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Diffusion cooling in a magnetic field
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Department of Theoretical Physics, Australian National University, Canberra, Australia
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Diffusion cooling of electrons in a weakly ionized plasma in the presence of a magnetic field is studied using
the balance equations of momentum transfer theory, well known in “swarm” or test particle analysis. It is
shown that for a cylindrical, axially symmetric system, the electron temperature profile can be “hdilew”
T.<T,) and the radial ambipolar electric field can reverse to point inwards under certain conditions, reminis-
cent of observations in plasmas in toroidal devices at much higher temperatures.

PACS numbeis): 52.25.Fi, 51.10ty, 52.25.Dg, 51.60ra

I. INTRODUCTION cooling may be operative. However, it is the author’s opinion

that it is premature to pursue the hot plasma problem in full

The electron component of a weakly ionized gas in conforoidal geometry when the simpler problem of diffusion

tact with absorbing boundaries may be significantly coolecc00ling in a low temperature plasma in cylindrical geometry
for two distinct reasons. has yet to be stud_led._ This is the context of the present paper.
(a) The neutral gas component may act as a selective fil- An accurate kinetic theory must be capable of at least

ter, depending upon the nature of the momentum transf rﬁtclgmgriftth\?elggggs g(r:gliraggaﬁwzriggwaselﬁgzr;rgi(:/m of)é)—etter

cross section, allowing higher energy electrons to diffuse tgg P ich s wh yﬁ ffy o een 0 g

the walls, leaving the remaining bulk of electrons with a .])’ which Is why so much effort has been devoted to a
’ rigorous solution of Boltzmann's equatidi]. Another ap-

lower average energy.

b A binol il I b hich proach, involving fluid equations generated from Boltz-
(b) An ambipolar potential well may be set up, which ,ann¢ equation via "momentum transfer” theory or some
allows only the more energetic electrons to pass to the wallgyiher ansatz to represent the collision terms, gives transport

again leaving the remaining electrons with a lower meary operties and relations typically accurate to 10% or so, and
energy. _ _ - has been employed more as an adjunct to elucidate physical
Biondi [1] studied the latter, ambipolar “diffusion cool- ynderstanding, rather than to furnish quantitative reg@lts
ing” effect in the afterglow of a microwave discharge, while |n plasma physics, the situation can be quite different, with
Parker[2] investigated theoretically the former, free diffu- accuracies of 10% more than acceptable. For these reasons,
sion cooling. Rhymes and Crompton found significant freewe have therefore opted for a fluid equation approach. In-
diffusion cooling during experimental determination of deed, this seems to be the first such analysis of diffusion
“swarm” diffusion coefficients using the Cavalleri tut)g8],  cooling, with or without an applied magnetic field.
which prompted further theoretical interest , as outlined in a In Sec. Il, we set up the balance equations resulting from
recent review by the authd#]. Positrons also suffer the momentum transfer theory and discuss closure problems. In
same effect in bounded media]. Sec. lll, we apply these equations to the free diffusion cool-
However, it seems that no investigation of diffusion cool-ing problem, while in Sec. IV, we consider combined ambi-
ing has been carried out in the presence of a magnetic field@olar and free diffusion in cylindrical geometry with an axi-
Such a study is of interest in its own right, and indeed hagilly applled_ magnetic field. Pa'rt|cular attention is focussed
been the main motivating factor behind the present papet/Pon the direction of the ambipolar electric field. The em-
We start with the “swarm” or “test particle” situation, for Phasis is on phenomenology and physical understanding
the effect of a magnetic field has not been considered even iglgroughout.
this relatively simple case. Moreover, there are potential ad-
vantages in exploring the connection between plasma trans-
port theory and swarm analysis, which has made such sig- A. Approximations and assumptions

