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We study probability distributions of waves of topplings in the Bak-Tang-Wiesenfeld model on hypercubic
lattices for dimension®=2. Waves represent relaxation processes which do not contain multiple toppling
events. We investigate bulk and boundary waves by means of their correspondence to spanning trees, and by
extensive numerical simulations. While the scaling behavior of avalanches is complex and usually not gov-
erned by simple scaling laws, we show that the probability distributions for waves display clear power-law
asymptotic behavior in perfect agreement with the analytical predictions. Critical exponents are obtained for
the distributions of radius, area, and duration of bulk and boundary waves. Relations between them and fractal
dimensions of waves are derived. We confirm that the upper critical dimefsjoof the model is 4, and
calculate logarithmic corrections to the scaling behavior of wavd3=4. In addition, we present analytical
estimates for bulk avalanches in dimensi@ns 4 and simulation data for avalancheddr<3. ForD =2 they
seem not easy to interpret.

PACS numbd(s): 05.65+b, 05.40--a

[. INTRODUCTION more than once in an avalanghend for the radius and du-
ration of avalanches. But recent investigatiph8—12 show

The sandpile model was introduced by Bak, Tang, andhat the two-dimensional BTW model may be characterized
Wiesenfeld (BTW) [1] as a simple example of a slowly by a multifractal behavior where different momentsacére
driven dissipative system exhibiting self-organized criticality governed by exponents, which are not linear im and are
(SOQ. Although today many systems with SOC are known,indeed not related to each other for differamt Different
it is considered as the prototype of such models, and there i®asons for this have been proposedif,11] and in[12].
a huge literature devoted to it. Its theoretical understanding idlotice that multifractality of avalanches can be proven for
crucially related to Dhar’s discovery of its Abelian structure certain variants of the one-dimensional sandpile mo#i4).
[2], which allows exact calculation of many of its properties  Deviations from pure power laws had been seen already
[3,4]. However, a complete analytical determination of thein early simulations, but were usually interpreted as finite-
scaling behavior of avalanches is still lacking. Several apsize effects due to avalanches which touch the boundary of
proximation schemes, including a random-walk approactihe lattice. To illustrate that this is most likely not true, and
[5], diffusionlike analogy[6], renormalization group7,8],  that there is a real problem with simple scaling, we show in
and a graph theory methd®] were proposed, but led to Fig. 1 the ratioP(x,L)/P,(X,L) of the integrated distribu-
different results. In addition, computer simulations — whichtions Pg(x,L) = [;dx'P4(x’,L) for D=2 and for different
first had suggested simple scaling behavior together with
standard finite-size scalingSS — provide increasing evi- 1.3
dence that the avalanche statistics is much more complicatec
While most recent authors agree upon a breakdown of FFS
the detailed interpretation of their data is highly controversial
among different groupgl0—-13. 12

The standard FS8nsatzimplies an asymptotic form

Ps(x,L) / Pa(x.L)

