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Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems

E. A. Kuznetsov* and V. P. Ruban†

Landau Institute for Theoretical Physics, 2 Kosygin Street, 117334 Moscow, Russia
~Received 4 May 1999!

Vortex line and magnetic line representations are introduced for a description of flows in ideal hydrody-
namics and magnetohydrodynamics~MHD!, respectively. For incompressible fluids, it is shown with the help
of this transformation that the equations of motion for vorticityV and magnetic field follow from a variational
principle. By means of this representation, it is possible to integrate the hydrodynamic type system with the
HamiltonianH5* uVudr and some other systems. It is also demonstrated that these representations allow one
to remove from the noncanonical Poisson brackets, defined in the space of divergence-free vector fields, the
degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness
for ideal MHD. For MHD, a new Weber-type transformation is found. It is shown how this transformation can
be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids.
The Weber-type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invari-
ant is absent, this transformation coincides with the Clebsch representation analog introduced by V.E. Za-
kharov and E. A. Kuznetsov@Dokl. Ajad. Nauk194, 1288~1970! @Sov. Phys. Dokl.15, 913 ~1971!##.

PACS number~s!: 52.30.2q, 52.35.Ra, 52.55.Fa
i
-
t

a
h
or
s
lly
ion

te

a
b

its
the

f Ca-
the
ole
his

n

n-
f
fro-
he
he
id

y-
I. INTRODUCTION

There are a large number of works devoted to the Ham
tonian description of ideal hydrodynamics~see, e.g., the re
view @2# and the references therein!. This question was firs
studied by Clebsch~a citation can be found in Ref.@3#!, who
introduced for nonpotential flows of incompressible fluids
pair of variablesl and m ~which later were called Clebsc
variables!. Fluid dynamics in these variables is such that v
tex lines are represented by the intersection of surfacel
5const andm5const. These quantities, being canonica
conjugated variables, remain constant by fluid advect
However, these variables, as known~see, e.g.,@4#!, describe
only a partial type of flows. Ifl and m are single-valued
functions of coordinates, then the linking degree of vor
lines characterized by the Hopf invariant@5# is equal to zero.
For arbitrary flows, the Hamiltonian formulation of the equ
tion for incompressible ideal hydrodynamics was given
Arnold @6,7#. The Euler equations for the vorticityV
5curlv,

]V

]t
5curl@v3V#, div v50, ~1!

are written in the Hamiltonian form

]V

]t
5$V,H%, ~2!

by means of the noncanonical Poisson brackets@4#

$F,G%5E S VFcurl
dF

dV
3curl

dG

dVG Ddr , ~3!

*Electronic address: kuznetso@itp.ac.ru
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where the Hamiltonian

Hh52
1

2E VD21V dr , ~4!

coincides with the total fluid energy.
In spite of the fact that the bracket~3! allows us to de-

scribe flows with arbitrary topology, the main drawback is
degeneracy. For this reason it is impossible to formulate
variational principle on the whole spaceS of divergence-free
vector fields.

The cause of the degeneracy, namely, the presence o
simirs annulling the Poisson bracket, is connected with
existence of a special symmetry formed by the wh
group—the relabeling group of Lagrangian markers. T
fact was first understood completely by Salmon in 1982@8#,
although Eckart in 1938 and then in 1960@9# and later New-
comb @10# understood the role of this symmetry. All know
theorems about the vorticity conservation~Ertel’s, Cauchy’s,
and Kelvin’s theorems, the frozenness of vorticity and co
servation of the topological Hopf invariant! are a sequence o
this symmetry. The main one of these theorems is the
zenness of vortex lines into the fluid. This is related to t
local Lagrangian invariant—the Cauchy invariant. T
physical meaning of this invariant consists in that any flu
particle always remains on its own vortex line.

A similar situation takes place also for ideal magnetoh
drodynamics~MHD! for barotropic fluids:

r t1“•~rv!50, ~5!

vt1~v•“ !v52“w~r!1
1

4pr
@curlh3h#, ~6!

ht5curl@v3h#. ~7!

Herer is a plasma density,w(r) is plasma enthalpy,v is
velocity, andh is magnetic field. As is well known~see, e.g.,
831 ©2000 The American Physical Society
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832 PRE 61E. A. KUZNETSOV AND V. P. RUBAN
@11–15#!, the MHD equations possess one importa
feature—frozenness of magnetic field into plasma which
destroyed only due to dissipation~by finite conductivity!. For
ideal MHD, a combination of the continuity equation~5! and
the induction equation~7! gives the analog of the Cauch
invariant for MHD.

The MHD equations of motion~5!–~7! can be also repre
sented in the Hamiltonian form,

r t5$r,H%, ht5$h,H%, vt5$v,H%,

by means of the noncanonical Poisson brackets@16#,

$F,G%5E S curlv

r FdF

dv
3

dG

dv G Ddr

1E H h

r S Fcurl
dF

dh
3

dG

dv G2Fcurl
dG

dh
3

dF

dv G D J dr

1E FdG

dr
“S dF

dv D2
dF

dr
“S dG

dv D Gdr . ~8!

This bracket is also degenerate. For instance, the inte
*(v,h)dr , which characterizes the linking number of vorte
and magnetic lines, is one of the Casimirs for this bracke

The analog of the Clebsch representation in MHD ser
a change of variables suggested in 1970 by Zakharov
one of the authors of this paper~E.K.! @1#:

v5“f1
@h3curlS#

r
. ~9!