nificant advances in the last 20 yedsee, e.g., Refl7]). Momentum transfer theory has a long history of fruitful
This is another motivating factor behind the present paperppjication to semiquantitative descriptions of charged par-
HaVing said that, it has to be remarked that the Original Im-t|c|e transport processes in ga$g$ At the lowest level of
petus for the present study was the observation in the Hlapproximation, it consists of assuming collisional transfer
Heliac stellarator device at the Australian National Univer-terms generated by taking moments of Boltzmann’s equation
sity that the electron temperature profile is “hollow,” i.e., for real gases to be of the same mathemafiwah as for the
the electron component of the plasma is much cooler thagonstant collision frequency model. Higher order approxima-
the ions[6], and the radial ambipolar electric field points tions and an internal accuracy check can be developed. In
inward. These are hints that a phenomenon like diffusiorthis sense, its pedigree is quite different from many phenom-
enological, semiempirical fluid equations, although at first
sight the mathematical structure may appear similar. Quite
*Permanent address: School of Mathematics and Physics, Jamesmarkably, momentum transfer theory has never been ap-
Cook University, Cairns 5870, Australia. plied to the study of hot plasmas and Coulomb interactions,

Il. BALANCE EQUATIONS
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and neither have the rigorous techniques of swarm theoryEquation(1) is multiplied by 1, mc, and smc in succes-
such is the gulf that has developed between the study ddion, and integrated over all velocitiesto yield the follow-
swarms and plasmas. ing balance equations:

The starting point for the present discussion is Boltz- The equation of continuitis the same for both ions and
mann’s equation for the charged particle phase space distrélectrons, viz,
bution functionf(r,c,t),

an+V-T'=0. (8)
of+cVit+a. g f=23(f), (1)
The momentum balance equatidios each charged species
where are
q d(nmeve) +V-nmg(cc) +ne(E+v X B)
a= —(E+cXB) (2
m = _nmeVm,enVe_nmeVm,ei(Ve_Vi): 9

is the force per unit mass, and the right hand side representg(nmv;)+V - nm(cc) —ne(E+v; X B)
the interaction with all other particles in the plasma. At this
stage, we do not need to specify the exact nature of the = = NAinVm,inVi~NMeVmei(Vi —Ve), (10
collision termsJ(f), although we do observe that if binary
collisions are assumed, then there arise singular integrals d
to the long range nature of the Coulomb force which must b
“cut off” in the usual way to account in aad hocfashion
for screening effect$10]. Otherwise, we note only that in
this discusion all collisions are assumelastic though this
approximation can be easily relaxed. Another assumption is
that the neutral component remains in undisturbed equil-
brium, with zero average velocity and temperatlige 3 2 2
This paper is concerned with both free and ambipolar dif- €in= 2 Min[ {C7)i+{(C%)ol-
fsté)sri:)gwﬁgf(;rsogl]e;;tqi?ggi?ﬁgﬁt?;/d}em:rllgtﬁrtﬁgegji;\?v 2?I’he electron-ion momentum transfer collision frequency is,
Phelpq11], contradictory textbook presentatidri,13 and within the present approximation, given by
an entirely different way of looking at things in the eyes of

Jhere vy en(€en) and vy in(€in) denote momentum transfer
ollision frequencies for electron-neutral and ion-neutral col-
isions respectively, ang;, is the reduced mass of an ion
and a neutral. The collision frequencies are functions of the
respective energies in the center of mass,

€en™ %me[<cz>e+<cz>0]v (11

(12

. e o : = 2\¥2 [ e \?2InA
upper atmospheric physicists studying dispersion of ionized Vi ei:n<_) 77(— I (13
meteor trails[14]. In the present paper we simply assume ’ Me 4mey 32
that there is no net space charge, requiring
where
ni=nNg=n 3
T o €ie= M (%) +(c%)e— 2v; - Vel, (14

for a plasma containing only one one species of singly

charged ions, and that the divergence of the respective jodnd/ is the familiar screening parameter.
and electron particle fluxes are equal: The energy balance equation®n the other hand, are

given by
V- Ii=V-Ie=V.T. “) d(nKo) +V-Jo+neE-v,
While “pure” ambipolar diffusion, whereby the fluxes 2m, 3 2m,
themselves are equal, may pertain in the absence of a mag- = — m—oan,en Ke— EkTo - anm,ei
|

netic field, it cannot do so when a magnetic field is present,

at least for those components perpendiculaBto

X | Ke=Ki= 5 (Me=m)ve-v; |, (15
B. Balance equations
In what follows, we define the average velocity, d(nKi) + V- Ji—nek-v;
_ 2u; 3 2m
V_<C>7 (5) = mi+lr:10nvm,in Ki_szO:|_Tienvm,ei

the mean energy

X Ki_Ke_E(mi_me)Vi'Ve . (16)
K=(3mc), (6)