Pa(a,L)~a "ap(a/L"a) (1)
11
for the distribution of the numbea of toppled sites in an
avalanchdin other words, its “area), whereL is the size of
the lattice,p(z) is a universal function, and, and v, are
critical exponents. This ansatz implies simple scaling of all ;L=
moments ofa, (a")~L7" with o,=oy+nv,. Similar An- 1
sazesshould, according to this view, hold for the number of X
topplings s (which differs froma because sites can topple [, 1. RatioPy(x,L)/P.(x,L) of the integrateds anda distri-
butions for two-dimensional sandpiles. According to the generally
accepted FSR\nsatz this should be a power law with exponent
*On leave from the Laboratory of Computing Techniques, JINR,7,— 7,~0.024-0.08 in the region where it is independent.ofThe
Dubna, 141980 Russia. dashed line is®0%
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values ofL. In these simulations, cylindrical boundary con- areaa. Our simulations show that i =2 this number
ditions were usedopen aty==L/2 and periodic atx  grows, most probably, not slower than a power law with the
=0,L), and data were collected only for avalanches startinggxponent 0.17the first conjecture of15] was 1/6, and an
aty=0. In this way we hope to have minimized boundary analytical prediction of9] is 1/4). This means that multiple
effects. Also, since we do not make separate fit®gtx,L) ~ opplings substantially change the scaling behavior of ava-
andP,(x,L), we have none of the uncertainties inherent in@nches in comparison to waves, which was indicated in
such fits. Due to Eq(1), we would expect this ratio to scale Many previous studies of the two-dimensional BTW model.
as x™ s for x<min{L"L*}~L2 According to analytical InD=3, the fraction of avglanche_s containing more than
prediction[15] and recent large-scale simulatidi®,13,1§,  Oneé wave is much_ less than in two dimensions. All accurate
the differencer,— 7 should be in the range 0.024—0.08. The Numerical estimations of the exponenf lead to7,=1.33,
behavior seen in Fig. 1 is rather different. Although theWhich coincides with the exact exponent 4/3 for the wave
curves for different largé. perfectly superimpose in a wide d|str|bufuon, which could mean that the averaged number of
range, in this range they are not straight at(a expected Waves in an avalanche =3 grows not faster than loga-
for a power lay, and their average slope in this universal fithmically. On the other hand, considering the numerical
range is much smaller. Very small differences- 7, have ~ estimation of thls.number, we cannot_exclude its slow pqu—
been seen in several simulations using small latfi¢@stg.  nomial growth with the avalanche size. Then, the scaling
But it still disagrees with our data showing a lack of scalingPehavior of avalanches could be corrected for the multiple
even for avalanches which do not reach the boundary of th€PPlings in large events, similar to the cése-2.
lattice. Most other variables show similar deviations from Finally, for D=4 the upper logarithmic bound for the
pure power laws irD =2 when scrutinized closely. averaged number of waves in an avalan2e implies that
In principle, one can expect that these deviations of scalthe distributions of avalanches obey asymptotic behavior
ing can be explained by assuming that the avalanche boundith the same exponents as for waves. _
ary advances like a pinned surface in a random medium, This paper is organized as follows. In Sec. Il we remind
Unfortunately, this interpretation seems untenable. As show#€ reader of basic definitions of the BTW model. Section I
in [19] (see alsd20]), avalanches proceed in distinsaves IS devoted to _detalled_ explanation of thg construction of
of topplings. In each wave, any site topples at most once. [¥/a@ves and their spanning tree representation. In Sec. IV we
the original version of the model, waves overlap in time, bu[derlv_e the critical exponents of wave dlstr|b.ut|ons. In Sec. V
they can be disentangled by a simple tri¢®] so that at any W€ dISCL_ISS an_alytlcal results for the dynamical exponent and
time only a single wave propagates. Therefore, if at all, thdractal dlmenspn of waves. Results of computer simulations
arguments associated with pinning effects should not applii® Presented in Sec. VI.
to boundaries of avalanches but to the propagation of wave
boundaries, and they would suggest that waves show com- Il. THE BTW MODEL
plex behavior(notice that boundaries of successive waves

are not simply related to each otfex)). cubic lattice of linear sizd. in which integer variableg;
But wavesdo behave simply, and do show simple scaling e ' ' 12€ 9 !
=0 represent local energies. One perturbs the system by

behavior. This is indeed the main message of the presentdd. el ¢ randomlv ch " ding t
paper. Our results extend analytical results derived jiftdding particies at randomly chosen Sites according to
[19,22,23 and large-scale simulations made [24,21].
While the behavior of avalanches is complex and badly un-
derstood when typical avalanches are composed of many site is called unstable if the corresponding energyex-
waves(which is the case fob=2 and, to a much less de- ceeds the critical valuel2. An unstable site relaxes, its en-

gree, forD=3), the behavior of single waves is simple and ergy is decreased byl®, and the energy of thel® nearest

We consider th&-dimensional BTW model on a hyper-

ZiHZi‘f'l. (2)

well understood. _ neighbors(nn) is increased by 1:
In particular, we show in the present paper that FSS
works for waves of topplings. Since boundary avalanches z—2z,— 2D, 3)
(i.e., avalanches which start from an unstable boundary site
always consist of single wavé49], it applies also to them. Zon—Znnt 1. (4)

