreffie spatiotemporal evolution of isodiffracting pulses whose
interest. In the optical regime pulses as short as 5.4 fs an@mplitude spectra are of the foraf exp(—wm). Such spec-
containing fewer than two cycles of the carrier wavetra are often observed in terahertz experiments and can also
(wavelength-800 nm) have been generated directly from abe tailored to describe femtosecond laser pulses. In addition,
mode locked lasdr]. The interest in this wavelength regime they lead to closed-form solutions for the isodiffracting pulse
has been in the generation of even shorter pulses, in th@ terms of elementary functions. We find that pulses with
characterization of the pulse temporal profile, and in thesuch spectra obey a simple scaling law that permits easy
measurement and control of the absolute phase of the pulsealculation of such quantities as pulse width, peak frequency,
At |onger Wave|ength$e_g_' in the terahertz regimwhere bandwidth, and number of oscillation Cycles at any point in
single-cycle pulsed beams are routinely generf@ddthere  space given those quantities at some other point. We also
is interest in optimizing the diffraction properties of these €lucidate the role of the Gouy shift of finite beams in deter-
pulses so that their energy is highly localized around thenining the absolute phase of an isodiffracting pulse. By ab-
propagation axis. One scheme proposed for improving théO'Ute phase we refer to the phase of the carrier wave relative
directivity and efficiency of pulsed beams is the “isodiffract- to the envelope. For recirculating pulses in a curved mirror
ing aperture,” which involves source shaping in space-timecavity, we show that the Gouy shift causes the temporal pro-
so that all the frequency components in the field have thdile of the transmitted pulses to vary from pulse to pulse in a
same collimating distand@]. Recently a number of authors quasiperiodic manner. These results are especially important
have pointed out that these isodiffracting pulses are naturdPr the generation and control of few-cycle mode locked la-
spatiotemporal modes of a curved mirror cavity resonatofer pulses.

[4,5]. An understanding of the properties of isodiffracting
pulsed beams is particularly relevant for studying the spa- Il. MODELING OF ULTRASHORT PULSES
tiotemporal profiles of mode-locked laser pulses.

A number of general characteristics of isodiffracting
pulsed beams have been established by HeyfanThese

The pulsed Gaussian bearfi3GB) are exact solutions of
the time-domain paraxial wave equatif8i,

include the fact that they are the most general eigen- 5 p
wavepacket solutions of the time-dependent paraxial wave : 2 _ ]E(r t')=0, (2.1)
equation. Their initial data is propagated along the hyper- Lcat oz

bolic ray paths of monochromatic Gaussian beams. Along

these ray paths the pulse temporal profile undergoes a Hilbevthere VI operates on transverse coordinates, ahet
transform as the pulse propagates from the near field to the z/c is the local time. This equation can be obtained from
far zone. These features were also noted by us in a study @h inverse Fourier transform of the frequency-domain
exact “electromagnetic directed energy pulse train” paraxial wave equation

(EDEPT) solutions of the full Maxwell equation$5,7].
Other features of the evolution of isodiffracting pulsed
beams, such as a transformation from multiple cycle to
single-cycle temporal profiles along a radial coordinak

V2 +2ik ]E(r w)=0 (2.2

with respect to the local tim& =t—2z/c, wherek=w/c. In

the single-cycle regime the pulse longitudinal spatial extent
*Electronic address: sfeng@umich.edu ct, (Where 7, is the pulse widthis of order\, (the peak
"Electronic address: winful@eecs.umich.edu wavelength. Since the paraxial approximation holds when a
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beam’s Rayleigh lengtizg is much greater tham,, for  low-frequency cutoff is determined by factors that include
single-cycle pulsed beams we requirg,<zg. This condi-  the bandwidth of the gain medium, cavity geometry, mirror
tion can also be obtained by taking the inverse Fourier transhandwidth, and finite apertures. We thus take the spectrum as
form of the paraxial condition |6?E(r,w)/dZ?| A
<|wlcdE(r,w)/dz|, with respect to the local time’'=t "pr(w):—iﬁ(w—wo)p
—1z/c, resulting in (p+1)

PE(r.t") Xexd — (o —wq) 79] (0 — wo), (2.6

9% |

- 1 9E(r,t") )3
c azot’ | @3

wheref(w— wg) is a unit step function and, is a constant.

