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Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems
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Vortex line and magnetic line representations are introduced for a description of flows in ideal hydrody-
namics and magnetohydrodynamid4HD), respectively. For incompressible fluids, it is shown with the help
of this transformation that the equations of motion for vortidtyand magnetic field follow from a variational
principle. By means of this representation, it is possible to integrate the hydrodynamic type system with the
HamiltonianH = [|Q|dr and some other systems. It is also demonstrated that these representations allow one
to remove from the noncanonical Poisson brackets, defined in the space of divergence-free vector fields, the
degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness
for ideal MHD. For MHD, a new Weber-type transformation is found. It is shown how this transformation can
be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids.
The Weber-type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invari-
ant is absent, this transformation coincides with the Clebsch representation analog introduced by V.E. Za-
kharov and E. A. KuznetsopDokl. Ajad. Nauk194, 1288(1970 [Sov. Phys. Dokl15, 913 (1971]].

PACS numbdss): 52.30—q, 52.35.Ra, 52.55.Fa

I. INTRODUCTION where the Hamiltonian

There are a large number of works devoted to the Hamil-
tonian description of ideal hydrodynamicsee, e.g., the re-
view [2] and the references thergihis question was first
studied by Clebscka citation can be found in Ref3]), who  coincides with the total fluid energy.
introduced for nonpotential flows of incompressible fluids a In spite of the fact that the brackés) allows us to de-
pair of variables\ and u (which later were called Clebsch scribe flows with arbitrary topology, the main drawback is its
variable$. Fluid dynamics in these variables is such that vor-degeneracy. For this reason it is impossible to formulate the
tex lines are represented by the intersection of surfaces variational principle on the whole spa&eof divergence-free
=const andu=const. These quantities, being canonicallyvector fields.
conjugated variables, remain constant by fluid advection. The cause of the degeneracy, namely, the presence of Ca-
However, these variables, as knovaee, e.g.[4]), describe  simirs annulling the Poisson bracket, is connected with the
only a partial type of flows. I\ and u are single-valued existence of a special symmetry formed by the whole
functions of coordinates, then the linking degree of vortexgroup—the relabeling group of Lagrangian markers. This
lines characterized by the Hopf invarigsi is equal to zero. fact was first understood completely by Salmon in 188R
For arbitrary flows, the Hamiltonian formulation of the equa- although Eckart in 1938 and then in 19@] and later New-
tion for incompressible ideal hydrodynamics was given bycomb[10] understood the role of this symmetry. All known
Arnold [6,7]. The Euler equations for the vorticitf) theorems about the vorticity conservatidrtel’'s, Cauchy’s,
=curlv, and Kelvin's theorems, the frozenness of vorticity and con-

servation of the topological Hopf invarigrdre a sequence of
oQ _ this symmetry. The main one of these theorems is the fro-
- —curlvx @], divv=0, (1) zenness of vortex lines into the fluid. This is related to the
local Lagrangian invariant—the Cauchy invariant. The
physical meaning of this invariant consists in that any fluid
particle always remains on its own vortex line.
A similar situation takes place also for ideal magnetohy-

H I—EJ' QA Qdr 4
h 2 i

are written in the Hamiltonian form

%:{Q,H}, (2)  drodynamics(MHD) for barotropic fluids:
. . ptt V- (pv)=0, )
by means of the noncanonical Poisson brackéfs
1
SF 5G vt+(v~V)v=—VW(p)+m[curlhx h], (6)
{F,G}:f (Q curlﬁxcurlﬁ} dr, (3

h,=curl[vXh]. )

*Electronic address: kuznetso@itp.ac.ru Herep is a plasma densityy(p) is plasma enthalpy is
"Electronic address: ruban@itp.ac.ru velocity, andh is magnetic field. As is well know(see, e.g.,
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[11-15), the MHD equations possess one important It is interesting that the line representation also solves
feature—frozenness of magnetic field into plasma which isanother problem—the equations of line motion follow from
destroyed only due to dissipatidby finite conductivity. For  the variational principle, being Hamiltonian.

ideal MHD, a combination of the continuity equatiB) and This approach allows us also to consider the limit of nar-
the induction equatiori7) gives the analog of the Cauchy row vortex(or magnetig¢lines. For two-dimensional flows in
invariant for MHD. hydrodynamics, this “new” description corresponds to a
The MHD equations of motiokb)—(7) can be also repre- well-known fact, namely, the canonical conjugatiorxand
sented in the Hamiltonian form, y coordinates of vorticetsee, e.g.|3]).
The Hamiltonian structure introduced makes it possible to
pi={p,H}, h={hH}, v={v,H}, integrate the infinite set of three-dimensional Euler equations
(2) with local Hamiltonians depending on a curvatuend
by means of the noncanonical Poisson brackets, a torsiony of vortex lines:H,= [|Q|dr,H,= | Q| xdr, Hs
= [|Q|(«?/2)dr, and so on. In terms of the vortex lines, the
(F G}:f (CU”V fxﬁ dr given Hamiltonians are decomposed into a set of Hamilto-
' p |6V oV nians of noninteracting vortex lines. The dynamics of each
h PRI 56 SF vortex line is, in turn, described by an equation which can be
n osl or reduced by the Hasimoto transformatidr¥] to an integrable
+f p( CUI’I%X Y curlﬁx oV )]dr equation from the hierarchy of the one-dimensional nonlin-
ear Schrdinger equation.
+f ﬁ (f) _ f (E) r (8) For ideal MHD, a new representation—an analog of the
op \ov] op |\ ov Weber transformation—is found. This representation con-

tains the whole vector Lagrangian invariant. In the case of

This bracket is also degenerate. For instance, the integrgdeal hydrodynamics, this invariant provides conservation of
J(v,h)dr, which characterizes the linking number of vortex the Cauchy invariant and, as a sequence, all known conser-
and magnetic lines, is one of the Casimirs for this bracket. yation laws for vorticity(for details, see the revief2)). It is