The new variables (f,r) and (h,S) represent two pairs o
canonically conjugate quantities with the Hamiltonian co
ciding with the total energy,

H5E S r
v2

2
1r«̃~r!1

h2

8p Ddr ,

where«̃(r) is a specific internal energy.
In the present paper we suggest an approach of resol

the degeneracy of the noncanonical Poisson brackets fo
compressible fluids by introducing new variables, name
Lagrangian markers labeling vortex lines for ideal hydrod
namics or magnetic lines in the MHD case.

The basis of this approach is an integral representation
the corresponding frozen-in solenoidal field, namely, the v
ticity for the Euler equation and the magnetic field for MHD
We introduce new objects, i.e., the vortex lines or magn
lines, and we obtain the equations of motion for them. T
description is a mixed Lagrangian-Eulerian descriptio
when each vortex~or magnetic! line is enumerated by a La
grangian marker, but motion along the line is described
terms of the Eulerian variables. Such representation fixe
topological invariants of solenoidal field. It removes the d
generacy from the Poisson brackets connected with the
servation of all topological properties, retaining the gau
invariance of the equations of motion with respect to
parametrization of each line. It is important that the eq
tions for line motion, as the equations for curve deformati
are transverse to the line tangent.
t
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It is interesting that the line representation also solv
another problem—the equations of line motion follow fro
the variational principle, being Hamiltonian.

This approach allows us also to consider the limit of n
row vortex~or magnetic! lines. For two-dimensional flows in
hydrodynamics, this ‘‘new’’ description corresponds to
well-known fact, namely, the canonical conjugation ofx and
y coordinates of vortices~see, e.g.,@3#!.

The Hamiltonian structure introduced makes it possible
integrate the infinite set of three-dimensional Euler equati
~2! with local Hamiltonians depending on a curvaturek and
a torsionx of vortex lines:H15* uVudr ,H25* uVuxdr ,H3
5* uVu(k2/2)dr , and so on. In terms of the vortex lines, th
given Hamiltonians are decomposed into a set of Hami
nians of noninteracting vortex lines. The dynamics of ea
vortex line is, in turn, described by an equation which can
reduced by the Hasimoto transformation@17# to an integrable
equation from the hierarchy of the one-dimensional non
ear Schro¨dinger equation.

For ideal MHD, a new representation—an analog of t
Weber transformation—is found. This representation c
tains the whole vector Lagrangian invariant. In the case
ideal hydrodynamics, this invariant provides conservation
the Cauchy invariant and, as a sequence, all known con
vation laws for vorticity~for details, see the review@2#!. It is
important that all these conservation laws can be expres
in terms of observable variables. Unlike the Euler equati
these vector Lagrangian invariants for the MHD case can
be expressed in terms of density, velocity, and magn
field. It is necessary to tell that the analog of the Web
transformation for MHD includes the change of variables~9!
as a partial case. The presence of these Lagrangian invar
in the transform provides topologically nontrivial MHD
flows.

The Weber transform and its analog for MHD play a k
role in constructing the vortex line~or magnetic line! repre-
sentation. This representation is based on the propert
frozenness. Therefore, by means of such a transform the
canonical Poisson brackets become nondegenerated in
variables and, as a result, a variational principle may be
mulated. Another peculiarity of this representation is its
cality, establishing the correspondence between vortex~or
magnetic! line and vorticity ~or magnetic field!. This is a
specific mapping, mixed Lagrangian-Eulerian, for which t
Jacobian of the mapping cannot be equal to unity for inco
pressible fluids as it is for pure Lagrangian description.

II. GENERAL REMARKS

We start our consideration from some well known fac
namely, the Lagrangian description of ideal hydrodynam

In the Eulerian description for barotropic fluids@pressure
depends on density only:p5p(r)#, we have coupled
equations—continuity equation for densityr and the Euler
equation for velocityv:

r t1div~rv!50, ~10!

vt1~v•“ !v52“w~r!, dw~r!5dp/r. ~11!
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PRE 61 833HAMILTONIAN DYNAMICS OF VORTEX AND MAGNETIC . . .
In the Lagrangian description, each fluid particle has its o
label. This is a three-dimensional vectora, so that the par-
ticle position at timet is given by the function

x5x~a,t !. ~12!

Usually the initial position of a particle serves as the L
grangian marker:a5x(a,0).

In the Lagrangian description, the Euler equation~11! is
nothing more than the Newton equation:

ẍ52“w.

In this equation the second derivative with respect to ti
t is taken for fixeda, but the right-hand side of the equatio
is a function of t and x. Excluding from the latter thex
dependence, the Euler equation takes the form

ẍi

]xi

]ak
52

]w~r!

]ak
, ~13!

where now all quantities are functions oft anda.
In the Lagrangian description, the continuity equati

~10! is easily integrated and the density is given through
Jacobian of the mapping~12! J5det(]xi /]ak),

r5r0~a!/J. ~14!

Now let us introduce a new vector,

uk5
]xi

]ak
v i , ~15!

which has the meaning of velocity in a new curvilinear sy
tem of coordinates. Alternatively, one may say that this f
mula defines the transformation law for velocity comp
nents. It is worth noting that Eq.~15! gives the
transformation for the velocityv as acovector.

A straightforward calculation gives that the vectoru sat-
isfies the equation

duk

dt
5

]

]ak
S v2

2
2wD . ~16!

In this equation the right-hand side represents the grad
relative toa and therefore the ‘‘transverse’’ part of the vect
u will be conserved in time. And this gives the Cauchy i
variant @18#,

d

dt
curlau50, or curlau5I . ~17!