I'() is the gamma function. The step function ensures that
Since there are no negative frequency components. This makes the
time domain complex field an analytic function that is well

’&E(r't’) NE(r,t’)| behaved for all time and at all points in space. The low-
at’ \ Tp \ frequency cutoffw, is a positive parameter that can be iden-
tified as the carrier frequency of the pulse. The peak fre-
and guency of the pulse is given by,=wo+p/ 7, Where the
JE(r Y [E(rt) term p/ 7, marks the location of the maximum of the un-
N ' shifted spectrumv® exp(—wy). The form of the coefficient
gz | R | in front of the above spectrum is chosen in order to simplify

. , L ) the final form of the time domain expressions. By varying
Eq. (2.3 yieldsc,<zg as the paraxial condition in the time wo, To, andp, Eqg.(2.6) can be used to describe pulses that

doma'f}- Moreover, in the paraxial regime the pulse 100ksary from a single cycle to an arbitrary number of cycles
I|ke_ a “pancake, l.e.,crp< 2w_(whe_rew is the transverse \yith any low-frequency cutoff. In this paper we use E26)
radius of the pulse since the diffraction angl& ,/2w<1. _to represent both terahertz and mode-locked laser pulses.
The fundamental Gaussian beam solution of the paraxiatigure 1 shows a typical spectrum used in the subsequent
wave equation is given bjg] plots in this paper. The wavelength range is referred to a
typical spectrum for few-cycle mode-locked Ti:sapphire la-
, (2.4y  Ser pulses.
The inverse Fourier transform of the electric field is de-
fined by

" 1 ikp?
(fw)= z—izRex 2(z—izg)

wherezg, is the Rayleigh range, angf=x2+y?2. An isodif-
fracting pulsed Gaussian beam can be obtained by multiply- 1 fﬂc

ing this solution by any square integrable spectrBifaw) E(rt)=5- E(rw)exp—iot+ikz)dw, (2.7

2
and transforming back to the time domain. The resulting
pulse is isodiffracting in the sense that all the frequencywherek=w/c. The analytic signal corresponding E{r,t)
components have the same Rayleigh range. The Fourigs obtained by a one-sided inverse Fourier transform
components of the field are described by

—o0

1 [+

E+(r,t)=;f E(r,w)exp —iwt+ikz)dw, Imt<O.
0

(2.9

~ _ﬁ(w) [{ ikp? )
E(r,w)—z_izRex 2z-izg))’ for >0. (2.5

The details of the pulse spatiotemporal evolution will dependrhe real field is obtained fror(r,t) =Re[E"(r,t)}. Substi-

on the particular choice of spectruﬁ(w). Here we choose tu;i[ng Eq.]£2.6}| int(f) Eq.l(%.S)% ang then into Eq(2.8), one
spectra of the formwP exp(—w7) (w=0), wherep(=1) obtains a family of analytic functions,
and 7o(>0) are real constants that can be determined from .

i Ap(Tr)exd —i¢(z)] .
the peak frequency and bandwidth of the pulse. To modelg*( )=~ exf —iwor— p2W3(2)],
femtosecond laser pulses we include a low-frequency cutoff P JZ2+ z%
wq below which the spectral amplitude is zero. In lasers the (2.9
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where the Gaussian beam siz&y?(z)=(2czg/we){1
+(z/zg)?), is evaluated at the carrier frequenay. The

Gouy phase shift igh(z) =tan (z/zz). The complex function
Ap(T,r) is given by

carrier frequencyw, is varied from zero to values greater
than the pulse bandwidthw>1/7y).

Since the imaginary part of E§2.9) is simply related to
the real part by ar/2 phase shift, both real and imaginary
parts of Eq(2.9) describe a family of PGBs with an arbitrary
Ao exp —iay(T)] number of cycles. Whem,=0, Eq.(2.9) reduces to

Ap(T1r): (1+T2)(p+1)/2np+1(r)7p+l’

Ap(T,r)exd —i¢(2)]

ap(T)=(p+Dtan X(T), (2.10 Ef(rt)= (2.15
P 22+ 23
whereT is a dimensionless scaled local tif®LT). Its gen-
eral form is The real and the imaginary parts of EQ.15 represent a
1 p? family of single-cycle pulses. This form of single-cycle pulse
t——§z+ —] for the casg=2 was obtained in previous papers by taking
T(r,t)= 7(r.t) — ¢ 2'3(2) ’ (2.1 a paraxial approximation of the exact solution of the full
Ton(r) p wave Maxwell’s equationg5,10] The low-frequency cutoff
7o) 1 az_(z) is zero in the single-cycle pulse. The spatiotemporal evolu-

tion of single-cycle pulses is purely determined by the com-
plex envelope function Eq2.15. Comparing Eqs(2.9) and
(2.195, a multicycle isodiffracting pulse is composed of a
focused complex envelope and a focused carrier wave with
Gaussian transverse distribution. Figure 2 shows the spa-
tiotemporal evolution of a multicycle pulse with low-
frequency cutoff f,=0.3fs'1. The Rayleigh rangezg

where 7(r,t) is a radially dependent local time, defined by

- v 2.1
’T(r,t)=t—E Z+m . (2.12
HereR(z) =z{1+ (zr/2)?} is the radius of curvature of the
wavefront. It will be seen that, yields the on-axis pulse =50mm, andp=>5 for all the figures in this paper. A thor-
width that is invariant upon propagation(r) is a spatially  ough discussion of the physical properties of this family of
dependent scaling parameter that scales the off-axis pulsgigen-wavepackets for the cape-2 andwy,=0 was given
Width, bandwidth, peak, and instantaneous frequencies. It ij Ref. [5]. Here we generalize the results to multicycle
given by pulses and point out the spatial temporal structure of these

o
a%(2))’

eigen-wavepackets.
2 o 2
22 ),
ZR o ZR
(2.14  structure of these pulses is characterized by the scaling pa-
rametern(r), which is related to the spatial variations of the
with A\p=27c7,/p as the on-axis peak wavelength of the temporal and frequency information of ultrashort pulses.