Using the spanning tree representation of waves, the equiva-
lence between spanning trees and loop-erased random walkg, this way, the neighboring sites may be activated and an
and rigorous estimations for the latter, we determine theavalanche of relaxations may proceed. If a boundary site
critical exponents of their probability distributions for all di- topples, one or more particles leave the system. The ava-
mensionsD=2. We also use the wave statistics to confirmlanche of relaxations stops when all sites are stable again.
recent numerical25] and analytical[5,26] predictions for One can introduce in a natural way different kinds of
the upper critical dimension of the BTW sandpile model.subavalanches, e.g., clusters of sites toppled not less than a
The upper and lower bounds for logarithmic corrections togiven number of time$20] or waves of topplingg19]. A
scaling for four-dimensional waves are determined analytivelaxation eventan avalanche or subavalangl®character-
cally and confirmed numerically. ized by its sizes (total number of topplings areaa (number

We discuss the possibility for investigation of avalancheof distinct toppled sites durationt (number of parallel up-
distributions of the BTW model using the results obtaineddate steps until stable configuration is reaghead its ra-
for waves. One of the key characteristics in this study is thelius r (e.g., the radius of gyration or the maximal distance
average numbe¢n,,), of waves in avalanches of a given between the origin and a toppled sit&he basic hypothesis
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of Bak et al. [1] claimed that in the self-organized critical configuration of energies is recurrent, otherwise it it tran-
state the probability distributions of valussa,t,r exhibit  sient.

power-law behavior for intermediate values»of In order to obtain the spanning tree representation of re-
current configuration§l5], each burned sité is connected
Py(X) ~Xx" ", (5 by a bond to one of the sites which had “set it afire,” i.e.,
. which had caused its burning by burning itself. If there is
with xe{s,a,t,r}. more than one such site, one uses an arbitrary but definite set

As we have seen, this hypothesis might not be true fogf ryles where to place this bond. In addition, one introduces
complete avalanches, but as we shall see it does hold o[ heyy sjter] (“sink” ) and connects it to all boundary sites.
waves. Scaling relations for the exponenis 7,, 7, and7,  op, these connections, bonds are placed to those sites which

can be ot‘)‘tain_ed 'f one assumes that size, area, duration, agfli, att=1. Then we can imagine the entire process starting
radius of “typical” events scale as powers of each other, forby burning the sité] at timet=0, and generating a rooted

Instance tree with root atl. If the state is recurrent, this tree spans
the entire lattice.

Majumdar and Dhaf15] also noticed that the condition
Then the transformation law of_probabi_lity distributions Iioorn tfc());?pll‘lggmicr):gz’a’:sﬁ Iesaiisi?éls II)t/htgesﬁgn;spﬁetQ?fci?: di
P(t)dt=P,(r)dr leads to the scaling relation energyz; is larger than the number of those of its nearest

neighbors which had not toppled in the step before. There-
1 (7) fore, the burning of a recurrent state is equivalent to a top-
=1’ pling process initiated “from the boundary.” It implies that

if we add one particle to every boundary sfte/o particles
Again we should warn the reader that there is a crucial asen each corner, etg.each site will topple exactly once dur-
sumption underlying these relations, namely that conditionaing the ensuing avalanche.
distributionsP,(x|y) are narrow, and therefore E@) holds The burning algorithm gives a one-to-one correspondence
with small deviations for most events. It was proposed inbetween recurrent states and spanning trees. This allows one
[12] that this might not be justified D=2, and this is to calculate the total number of recurrent configurations, the
indeed the main source of problems of this approach. Let uenergy probabilities, and the energy-energy correlation func-
ignore this for the moment and proceed nevertheless. tions[2—-4,27.