If Lagrangian markersa are initial positions of fluid par-
ticles, then the Cauchy invariant coincides with the init
vorticity: I5V0(a). This invariant is expressed through th
instantaneous value ofV(x,t) by the relation

V0~a!5J•@V~x,t !“#a~x,t !, ~18!

wherea5a(x,t) is the inverse mapping to Eq.~12!. Follow-
ing from Eq.~18!, the relation forB5V/r,
n

-

e

e

-
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-
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l

B0i~a!5
]ai

]xk
Bk~x,t !,

shows that, unlike velocity,B transforms as a vector.
By integrating Eq.~16! over time t, we arrive at the so-

called Weber transformation~see, e.g.,@3#!:

u~a,t !5u0~a!1“aF, ~19!

where the potentialF obeys the Bernoulli equation:

dF

dt
5

v2

2
2w~r! ~20!

with the initial conditionFu t5050. For such a choice ofF a
new functionu0(a) is connected with the ‘‘transverse’’ par
of u by the evident relation

curlau0~a!5I .

The Cauchy invariantI characterizes how the vorticity i
frozen into the fluid. It can be obtained in the standard w
by considering two equations—the equation for the quan
B5V/r,

dB

dt
5~B•“ !v, ~21!

and the equation for the vectordx5x(a1da)2x(a) be-
tween two adjacent fluid particles,

ddx

dt
5~dx•“ !v. ~22!

The comparison of these two equations shows that if
tially the vectorsdx are parallel to the vectorB, then they
will be parallel to each other for all time. This is merely th
statement that vorticity is frozen into the fluid. Each flu
particle always remains at its own vortex line. The combin
tion of Eqs.~21! and ~22! leads to the Cauchy invariant. T
establish this fact, it is enough to write down the equation
the Jacoby matrixJi j 5]xi /]aj , which directly follows from
Eq. ~22!:

d

dt

]ai

]xk
52

]ai

]xj

]v j

]xk
.

This equation, in combination with Eq.~21!, gives conserva-
tion of the Cauchy invariant~17!.

If now one comes back to the velocity fieldv, then by use
of Eqs.~15! and ~19! it is possible to obtain that

v5u0k“ak1“F, ~23!

where the gradient is taken with respect tox. Here the equa-
tion for the potentialF has the standard form of the Be
noulli equation:

Ft1~v•“ !F2
v2

2
1w~r!50.

It is interesting to note that relations~17!, as equations for
determination ofx(a,t), unlike Eqs.~16!, are of first order
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834 PRE 61E. A. KUZNETSOV AND V. P. RUBAN
with respect to the time derivative. This fact is also reflec
in the expression for the velocity~23!, which can be consid-
ered as a result of the partial integration of the equation
motion ~16!. Of course, the velocity field given by Eq.~23!
contains two unknown functions: one is the vectora(x,t) and
another is the potentialF. For incompressible fluids the lat
ter is determined from the condition divv50. In this case
the Bernoulli equation determines the pressure.

Another important point concerning the Cauchi invaria
is that it follows from the invariance of the variation
principle—the action is unchanged under the relabel
transformation~for details, see the reviews@8,2#!. Passing
from the Lagrangian to the Hamiltonian in this descripti
we have no problems with the Poisson bracket. It is given
the standard way and does not contain any degene
against the noncanonical Poisson brackets~3! and ~8!. One
of the main purposes of this paper is to construct a n
description of the Euler equation~as well as ideal MHD!
which, on the one hand, would allow us to retain the Euler
description, as maximally as possible, but, on the other ha
would include from the very beginning the frozenness c
nected with the relabeling symmetry.

As for MHD, this system has a common feature with t
Euler equation: it also possesses the frozenness property
equation forh/r coincides with Eq.~21! and therefore the
dynamics of magnetic lines is very similar to that for vort
lines of the Euler equation. However, this analogy canno
continued so far because the equation of motion for velo
differs from the Euler equation by the presence of ponde
motive force. This difference remains also for the inco
pressible case.

III. VORTEX LINE REPRESENTATION

Consider the Hamiltonian dynamics of the divergen
free vector fieldV(r ,t), given by the Poisson bracket~3!
with some HamiltonianH:

]V

]t
5curlFcurl

dH
dV

3VG . ~24!

Notice that substitution of Eq.~4! into Eq. ~24! yields the
Euler equation~1!.

As we have said, the bracket~3! is degenerate, as a resu
of which it is impossible to formulate the variational prin
ciple on the entire spaceS of solenoidal vector fields. It is
known @2# that Casimirsf, annulling Poisson brackets, dis
tinguish invariant manifoldsMf ~symplectic leaves! in S on
each of which it is possible to introduce standard Ham
tonian mechanics and accordingly to write down a var
tional principle. We shall show that solution of this proble
for Eq. ~24! is possible on the basis of the property of fr
zenness of the fieldV(r ,t), which allows us to resolve al
the constraints, stipulated by the Casimirs, and gives the
essary formulation of the variational principle.

To each HamiltonianH—functional ofV(r ,t)—we asso-
ciate the velocity field

ṽ~r ,t !5curl
dH
dV

. ~25!
d
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However, one should note that the generalized veloc
v(r ,t) can be defined up to the addition of the vector para
to V:

v5 ṽ1aV. ~26!

The substitutionṽ→v in no way changes Eq.~24! for V.
Hence, it becomes clear that instead of the transformatiox
5x(a,t) of the initial positions of fluid particlesx(a,0)5a
by the velocity fieldṽ(r ,t) through the solution of the equa
tion

ẋ5 ṽ~x,t !, ~27!

some other transformation can be used. The possible tr
formations are defined by the generalized velocityv ~26! and
correspond to the various choices of thea function. There-
fore, using a full Lagrangian description for the systems~24!
becomes ineffective.

Now we introduce the following general expression f
V(r ), which is gauge invariant and fixes all topologic
properties of the system that are determined by the in
field V0(a) @19#:

V~r ,t !5E d„r2R~a,t !…@V0~a!•“a#R~a,t !da. ~28!