Higher order moment equations would be required to de-
and the energy flux termine the energy fluxe} but these in turn would contain
unknown moments. To obviate this closure problem, we
J=3nm(c%c). (7  make the ansatz
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J=(1+y)Kv, (17)  is the temperature tensor, which to a very good approxima-
tion is a scalar, by virtue of Eq18), at least for elastic

wherey is an empirical adjustable parameter. That it is rea-collisions.
sonable to assume this form is clear from Ef).and dimen- At this point, we make some general, global observations:
sional considerations, and the fact that only the veutis  Suppose the electrons and gas are confined in a container of
available to construct other vectors. The tensor momentgolumeV bounded by a surfacg Upon integrating Eq(25)
(ccy also require some specification. For electrdnpon  overV and applying Gauss’ theorem, we obtain
which we focus belowit is assumed that the velocity distri-

bution function is very nearly isotropic, an approximation 3 LJ J’ o
which holds very well in the absence of inelastic collisions, € 2TO Nv, S(J nev)-ds, @7
and hence

whereN represents the total number of electron¥iat time
(co=~3(c)1, (18) . The integral represents the net transport of energy, relative
to the bulk motion, to the bounding surface. Unlessin-
where 1 is the unit tensor. Finally, where convenient, we cregses with energy faster thanthis net transport of energy
shall work with temperatures rather than energies: is positive, and there< 2k T, i.e., we havediffusion cool-
ing. The net flux is exactly zero in the special case when
skT=3m((c?)-v?). (19) vm(€)~¢€, and then the electrons and gas are in thermal
. equilibrium, e=3kT,. The parametrizatiofl7) for energy
We now move on to adapt the above balance equations tﬁux follows these linesy=0 dependi heth _
particular circumstances. . . r= pending on whethek, var
ies, respectively, less rapidly tharor in direct proportion to
it. Specific values ofy are given shortly.

IIl. FREE DIFFUSION In order to calculate the mean energy, we return to the

A. Electrons energy balance equation, and substitute for the energy flux
from Eq. (17):
Here we assume that there are no space charge effects,
that electron-ion collisions are negligible, and that the elec- yV-nv=—nv (e—ikTy). (28)

trons therefore diffuse freely, i.e., we are dealing with the

“swarm” problem [7]. The situation may be analyzed from The momentum balance equation becomes, with approxima-
the equations in Sec. Il by settifiy=0. To simplify matters, tion (26),

we drop the subscript, since only electrons are being con-

idered at present. Th e have ne 2/3)e
S pres Hs W v nv=m v><B—(m ) Vn, (29

an+V.T=0, (20 o o
or, equivalently,

d(nmv)+V.nm(cc)+nevxXB=—nmy,v, (21

nv=—D-Vn—DyXVn, (30

d(ne)+V-J=—nv (e—3Ty), (22

where
where

D=D;BB+D, (1-BB), (32)

2m 23

Ve:_Vm 2
Mg _c_ €

Di=3 mMv(€) (32)

is the collision frequency for energy transfer. As a further
simplification, we have takei~e¢, a good approximation is the diffusion coefficient parallel tB, while
for electrons, for whichm/my<<1.

We suppose now that the electron swarm has evolved to a
stage where all average properties are independent of space D,=Dy /
and time, although the number dengity n(r,t) is still vari-
able. Upon eliminatingl;n from the momentum and energy
balance equations using the equation of continuity, we find

QZ
1+ — (33)
Vm

is the diffusion coefficient perpendicular By and

Dy=D, O/ 34
m({cc)—vv)+nevx B=—nmyv (24) HZ 225 Pm 349
q is the Hall diffusion coefficient. In these expressions,
an
Q=eB/m
V-(J—nev)=—nv(e—3kTy). (25
is the electron gyrofrequency.