The scaling exponentg,,. are important for the descrip- The spanning tree representation can be constructed also
tion of the extent of avalanches and their propagation. Fofor a certain class of unstable configurations appearing dur-
instance, the exponenys, indicates if multiple toppling ing an avalanche. It was shown[if9] that avalanches in the
events are relevant(,>1) or irrelevant f/;,=1). The ex- BTW model can be decomposed into so-called “waves of
ponenty,, relating the avalanche area to its radiusquals  topplings.” According to this construction, an avalanche is
the fractal dimensio®; of the avalanche. Finally, the expo- considered as a superposition of successive subavalanches.
nent vy, is usually identified with the dynamical exponemt After perturbing the system at a given lattice sit®ne al-

If Egs. (5)—(7) are applied to waves, one has of courselows it to relax, but prevents the siietemporarily from
vsa=1, buty,, andy, are non-trivial. Our main result states toppling a second time. After this first “wave” all sites are
that Eqs(5)—(7) do indeed apply to waves, together with the again stable except, possibly, the sitdf i is unstable, a
FSSAnsatzEq. (1). second wave is initiated by toppling it again. But a possible

third toppling is again delayed until this wave is finished, and

IIl. WAVES OF TOPPLINGS AND THEIR SPANNING When_ it finally occurs it trig_ggrs the third wave. '_I'he proce-

TREE REPRESENTATION q!Jre is repeated until the sitds stable. Note that_ if the site
i is on the boundary, the avalanche stops after first relaxation

Dhar proved 2] that all stable configurations can be clas-and consists of only one wave. More generally, if the dis-
sified as either transient or recurrent. The former can occutance ofi to the boundary isl, then any avalanche starting at
only during an initial transient period, but are irrelevant fori can have at mosi+1 waves.
the infinite time dynamics. He also formulated the so-called To obtain the tree representation of a configuration fol-
“burning algorithm” which, on the one hand, allows one to lowing a wave which had started at sitewe introduce an
distinguish the recurrent states among all stable configuraauxiliary BTW model on a new lattice. In this lattice we
tions, and, on the other hand, can be used for constructing @nnect to the sink]. Since the sité in the new model is
spanning tree representation of any given recurrent state. Aon the boundary, each avalanche starting at this site will
cording to this algorithm, which also proceeds in discreteconsist of a single wave. Each avalanche in the auxiliary
time steps, any siteis “burnt” at time t if its energyz; is  model corresponds indeed to a wave of some avalanche in
larger than the number of its unburnt nearest neighbors ahe original model. Applying the burning algorithm, we can
timet—1. In a stable configuration, only some of the bound-construct a spanning tree on the auxiliary lattice representing
ary sites can satisfy this condition at the first step; they carthe recurrent state of the new model. During this burning
be interpreted as origins of “fire.” Then the “fire” propa- process, some branches of the fire will be independent of site
gates if new sites become burnable at the second step. In thisbut one branch will first pass from to i and then propa-
way, we burn the sites step by step, until no more sites cagate further. It is this latter branch which coincides with the
be burned. If all sites of the lattice are burned, the initiallast wave of topplings in the original BTW model.

t~rr, (6)

Y=
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equals to the number of recurrent states the number of
spanning tree®\,)). The numbem(}i} of different waves
started at the siteand covering the sitgcorresponds to the
numberN ;) of two-rooted spanning trees having sitgjs
on one of its components. We can therefore rewrite (BY.
as

]_ ‘ = _ Gij= @ 9

| Equation(9) is another formulation of the known result of
: | ’:: """" Dhar[2] that the expected number of topplings at §itfue
d — to adding a particle at the sitds given by the Green func-
T tion Gj; .
. — : Due to uniformness of the wave statistics mentioned at
: : the end of Sec. lll, the probability that a waWi) starting
at the sitel covers the sitg¢ is equal to the fraction of waves

FIG. 2. Spanning 2-tree representation of a wave. Toppled sitebaving this property:

are marked by heavy dots. The origin of the wave is marked by a
circle. The dotted lines indicate the boundary of the system. The NE:“J’%
latter is considered as a single additional site so that all non- PljeW(i)]= N (10
toppled sites form a single connected tree. N(i)