unshifted envelope spectruriwith w,=0). The quantity Note that the scaling parametg(r)=const is a set of hy-
a(z) represents the radial extent of the pulse envelope. Fromerbolic ray trajectories of a Gaussian beam. On axis)

n(r)=11+ (2.13

A. Scaling structure

where Due to the complexity of the space-time coupling, the
pulse width, frequency, and number of cycles of the ul-
trashort pulses vary from point to point in space, as shown in

2 —
a%(z) =2C7oZg Fig. 3. In this section we will show that the spatiotemporal

Egs.(2.10 and(2.13, we see that whep=a the magnitude
of the envelope decreases by a factdf 2compared to the
value on axisp=0. Substituting Eq(2.12 into Eq.(2.9), it

is clear that Eq.(2.9 is consistent with the conventional

envelope-carrier pulse expression, i.e., E(r,t)
=A(r,t)exp(—iwgt+ikgz) in which an infinite plane wave

=1, and its value increases towards the pulse periphery. By
using the radially dependent scaled local time that contains
most of the essential features of isodiffracting pulses, the
temporal and frequency quantities of these pulses can be eas-
ily predicted at any point in space.

The pulse width can be determined from the amplitude

carrier is modulated by an envelope function. The carriefunction Ay(T,r). As expected, from Eq2.10 it is inde-
wave in Eq.(2.9), however, is not a plane wave, but a finite pendent of the carrier frequency. It is only determined by the
beam with curved phase fronts. For example, the curvaturenvelope spectrum. Using the half-width a¢ df the maxi-

of the carrier wave is expressed in the radially dependenthum, we find that the pulse width at any point in space is
local time 7. This effect is not included in the traditional related to that on axis by the scaling parameter through
envelope-carrier expression. Equati@9) describes highly
localized space-time wavepackets that propagate in free (2.19
space and maintain their wavepacket structure during propa-
gation. They represent a set of focused propagating modes {jnere
free space. They are a class of eigen-wavepacket solutions of

the time-domain paraxial wave equation with the family of
spectra Eq(2.6). These eigen-wavepackets evolve continu-
ously from single-cycle pulses to multicycle pulses as the

(1) =77(1),

(2.17

e
©
%

3= 708~
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FIG. 2. Spatiotemporal evolution of a multicycle pulse with a low-frequency clitp#0.3fs ! and 7,=11fs. The pulse propagates
from the planez= — 100 mm before the focus, through the focus, then to the ptanE00 mm. The plots in the top row are 3D plots, while

the bottom row are on-axispE0) temporal profiles corresponding to the top row. The other paramptet and the Rayleigh range
zr="50 mm for this and subsequent plots.

is the pulse width on axisp(=0,z). In obtaining the expres- are, respectively, the peak frequency and wavelength of the
sion for 7, the approximation eX@/(p+1)]—1~2/p was  envelope spectrum on axip€02z). For multicycle pulses
used(when p=1 the error is 14%, whep=2 the error is described by Eq(2.9), the peak frequency is given by

only 5%). The pulse width on axis is independent of the o

propagation distance as the result of the isodiffracting na- (1) = wo+ @p (2.20

ture of the pulse. The parameteg characterizes the pulse @p @0 n(r)’ '

width on axis. The off-axis pulse width is increased by a

spatially dependent factop(r). Such an increase can be Hence, the spatial variation of the frequency is independent
understood by the diffraction effect due to which the longerof the pulse carrier. It is only determined by the spatial varia-
wavelengths dominate the off-axis part of the pulgels17. tion of the complex envelope frequency. The full width half-
If the pulse width on axis is known, the pulse width at anymaximum(FWHM) bandwidth at any spatial point also sat-

point in space can be obtained from E2.16). isfies the scaling law

For the family of single-cycle pulses given by Hg.15), o
the spatially resolved field amplitude spectrum is given by Aw ()= Aoy 2.21)
substituting Eq(2.6) into Eq. (2.5) with wo=0. The combi- FWHM n(r) '

nation of the Gaussian beam size fxp?/W(2)] with

wP exp(_wTo) y|e|ds wP eXF[_(UTo’/](r)], thus the peak fre- WhereA(quHM is the FWHM bandwidth on axis. Note that
quency and wavelength of the single-cycley0) pulse at  7(r)=1 on axis. Thus, like the pulse width, the peak fre-
any spatial point are also related to those on axis by th@uency and the FWHM bandwidth are invariant on axis due

scaling parameter through to the isodiffracting nature of the pulse. Off axis those values
are scaled by the scaling parameigr). As expected, the
»° time-bandwidth product of these pulses is a constant every-
wp(r)= 77(7?); Np(D)=A37(r), (2.18  Where in space. It is given by
Tp(r)A(DFWHM(r):T’O)A(J)gWHM. (222
where

