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Particle-core study of halo dynamics in periodic-focusing channels

Tai-Sen F. Wang
MS H808, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 4 August 1999

This paper reports on an approach to investigate the dynamics of halo particles in mismatched charged-
particle beams propagating through periodic-focusing channels using the particle-core model. The proposed
method employs canonical transformations to minimize, in new phase-space variables, the flutter due to the
periodic focusing to allow making stroboscopic plots. Applying this method, we find that in periodic-focusing
systems, certain particles initially not in the halo region can be brought into resonance with the core oscillation
to become halo particles.

PACS numbes): 41.85—p, 29.17+w, 29.27.Bd

I. INTRODUCTION We discuss the axisymmetric case first. The dimension-
less equations for the beam envelope and the transverse mo-
The particle-core model has provided insight of the dy-tion of the test particle are
namics of particles in the beam halo of a mismatched beam

propagating through an axisymmetric uniform-focusing d?X 2 _n 1

channel[1-12. However, to date, only limited progress has F+Q XF(7) X 75—0, @
been made in applying the same model to a beam propagat-

ing through a periodic-focusing chanrjdll]. The main ob- an

stacle stems from the flutter in the beam envelope and in the ?x L2 WIX2 for x<X

particle orbit introduced by the focusing. Owing to this flut- ax — o+ QXF(7) = 7 - )
ter, the dimension of a Poincasection made by strobing a dr*  x° nlXx for x>X,

particle’s phase space is usually higher than f&8]. One

then has to slice the phase space or to project the highefespectively, whereX=XJk/e, x=x.k/e, 7=kz, X, is
dimensional Poincaréplot” onto a two-dimensional plane the beam envelope, is the transverse displacement of the
in order to study the particle dynamics. The former approactparticle from the symmetry axis of the systeens the beam

is complicated by the searching for suitable phase-space@mittance,L=L,/(Mgyve), n=ql/(2memoy>v3ke), Q?
slices, while the latter approach may result in a plot with few=aG/(meyv?k?), g andm, are the charge and the rest mass
features to be deciphered. In this paper we will show that byf a beam particle, respectively; is the relativistic mass
using proper canonical transformations and strobing, the flutfactor, | is the beam currents, is the permittivity of free
ter due to the periodic focusing can be minimized in the newspace, and., is the angular momentum of the test particle
phase-space variables so that the primary resonance betwealpout thez axis. Introducing a new variable,= X/X, and a
the particle and the core is manifested in the projected straaew times defined byds=dq-/xﬁ1, we can rewrite Eq(l) as
boscopic plots. This method is applicable to a wide range of

parameter values without using a smooth approximation, and d®u, 1 51
M - ; +Ue— —=7X;| ——u (3
it is not limited by the constraint that the frequency of core dsz ' e ug ™Mue ¢’

oscillation need be commensurable with that of the trans-

verse focusing. Using this method, we find that the periodiavhereX,, is the envelope of the matched core defined by the
focusing can be a possible mechanism for halo formation ircondition X,(7) = X,,(7+27). It should be noted that the

a mismatched beam. For brevity, we will omit discussion ofform of Eq.(3) will remain the same iX,, were any solution
chaotic motion and stability of the core oscillation. to Eqg. (1). Choosingw.=du./ds as the conjugate variable
of ug, we can prove that the change of variables here is in
fact a canonical transformation. We remark that, instead of
the focusing functiorF, it is X, that enters into Eq(3).

We consider a test particle and a continuous bé¢dma  Also, the flutter due to the periodic focusing which is only a
core propagating in a periodic-focusing channel with afraction of X, is now in a term proportional to the beam
speedv in the axial direction, the direction. Particles are current. Hence in the integrated solutions, the fluttemdris
focused in the transverse direction by a linear force that varsubstantially smaller than that M as can be seen in both
ies in thez direction according ta@GF(kz), whereG is the  perturbation calculations and numerical solutions. Wihen
maximal gradient of the focusinfpr defocusing strength, =0, the flutter inu, is suppressed completely. Next, using
F(k2) is a periodic function of, k is the wave number of the the time variabley defined byd#=d/X?, as well as a set
periodicity, and the maximum dfF(kz)| is normalized to  of conjugate variables
unity. The particles in the core are assumed to follow the
Kapchinskij and VladimirskifKV ) [14] distribution in trans- (W)= (f d_U) _ (i Xd_x_)(d_X)
verse phase space. ' X' dy X' dr Tdr)’

Il. PARTICLE-CORE MODEL
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FIG. 1. Orbitx and quantityu of a particle in a mismatched FIG. 3. A stroboscopic plot on thau(w) phase plane showing

beam propagating in a periodic-focusing channel. The parametdour classes of particles discussed in the text.