Removing the bond betweérmnd] we obtain two trees, WhereN(}N) denotes the total number of waves starting. at
one having the root d@tand the second at the sifiR. The Combining Egs(9) and (10), we write
first tree represents the wave and the second one corresponds
to the sites not toppled in this wave. The tree with the fdot Pl e W(i)]=
contains information about the configuration of stable sites [ieW(]= N@ NW G, G(0)’
not affected by the wave. We will call this union of two trees T

which cover the entire lattice a spanning two-component tré§here we use the notatidd(r) for the Green functio; if

sites are counted as different. An example of a spanning

2-tree is shown in Fig. 2. . _ =
The rigorous proof of the above construction is given in P[] EW(I)]IJ PY™(R)pr(r)dR, (12
[19]. A similar decomposition of avalanches into “inverse '

NG NG Gy G()

(11

be noted. Since all recurrent states of the auxiliary BTW.

model have equal probability of occurrer@, all waves in such a wave. The densiyz(r) tends to 1 for largeR if
- guai p Y I waves are compact and isotropic, and is a functiom df
the original BTW model are also equally likely.

waves are fractal. Asymptotically f&>r, it varies as
IV. CRITICAL EXPONENTS AND GREEN FUNCTIONS pR(r)%p(r)Nrdf—D (13)

Using the graph representation of waves, we can express . . . _
their probability distribution by the lattice Green function. wher_e dy is _the fr_actal dlmens!on of waves aritl is the
Consider avalanches initiated by adding a particle at the s,itgud'dean dimension of the ]qthcg. N
i and spanning 2-trees with roots iaand [ representing Suppose that the probability d.|str|b.ut|.on of the wave ra-
waves of these avalanches. It was prover{1f] that the diusr has a power-law asymptotics similar to that for ava-
Green functionG;; is related to the numbe ;) of span- lanchegEq. (5)],

ning 2-trees where the sijas in the same component as w)

PM(ry~r=m, (14)
No i)
Gij N, (8)  Then, the probability distributioR™)(r' >r) scales with the
© exponent7")—1. Using Eq.(13), we get the asymptotic

whereN o, is the total number of spanning trees with the behavior of the probability on the left-hand side of Etp),
root at the site 1.

Consider avalanches initiated by adding a particle at the P[j eW(i)]wr_TSW)'*'l"'df_D_ (15)
sitei. Since every recurrent state together with the perturbed
sitei completely defines the relaxation process, the numbeThe asymptotics of the bulk Green functideee, for in-

of different possible avalanch%‘(?)) started at fixed point  stance[28]) are given by
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Inr  for D=2 V. LOOP-ERASED RANDOM WALKS, DYNAMICAL
G(N~1 20 ¢ po2n (16) EXPONENT, AND FRACTAL DIMENSION OF WAVES

In this section, we derive analytical estimates for critical

which reveals that the radius exponefi) for waves is exponents of waves using their spanning tree representation
) and equivalence between a chemical path on a spanning tree
7o =di— 1. (17 and LERW.

) , Consider an unrestricted random walk on a hypercubic
Using Eq.(7), we can derive the exponents of the wave aregagice. The LERW introduced by Lawldi30] is obtained
5 from the simple random walk by deleting all loops along the
M=2- " (18  Path. The chemical path between two sites of a tree is the
of unigue path along the tree edges connecting these sites. Ma-
jumdar[29] has shown that the chemical path on a spanning
tree is statistically equivalent to the LERW, i.e., the average
distancer between the starting point and the position after
, (19) sr:eps scales as~1" with the same exponent for both of
them.

In D=2, the exponent=4/5 is known exactly from con-
formal field theory[31]. In D=3, numerical estimates yield
p~0.616[32,33. In D=4, which is the upper critical di-
Ymension for the LERWyp=1/2 and the simple scaling law
has logarithmic corrections34]. For D>4, the scaling be-

and duration

di—2
T§W)=1+ !

respectively.

For avalanches started at a distabdeom the boundary,
we need the boundary Green functions which can be calc
lated by the method of images:

In|r +b|—In|r —b] for D=2 havior of the LERW and chemical paths is given by the
s - (20) trivial value v=1/2, as the effects of self-intersections be-
Ir=b[=°—=[r+b| for D>2, come negligible above the upper critical dimension.