The analog of the Clebsch representation in MHD servesmportant that all these conservation laws can be expressed
a change of variables suggested in 1970 by Zakharov ani@ terms of observable variables. Unlike the Euler equation,
one of the authors of this pap€E.K.) [1]: these vector Lagrangian invariants for the MHD case cannot
be expressed in terms of density, velocity, and magnetic
field. It is necessary to tell that the analog of the Weber
transformation for MHD includes the change of varialjl@)s
as a partial case. The presence of these Lagrangian invariants
The new variables ¢,p) and (,S) represent two pairs of in the transform provides topologically nontrivial MHD
canonically conjugate quantities with the Hamiltonian coin-flows.

hxcurl S
+—[ ].

v=V¢ 9

ciding with the total energy, The Weber transform and its analog for MHD play a key
role in constructing the vortex lineor magnetic ling repre-
V. h? sentation. This representation is based on the property of
H= f P +pe(p)+ p dr, frozenness. Therefore, by means of such a transform the non-

canonical Poisson brackets become nondegenerated in these
where3 (p) is a specific internal energy. variables and, as a result, a variational principle may be for-

In the present paper we suggest an approach of resolvirrl"FSUIated' Another peculiarity of this representation is its lo-
the degeneracy of the noncanonical Poisson brackets for iff@/ity, establishing the correspondence between voftex

compressible fluids by introducing new variables, namelyMagneti¢ line and vorticity (or magnetic field This is a

Lagrangian markers labeling vortex lines for ideal hydrody-Specm,C mapping, mixgd Lagrangian-Eulerian, f_or Whi.Ch .
namics or magnetic lines in the MHD case. Jacobian of the mapping cannot be equal to unity for incom-

The basis of this approach is an integral representation fdPressible fluids as it is for pure Lagrangian description.
the corresponding frozen-in solenoidal field, namely, the vor-
ticity for the Euler equation and the magnetic field for MHD.
We introduce new objects, i.e., the vortex lines or magnetic
lines, and we obtain the equations of motion for them. This e start our consideration from some well known facts,
description is a mixed Lagrangian-Eulerian description,namely, the Lagrangian description of ideal hydrodynamics.
when each vortexor magneti¢ line is enumerated by a La-  |n the Eulerian description for barotropic fluifisressure
grangian marker, but motion along the line is described iryepends on density onlyp=p(p)], we have coupled

terms of the Eulerian variables. Such representation fixes alguations—continuity equation for densjtyand the Euler
topological invariants of solenoidal field. It removes the de-equation for velocity:

generacy from the Poisson brackets connected with the con-

servation of all topological properties, retaining the gauge

invariance of the equations of motion with respect to re- pi+div(pv)=0, (10
parametrization of each line. It is important that the equa-

tions for line motion, as the equations for curve deformation,

are transverse to the line tangent. Vit (V- V)v=—=Vw(p), dw(p)=dp/p. (11

Il. GENERAL REMARKS
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In the Lagrangian description, each fluid particle has its own 9a;
label. This is a three-dimensional vectr so that the par- Boi(a)= -~ By(x,0),
ticle position at timet is given by the function k
shows that, unlike velocityB transforms as a vector.
x=x(at). (12) By integrating Eq.(16) over timet, we arrive at the so-

called Weber transformatiofsee, e.g.[3]):
Usually the initial position of a particle serves as the La- o 943)

grangian markera=x(a,0). u(a,t)=ug(a)+ VP, (19
In the Lagrangian description, the Euler equatiad) is
nothing more than the Newton equation: where the potentiadb obeys the Bernoulli equation:
k= —Vw db_v* 20

In this equation the second derivative with respect to time

tis taken for fixeda, but the right-hand side of the equation ith the initial condition®l_o=0. For such a choice ob a
is a function oft and x. Excluding from the latter the new functionuy(@) is connected with the “transverse” part

dependence, the Euler equation takes the form of u by the evident relation

ox, w(p) curlug(a)=1.