Here now

r5R~a,t ! ~29!

does not satisfy Eq.~27! any more and, consequently, th
mapping JacobianJ5detuu]R/]auu is not assumed to equal 1
as it was for the full Lagrangian description of incompres
ible fluids.

It is easy to check that from the condition@“aV0(a)#
50 it follows that divergence of Eq.~28! is identically equal
to zero.

The gauge transformation

R~a!→R„ãV0
~a!… ~30!

leaves this integral unchanged ifãV0
arises froma by means

of arbitrary nonuniform translations along the field line
V0(a). Therefore, the invariant manifoldMV0

of the space

S, on which the variational principle holds, is obtained fro
the spaceR: a→R of arbitrary continuous one-to-one thre
dimensional mappings identifyingR elements that are ob
tained from one another with the help of the gauge trans
mation ~30! with a fixed solenoidal fieldV0(a).

It is important also thatV0(a) can be expressed explicitl
in terms of the instantaneous value of the vorticity and
mappinga5a(r ,t), inverse to Eq.~29!. By integrating over
the variablesa in the relation~28!,

V~R!5
†V0~a!•“a‡R~a!

detuu]R/]auu
, ~31!

whereV0(a) can be represented in the form

V0~a!5detuu]R/]auu@V~r !•“#a.
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PRE 61 835HAMILTONIAN DYNAMICS OF VORTEX AND MAGNETIC . . .
This formula is merely the Cauchy invariant~17!. We note
that according to Eq.~31! the vector

b~a,t !5@V0~a!•“a#R~a,t ! ~32!

is tangent toV(R). It is natural to introduce parameters as
an arc length of the initial vortex linesV0(a) so that

b5V0~n!
]R

]s
.

In this expressionV0 depends on the transverse parameten
labeling each vortex line. In accordance with this, the rep
sentation~28! can be written in the form

V~r ,t !5E V0~n!d2nE d„r2R~s,n,t !…
]R

]s
ds, ~33!

from which the meaning of the new variables becom
clearer: To each vortex line with indexn there is associated
the curver5R(s,n,t), and the integral~33! itself is a sum
over vortex lines. We notice that the parametrization by
troduction ofs andn is local. Globally, therefore, the repre
sentation~33! can be used only for distributions with close
vortex lines.

To get the equation of motion forR(a,t), the representa
tion ~28! must be substituted in the Euler equation~24!. Us-
ing the formula

Vt~r ,t !5curlrE d„r2R~a,t !…@Rt~a,t !3b~a,t !#da,

which follows from Eq.~28!, one can obtain

curlrS b~a,t !3@Rt~a,t !2v~R,t !#

deti]R/]ai D50.

This equation can be solved by setting the expression
der the curl operator equal identically to zero:

@b3Rt~a,t !#5@b3v~R,t !# ~34!

or, in terms of coordinatesn ands,

@Rs3Rt~n,s,t !#5@Rs3v~R,t !#.

With this choice there remains the freedom both to cha
the parameters and relabel the transverse coordinatesn. No-
tice that, as it follows from Eqs.~III ! and~31!, a motion of a
point on the manifoldMV0

is determined only by the com

ponent of the generalized velocity transverse toV(r ).
The obtained equation Eq.~III ! is the equation of motion

for vortex lines. In accordance with Eq.~III !, the evolution of
each vectorR is principally transverse to the vortex line. Th
longitudinal component of velocity has no effect on the li
dynamics.

The description of vortex lines with the help of Eqs.~33!
and~III ! is a mixed Lagrangian-Eulerian one: The parame
n has a clear Lagrangian origin whereas the coordinas
remains Eulerian.
-

s

-

n-

e

r

IV. VARIATIONAL PRINCIPLE

The key observation for formulation of the variation
principle is that the following general equality holds fo
functionals that depend only onV:

Fb3curlS dF

dV~R! D G5
dF

dR~a!
uV0

. ~35!

For this reason, the right-hand side of~III ! equals the varia-
tional derivativedH/dR:

@V0~a!•“a#R~a!3Rt~a!5
dH$V$R%%

dR~a!
uV0

. ~36!

It is not difficult to check now that, as described by Eq.~36!,
the dynamics of vortex lines is equivalent to the requirem
of an extremum of the action (dS50) with the Lagrangian
@19#,

L5
1

3E $@Rt~a!3R~a!#•@V0~a!•“a#R~a!%da2H$V$R%%.

~37!

Thus, we have introduced a variational principle for Ham
tonian dynamics of divergence-free vector field topologica
equivalent toV0(a). The Lagrangian~37! has a remaining
symmetry connected with relabeling of Lagrangian mark
of vortex lines. This symmetry leads to conservation of v
umes inside all closed vortex surfaces. This property
plains why the Jacobian of the mappingr5R(a,t) cannot be
equal identically to unity.

Let us discuss some properties of the equations of mo
~36!, which are associated with the excess parametrizatio
elements ofMV0

by objects fromR. We want to pay atten-
tion to the fact that from Eq.~35! there follows the property
that the vectorsb anddF/dR(a) are orthogonal for all func-
tionals defined onMV0

. In other words, the variational de
rivative of the gauge-invariant functionals should be und
stood@specifically, in Eq.~35!# as

P̂
dF

dR~a!
,

whereP̂i j 5d i j 2t it j is a projector andt5b/ubu a unit vec-
tor tangent to the vortex line. Using this property as well
the transformation formula~35!, it is possible, by a direct
calculation of the bracket~3!, to obtain the Poisson bracke
~between two gauge-invariant functionals! expressed in
terms of vortex lines:

$F,G%5E da

ubu2
S bF P̂

dF

dR~a!
3 P̂

dG

dR~a!G D . ~38!