In Eq. (24), The divergence of the particle fluk=nv is

m({cc) —w)=kT~kTl~5el (26) V.I'=-D:VVn, (35)
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and notice that the Hall term does not contribute. The diffu- 2kT,
sion equation is found by substituting E&6) into the equa- D, = . (46)
tion of continuity (8), Myp(1+ Q% v5)[ 1+ (1+4x%)1?
dn=D:VVn, (36)  Notice that Eq(44) is of the same mathematical form as the
field-free casg4], with an effective diffusion length
while the energy balance equati@@B) becomes
Aeri=A(1+Q2102)Y2, (47)

— yeD:VVn=nv_(e— 3kTy). (37)
i.e., the imposition of a fiel® acts to effectively increasé
For definiteness we now assume a cylindrical geometryand thus reduce.

with B directed along the axis, and for simplicity, a gradient |t is clear from Eq.(44) that the mean energy decreases

of nin the radial direction only. Thus further belowskT, the greatew is, and clearlya increases
) with «. Diffusion cooling can therefore be inhibited in a
D:VVn=D,V-n. (38)  swarm experiment bya) increasing the size of the vessel,

) ] ] thus increasing\ and reducings; (b) increasing the neutral
Next assume that(r,t) = R(r)T_(t) is separab'le in variables, gas pressura,, thus increasing,, and decreasing; and(c)
and thus we have, from the diffusion equati@), increasingB/n, and thus also increasin@/ng and A o¢¢.
2 A2 If B=0 Eq.(43) can be solved for other simple models,
Vin=—An (39) and agreement obtained with Boltzmann equation refts
through an appropriate choice of the parameteihus, for
example, for the constant cross section model, we chgose
=1. For the case where the cross section is proportional to
speed, and,,~ €, we havey=0 and there is no diffusion
' cooling. These values of may be assumed to also apply
whenB is non zero. Thus, by Eq43), there is no diffusion
cooling whenv,,~ €, under any circumstances. However, the
d‘?ctor 1+ Q2?/vZ% makes analytic solution of E¢43) a diffi-
cult proposition in general, even for simple collision models.
In the limiting case of very strong fields, however, such
that O>v,,, a quadratic equation resembling that for the
constant collision frequency case holds, regardless of the en-

n(r,t)=R(r)exp(— D, t/A?), (40)

where R(r) is the radial component of the solution of the
diffusion equation, and is a characteristic diffusion length
of the order of the radius of the cylindrical vessgl.B.:
Equation(40) generally admits a spectrum of eigenvalues
and it is implicit in what follows that we are dealing with the
fundamental mode, corresponding to the largest member
this spectrun]. The values ofe (and hence oD ;) can be
found from Eq.(38), which now takes the form

veD. +e— EkTOZO (42) ergy dependence of the cross section. The only difference is
v A2 2 ’ that « is replaced byk.., where
or, equivalently, KT~/m
KOZCEY—O_ (48)
2m
2 re’ fe-3kTm0. @2 mp VA
a €E— = =V. 0
3 mugr A2(1+Q202) 270

That is, Egs.(43) and (44) hold again, withk— .., while
In general, the collision frequencies are energy dependenthe expression for the diffusion coefficient is
and Eq.(43) constitutes a transcendental equation doin
the special case of constant collision frequency, however, it 2Kk Tovm(€)

has the analytic solution D, = .
Y T MmO 1+ (1+4k2)Y2]

(49

3
e=5kTo/(1+a), (43 In this limit the diffusion cooling effect is independent of gas
pressure.

where
B. Diffusion cooling of ions

1 2\12__
a=z[(1+4x%) 1] (44 In principle, the ion component can also experiience dif-

fusion cooling, though for practical purposes this may be
neglected. Whereas for electrons, the ratig/m, is very
small, guaranteeing that the energy transfer frequé¢P8yis
7kTo small compared with th di trans-
_ (45) pared withvy, e, the corresponding energy trans
Mr A1+ Q% v2) fer frequency for ions[2u,/(m;j+mg) vy in, IS compa-
rable with v, ;,, making for good thermal contact between
This agrees with the exact result obtained from asymptotiéons and the neutral gas. The parameter corresponding to
solution of the Boltzmann equatidd] with B=0 if y=2. [Eg. (46)] is thus very small, resulting in negligible diffusion
The corresponding diffusion coefficent is cooling for ions, i.e.;T;~T, under all conditions.

and

K2
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IV. AMBIPOLAR DIFFUSION COOLING and upon substitution for the ambipolar fididand V - nv,