X — =
: day day

' (13 The Cauchy invariant characterizes how the vorticity is

frozen into the fluid. It can be obtained in the standard way
where now all quantities are functions énd a. by considering two equations—the equation for the quantity
In the Lagrangian description, the continuity equationB=Q/p,
(10) is easily integrated and the density is given through the

i i = . dB
Jacobian of the mappind@.2) J=det(9x;/day), a:(BV)v, 21)
p=po(a)/J. (14
and the equation for the vecta¥x=x(a+ da)—x(a) be-
Now let us introduce a new vector, tween two adjacent fluid particles,
_ % 4% _ oxv (22
uk_avi , (15 dt =(ox-V)v. )

which has the meaning of velocity in a new curvilinear sys-  The comparison of these two equations shows that if ini-
tem of coordinates. Alternatively, one may say that this for-tially the vectorséx are parallel to the vectds, then they

mula defines the transformation law for velocity compo-Will be parallel to each other for all time. This is merely the
nents. It is worth noting that Eq.(15 gives the statement that vorticity is frozen into the fluid. Each fluid

transformation for the Ve|ocity as acovector particle always remains at its own vortex line. The combina-
A straightforward calculation gives that the vectosat-  tion of Egs.(21) and(22) leads to the Cauchy invariant. To
isfies the equation establish this fact, it is enough to write down the equation for
the Jacoby matrid;; = 9x; /da; , which directly follows from
du, a [V? Eq. (22):
— == (16)
dt day 2

d 0a; _ 0a; &Vl

In this equation the right-hand side represents the gradient dt oxy IXj X
relative toa and therefore the “transverse” part of the vector

u will be conserved in time. And this gives the Cauchy in—ThIS equation, in combination with E¢1), gives conserva-

tion of the Cauchy invariantl7).

variant[18], If now one comes back to the velocity fieldthen by use
d of Egs.(15) and(19) it is possible to obtain that
—curl,u=0, or curbu=I. 1
dt—* b @ v=ugVa,+V®, (23

If Lagrangian markers: are initial positions of fluid par- where the gradient is taken with respecitaHere the equa-
ticles, then the Cauchy invariant coincides with the initialtion for the potential® has the standard form of the Ber-
vorticity: 1 =8Qq(a). This invariant is expressed through the noulli equation:

instantaneous value &(x,t) by the relation 5

V
Q(a)=J-[Q(xH)V]axt), (18) Qi+ (v-V)@— = +w(p)=0.

wherea=a(x,t) is the inverse mapping to E¢L2). Follow- It is interesting to note that relatiod7), as equations for
ing from Eqg.(18), the relation forB=Q/p, determination ofx(a,t), unlike Eqgs.(16), are of first order
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with respect to the time derivative. This fact is also reflected However, one should note that the generalized velocity

in the expression for the velocit23), which can be consid- v(r,t) can be defined up to the addition of the vector parallel

ered as a result of the partial integration of the equations ofo €):

motion (16). Of course, the velocity field given by E3) 5

contains two unknown functions: one is the vecifx,t) and v=V+ al). (26)

another is the potentiab. For incompressible fluids the lat- 5

ter is determined from the condition dix=0. In this case The substitutionv—v in no way changes Eq24) for (.

the Bernoulli equation determines the pressure. Hence, it becomes clear that instead of the transformation
Another important point concerning the Cauchi invariant=x(a,t) of the initial positions of fluid particlex(a,0)=a

is that it follows from the invariance of the variational py the velocity fieldv(r,t) through the solution of the equa-

principle—the action is unchanged under the relabelingjon

transformation(for details, see the review8,2]). Passing

from the Lagrangian to the Hamiltonian in this description X=V(x,t), (27)

we have no problems with the Poisson bracket. It is given in

the standard way and does not contain any degeneragpme other transformation can be used. The possible trans-

against the noncanonical Poisson brack8jsand (8). One  formations are defined by the generalized veloeit6) and

of the main purposes of this paper is to construct a neworrespond to the various choices of thefunction. There-

description of the Euler equatiofas well as ideal MHD  fore, using a full Lagrangian description for the syste@w

which, on the one hand, would allow us to retain the Euleriarbecomes ineffective.

description, as maximally as possible, but, on the other hand, Now we introduce the following general expression for

would include from the very beginning the frozenness con€)(r), which is gauge invariant and fixes all topological

nected with the relabeling symmetry. properties of the system that are determined by the initial
As for MHD, this system has a common feature with thefield Q,(a) [19]:

Euler equation: it also possesses the frozenness property. The

equation forh/p coincides with Eq.(21) and therefore the

dynamics of magnetic lines is very similar to that for vortex

lines of the Euler equation. However, this analogy cannot be

continued so far because the equation of motion for velocityHere now

differs from the Euler equation by the presence of pondero-

motive force. This difference remains also for the incom- r=R(at) (29

pressible case.

Q(r,t)zf o(r—R(a,1))[Qq(a)- V,JR(at)da. (28

does not satisfy Eq27) any more and, consequently, the
mapping Jacobiad=de{|JR/da|| is not assumed to equal 1,
1. VORTEX LINE REPRESENTATION as it was for the full Lagrangian description of incompress-

. he Hamiltoni . f the di ible fluids.
Consider the Hamiltonian dynamics of the divergence It is easy to check that from the conditigiV ,Q0(a)]

free vector field€Q(r,t), given by the Poisson brack . ) g -
with \s/ome H:amilto(nia)rﬂ:glv y 158 @) ;Ozgrfct)allows that divergence of Eq28) is identically equal

The gauge transformation
20 gaug

—=curl

AL
p cur

0 </ (24)

R(a)—R(@g,(a)) (30)

Notice that substitution of Eq4) into Eq. (24) yields the  |eaves this integral unchangeda , arises froma by means