The new bracket~38! does not contain variational deriva
tives with respect toV0(a). Therefore, with respect to th
initial bracket, the Cauchy invariantV0(a) is a Casimir fix-
ing the invariant manifoldsMV0

on which it is possible to
introduce the variational principle~37!.

In the case of the hydrodynamics of a superfluid liquid
Lagrangian of the form~37! was apparently first used b
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836 PRE 61E. A. KUZNETSOV AND V. P. RUBAN
Rasetti and Regge@20# to derive an equation of motion, iden
tical to Eq.~III !, but for a separate vortex filament. Later, o
the base of the results@20#, Volovik and Dotsenko, Jr.@21#
obtained the Poisson bracket between the coordinates o
vortices and the velocity components for a continuous dis
bution of vortices. The expression for these brackets can
extracted without difficulty from the general form for th
Poisson brackets~38!. However, the noncanonical Poisso
brackets obtained in@20,21# must be used with care. The
direct application gives for the equation of motion of t
coordinate of a vortex filament an answer that is not gau
invariant. For a general time-dependent variation, additio
terms describing flow along a vortex appear in the equa
of motion. For this reason, the dynamics of curves~including
vortex lines! is in principle ‘‘transverse’’ with respect to th
curve itself.

Sometimes it is possible to parametrize lines by one of
Cartesian coordinates~for instance, thez coordinate!,

R~n,z,t !5„X~n,z,t !,Y~n,z,t !,z….

For this case, functionsX andY are canonically conjugate
quantities. The Lagrangian~37! in the case of ideal incom
pressible hydrodynamics takes the form

L5E d2ndzẊY

2
1

8pE E ~11X18X281Y18Y28!dz1dz2d2n1d2n2

A~z12z2!21~X12X2!21~Y12Y2!2
.

~39!

Here the double integral is the Hamiltonian~4!, X18
5]X(n1 ,z1 ,t)/]z1, and so on.

V. INTEGRABLE HYDRODYNAMICS

Now we present an example of the equations of the
drodynamic type~24!, for which transition to the representa
tion of vortex lines permits us to establish the fact of th
integrability @19#.

First let us consider the Hamiltonian

H$V~r !%5E uVudr ~40!

and the corresponding equation of frozenness~24! with the
generalized velocity

v5curl~V/V!.

We assume that vortex lines are closed and apply the re
sentation~33!. Then due to Eq.~31!, the Hamiltonian in
terms of vortex lines is decomposed as a sum of Hami
nians of vortex lines:

H$R%5E uV0~n!ud2nE U]R

]sUds. ~41!

This integral overs is the total length of the vortex line with
index n. According to Eq.~36!, with respect to these vari
he
i-
be

e-
al
n

e

-

r

re-

-

ables the equation of motion for the vectorR(n,s) is local; it
does not contain terms describing interaction with other v
tices:

h@Rs3Rt~n,s,t !#52ts[@t3~t3ts!#. ~42!

Here h5sgn(V0),t5Rs /uRsu is the unit vector tangent to
the vortex line.

This equation is invariant against changess→ s̃(s,t).
Therefore, Eq.~42! can be solved forRt up to a shift along
the vortex line—the transformation does not change the v
ticity V. This means that to findV it is enough to have one
solution of the equation

huRsuRt5@t3ts#1bRs , ~43!

which follows from Eq.~42! for some value ofb. This leads
to an equation fort as a function of filament lengthl (dl
5uRsuds) and time t ~by choosing a new valueb50),
which reduces to the integrable one-dimensional Land
Lifshits equation for a Heisenberg ferromagnet:

h
]t

]t
5Ft3

]2t

] l 2G .

This equation is gauge-equivalent to the one-dimensio
~1D! nonlinear Schro¨dinger equation@22#,

ic t1c l l 1
1

2
ucu2c50,

and, for instance, can be reduced to the NLSE by mean
the Hasimoto transformation@17,23#:

c~ l ,t !5k~ l ,t !expS i E l

x~ l̃ ,t !d l̃ D ,

wherek( l ,t) is a curvature andx( l ,t) the line torsion.
The system with the Hamiltonian~40! has direct relation

to hydrodynamics. As known~see the paper@17#, and refer-
ences therein!, the local approximation for the thin vorte
filament ~under assumption of smallness of the filame
width to the characteristic longitudinal scale! leads to the
Hamiltonian ~41! but only for one separate line. Respe
tively, Eq. ~24! with the Hamiltonian~40! can be used for a
description of motion of several vortex filaments, who
thickness is small compared with a distance between th
In this case the~nonlinear! dynamics of each filament is in
dependent of the behavior of its neighbors. In the framew
of this model, the appearance of singularities~intersection of
vortices! is of an inertial character very similar to the wav
breaking in gas dynamics. Of course, this approximat
does not work if the distances between filaments are com
rable with filament thickness.

It should be noted also that for the given approximatio
the Hamiltonian of a vortex filament is proportional to i
length. From its conservation, it follows that this model
inadequate for modeling the behavior of vortex filaments
turbulent flows where usually the process of vortex filam
stretching takes place. It is desirable to have a better mo
free from this drawback. A new model must necessarily
scribe nonlocal effects.
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In addition, we would like to say that the list of Eq.~24!
which can be integrated with the help of representation~33!
is not exhausted by Eq.~40!. So, the system with the Hamil
tonian

H2$V~r !%5E uVuxdr ~44!

is gauge equivalent to the modified KdV equation

c t1c l l l 1
3

2
ucu2c l50,

the second one after NLSE in the hierarchy generated by
Zakharov-Shabat operator. Really the infinite set of Ham
toniansHn$V% exists, so that eachHn corresponds to the
integrable equation of ordern12 from this hierarchy:

H35E uVu
k2

2
dr , H45E uVu

xk2

2
dr ,

H55E uVuS k821x2k2

2
2

k4

8 Ddr , . . . .

As against the previous model~40!, some physical appli-
cation ofHn with n.1 has not yet been found.