This value is only determined by the envelope spectrum, and
not affected by propagation effects.
(2.19 On the other hand, the pulses have a frequency chirp that
' is affected by diffraction. It varies spatially. From E@.9)
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FIG. 3. Temporal waveforms of the pulse at differemndp. The pulse width, frequency, the number of cycles, and the absolute phase
vary from point to point in space. The low-frequency cutdff=0.2fs! and ro=5fs. The beam waist, located at=0, is wq
~0.15 mm. Note the time delgy’/2R(z) with respect to the pulse on axis in each column.

the instantaneous frequency can be defined by the derivativarresponding axial values which are invariant upon propa-
of the phase of the field with respect to time. It is the sum ofgation. The off-axis values scale g$r). The temporal and
the carrier frequency and the instantaneous frequency of thieequency quantities are the same for all spatial points that
complex envelope function, have the same value of(r), i.e., the characteristic lines
n(r)=const [which are the hyperbolic rays?/a?(z)
n a =consi. For this set of pulsed beams the temporal and fre-
(1+T?)9(r)’ quency information travels along the characteristic lines.
(223  Thus, any physical quantities that depend on time and fre-
) quency are also invariant along the characteristic lines. The
where w,=(p+1)/7o=w((p+1)/p. Thus, the spatial yajues of these quantities on different characteristic lines are
variation of the instantaneous frequency and the chirping efsimply related by the scaling parameter. To understand the
fect also come from the complex envelope. Equat®23  scaling structure of these pulses, if one knows the informa-
shows that the instantaneous frequency is symmetricallyjion at an arbitrary point in space, one can easily predict the
chirped about the pulse centéF£0). The pulse center has information in all of space by applying the scaling param-
a higher frequency than the leading and the trailing edges. éter. For single-cycle pulsesof=0), if the pulse temporal
can be expected that these pulses will be steepened towarggfile on axis is known ag(z,t’), wheret’ =t—z/c, the
the trailing edge if they propagate in a medium with normaliemporal profile at any point in space can be obtained simply
dispersion. Figure 4 shows the instantaneous frequency am, shift and scaling, i.e.,
the temporal waveforms of the pulse with carrier frequency

J
wi(r,T)= E[‘*’OT"‘ a(T)]=wq

fo=0.2fs ! for points on axis ¢=1) and on the character- p?

istic line »=2. The scaling nature of these pulses is clearly t— e

shown in the plots. The pulse width on the characteristic line E(r.)= 1 . 2R(z)c (2.24
n=2 is twice that on axis §=1). After subtracting the P ©o(n)

low-frequency cutofffo=0.2fs !, the instantaneous fre-

guency on the characteristic ling=2 is one half the value The scaling structure of these pulses is illustrated in Fig.

on axis. 5, which shows the temporal waveforms along three charac-
Equations(2.16—(2.23 show that these pulses obey a teristic lines. Along the characteristic lines the pulse is trans-

simple scaling law. All the temporal and frequency quantitiedationally invariant except for the absolute phase induced by

are expressed in terms of the scaling paramg(ej and the the Gouy effect. On the different characteristic lines, the
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- - FIG. 4. Pulse temporal wave-
g 0 g 0 forms and the instantaneous fre-
guencies on two different charac-
-0.5 -0.5 teristic lines:  on axisy(r)=1

and n(r)=2 for a low-frequency
cutoff f,=0.2fs and r,=2fs.
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t - z/c (fs) t - z/c (fs) higher at the centef=0 than
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edges of the pulse. Note the scal-
0.7 0.45

ing character of these pulses. The
pulse width on%(r)=2 is about

A
)

\n < twice that on axis. After subtract-
gos goss ing the low-frequency cutofff
g o =0.2fs%, the instantaneous fre-
-.‘q-_) 0.4 .g 0.3 quency onn(r)=2 is one half
§ ‘g, that on axis.
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pulse self-scales as the values of the corresponding lines. Timilses is the result of isodiffraction and the spectra(Bd).

local (radia) time delayp?/2cR(z) along the characteristic The scaling structure is built in the complex envelope, which

lines is given by —1)79z/zg. is affected by the focusing geometry and the envelope spec-
It is the same spatially dependent scaling parametej  trum. Note if zg—, then n(r)—1, and R(z) —<; thus,

which lengthens the pulse width, narrows the bandwidth, anthere will be neither scaling nor curvature.