Eufr equrz]itlortl)._d the brackés) is d ¢ It of arbitrary nonuniform translations along the field line of
S We have said, the brac IS degenerate, as a resu Qy(a). Therefore, the invariant manifol,t!|/lQ0 of the space

of which it is impossible to formulate the variational prin- , . L 0 .
ciple on the entire spacé of solenoidal vector fields. It is S, on which the variational principle holds, is obtained from

known [2] that Casimirsf, annulling Poisson brackets, dis- h€ Spacek: a—R of arbitrary continuous one-to-one three-
tinguish invariant manifolds\(; (symplectic leavesin Son ~ dimensional mappings identifying® elements that are ob-
each of which it is possible to introduce standard Hamil-t@ined from one another with the help of the gauge transfor-
tonian mechanics and accordingly to write down a varia-ation (30) with a fixed solenoidal field2o(a). N
tional principle. We shall show that solution of this problem It iS important also thaf),(a) can be expressed explicitly
for Eq. (24) is possible on the basis of the property of fro- I terms of the instantaneous value of the vorticity and the
zenness of the fiel®(r,t), which allows us to resolve all Mappinga=a(r,t), inverse to Eq(29). By integrating over
the constraints, stipulated by the Casimirs, and gives the nedbe variablesa in the relation(28),
essary formulation of the variational principle.

. porivad [Q0(a)- VaIR(a)

To each Hamiltoniari{—functional of€(r,t)—we asso- QR)= — >~ "ar 7 31
ciate the velocity field ®) def|oR/da]| 61
SH wherey(a) can be represented in the form
V(r,t)=curl—. (25)

5Q Qy(a)=det|dR/3a]|[Q(r)- V]a.
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This formula is merely the Cauchy invariafit7). We note IV. VARIATIONAL PRINCIPLE

that according to Eq31) the vector The key observation for formulation of the variational

_ . principle is that the following general equality holds for
b(a,t)=[2(8)- ValR(a,) (32) functionals that depend only df2:

is tangent to2(R). It is natural to introduce parametsias

oF oF
an arc length of the initial vortex lineQ(a) so that bX curl 5Q(R)”: 3R(a) |QO. (35
b=QO(v)§. For this reason, the right-hand side (@i ) equals the varia-
s tional derivativesH/ SR:
In this expressiorf), depends on the transverse parameter SH{Q{R}}
labeling each vortex line. In accordance with this, the repre- [Qo(a) ValR(2) X Ry(a) = SR(a) lo,, (36

sentation(28) can be written in the form
It is not difficult to check now that, as described by E2f),
the dynamics of vortex lines is equivalent to the requirement
of an extremum of the actiond§=0) with the Lagrangian
[19],
from which the meaning of the new variables becomes 1
clearer: To each vortex line with indexthere is associated

. : . == Ri(a) XR(a)]-[Qq(a)- V4]R(a)}da—H{Q{R}}.
the curver =R(s,»,t), and the integra(33) itself is a sum £ 3f {R(@xR(@)]-[2o(a)- ValR(a)} MR}
over vortex lines. We notice that the parametrization by in- (37
troduction ofs and v is local. Globally, therefore, the repre-

sentation(33) can be used only for distributions with closed ' NUS, we have introduced a variational principle for Hamil-
vortex lines. tonian dynamics of divergence-free vector field topologically

To get the equation of motion fd&(a,t), the representa- €duivalent to€q(a). The Lagrangian37) has a remaining

tion (28) must be substituted in the Euler equati@d). Us- symmetry_connect'ed with relabeling of Lagrangia}n markers
ing the formula of vortex lines. This symmetry leads to conservation of vol-

umes inside all closed vortex surfaces. This property ex-
plains why the Jacobian of the mappirng R(a,t) cannot be
Qt(r,t)=curIrJ S(r—R(a,t))[Ri(a,t) Xb(at)]da, equal identically to unity.
Let us discuss some properties of the equations of motion
(36), which are associated with the excess parametrization of
elements of/\/lQ0 by objects fromR. We want to pay atten-
b(a,t) X[Ry(a,t)—V(R,1)] tion to the fact that from Eq(35) there follows the property
dellarizal = that the vector® and 6F/6R(a) are orthogonal for all func-
tionals defined on\, . In other words, the variational de-
fivative of the gauge-invariant functionals should be under-
stood[specifically, in Eq.(35)] as

Q(r,t)=fﬂo(v)dzvf 5(r—R(S,v,t))gdS, (33

which follows from Eq.(28), one can obtain

r

This equation can be solved by setting the expression u
der the curl operator equal identically to zero:

B . OF
[bXRy(a,t)]=[bXV(R,1)] (34) PoR@

or, in terms of coordinates ands, A ) . i
whereP;;= 6, — 7;7; is a projector and=b/|b| a unit vec-
[RXR(1,5,t)]=[RsX V(R,1)]. tor tangent to the vortex line. Using this property as well as
the transformation formul#35), it is possible, by a direct

With this choice there remains the freedom both to chang&@lculation of the brackeB), to obtain the Poisson bracket
the parametes and relabel the transverse coordinatedlo-  (P€tween two gauge-invariant functionalexpressed in
tice that, as it follows from EqglIl) and(31), a motion of a  (€MS of vortex lines:

point on the manifoldM, is determined only by the com- 5 5G

ponent of the generalized velocity transverseX). {F,.Gl= f E(b p X P
The obtained equation Eqll) is the equation of motion |b|? oR(a)  oR(a)
for vortex lines. In accordance with E@ll), the evolution of _ o _
each vectoR is principally transverse to the vortex line. The ~ The new bracket38) does not contain variational deriva-
longitudinal component of velocity has no effect on the linetives with respect td2q(a). Therefore, with respect to the
dynamics. initial bracket, the Cauchy invariaf(a) is a Casimir fix-
The description of vortex lines with the help of E§83)  ing the invariant manifolds\, on which it is possible to
and(lll) is a mixed Lagrangian-Eulerian one: The parameteiintroduce the variational principlég7).
v has a clear Lagrangian origin whereas the coordisate  In the case of the hydrodynamics of a superfluid liquid, a
remains Eulerian. Lagrangian of the form(37) was apparently first used by