VI. LAGRANGIAN „MATERIAL … DESCRIPTION OF MHD

Consider now how the relabeling symmetry works
ideal MHD. First, rewrite the equations of motion~5!–~7! in
the Lagrangian representation by introducing markersa for
fluid particles

x5x~a,t !, v~x,t !5 ẋ~a,t !.

In this case the continuity equation~5! and the equation for
the magnetic field~7! can be integrated. The density and t
magnetic field are expressed in terms of the Jacoby matri
means of Eq.~14! and by the equation

Bi~x,t !5
]xi

]ak
B0k~a!, ~45!

whereB5h/r. In the latter transformation the Jacoby matr
serves the evolution operator for vectorB. The vectorB, in
turn, transforms as a vector.

In terms of Lagrangian variables, the equation of mot
~6! is written as follows:

]xi

]ak
ẍi52

]w~r!

]ak
1

J

4pr0~a!
@curlh3h# i

]xi

]ak
. ~46!

With the help of relation~45! and Eq.~16!, the vectoru
given by Eq.~15! will satisfy the equation

du

dt
5“S v2

2
2wD2

1

4p
@B0~a!3curlaH#. ~47!

Here the vectorB0(a)5h0(a)/r0(a) is a Lagrangian invari-
ant andH represents the co-adjoint transformation of t
magnetic field, analogous to Eq.~15!:
he
l-

y

n

Hi~a,t !5
]xm

]ai
hm~x,t !.

Now by analogy with Eqs.~16! and ~19!, integration of Eq.
~47! over time leads to the Weber-type transformation,

u~a,t !5u0~a!1“aF1@B0~a!3curlaS̃#. ~48!

Hereu0(a) is a new Lagrangian invariant which can be ch
sen as purely transverse, namely, with divau050. This new
Lagrangian invariant cannot be expressed through the
served physical quantities such as magnetic field, veloc
and density. In spite of this fact, as it will be shown in th
next section, the vector Lagrangian invariantu0(a) has a
clear physical meaning. As for the new variablesF and S̃,
they obey the equations

dF

dt
5

v2

2
2w,

dS̃

dt
52

H

4p
1“ac.

The transformation~48! for velocity v(x,t) takes the form

v5u0k~a!“ak1“F1Fh

r
3curlSG , ~49!

where S is the vectorS̃ transformed by means of the rul
~15!,

Si~x,t !5
]ak

]xi
S̃k~a,t !.

In the Eulerian description,F satisfies the Bernoulli equatio

]F

]t
1~v•“ !F2

v2

2
1w50 ~50!

and the equation of motion forS is of the form

]S

]t
1

h

4p
2@v3curlS#1“c150. ~51!

For u050, the transformation~49! was introduced for idea
MHD in 1970 @1#. In this case the magnetic fieldh and
vector S as well asF and r are two pairs of canonically
conjugate variables. It is interesting to note that in the
nonical case the equations of motion forS andF obtained in
@1# coincide with Eqs.~50! and~51!. However, the canonica
parametrization describes only some types of flows. In p
ticular, it does not describe topologically nontrivial flows fo
which the linking number between magnetic and vortex lin
is not equal to zero. This topological characteristic is giv
by the integral*(v,h)dx. Only whenu0Þ0 does this integral
take nonzero values.

VII. FROZEN-IN MHD FIELDS

To clarify the meaning of the new Lagrangian invaria
u0(a), we recall that the MHD equations~5!–~7! can be
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obtained from a two-fluid system where electrons and i
are considered as two separate fluids interacting with e
other by means of a self-consistent electromagnetic fi
The MHD equations follow from two-fluid equations in th
low-frequency limit when characteristic frequencies are l
than the ion gyrofrequency. The latter assumes~i! neglect of
electron inertia,~ii ! smallness of electric field with respect
magnetic field, and~iii ! charge quasineutrality. We writ
down at first some intermediate system often called MH
with dispersion@24#,

curl curlA5
4pe

c
~n1v12n2v2!, ~52!

~] t1v1“ !mv15
e

c
~2At1@v13curlA# !2“

]«

]n1
, ~53!

052
e

c
~2At1@v23curlA# !2“

]«

]n2
. ~54!

In these equations,A is the vector potential so that the ma
netic field h5curlA and electric fieldE52(1/c)At . This
system is closed by two continuity equations for ion dens
n1 and electron densityn2:

n1,t1“~n1v1!50, n2,t1“~n2v2!50.

In this systemv1,2 are velocities of ion and electron fluids
respectively. The first equation of this system is a Maxw
equation for a magnetic field in a static limit. The seco
equation is the equation of motion for the ions. The next o
is the equation of motion for electrons in which we negle
the electron inertia. By means of the latter equation, one
obtain the equation of frozenness of a magnetic field into
electron fluid~this is another Maxwell equation!,

ht5curl@v23h#.