decreases the instantaneous frequencies towards the pulse

periphery. Such a simple scaling structure of these eigen- B. Ripples

One of the results of the spatial variations of the instan-
z=-50 mm z= 0mm z= 50 mm

taneous frequency and the bandwidth is the possibility of
developing ripples at the leading and trailing edges of the
n=40 pulses towards the pulse periphery. The consequence of this
y=24 is that a single-cycle pulse may self-transform gradually into
a multiple-cycle pulse along the radial direction. This situa-
tion can occur when the peak frequency and bandwidth of
the spectrum change at different rates along the radial direc-
tion, and can be characterized by the ratio of the peak fre-
quency to the bandwidth. This effect is shown in Fig. 6 for
two different spectra at two values of the scaling parameter.
Figure 8a) represents a single-cycle pulsg,€0), while
Fig. 6(b) is for a pulse with the low-frequency cutoff,
=0.1fs 1. The temporal waveforms of these two pulses,
while similar on axig (r)=1], are quite different off axis
t-zic t-zie t-zic [7(r)>1]. One pulse maintains its single-cycle character in
FIG. 5. Temporal waveforms of the pulse along three character'Ehe WhOIe. space, while the other develops ripples towards the
istics lines. The pulse width, frequency, and the number of cycle?ljlse perlphery. e
are invariant along the same lines. The waveforms on different The ratio of the peak_ frequency to the bandwiihis O.f
characteristic lines are related by the scaling paramgtey. The ~ COUIS€ _equal t_o the_ ratio of the pulse Ier_1gth to the penqd of
phase differences on the same line come from the Gouy phase shiff)€ carrier. This ratio therefore characterizes the approximate
which represents the absolute phase of the pulses. All the fields af!mber of cycles in the pulse. In general, the ratio of the
normalized by their peak values. Note the time reversal property of€ak frequency to the bandwidth is a function of spatial vari-
passing through the waigt=0. The time delay increases agr) ables since the peak frequency and bandwidth change spa-
increases due to the curvature of the converging and divergingially. When the value ofy is less than 1, the pulse reveals a
phase frontsy is the ratio of the peak frequency to the bandwidth. single-cycle character. When the value pexceeds 1, the
fo=0.1fs ! and rp=3 fs. original single-cycle pulse will develop new cycles of small




868 SIMIN FENG AND HERBERT G. WINFUL PRE 61

n=1 n=3
1 1
£ Affwhm =0.28 £ Affwhm =0.09
308 508
5 fp =0.27 < fp =0.09
i) @
306 y=0.95 G046 y=0.95
2 8
3 0.4 E 0.4
s =
E'o.z £0.2
< ]
0 0
0 0.5 1 0 0.5 1
frequency (fs'1) frequency (fs'1)
1 1 FIG. 6. (8 Temporal wave-
forms and spectra on and off axis.
The low-frequency cutofff;=0
0.5 0.5 and 7,=3fs. Even though the
'% % peak frequency and the bandwidth
= = vary in the space, their ratio is in-
0 0 variant when f;=0. Thus, the
pulse maintains its single-cycle
character everywhere in the space.

-0.5 -0.5 (b) Temporal waveforms and

-10 0 ¢ 10 spectra on and off axis. The low-
(@) t - 2/c (fs) frequency cutofff,=0.1fs ! and
_ 79=23fs. The temporal waveform
n=3 . AL .
] 1 on axis (p=1) is similar to that in
Al =0.09 (a); however, the off axis wave-
€ 0.8 E 08 fwhm forms are different due to the dif-
g 5 f,=0.19 ferent low-frequency cutoff. The
8.06 8.0.6 =2.02 pulse develops more ripples to-
20. S y=2. .
o o wards the pulse periphery. The
S04 To4 peak frequency and bandwidth, as
%_ %_ well as their ratio, vary in the
£02 £02 space. The value of, and hence
© © the number of cycles increase as
0 i
00 05 y 0 05 1 one moves away from the axis.
- -1
frequency (fs 1) frequency (fs™ ')
1 n 1
0.5 0.5
o
g o g 0
-0.5 -0.5
-1 -1
-10 0 10 -10 0 10
(b) t - z/c (fs) t - z/c (fs)

amplitude at the leading and trailing edges of the pulse. Théo the bandwidth can be obtained from Ed2.20 and
higher the value ofy, the more cycles the pulse has. The (2.21), and is given by

value of y characterizes the number of cycles and the tran- o

sition from single to multiple cycles. In Figs(® and Gb), _ wptwg(r)
even though the spectral shapes and bandwidths are exactly r(n=
the same everywhere in space, their peak frequencies are

different because of the different values of the low-frequencylhe values ofy are listed in Fig. 6. When the low-frequency
cutoff wy. This leads to different values of for the two  cutoff wy=0, y is invariant in space even though the peak
cases. The spatial variation of the ratio of the peak frequencfrequency and bandwidth change spatially. This explains