values are described in the text.
=0.206). The initial values considered ang=1.3842, X

=3.3488,u,=1/0.9, w=dX/d7=0, andL,=0.
The approach taken here is to study the dynamics of beam
2 2, 2 halo in the phase space aif,{v). Because of the nonlinear
L uct+w-  gX . L A . .
H=s5+————0(u-1)(Inu2+1-u?), parametric driving, the oscillations imandu, can be peri-
P 2u 2 2 odic, quasiperiodic, or maybe almost-periodic, depending on
©) the initial conditions and the value af. Therefore, in mak-
ing the stroboscopic plots, instead of strobing at a fixed fre-
where ®(x) is the Heaviside step function. The generatingquency, it is more sensible to strobe at a fixed valuaobr
function of the corresponding canonical transformation isw, (e.g., at the local maxima wheve,=0) to minimize the
fo(x,w)=x[w+ (x/2)(dX/d7)]/X. The flutter is reduced in shifting in the phase between the strobing and the core os-
u andw for the similar reasons discussed in connection withcillation. Numerical results indicate that strobing at a con-
u.. Note that one can also choose to “normalize’andx  stant period does create a larger spread of points mostly due
by X, instead ofX; the choice made here is solely for sim- to the phase shift between the strobing and the envelope
plicity. Since the Hamiltoniar{5) is a constant for particles oscillation(see Figs. 5 and 7 belgwThus, the stroboscopic
inside the phase-space ellipse of the beam core, particles piots (plots made from two-dimensional Poincan@aps pro-
the core will remain inside the core. For particles outside theposed here are different from the usual Poingdogs. These
core ellipse, the Hamiltonian is time dependent and nontwo kinds of plots are the same for uniform-focusing chan-
integrable. nels whereu, is periodic. In the following, we shall loosely
Presented in Figs. 1 and 2 are the numerical examplesall the relation that links one snapshot to the next the “stro-
showing that the flutter inx,dx/d7) is reduced in @,w). boscopic map.”
The case studied is an axisymmetric focusing channel with At very high beam current, particle motion can become
F(7)=cosr, andQ?=0.31966. The betatron phase advancechaotic. One of the deficiencies in projecting a higher-
per period for particles inside the matched core is about 908limension phase-space section onto a two-dimensional plane
at zero beam current, and 60° at full beam current ( is the difficulty in detecting the onset of chaotic motion.
Another deficiency is that discerning higher-order reso-
nances can be hard or impossible most of the time.

one can infer from Eq(2) a Hamiltonian:

2IIII|IIII|IIII|IIII|IIII

- dz/dt

Ill. GRAPHIC REPRESENTATIONS

Figures 3 and 4 show examples of stroboscopic plots
made by strobing at the local minima af for F(7)=(1
+cos7)/2. The parameter values considered hre0, Q2
=0.2039, »=0.2765, andu,=0.8 (initially). For a particle
inside the matched core, the phase advance per pendbe
tune is about 120° at zero current and 80° at full beam
N current. These plots were created by first computing
] dx/dr, X, dX/dr, X,,, anddX,,/dr simultaneously using

ol b o b Egs.(1) and(2). The quantitiesl andw were then calculated
0 %0 100 T 150 20 20 using Eq.(4).
At small tune depression, particles can be roughly catego-
FIG. 2. Velocitydx/dr and quantityw of a particle in a mis-  rized into five classes according to their motion. Class | par-
matched beam propagating in a periodic-focusing channel. The pdicles remain inside the core. Class Il particles are outside the
rameter values are described in the text. phase-space ellipse of the core but not in resonance with the
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FIG. 6. The stroboscopic plot shown in Fig. 4 is displayed here

FIG. 4. Stroboscopic plot for a class V particle on thew) on the &.dx/d7) phase plane

phase plane.

.a stroboscopic plot for a class V particle with the initial

core oscillation because they experience less tune depres&egndition U,w)~(1.1607,0). At large tune depression and

than the core particles. These particles stay close to the corgtrong focusing, the identification of particles’ classes be-

Partlcles.m glass [l oscillate at frequencies near o_ne—half th%omes ambiguous except for the class | particles.
core oscillation frequency so they can resonate with the core For comparison, a plot made by strobing at the averaged
motion to become halo patrticles. Class IV particles oscillat '

the strobing and the envelope oscillation as well as the pro-

values ofu equal to 0.5551, 1.1203, 1.4281, and 3.4366, forjection. To demonstrate the forte of the proposed method

the class I, Il, 1ll, and IV particles, respectively. The points discussed Sec. I, the same plots shown in Figs. 4 and 5 are
of the class Il, Ill and IV particles appear to be scattered nea&isplayed in Figs’ 6 and 7, respectively, on thedw/dr)

the invariant curves of the Poincanglots for uniform-

. hase planes. Comparing these two sets of plots, especiall
focusing channels. P P paring p p y