. (39
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Rasetti and Regde0] to derive an equation of motion, iden- aples the equation of motion for the vecR(v,s) is local; it

tical to Eq.(lll), but for a separate vortex filament. Later, on does not contain terms describing interaction with other vor-
the base of the resul{£0], Volovik and Dotsenko, JiI.21] tices:

obtained the Poisson bracket between the coordinates of the
vortices and the velocity components for a continuous distri- P[RsXRy(v,8,1)]= —7=[7X(7X 75)]. (42)
bution of vortices. The expression for these brackets can be ) )
extracted without difficulty from the general form for the Here 7=sgn@Qo),7=R/|R{ is the unit vector tangent to
Poisson bracket§38). However, the noncanonical Poisson the vortex line. ~
brackets obtained ifi20,21] must be used with care. Their ~ This equation is invariant against changes:s(s,t).
direct application gives for the equation of motion of the Therefore, Eq(42) can be solved foR; up to a shift along
coordinate of a vortex filament an answer that is not gaugethe vortex line—the transformation does not change the vor-
invariant. For a general time-dependent variation, additionalicity £2. This means that to fin it is enough to have one
terms describing flow along a vortex appear in the equatiosolution of the equation
of motion. For this reason, the dynamics of curtiesluding
vortex lineg is in principle “transverse” with respect to the 7Ry Ri=[7X 7]+ BRs, (43)
curve itself.

Sometimes it is possible to parametrize lines by one of th
Cartesian coordinatg$or instance, the coordinate,

which follows from Eq.(42) for some value of3. This leads
% an equation forr as a function of filament length(dl
=|R4/ds) and timet (by choosing a new valug=0),
R(v.z.t)=(X(v.2.).Y(v.2.1).2). which reduces to the integrable one-dimensional Landau-
(nzh)=X>.21).Y(r.21).2) Lifshits equation for a Heisenberg ferromagnet:
For this case, functionX andY are canonically conjugated

qguantities. The Lagrangiaf87) in the case of ideal incom- nﬂ':
pressible hydrodynamics takes the form at

Pr
TX ——
al?

This equation is gauge-equivalent to the one-dimensional

— 2 '
£—f dvdzXy (1D) nonlinear Schidinger equatiod22],

1 fj (1+X) X5+ YY) dzdz,d?v,d?v,
8m (21— 29)%+ (X1 = X2) 2+ (Y1— Y2)?

(39 and, for instance, can be reduced to the NLSE by means of
the Hasimoto transformatidri 7,23:

. 1,
'llft+'ﬂ||+§|l/f| ¥=0,

Here the double integral is the Hamiltonia@®), X;
— |
=9X(vy,2,,t)/9z,, and so on. z,/J(l,t)=K(|,t)eX[<if X(T,t)dT),
V. INTEGRABLE HYDRODYNAMICS where k(1,t) is a curvature ang(l,t) the line torsion.
Now we present an example of the equations of the hy- The system with the Hamiltonia#0) has direct relation
drodynamic typg24), for which transition to the representa- to hydrodynamics. As knowfsee the pap€rl7], and refer-
tion of vortex lines permits us to establish the fact of theirences therein the local approximation for the thin vortex
integrability [19]. filament (under assumption of smallness of the filament
First let us consider the Hamiltonian width to the characteristic longitudinal scplkeads to the
Hamiltonian (41) but only for one separate line. Respec-
tively, Eq. (24) with the Hamiltonian(40) can be used for a
description of motion of several vortex filaments, whose
thickness is small compared with a distance between them.
and the corresponding equation of frozenngs® with the  In this case thénonlineay dynamics of each filament is in-
generalized velocity dependent of the behavior of its neighbors. In the framework
of this model, the appearance of singularitiggersection of
v=curl(/€Q). vortices is of an inertial character very similar to the wave
breaking in gas dynamics. Of course, this approximation
We assume that vortex lines are closed and apply the reprefoes not work if the distances between filaments are compa-
sentation(33). Then due to Eq(31), the Hamiltonian in  raple with filament thickness.

terms of vortex lines is decomposed as a sum of Hamilto- |t should be noted also that for the given approximation,

o) [ 1ol 0

nians of vortex lines: the Hamiltonian of a vortex filament is proportional to its
length. From its conservation, it follows that this model is

(?R - - . . .