A. Zero magnetic field this becomes

Consider first the case wheB=0, and electron-ion col- —(y+2%)eD,V?n=—nv_(e—3kTy). (62
lisions are negligible. The electron and ion momentum bal-
ance equations, assuming as before ¢ghandv are indepen- This has the same structure as the energy balance equation
dent of position and time, and that both electron and ion(38) for the free diffusion cooling case, although, has an

temperatures are isotropic, are energy dependence different from the free diffussion coeffi-
cient. Moreover, even ify=0, as is the case when,(¢)
KTeVn+neE=—nmery enve, (500 ~¢, there is still diffusion cooling. This is because the am-
bipolar space-charge barrier cools no matter what the nature
kKTiVn—neE= —nuivminVi - (5D of the collisions. Equatiori63) is to be compared with the

empirical equatior(9) of Biondi [1]. As before, ions suffer

If we take the divergence of each equation, add, and recajjegligible diffusion cooling because of the good thermal
that the divergence of ion and electron particle fluxes argontact with the neutral gas.

assumed to equal E¢4), we find

V.I'=-D,V?n, (52) B. Nonzero magnetic field
In the presence of a magnetic field, “pure” ambipolar
where diffusion, in the sense thall components of ion and elec-
) tron fluxes are equal, is not possill&2]. However, their
kTe+KTi 53 divergencesnust balance as in E¢4) in order to maintain
a

space-charge neutrality. Furthermore, since motion a®ng
is unaffected by the magnetic field, we can assume that strict

~ mgrm,en+ ui,rm,in

_ KT+ KT, 54 ambipolarity is maintained in that direction, i.e.,
Hin¥m,in B-I=B.T=T). 63
=Di(1+Te/Ty), (59 The momentum balance equations are written as
and KT VN +e(NE+TeXB)=— Mgy el e (64)
D‘:M:I/T;],m (56) KT,Vn—e(nE+TXB)=— u;vm inI. (65)

Taking the dot product of each of these withand applying
ambipolarity along the magnetic fiel@4), gives theB=0
result, viz.,

is the free ion diffusion coefficient. If E453) is substituted
into the equation of continuity8), we obtain

_ 2
an=D,V-n, (57 Ij=—DayVjn, (66)
the usual textbook result. Notice, however, that we did not h
need to assume to assume equality of the particle fluxes, onW ere
equality of their divergences. —D.(1+ ,

Similarly, it can be shown from the momentum balance Da)=Di(1+Te/Ti) 67)
equations that

and
e £=— eyn (68)
Mev inVm,i 1=~ he VIM
eV.nE= — e ]r.n,en Mlnlm,m v2n (58) ne
m.y + LinVii For the transverse direction, no such ambipolarity gener-
e”m,en n~rin . o . .
ally exists, and it is shown in the Appendix that for the
~—kT.V?n. (590  axisymmetric case the equation of continuity is
A sufficient (but not necessayycondition for this to hold is == V.I'=-D,,V?n- Da,||Vﬁn, (69)
neE=—kT.Vn. (60)
where
We now turn to the energy balance equation for electrons.
Thus Eq.(25) becomes Da
al=7 - (70)
1+p
V-I'+ E= 2 KT, 61
YEV - nev-e=—nv, e >Klo) (61) and
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e’B?

MgV eniVm,in

p= (77)

In the axisymmetric case, radi@but not azimuthal fluxes
are indeed ambipolar; that is,

an
al gr

Te,=Ti,r=— (72)

and in that case the transversadia) field is also given by

=—(KkT on 73
neEf__g eya ( )
where
T
1_Q
- T 74
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taken cylindrical geometry, witB directed along the axis.

The main results are as follow&) The temperature of
the electron component of the plasma can be significantly
lowered through the phenomenon of “diffusion cooling.”
(b) The magnetic field may act to inhibit diffusion cooling in
the free diffusion casdc) For the ambipolar case, the radial
ambipolar electric field can actually reverse sign whn
becomes large enougfkd) In all cases, the ions remain in
approximate thermal equilibrium with the neutral compo-
nent.