Fig. 4 with Fig. 7, the advantage of using the variablesw)

The pgints of class V particles f"?‘" near the separatrices i'?and the “stroboscopic plot” is clear. Note that the 2:1 reso-
a Poincareplot of the uniform-focusing case. Particles in this nance can be seen in both Figs 4.and 6 '

class can be driven into and out of resonance by the periodic-
focusing and the flutter, an effect not found in the uniform-

focusing systems and was left out by the smooth approxima- IV. ANALYTICAL MODEL
tion in an earlier wor{11]. This discovery has a practical

implication: since a realistic beam inevitably has some tails _The diZCUSSiOS_ herefisha cr?sle s;udy a_imethho gain qualL—
instead of a sharp-edged density profile in the transverse d ative understanding of the halo dynamics. The approac
ere will follow that in Ref.[5]. We assume the periodic-

rection, in a mismatched beam, some of the particles initiall ) h i . i d the test ticle h
not in resonance with the core oscillation can be driven intJocusmg channel IS axisymmetric an € test particie has

the halo region by the mechanism discussed here. Figure 4 €0 angglar momentum. We also limit our d|scu55|ons to th?
nonchaotic regime and to the case that the core oscillation is
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FIG. 5. Shown is a plot on theu(w) phase plane made by a FIG. 7. The stroboscopic plot shown in Fig. 5 is displayed here
constant-period strobing for the same particle in Fig. 4. on the k,dx/d7) phase plane.
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not in resonance with the external periodic focusing. Thus, Averaging Eqs(7) and(8) over one resonant particle os-
we consider a general form of the lowest-order approximaeillation period ¢’ from 0 to 277) and retaining the zeroth as
tion for the beam envelopes fdf(7)=(1+cos7)/2, and well as the first-order terms & andb yield the following

F(7)=cosr equations for particles with>1:
X~A[1+acogk’'t’)+bcog2t’)], (6)
dR?  9(2K)
wherea<1 andb<1, A is the averaged beam radiwsjs W: 9
the flutter due to the focusind, =1/f,, t'=f,A%; b and
fo are the amplitude and the half-frequeroythe time vari- A 1\ ] )
able) of the envelope oscillation, respectively. We simplify =8al’| 01+ 7| 5= -] Isin(4d + 5 pA%Y)
the problem further by restricting our discussion to a particle
outside the beam ellipse and focusing on the case’ efn —4bI'[(2—h)6;+(1+h)N]sin(2d) 9
+ 6 with §<1. Since the qualitative results for different val-
ues ofn are similar, we therefore consider the example of
n=4 without losing the generality of our conclusions. As- and
suming the motions of the beam envelope and the particle
are near the 2:1 resonance, the polar forrmm ahdw can be
written asu=r cost’ — ¢), andw= —r sin(t’ — ¢), where the
amplituder and the phase vary slowly witht’. We then di’: _ 5(2K):f A2—1+T||1— 1) 9. — 1
can derive the following equations fof and ¢: dy gR? 0 h/ 7t 4h2\
dr2 Al e 2
wz_z@[rcos(t/_qs)_l] 12)\h4(2h 7h+2)C0$4q>+ 5foA lﬂ)
2r1 _¢2 r_ r_ 1+h
XX [1-rcogt' — ¢)]tant’ — ¢) Y br al—m coq2D), (10)
_d(2Hy) 7
and whereR and® vary slowly witht’ (or ), are the averaged
values of r and ¢, respectively, I'=75A%m, 6,
d¢ =cos Y(1/IR), h=R?%2, A= JR*>-1/R?,
@=foA2—1+[r cogt' —¢)—1]
1 —H _ 2
" ﬂxz[r_z_coit’_d’)} K(R®,4)=H(R,®,#)—hfoA?, (1)
d(2H
=foAZ— (&rzp)' (g and

I 1 2w
H(R,®,y)= Efo [u?+w?— 7X20(u—1)(Inu?+1—u?)]dt’

T (2=
~h— 7 [1+2acoq4t’' +6t')+2bcog2t’)|O[Rcogt’ —P)—1]
0

X[In(2h)+1—h+cog2t’ —2®) +In co(t' — ®)]dt’

~h+bT'[(2—h) 6, +(1+h)\]Jcog2®) —aT[ 6, +(\/3)(5—h~1)]