_ 2 | [9R inadequate for modeling the behavior of vortex filaments in
H{R} J [Qo(v)ld Vf asds' (41) turbulent flows where usually the process of vortex filament

stretching takes place. It is desirable to have a better model
This integral oversis the total length of the vortex line with free from this drawback. A nhew model must necessarily de-
index ». According to Eq.(36), with respect to these vari- scribe nonlocal effects.
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In addition, we would like to say that the list of E®4)
which can be integrated with the help of representa(&s)
is not exhausted by E@40). So, the system with the Hamil-
tonian

o400} = | |0]xelr (44)

is gauge equivalent to the modified KdV equation

3
[/ l//|||+§|l/f| =0,

the second one after NLSE in the hierarchy generated by th
Zakharov-Shabat operator. Really the infinite set of Hamil
tonians H,{Q} exists, so that eacl,, corresponds to the
integrable equation of order+2 from this hierarchy:
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X
Hi(a,t) = Ehm(x,t).

Now by analogy with Eqs(16) and(19), integration of Eq.
(47) over time leads to the Weber-type transformation,
u(a,t) =uo(a) + V,®+[By(a) X curl,S]. (48
Hereug(a) is a new Lagrangian invariant which can be cho-
sen as purely transverse, namely, with,dy~= 0. This new
Lagrangian invariant cannot be expressed through the ob-
served physical quantities such as magnetic field, velocity,
and density. In spite of this fact, as it will be shown in the
fext section, the vector Lagrangian invarianj(a) has a

clear physical meaning. As for the new variabibsand 'S,
they obey the equations

2
K? XK° e _v=_

Ha= |Q|7dr, Ha= |Q|Tdr. dt 2 '
K24 2k i d'é_ H

H5=J|Q| — —§>dr, ai- " anVat

As against the previous mod@l0), some physical appli-
cation of H,, with n>1 has not yet been found.

VI. LAGRANGIAN (MATERIAL ) DESCRIPTION OF MHD

Consider now how the relabeling symmetry works inwy

ideal MHD. First, rewrite the equations of moti¢h)—(7) in
the Lagrangian representation by introducing markefer
fluid particles

x=x(a,t), v(x,t)=x(at).
In this case the continuity equatidB) and the equation for
the magnetic field7) can be integrated. The density and the

magnetic field are expressed in terms of the Jacoby matrix b
means of Eq(14) and by the equation

IX;
aun=§i%um, (45)

whereB=h/p. In the latter transformation the Jacoby matrix
serves the evolution operator for vect®r The vectorB, in
turn, transforms as a vector.

The transformatiori48) for velocity v(x,t) takes the form

h
v=Ug(a)Va+Vo+ l—)XCUHS , (49

hereS is the vectorS transformed by means of the rule
(15),

k~.

St =—"S(at).

In the Eulerian descriptio® satisfies the Bernoulli equation

2

s V)d Y =0 50

y FRA A 0
and the equation of motion f@& is of the form

s, IS|+Vy,=0 51

EJFE—[vxcur |+ Vi =0. (51)

For up=0, the transformatiori49) was introduced for ideal
MHD in 1970 [1]. In this case the magnetic field and

In terms of Lagrangian variables, the equation of motionvector S as well as® and p are two pairs of canonically

(6) is written as follows:

X ..

Xi.  oW(p)
ﬂak

day  4mpo(a)

Ihxh] 25 (46
[cur ]ia_ak- (46)

With the help of relation(45) and Eg.(16), the vectoru
given by Eq.(15) will satisfy the equation

- %[Bo(a)xcurlaH]. 47

Here the vectoBy(a) =hg(a)/pg(a) is a Lagrangian invari-
ant andH represents the co-adjoint transformation of the
magnetic field, analogous to E@L5):

conjugate variables. It is interesting to note that in the ca-
nonical case the equations of motion and® obtained in

[1] coincide with Eqs(50) and(51). However, the canonical
parametrization describes only some types of flows. In par-
ticular, it does not describe topologically nontrivial flows for
which the linking number between magnetic and vortex lines
is not equal to zero. This topological characteristic is given
by the integralf (v,h)dx. Only whenuy# 0 does this integral
take nonzero values.

VIl. FROZEN-IN MHD FIELDS

To clarify the meaning of the new Lagrangian invariant
up(a), we recall that the MHD equation&)—(7) can be



838 E. A. KUZNETSOV AND V. P. RUBAN PRE 61

obtained from a two-fluid system where electrons and ionsatisfied ife=c/(w,L)<1, whereL is a characteristic scale

are considered as two separate fluids interacting with eacy magnetic field variation ane,,= J47ne?/m is the ion
other by means of a self-consistent electromagnetic ﬁe'%lasma frequency. P!

The MHD equations follow from two-fluid equations in the = jike the MHD equation$s)—(7), the given system has
low-frequency limit when characteristic frequencies are 1€s$, frozen-in fields. These are the f}ellizz — (e/ma)h fro-

than the ion gyrofrequency. The latter assurtigseglect of o1 into the electron fluid and the field
electron inertia(ii) smallness of electric field with respect to

magnetic field, andiii) charge quasineutrality. We write
down at first some intermediate system often called MHD Q,=curl
with dispersion 24],

e
v+ —A)=Q—92
mc

frozen into the ion component:

41e
curl curlA= T(nlvl—nzvz), (52 Q= curfvx Q4],
e de Q, =curlv, X Q,] %9
(ﬁt+v1V)mvl=E(—At+[v1><curIA])—Vﬁ—nl, (53 2t 272520
where
e de
O=—E(—At+[v2><curIA])—Vﬁ—nz. (54) P 4:encurlh.