(2.29

(0]
Aoy
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] = / \ FIG. 7. Gouy phase shift is the
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3 - \ dispersionless medium. The left
%0.2 0.2 upper plot is the spectral intensity
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500 1000 1500 -4 -2 0 2 three plots show how the carrier
wavelength (nm) t - z/c (fs) wave of this pulse slides under-
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z=-50.0 mm 2z =300.0 mm through the waist=0), as a re-
sult of the phase and envelope ve-
1 \ 1 \ locity mismatch due to the Gouy
0.8 P \ 08 ,/ \ phase shift. The dashed lines rep-
> / 2 / ‘\ resent the time-averaged intensity,
206 / \ 206 while the solid lines are the under-
o / \ 2 lying oscillations. In the plotf,
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02f s ) 0.2 y AN
0 ~ o A
-4 -2 0 2 4 -4 -2 0 2
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why the pulse withwy=0 [Fig. 6@] maintains its single-

tancelL. The cavity forces all the frequency components of

cycle character everywhere in space. On the other handhe pulse to have the same Rayleigh range givei9by
when the low-frequency cutofby+# 0, the ratio of the peak

frequency to the bandwidth will vary in space. Thus, the JL(2R-L)
pulse will develop ripples off axis, as shown in Fighp R=" 5 - (2.27

The number of cycles is conserved along the characteristic

li = . . . . .
ines[(r)=cons Since the waist of the pulsed beam is located at the cavity

center ¢=0), in one round trip the Gouy shift is

[ L
¢RT:4 tan ! m (2.28

After thenth round trip the accumulated Gouy shiftigg.
where the definitions of and r are given by Eqs(2.11) and  Figure 8 shows the pulse profiles for the intensity envelope
(2.12, respectively. The first termay7 represents the fasif and the underlying oscillation of successive two-cycle pulses
®wo>Awpwyy) OsScillation due to the carrier. The second in a cavity withR=200 mm andL =182 mm. The absolute
term a,(T) represents the slow modulation due to the finitephase, and hence the temporal profile, are different after each
bandwidth. The Gouy phase shif{(z) is the only term that round trip inside the cavity.
is independent of the spectrum. It is the Gouy phase shift that
causes t.he Carr.ier. to slide ynd?meath t.he envelope during D. Gouy shift, Hilbert transform, and time derivative
propagation. This is shown in Fig. 7, which plots the spec- _ _
trum of the pulse, the pulse intensity enveldpg|? (equal to As shown quite generally by Heym46] and confirmed
the time-averaged intensjtyand the underlying oscillation by us for our specific isodiffracting puls¢S], these eigen-
of a femtosecond pulse at three propagation distances. Théave packets undergo a Hilbert transform along hyperbolic
difference between the phase and envelope velocities is ddgajectories as they propagate from the beam waist to the far
to the Gouy effect. This absolute phase due to the Gouy shifield. For two points £=0,0;) and =2z;,p,) that do not
has implications for recirculating pulses in a curved mirrornecessarily lie on the same hyperbolic trajectosy., differ-
resonator such as a mode-locked laser cavity. Even in th@nt pulse widths the temporal waveforms are related by a
absence of intracavity dispersive or nonlinear elements thécaled Hilbert transform which, for the single-cycle pulse of
accumulated Gouy phase shift causes the absolute phaseRé. (2.19, is given by
be different for successive pulses. This results in a pulse ,
shape instability in which the output temporal profile varies + _ iﬂ A Re{E;(O’pl’t )} /

f . : Re{Ep(221p217—2)} P Y dt )
rom pulse to pulse. For example, consider a symmetric reso- dm — Stp—t
nator with mirrors of radius of curvatuie spaced by a dis- (2.29

C. Absolute phase

The phase of these pulses in the time domain is given by
the complex exponential parexp()] of Eq. (2.9). That is,

P(r,t)=—wor—ap(T) — ¢(2), (2.26
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envelope(a time-averaged inten-
sity) and the underlying oscilla-
tion of a recirculating two-cycle

4 s ” pulse inside a symmetric laser
2 ! v 2 ! = cavity (radii of mirrors R
@ \ 2 \ 2 \ =200mm and separationL
c c c p
2 05 ' 2 0.5 ) \ 2 0.5 / “ =182mm). The absolute phase
= ’ - ’ - 4 and temporal waveform are differ-
0 N N 0 NS ent from pulse to pulse. The
-2 0 2 2 0 2 -2 0 2 dashed lines represent the inten-
t - z/c (fs) t - z/c (fs) t-z/c(fs) - sity envelope, while the solid lines
th . th . th . are the underlying oscillations.
the 7™ round trip the 8" round trip the 9" round trip Here, fo=0.2fs * and =2 fs.
1 7y 1 ’y
7] 2 \ g P
8 gos| i gosf Mk
= £ ’ \ £ ’ \
0
92 0 2 -2 0 2
t - z/c (fs) t - z/c (fs) t - z/c (fs)
S Im{Eg (0p1,t)} - i k(x6+Y0)| =
IM{E_ (Z5,p2,72)}=— Pj P dt’, Uo(Xo,Yo,w)=—expl — ———F(w). (2.3
{Ep (22,p2,72)} ar Tl St t o(X0,Yo0, @) Ze 27n (w). (2.32
where Sincek= w/c this initial field is not separable into a function
of w and a function of Xq,Yo). Upon substituting this field
2 in the Kirchhoff integral, the axial field is found to be
P2
To=t— =12+ . 2.3 ~
2 c|™ 2R(22)} 2:39 F(w)exp(ikz)