Applying the operator div to Eq.~52! gives, taking accoun
of the continuity equations, the quasineutrality conditio
n15n25n. Next, by eliminatingn2 andv2 we have finally
the equations of MHD with dispersion in its standard fo
@24#:

~] t1v•“ !mv52“w~n!1
1

4pn
@curlh3h#,

nt1“•~nv!50, ~55!

ht5curlF S v2
c

4pen
curlhD3hG ,

wherev15v, and «(n,n) is the internal energy density s
thatw(n)5]/]n@«(n,n)# is the enthalpy for an ion-electro
pair. Classical MHD follows from this system in the lim
when the last termc/(4pen)curlh in Eq. ~55! can be ne-
glected with respect tov. At the same time, the vector po
tential A must be larger than the characteristic values
(mc/e)v in order to provide the same order of magnitude
inertia and magnetic terms in Eq.~53!. Both requirements are
s
ch
d.

s

y

ll

e
t
n
e

:

f
r

satisfied ife5c/(vpiL)!1, whereL is a characteristic scale
of magnetic field variation andvpi5A4pne2/m is the ion
plasma frequency.

Unlike the MHD equations~5!–~7!, the given system has
two frozen-in fields. These are the fieldV252(e/mc)h fro-
zen into the electron fluid and the field

V15curlS v1
e

mc
AD5V2V2

frozen into the ion component:

V1t5curl@v3V1#,
~56!

V2t5curl@v23V2#,

where

v25v2
c

4pen
curlh.

Hence for both fields one can construct two Cauchy inva
ants by the same rule~17! as for ideal hydrodynamics:

V10~a…5J1•@V1~x,t !•“#a~x,t !, ~57!

wherea(x,t) is the inverse mapping tox5x1(a,t), which is
the solution of the equationẋ15v(x1 ,t),

V20~a2!5J2•@V2~x,t !•“#a2~x,t ! ~58!

with a2(x,t) inverse to the mappingx5x2(a2 ,t) and ẋ2
5v2(x2 ,t).

In order to get the corresponding Weber transformat
for MHD as a limit of the system, it is necessary to introdu
two momenta for ion and electron fluids:

p15mv1
e

c
A,

p252
e

c
A.

As e→0, in these expressions the terms containing the v
tor potential are much greater than the sum ofp1 andp2. For
each momentum in the Lagrangian representation one
get equations, analogous to Eqs.~13! and ~16!,

]x1k

]ai
ṗ1k52p1k

]vk

]ai
1

]

]ai
F2

]«

]n1
1

e

c
~v•A!1m

v2

2 G ,
]x2k

]a2i
ṗ2k52p2k

]v2k

]a2i
1

]

]a2i
F2

]«

]n2
2

e

c
~v2•A!G .

By introducing the vectorp̃ for each type of fluid, by the
same rule as Eq.~15!,

p̃i5
]xk

]ai
pk ,
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after integration over time of the equations of motion forp̃
one can arrive at two Weber transformations for each m
mentum,

p15 p̃1i~a!“ai1“F1 , ~59!

p25 p̃2i~a2!“a2i1“F2 . ~60!

In the limit e→0 the markersa and a2 can be set approxi
mately equal. This means that their difference will be sm

a22a5d;e.

Besides, due to charge quasineutrality, Jacobians with
spect toa and a2 must be equal to each other@here we set
n10(a)5n20(a2)51 without loss of generality#:

detuu]a/]xuu5detuu]a2 /]xuu.

As a result, the infinitesimal vectord(a,t) relative to the
argumenta must be divergence-free:]di /]ai50.

Then, summing Eqs.~59! and ~60! and considering the
limit e→0, we obtain the Weber-type transformation co
ciding with Eq.~48!:

u~a,t !5u0~a!1“aF1@B0~a!3curlaS̃#, ~61!

where vectorsu0(a) and S̃ are expressed through the L
grangian invariantsp̃1(a) and p̃2(a) and displacementd be-
tween electron and ion by means of the relations@25#

u~a,t !5
1

m
@ p̃1~a!1p̃2~a!#,

d52
mc

e
curlaS̃.

It is important that in Eq.~61! all terms are of the same orde
of magnitude~zero order relative toe). Taking the curl of
vectorsp̃1(a) and p̃2(a2) yields the corresponding Cauch
invariants~57! and ~58!.

VIII. RELABELING SYMMETRY IN MHD

Now let us show how the existence of new Lagrang
invariants corresponds to the relabeling symmetry.

Consider the MHD Lagrangian@2#,

L* 5E S r
v2

2
2r«̃~r!2

h2

8p Ddr ,

where we neglect the contribution from the electric field
comparison with that from the magnetic field. Here«̃(r) is
the specific internal energy.

In terms of the mappingx(a,t), the LagrangianL* is
rewritten as follows@26#:

L* 5E ẋ2

2
da2E «̃„Jx

21~a!…da

2
1

8pE S @h0~a!•“a#x

Jx~a! D 2

Jx~a!da. ~62!
-

l:

e-

-

n

Here the density and the magnetic field are expressed
means of the relations

r51/Jx , h5@h0~a!•“a#x/Jx

and

Jx~a,t !5detuu]x/]auu

is the Jacobian of the mappingx5x(a,t) and the initial den-
sity is set equal to 1. Notice that the variation of the acti
given by the Lagrangian~62! with respect tox(a) gives the
equation of motion~46! @or the equivalent equation for vec
tor u ~47!#.

Due to the presence of the magnetic field in the Lagra
ian ~62!, the group of relabeling symmetry, in compariso
with ideal hydrodynamics, is restricted. Although the fir
two terms in Eq.~62! are invariant with respect to all incom
pressible changesa→a(c) with Juc51, the invariance of the
last term, however, restricts the possible deformations to
class satisfying the condition

@h0~a!•“a#c5h0~c!.

For infinitesimal transformations

a→a1tg~a!,

wheret is a ~small! group parameter, the vectorg must thus
satisfy two conditions:

divag50, curla@g3h0#50. ~63!