In these equationg is the vector potential so that the mag- . ) )
netic field h=curl A and electric fieldE= —(1/c)A,. This  Hence for both fields one can construct two Cauchy invari-

system is closed by two continuity equations for ion density2Nts by the same rule7) as for ideal hydrodynamics:

n, and electron densitg,: Quy(a)=Jy- [Qu(x.1) - V]axt), (57)
Mt VN =0, Nz+ V(NaVz) =0. wherea(x,t) is the inverse mapping to=x,(a,t), which is
In this systemv, , are velocities of ion and electron fluids, the solution of the equatior, =v(Xy,t),
respectively. The first equation of this system is a Maxwell
equation for a magnetic field in a static limit. The second Q@) = Iz [Qa(X,1) - V]ap(x,1) (58
equation is the equation of motion for the ions. The next one )
is the equation of motion for electrons in which we neglectwith a,(x,t) inverse to the mapping=x,(a,,t) and x,
the electron inertia. By means of the latter equation, one cam v,(X,,t).
obtain the equation of frozenness of a magnetic field into the In order to get the corresponding Weber transformation
electron fluid(this is another Maxwell equation for MHD as a limit of the system, it is necessary to introduce
two momenta for ion and electron fluids:
h,=curl[v,Xh].

e
Applying thg operator d?v to Eq52) givgs, taking account pi=mv+ EA’
of the continuity equations, the quasineutrality condition:

n;=n,=n. Next, by eliminatingn, andv, we have finally e
the equations of MHD with dispersion in its standard form Po=— EA'
[24]:

1 As e—0, in these expressions the terms containing the vec-
(6;+v-V)mv=—Vw(n)+ 4—[curl hxh], tor potential are much greater than the sunppéindp,. For

mn each momentum in the Lagrangian representation one can
get equations, analogous to E¢$3) and (16),

n,+V-(nv)=0, (55
Xy N J de e v?
h=curl | v— curlh | xhi, f7_aiplk:_plk‘7_ai+f7_"ii _a_r‘leE(v.A)er?}
47en
_ _ _ oy Ny 0 de e
wherev,;=v, ande(n,n) is the internal energy density so EDZKZ_DZKE +E - ﬁ_nz_ E(VZ'A)}'

thatw(n)=d/adn[e(n,n)] is the enthalpy for an ion-electron
pair. Classical MHD follows from this system in the limit . ) ~ )
when the last ternt/(4men)curlh in Eq. (55) can be ne- By introducing the vectop for each type of fluid, by the
glected with respect to. At the same time, the vector po- Sa@me rule as Eq15),

tential A must be larger than the characteristic values of

(mdc/e)v in order to provide the same order of magnitude for D :%pk,

inertia and magnetic terms in E@3). Both requirements are 7,
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after integration over time of the equations of motion for Here the density and the magnetic field are expressed by
one can arrive at two Weber transformations for each momeans of the relations

t l
mentum p=1,, h=[hg(a) -V ]x/Iy

P1=Pu(a)Vai+ Ve, 59 4

P2=P2i(a) Vay+ V&,. (60) J(at)=det|ax/d||

In the limit e—0 the markersa anda, can be set approxi-

. 2 . is the Jacobian of the mapping=x(a,t) and the initial den-
mately equal. This means that their difference will be Sma”'sity is set equal to 1. Notice that the variation of the action

given by the Lagrangiaf62) with respect tax(a) gives the
equation of motion(46) [or the equivalent equation for vec-
Besides, due to charge quasineutrality, Jacobians with rdor u (47)].

a—a=d~e

spect toa anda, must be equal to each othgirere we set Due to the presence of the magnetic field in the Lagrang-
N10(8) =N,(a,) =1 without loss of generalify ian (62), the group of relabeling symmetry, in comparison
with ideal hydrodynamics, is restricted. Although the first
det|dal ox|| = det|day / 9x||. two terms in Eq(62) are invariant with respect to all incom-

S ) pressible changes— a(c) with J|.=1, the invariance of the
As a result, the infinitesimal vectai(a,t) relative to the gt term, however, restricts the possible deformations to the

argumenta must be divergence-fre@d; /da;=0. class satisfying the condition
Then, summing Eqs(59) and (60) and considering the
limit e—0, we obtain the Weber-type transformation coin- [ho(a)- V]c=hy(C).

ciding with Eq.(48):
~ For infinitesimal transformations
u(a,t)=ug(a)+V®+[By(a) Xcurl,S], (61)
a—a+7g(a),
where vectorsug(a) and'S are expressed through the La-
grangian invariantg,(a) andp,(a) and displacemend be-
tween electron and ion by means of the relatif26s]

wherer is a(small group parameter, the vectgmust thus
satisfy two conditions:

1 _ B div,g=0, curl[gXhgy]=0. (63
u(a,t)= —[pi(a) +ps(a)],

(20 m[pl( )+ Po(a)] The first condition is the same as for ideal hydrodynamics,
the second provides magnetic-field frozenness.

The conservation laws generated by this symmetry, in ac-
cordance with Noethers theorem, can be obtained by the
o ] standard scheme from the Lagrang{@2). They are written
It is important that in Eq(61) all terms are of the same order through the infinitesimal deformatiog(a) as an integral
of magnitude(zero order relative t&). Taking the curl of  j era:
vectorsp;(a) andp,(a,) yields the corresponding Cauchy
invariants(57) and (58).

mc
d= - —curl,S.
e

| = J (u,g(a))da, (64)

VIIl. RELABELING SYMMETRY IN MHD
where the vectou is given by Eq.(15). Settingg=h, from

~ Now let us show how the existence of new Lagrangianis (infinite) family of integrals, one gets the simplest one,
invariants corresponds to the relabeling symmetry.