U(0,0z,w)= : (2.33

Here the relative scaling paramet8e= 7(0,01)/ 7(z,,p2) iz

depends on the coordinates of these two poirds. where the phase of the factar{izg) ! is the Gouy shift.

=1+ (z,/z5)?, and P stands for the principal value of the The spatial integration introduced a factor ! which can-

integral. For points on the same hyperbolic trajectdBy, cels the time derivative operator in EQ.31. In the far zone

=1, and thus Eq(2.29 reduces to the Hilbert transform.  (z—) the relation between the diffracted field and the ini-
For any initial field spectruniy(Xo,Yo,w) the field at tial field is

any planez in the paraxial approximation is given by the

. . . . - 7o
Kirchhoff diffraction integral 0(0,02—%,0)~—i ?RU(O,O,z:O,w)exp(ikz),

~ —iw ~
U(leazyw):FCZIISUO(X01yO!w) fOI’ LL)>O (234)
(X—X0)2+ (Y —Yo)? The factor of—i in the above expression gives rise to the
xexp{ikz+ik 55 ds, Hilbert transform relationship between far field and near

field temporal profiles.

Since the pulse solution ER.9) is an analytic signal, its
real and imaginary parts at any poinare temporal Hilbert
wherek= w/c and the factor-iw implies a time derivative transforms of each other. In addition they obey certain space-
of the result of the above spatial integration. In particular,time symmetries also noted by Kaplgii],
suppose the initial field is the isodiffracting solution of Eq.
(2.5) evaluated az=0,

(2.31

IM{E, (—zp,—t)}=—IM{E_ (z,p,t)}, (2.39
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z=-50 mm z=-50 mm
1 1
__ 05 —~ 05
T (=)
2 E ,
o g FIG. 9. Temporal waveforms
2 © of two-cycle pulses of reafleft)
-0.5 = -05 and imaginary(right) solutions at
equal distances on both sides of
the waist. The imaginary solution,

|
ey

i
—_

-5 0 5 -5 0 5 which is antisymmetric at the
t - z/c (fs) t - z/c (fs) waist, experiences both time and
polarity reversals in passing
z= 50 mm z= 50 mm through the waist. However, only
1 1 a time reversal can be seen in the
real solution, which is symmetric
0.5 05 at the waist. Both time and polar-

5 g, ity reversals are the effects of a

o £ phase shift. The carrier frequency

5 0 < 0 fo=0.2fstandry=3fs.

© o

= 2

-0.5 = -05
-1 -1
-5 0 5 -5 0 5
t - z/c (fs) t - z/c (fs)
Re{E;(—z,p, —t)}= RG{E;(Z,p,t)}. can be seen from the transverse dependence of the magnitude
of the wave packet solution in E¢R.9),
The imaginary part is antisymmetric, while the real part is 14 p? ]7P*Y _ 2 IwA(2) (2.36
symmetric under simultaneous reversat ahdz. In passing a’(z) exfl —pw(2)]. '

through the beam waist the antisymmetric pulse=ad ex-
periences both time and polarity reversals, while the SYMThe two factors above determine the contributions of the

metric pulse only experiences a time reversal. These prOpeF)'uIse bandwidth and carrier frequency to the spot size. At the
tlesﬂc]an pe_ sleen f(rj(_)r_n Fig. gt,) he ti lis th waist of the pulsed beanz€0) the pulse bandwidth (14)

e critical condition to observe the time reversal s t atcharacterizes the transverse extent of the envel@ée,
the pulse shape at the beam waist should be either symmetric
or antisymmetric, i.e., the initial phagabsolute phaget the
beam waist is either zero at/2. Since the focal plane is a
symmetry plane of the propagation, the symmetry property
requires that the same event should occur whether the puls
propagates from the focal plane to the right or to the left. In
Fig. 10@), if the right-hand side of the pulse becomes more
negative while propagating from the focal plane to pdnt
the symmetric pulse shape on the focal plane implies that the
left-hand side of the pulse should become more negative ir
propagating from the focal plane to poiAt Since propaga-
tion to the left and to the right are time-reversed versions of
each other, the fields at poi# and pointB are time re-
versed. Similarly, in Fig. 1®), if the field at pointB has a
positive polarity with a lower left lobe, the antisymmetric
pulse shape on the focal plane implies that the field at point B
A should have a negative polarity with a higher right lobe for A
a logically self-consistent result. In this case both time and
polarity reversals can be seen from Fig()0 1

Beam waist (a)
]

FIG. 10. Spatial symmetry of the Gaussian beam geometry ex-
plains the time and the polarity reversals when an isodiffracting

For ultrashort pulses the beam size generally depends gsulse passes through the waist. The focal plane is a symmetry plane
both the carrier frequency and the pulse bandwjdih This  of the isodiffracting PGB.