The first condition is the same as for ideal hydrodynami
the second provides magnetic-field frozenness.

The conservation laws generated by this symmetry, in
cordance with Noethers theorem, can be obtained by
standard scheme from the Lagrangian~62!. They are written
through the infinitesimal deformationg(a) as an integral
over a:

I 5E „u,g~a!…da, ~64!

where the vectoru is given by Eq.~15!. Settingg5h0 from
this ~infinite! family of integrals, one gets the simplest on

I ch5E ~v,h!dr ,

which represents a cross-helicity characterizing the degre
mutual linking of vortex and magnetic lines.

The conservation laws~64! are compatible with the
Weber-type transformation. Really, substituting Eq.~48! into
Eq. ~64! and using Eq.~63!, one obtains the relation

E „u0~a!,g~a!…da.

Hence conservation of Eq.~64! also follows. Note that if one
did not supposeu0 to be independent oft, then, due to arbi-
trariness ofg(a), this could be considered as an independ
verification of the conservation of the solenoidal fieldu0:
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d

dt
u050.

The MHD equations expressed in terms of Lagrang
variables become Hamiltonian ones, as in usual mecha
for momentump5 ẋ and coordinatex. These variables as
sign the canonical Poisson structure.

In the Eulerian representation, the MHD equations can
written also in the Hamiltonian form@16#,

r t5$r,H%, vt5$v,H%, ht5$h,H%,

where the noncanonical Poisson bracket$F,G% is given by
the expression~8!. As for ideal hydrodynamics, this Poisso
bracket is degenerate. For example, the cross-helicityI ch
serves a Casimir for the bracket~8!. The reason for the Pois
son bracket degeneracy is the same as for one-fl
hydrodynamics—it is connected with a relabeling symme
of Lagrangian markers.

For the incompressible case, the bracket~8! reduces to
one involving only the magnetic fieldh and the vorticityV:

$F,G%5E S VFcurl
dF

dV
3curl

dG

dVG Ddr

1E H hS Fcurl
dF

dh
3curl

dG

dVG
2Fcurl

dG

dh
3curl

dF

dVG D J dr . ~65!

This Poisson bracket is also degenerate.

IX. VARIATIONAL PRINCIPLE FOR INCOMPRESSIBLE
MHD

By analogy with incompressible hydrodynamics, one c
introduce the magnetic line representation:

h~r ,t !5E d„r2R~a,t !…@h0~a!•“a#R~a,t !da.

If initially R(a,0)5a, thenh0(a) is the initial magnetic field.
There exist some curvilinear coordinatesn1(a),n2(a),s(a)
such thatr5R(n1 ,n2 ,s,t) determines the position of th
magnetic line if n1 and n2 are fixed. In this casen
5(n1 ,n2) can be considered as the marker of this line.

For vorticity, the analog of the vortex line parametrizati
~28! can be obtained in the regular way as a limite→0 of the
corresponding representations for the two-fluid syste
Simple calculations give@25#

V~r ,t !5E dad„r2R~a,t !…@v~a,t !•“a#R~a,t !,

where we introduce the notation

v~a,t !5V0~a!1curla@h0~a!3U~a,t !#. ~66!

The latter expression is related to the Weber-type trans
mation~48! but for vorticity: V0(a) represents a contributio
from the Lagrangian invariantu0(a) in Eq. ~48!,
n
s,

e

id
y

n

.

r-

V0~a!5curlu0~a!,

and, respectively, the last term in Eq.~66! appears from the
third term in Eq. ~48!. The field U(a,t), however, is not
assumed to be solenoidal, while the Jacobian of mappinr
5R(a,t) is not equal identically to unity. As to conservatio
of all volumes inside closed magnetic surfaces, it is not a
of constraints but it follows from the equations of motion f
R andU.

From the corresponding limit of the two-fluid system
incompressible MHD, it is possible also to get the express
for the Lagrangian,

L5E $@~h0•“a!R3~U•“a!R#Rt%da

11/3E $@Rt3R#~V0•“a!R%da2H$V$R,U%,h$R%%.

~67!

The Hamiltonian of the incompressible MHDHMHD in terms
of U(a,t) andR(a,t) takes the form

HMHD5
1

8pE $@h0~a!•“a#R~a!%2

detuu]R/]auu
da

1
1

8pE E $@~v~a1!•“1#R~a1!@v~a2!•“2#R~a2!%

uR~a1!2R~a2!u

3da1da2 .

Equations of motion forU andR follow from the varia-
tional principle for the action with the Lagrangian~67!:

@~h0•“a!R3Rt#•~]R/]al!52dH/dUl ,

$@v~a,t !•“a#R3Rt%2@~h0•“a!R3~Ut•“a!R#5dH/dR.

These equations can be obtained also directly from the M
system~5!–~7! by the same scheme as was used for id
hydrodynamics.

Thus, we have a variational principle for the MHD-typ
equations for two solenoidal vector fields. Their topologic
properties are fixed byV0(a) and h0(a). These quantities
represent Casimirs for the initial Poisson bracket~65!. It is
worth noting that the obtained equations of motion are ga
invariant. The Lagrangian~67! has a remaining symmetr
connected with relabeling of Lagrangian markers of ma
netic lines in a two-dimensional manifold which can alwa
be specified locally. Coordinates of this manifold enumer
magnetic lines. This symmetry leads to conservation of v
ume of magnetic tubes including infinitesimally small ma
netic tubes, namely, magnetic lines. This property is ana
gous to conservation of volumes of vortex tubes in t
system~37!. This explains why the Jacobian of the mappi
r5R(a,t), which determines magnetic-field dynamics, c
differ from unity.
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