Consider the MHD Lagrangiai?],
Ich=f (v,h)dr,
v h?
[

* P2 P (P) 8m which represents a cross-helicity characterizing the degree of
I ... mutual linking of vortex and magnetic lines.
where we neglect the contribution from the electric field in The conservation lawg64) are compatible with the
comparison with that from the magnetic field. Hergp) is  weber-type transformation. Really, substituting Ef) into

the specific internal energy. Eq. (64) and using Eq(63), one obtains the relation
In terms of the mappinx(a,t), the Lagrangian’, is
rewritten as followq 26]:

f (up(@),g(a))da.

2
L= J Eda_J e(Jc'(a)da Hence conservation of E¢64) also follows. Note that if one
did not supposel, to be independent df then, due to arbi-
_ i ([ho(a) -Valx trariness ofy(a), this could be considered as an independent
8 Jx(a)

2
) J(@yda (62) verification of the conservation of the solenoidal fielgd
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gu o Qp(a)=curlug(a),
dt % . :
and, respectively, the last term in E§6) appears from the
The MHD equations expressed in terms of Lagrangiarfhird term in Eq.(48). The field U(a,t), however, is not
variables become Hamiltonian ones, as in usual mechanicdssumed to be solenoidal, while the Jacobian of mapping
for momentump=x and coordinatec. These variables as- =R(a,t) is not equal identically to unity. As to conservation

sign the canonical Poisson structure of all volumes inside closed magnetic surfaces, it is not a set
In the Eulerian representation the. MHD equations can b f constraints but it follows from the equations of motion for
written also in the Hamiltonian forrfil6], andu. S .
6] From the corresponding limit of the two-fluid system to
pe={p.H}, Vv={v,H}, h={hH]}, incompressible MHD, it is possible also to get the expression

for the Lagrangian,

where the noncanonical Poisson brackeiG} is given by

the expressiori8). As for ideal hydrodynamics, this Poisson | _ ) )

bracket is degenerate. For example, the cross-helicity - j{[(ho VaRx(U-VaJRIRjda

serves a Casimir for the brack@). The reason for the Pois-

son bracket degeneracy is the same as for one-fluid +1/3f {[R:XR](y- Vo RIda— H{Q{R,U},h{R}}.

hydrodynamics—it is connected with a relabeling symmetry

of Lagrangian markers. (67)

For the incompressible case, the brack®t reduces to

one involving only the magnetic field and the vorticityQ2: ~ The Hamiltonian of the incompressible MHB)p in terms

of U(a,t) andR(a,t) takes the form

oF 6G
{F,G}=j Q curlmXcurlder y =if {[ho(a)- V,]R(a)}?
MHD ™ g1 det|dR/dal|
oF 6G
+f h| | curk=->curksq +i f{[(w(al)'vl]R(al)[w(aZ)'VZ]R(aZ)}
8 R(a;) —R(ay)
se - [R(a1) ~R(ap)|
- curlmxcurlm dr. (65 X da,day,.
This Poisson bracket is also degenerate. Equations of motion folJ andR follow from the varia-

tional principle for the action with the Lagrangi#67):

IX. VARIATIONAL PRINCIPLE FOR INCOMPRESSIBLE
MHD

By analogy with incompressible hydrodynamics, one canil@(at)- Va]RX R} =[(hg- Va)RX (U;- V)R] = §H/ 5R.
introduce the magnetic line representation:

These equations can be obtained also directly from the MHD
system(5)—(7) by the same scheme as was used for ideal
h(r,t)=f o(r—R(at))[ho(a)- V ]R(at)da. hydrodynamics.
Thus, we have a variational principle for the MHD-type
If initially R(a,0)=a, thenhy(a) is the initial magnetic field. €equations for two solenoidal vector fields. Their topological
There exist some curvilinear coordinateg(a),v,(a),s(a)  Properties are fixed bf)y(a) andhy(a). These quantities
such thatr=R(vy,v,,s,t) determines the position of the represent Casimirs for the initial Poisson brac@d). It is
magnetic line if v, and v, are fixed. In this caser ~ Worth noting that the obtained equations of motion are gauge
=(v1,v,) can be considered as the marker of this line. ~ invariant. The Lagrangiait67) has a remaining symmetry
For vorticity, the analog of the vortex line parametrization connected with relabeling of Lagrangian markers of mag-
(28) can be obtained in the regular way as a ligmit 0 of the ~ netic lines in a two-dimensional manifold which can always
corresponding representations for the two-fluid systembPe specified locally. Coordinates of this manifold enumerate
Simple calculations give25] magnetic lines. This symmetry leads to conservation of vol-
ume of magnetic tubes including infinitesimally small mag-
netic tubes, namely, magnetic lines. This property is analo-
gous to conservation of volumes of vortex tubes in the
system(37). This explains why the Jacobian of the mapping
where we introduce the notation r=R(at), which determines magnetic-field dynamics, can
differ from unity.

Q(r,t)= f dasd(r—R(a,t))[w(a,t)-V,]R(at),

w(a,t)=Qq(a) +curl hy(a)xU(a,t)]. (66)
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