E. Diffraction and pulse energy
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FIG. 11. Effect of the bandwidth spatial confinement. The left two plots are the spectral intensity of two pulses with the same peak
frequency, but different bandwidthg,=0.34fs'* and 7,=14.5fs for the top spectrum, whily=0.1fs ! and 7,=2.7 fs for the bottom
one. The middle two plots are the corresponding electric fields. The right two plots show the evolutions of the beam size of the corresponding
two pulses. The beam sizes in the plot are defined by one-tenth of the values on axis. The beam sizes of the two ultrashort pulses with the
same peak wavelength, but the different bandwidths are significantly different. Keeping the peak frequency unchanged, the transverse
dimension of the pulse can be reduced by increasing the bandwidth to the order of the peak frequency.

=2c7yzz. The carrier frequency in turn characterizes theEquation(2.37) describes the energy density on transverse
transverse dimension of the carriav(2)=2czR/wo. For a planes at different propagation distances. It shows that the
single-cycle pulsed,=0), only the first factor in Eq(2.36  energy is invariant along characteristic lines. Its space trajec-
contributes to the beam size, which decreases with increasirigry depicts the diffraction of the pulse energy. Thus, Eq.
bandwidth as higher frequencies begin to dominate the spe€2.37 can be used to find the radial extent of the pulse en-
trum. At the other extreme, for quasimonochromatic pulse€rgy on any transverse plane. We use the Gaussian criterion
(wo>1l1y), only the exponential factor makes a significantto characterize the width of the energy distribution of the
contribution to the beam siz&?(z), which evolves in the pulse,

same manner as a monochromatic Gaussian beam. More-

2
over, Eq.(2.36 implies one can confine the transverse extent I'(z,p) _ 1 _() (2.39
of ultrashort pulses along the propagation axis by increasing I'(z,0) p? |?P*t e/ '
the bandwidthkeeping the peak frequency unchangep to a?(z)

the order of the peak frequency. This effect of the bandwidth

spatial confinement is shown in Fig. 11 in which two pulsesUsing the approximation exp/(2p+1)]—1~1/p (whenp

have the same peak frequency, but different bandwidths. The 1 the error is 5%, and whep=2 the error is only 1%

beam sizes are significantly different. one finds that the diffraction of the pulse energy resembles
The pulse intensity and pulse energy diffract differentlythat of a monochromatic Gaussian beam of effective wave-

for ultrashort pulsed13,14. The diffraction of the entire length equal the peak wavelength of the envelope spectrum.

pulse is easy to characterize by diffraction of the pulse enThe radius of the energy distribution evolves as

ergy. Using the method described in RiF] the diffraction

. . . 2 2
of the pulse energy of the family of single-cycle pulses given 2\ 2 Z)\7|_a (2)
by Eq.(2.15 is characterized by w(z)=wg) 1+ 2 [T (2.39
T(r) 1 1 _ ‘ 1 wherea?(z) is given by Eq.(2.14), and
(Z*+27) p? }Zp“ (Z2+z5) 7PN .
a“(2) Wi A pZR . (2.40

(2.37 ¢ 7
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A useful result for isodiffracting single-cycle pulses is standing of the spatial variations of the pulse width, band-
that the width of the energy distribution and the pulse widthwidth, and instantaneous frequency. For pulses evolving in a
are related. This is not true for multiple-cycle pulses whosecavity, we find that the absolute phase of the circulating
beam size is determined by the diffraction of both carrier ancpulses varies in each round trip due to the Gouy phase shift,
envelope. EIiminating\g from Eqgs.(2.17 and (2.40, one  which is determined by the cavity geometry. We have also
obtains shown that the ability of a pulse to retain its single-cycle

) character in the whole space depends on the spatial variation
0_\/—We of the spectrum. The pulse spectrypeak frequency and
T~ Zpa' (2.43) bandwidth and its spatial variation set a limit on the number
of cycles of an ultrashort pulse generated in experiments.
Therefore, by measuring the beam waist of the distributiorThe analysis is applicable to isodiffracting pulsed Gaussian
of the pulse energy and the Rayleigh range, one can easilyeams such as those produced by a mode-locked laser. Our
obtain the on-axis pulse width of isodiffracting single-cycle results may be useful in ultrashort pulse communications, as
pulses with the use of Eq2.41). well as in the characterization and understanding of terahertz
pulses and femtosecond optical pulses.
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