X cog 4P + 5f (AZy) + r[ [In(2h)+1—h]6,+hx+ fﬂlln(co§0)d0] (12
0
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FIG. 8. Examples of the invariants described by Edl) with ¢
a=0 (constant focusingfor A2 = 4.5 andb = 0.14. For the -2 - 1
central curve, the separatrigolid curve, the resonant curve, and gl b b b b b
the outer curve, the values Kfare 0.75, 1.0352, 1.23, and 1.7189, -3 -2 -1 0 1 2 3
respectively; the values df,A? are 1.05, 1, 1, and 0.95, respec- U
tively. The computation was carried out using Ebl) and checked
with the solutions of Eqs(9) and (10). FIG. 9. Shown is the smearing of the separati@x and the

resonant curve&) due to the fluctuation described in the averaged

is the result of averaging the Hamiltoni&) with L=0. In  Hamiltonian(12). Points were obtained by numerically solving Egs.
obtaining Eq. (12), the relation cos@+ &t')=cos(4’ (9) and(10). The same parameter values used to compute the sepa-
—4®d)cos(@t’ +4d)—sin(4’ —4d)sin(&t’ +4P) was used and ratrix in Fig. 8 were considered here except fo=0.05 and§
ot' +4d was treated as a slow-varying quantity. =0.1677. The initial values used are,{)=(2.13, 0) for(a), and

When the focusing is uniform along ttedirection,a  (u,w)=(1.95,0) for(b).
=0. The quantityK then becomes a constant of motion o o
equivalent to that obtained in Ré6] with zero angular mo- €nvelope oscillation and the validity of E¢6) should be
mentum. Figure 8 shows some invariafis. (11) with a  checked first to see if such_ an approa}ch is feaS|bIe;. Also,
=0], including three stable fixed point€(for centers and ~ When comparing the result in E¢11) with the numerical
two unstable fixed pointsS for saddles joined by separa- Solutions of Eqgs(1) and(2), we should keep in mind that the
trices displayed as solid curves. The phase plane is dividegiodel envelope in E(6), at best, is only an approximation
into three types of regions by separatrices: the low-tune rel® Some solutions of the nonlinear envelope equation. For
gion containing the central fixed point, the high-tune regiononzero beam currents, numerical search for a mismatched
having no fixed point, and the two symmetric half-moon-Ccore _oscnlatlon with a frequen_cy at a subharmonic of the
shape resonant regions each with one stable fixed point. THecUsing frequency using Eql) is being pursued.
invariant curves of halo particles fall into the resonant re-
gion. External perturbation is needed for particles to cross V. APPLICATION TO QUADRUPOLE-FOCUSING
the separatrices. SYSTEMS

In the periodic-focusing case+# 0, thenK depends on
time explicitly; hence there is no well-defined separatrix andbe
no fixed point outside the core area. Fac1l, Eq. (11
indicates that the points of a stroboscopic map should be d2 - 2

For quadrupole-focusing systems, the equations for the
am envelope and particle motion in théirection are

. . ; . X 27 €
scattered near the invariant curves of the uniform-focusing — +Q?XF(1)— o—< — =3 =0, (13
case. An example is given in Fig. 9 to show the smearing of dr* X+Y X
the separatrix and the resonant curves due to the fluctuatiognd
described in the averaged Hamiltoni€l®). For this figure,
the same parameter values used to compute the separatrix in d2x 27 %
Fig. 8 were considered except far=0.05 ands=0.1677. A QXF(P)= (14)
Here, a somewhat large value 6fis used to speed up the dr Ex(BExtEy)

computation and to make the spread of points more visible, . B B
On a stroboscopic plot, we find the class | and Il particles’reSpeCt'Vely’ wher&(=X,Jk, Y=Yk, X, and, are the

points in the low-tune region, the class Il particles’ points in beam envelopes in the andy directions, respectivelyx

the resonant region, and the points of class IV particles in thé *r vk, x, is the displacement of the beam particle in the
high-tune region. Note that i#—0 in Eq. (11), i.e., if the direction from the beam axis;=ql/(27e;moy°vK), € is
frequencies of the periodic-focusing lattice and the core osthe beam emittance in thedirection, Z,= (X*+ £)*2 and
cillation become commensurable, it appears taan be an  E,= (Y2+ &Y% The value of¢ is zero when the particle is
invariant and Poincareaps can be constructed by strobing inside the beam, and is given by the solution of the equation
at some common multipliers of the frequencies as discussek/ =)+ (y/Ey)2= 1 when the particle is outside the beam,
in Ref. [11]. However, in this situation, the stability of the wherey=y,Jk, andy, is the excursion of the beam particle