Given the essentially phenomenological nature of this ini-
tial investigation, we prefer to leave any numerical calcula-
tions for explicit situations to subsequent papers, where it is
planned to develop a full kinetic theory treatment of diffu-
sion cooling effects in a magnetic field. For the free diffu-
sion, “swarm” problem, it can be shown that the results
presented in Ref4] can be generalized in a straightforward
way, by simply using an effective diffusion length as in Eq.
(48). However, for the ambipolar situation, simultaneous so-
lution of both electron and ion Boltzmann equations is re-

The electron energy balance equation is of the same matlguired, and this is a matter of current investigation even in

ematical form as for the zero field case, and the effed of

the much simpler case for whidd=0. To add to that, in-

becomes apparent only when explicit expressions are substiastic collisions need to be included in any serious investi-
tuted for the flux and electric field. Thus we find, assuminggation of plasma phenomena, and again it is felt to be better

uniformity along the axial direction,

—(y+50)eDy, Vin=—nv(e—kTp). (79
Apart from the termg andD, , this is of a form similar to
the field-free cas@Eqg. (63)]. It is interesting to note thaf
can benegativefor sufficiently largeB, which raises the
interesting possibility of diffusiomeatingresulting from ap-
plication of a magnetic field.

to leave that to a more comprehensive investigation via nu-
merical solution of Boltzmann equation.

Finally, to try to make contact with the hot toroidal
plasma problem, the initial motivating force behind the cur-
rent investigation, requires yet another step up in sophistica-
tion. All that is being pointed out here is that the diffusion
cooling phenomenon has certain qualititative similarities
with what has been observed in experimghi (“hollow”
electron temperature profile, radial ambipolar field reversing

The ions can still be expected to remain in thermal eqUi'directior‘b without trying to claim in any way that it ithe

librium with the neutrals, i.e.T;=To>T,, given that the

explanation.

collision frequency for energy exchange of ions with neutrals
is several orders of magnitude larger than the corresponding

quantity for electrons. Notice that for sufficiently large

B, E, can actually change sign, i.e., the ambipolar field can

reverse direction from radially outwards to radially inwards.
Indeed, ifp>1, Eqgs.(74) and(75) indicate that

an

neE~KkT, o

(76)

In terms of the electrostatic potentigl defined byE,=
—d¢lar, this then implies
n(r)~ exp(—e¢(r)/kT)). (77)

That is, the ions are in thermal equilibrium with a Maxwell-
Boltzmann distribution.

V. CONCLUDING REMARKS
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APPENDIX: AXISYMMETRIC CASE

For the sake of completeness, and because the picture
presented in even standard textbooks is by no means clear or
consistent, we give a brief outline of the derivation of Egs.
(72) and (73) from first principles.

Consider a cylindrical plasma, with an axial magnetic
field B which defines thez axis of a system of cylindrical
coordinates I(, 6,z). We have in mind an axially symmetric
case, where the density is independent of both the azimuthal
angle ¢ and the longitudinal coordinatg so that thatn
=n(r). In addition, the azimuthal component of the ambi-

In this paper we have given a semiquantitative analysis OI)oIar fieldE,=0.

a weakly ionized plasma undergoing diffusion in a finite cav-

The equations of motion for electrons and ions, resolved

ity, both with and without an applied magnetic field, and for j,io radial and azimuthal components are

both free and ambipolar diffusion regimes. It was shown that
the energy flux plays a significant role in the theory, but at
this level of closure of the equations, it had to be approxi-

mated in order to make progress. For simplicity, we have (AL)

on
kTe(y_r +e(nE + Fe,eB) = meVm,enFe,r
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—el'e,B=—Mevmenl'c s, (A2) i =Te=I",. (A7)

an
KTi 5 ~eNE+TiB) == pivminl'i s (A3) " [Note, however, that althoudh, ,#T' 5, the equality of the

divergences of the particle fluxes, Ed), still holds)] Add-
el'i B=—puivmenl'i g (A4)  ing Egs.(A5) and(A6) and neglecting terms of ordem,/m,
gives, for the particle flux,
Eliminating ', 4 andT’; 4 in these equations then gives

KT on + ( + e’B” )1“ (A5) KT, +KkT, on
—+enE=—|m : i
ez?l’ Er eVm,en meVm,en er Fr: - i eng E: (A8)
Dint
an e2B2 MiVm,in MeVm.en
kTi———enE=—| pivmint ———|Ti;.  (AB)
ar ' i Vm,in ’

We now assume that ambipolarity pertains in the radialwhich is effectively Eq(72). Subtracting Eq9A5) and(A6)

direction, i.e., similarly leads to Eq(73) for the ambipolar electric field.
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