860 TAI-SEN F. WANG PRE 61

3 T I T T T VI. CONCLUSIONS

A method has been developed to use the particle-core
model for studying the dynamics of halo particles in a mis-
matched continuous beam propagating through an axisym-
metric periodic-focusing channel. It was assumed that the
beam-particle density and envelope are described by the KV
distribution function and envelope equation. A canonical
transformation and a technique of strobing were proposed to
reduce, in the new variables, the fluctuation due to the peri-
— odic focusing. This approach allows one to perceive the dy-
namics of halo particles through the stroboscopic plots. The
method is applicable to a wide range of parameter values
without using any smooth approximation, and is not limited
— by the constraint that the frequency of core oscillation need
be commensurable with that of the transverse focusing. Nu-
merical examples were given for illustration and an analyti-
-3 ' _I ' L cal model was discussed to assist the understanding of halo

formation.
r Using this method, we learned that the parametric reso-

FIG. 10. Stroboscopic plot showing the resonance of a hald'@nce, like the one studied in the uniform-focusing case, is
particle with (a) the breathing mode an@) the quadrupole mode Still the major mechanism to cause the large-amplitude oscil-
oscillations of the beam envelope in a quadrupole-focusing channelation of halo particles. We also learned that certain particles
with initial oscillation amplitudes slightly larger than the
core radius, but not in the halo region, can be brought into
resonance with the core oscillation by the fluctuation of the

Due to a lack of good guidance to the global Iohase_Sp&meeriodic focusing. Since the transverse density profile of a

structure of this kind of dynamic system, attempts in makingr edalls(t;c dk_)ia_? tl_newtably has stprlne t_allsﬂ:nsttefild O‘; a shz_arp-
two-dimensional plots, i.e., Poincarer ‘“stroboscopic” edged distribution, some particies in the fails ot a mis-

plots, have only very limited success. It is found that for aMmatched beam can be driven into halo by the mechanism
particle having nonzero angular momentum, even a s;maﬂhsc.ove.red here.. Previous parucle—core studies of h_alo for-
amount, the points on the plot are totally dispersed. It apmatlon in the uniform-focusing channel found the existence
pears that two-dimensional plots, except for some specidf & separatrix between the core and the resonant region, and
cases, do not seem to provide insightfu| disp]ays of the g|0C0nC|Uded that either the halo particles were |n|t|aIIy in the
bal system behavior. Thus, to deal with a problem of tworeésonant regior{5,12 or the halo particles were brought
degrees of freedom like this, it is necessary to considex the across the separatrix from the core by some kind of process
andy motion of the particle separately by setting one of thelike coherent instability15]. For periodic-focusing channels,
coordinates to zero, e.gy=0 anddy/d7=0. The method the mechanism discussed in this present work adds another
developed for the axisymmetric systems can be generalizegbssible process of halo formation.
here by using the variables defined accordingue x/X, Application of this method to a quadrupole-focusing sys-
Wy, = X(dx/d7) —x(dX/d7), Ugyx=Xm/X, Wey=X(dX,,/d7) tem was also studied. It was discussed that for a problem of
—Xm(dX/d7), and by using similar definitions for the two degrees of freedom in the particle-core model, two-
y-direction variables. dimensional plots can be easily understood only for particles
We consider the case for which the envelope oscillationsaving zero or almost zero angular momentum. In that case,
are close to one of the eigenmodes of the linearized envelopgie x andy motion of particles can be treated separately and
equations: the usual breathing mode witandY oscillating it was found that particles may resonate with either the
in phase, and the quadrupole mode witlandY oscillating  preathing mode or the quadrupole mode of the envelope os-

at 180° off phase. Particles may interact with either one otjation, or a combination of these two modes, to move into
these two envelope modes, or a combination of them t®eam halo

move into beam hal¢ll]. Examples of stroboscopic plots
for particles in resonance with these two modes of the enve-
lope oscillation are shown in Fig. 10 fd¥(7) =cos(), ey

=¢=1, Q2=3.198, and;7/e=0.2502. These parameter val-
ues correspond to a tune depression from 90° to 70° for This work was supported by Los Alamos National Labo-
particles inside the matched beam. The initial conditiongatory, under the auspices of the U.S. Department of Energy.
used arewe,=We,=W,=Uy,=W,=0 andue,=U.,=0.8,u,  The author would like to thank Dr. A. Jason and Dr. T.
~1.1922 for(a); uex="0.85, ugy=1.15, u,~1.0947 for(b). Wangler for their comments and suggestions.

2 - (b)

in they direction from the beam axis. The equations for the
beam envelope and particle motion in thedirection are
similar.
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