. ) Returning to the BTW model, we notice that sites which
Wher_eb is the vector perpendicular to the boundary. On aNYtopple at a given step of wave propagation coincide with
“equipotential” surface G(r)=cogst characterized by a gjtes deleted at the same step of the burning process, if it is
length scale¢ and a volumea~¢~, this boundary Green  giarted at the origin of the wave. Since the burning process
function scales as generates a tree, there exists a unique path from the afot
the tree(the site where the wave is initiatetb one of the
last toppled sites; of the wave. The number of update steps
is given by the number of edges in this path. Thus, the du-
rationt of the wave is equal th the length of the chemical
path fromi to i; on the tree, and, therefore, the dynamical
exponenty,, of waves is given by=1/v.

G~b&t P, (21

If we now replace Eq(13) (which is appropriate only for
isotropic casesby its generalizatiop~ £%~°, we arrive at
the exponents for waves starting near the boundary:

Fiboundan)_ g (22 In order to find the fractal dimension of waves, we use

the proposition proved ifi26] For this we take a sité& at

1 distancer = |k—i| from i and a sitg at distanceR=|j—i|

rPounday)_ 5 _ n (23)  >r, together with some patti(i,j) connecting with j and
f I'(k,[J) connectingk with the sinkJ (see Fig. 3. Then the

d—1 density of sites at distanaefrom i, in waves of radiuR

Tgboundary): 1+ fT (24) >r starting at sita, is given by[26]
[here and in the following we use superscripd for bulk pr(r)=Pi(kO[i}), (25

waves and (boundary) for boundary waves, and we use sym-

bols without superscripts for avalanche®/e see that both wherem is the probability that'(k,[7) intersects

the bulk and boundary wave exponents are determined by tf}ﬂe pathl'(i,j), averaged over ajl all paths fromi to j, all
scaling exponentd; andz. The dynamical exponeatcan be k, and alll'(k, (7).

related to the fractal dimension of the “chemical path” on a
spanning tre¢15] which, in turn, is equivalent to the dimen-
sion of the loop-erased random walkERW) [29]. As to the
fractal dimension of waved;, it was proven for all dimen-
sions that a set of untoppled sites, which are completely sur-

rounded by toppled sites, corresponds to a forbidden subcon- )

figuration[20,17]. However, this fact does not prevent waves p(r)=lim pg(r)=<Cyr*=P. (26)
from being fractal. They still could display either nonfractal R

or fractal behavior depending on the dimensiondlityin the

next section, we will show thal; is also closely related to From Eq.(13), we can see that the fractal dimension of
properties of LERW, more precisely to the intersection probwavesd;<4 for all D=4.

ability between a LERW and a simple random walk. For D=4, the upper bound reads

Using the known estimations of the intersection probabili-
ties [34], we can obtain from Eq25) the following upper
bounds.

For D>4, we have
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FIG. 4. Finite-size scaling plot of the wave area distribution
FIG. 3. A sketch of a wave initiated at the sitand containing  P{"(a) for bulk waves inD=2. The perfect data collapse shows
the sitej. The chemical path between the two sites on the treahatd;=2 andB{")=2, as predicted analytically. The dashed lines
representing the wave B(i,j). The second patfi'(k,[J) corre-  represent power laws with exponent§”’=1. The factor I
sponds to a random walk which starts at the kisnd escapes the comes from the normalization of the distributions. The inset verifies

pathT'(i,j) until it is trapped at the sink. the scalingAnsatzEq. (1).
In(1+ a) R? with B,= r,v, [35].
PR(r)sCZT' =z (27 The functionsg,(z) should be universdi.e., they should
not depend on the type of latticeBut for large values of
while a lower bound was obtained j@6]: they do depend on the type of boundary condititsen on
all four sides or cylindrical, i.e., open in one direction and
(Inr)? periodic in the otherand on the aspect ratisquare or rect-
pR(r)Zl_C3(|n—R)l/3' (28)  angle with sidesL;#L,). We verified that the exponents

were independent of boundary conditions and aspect ratios.
We verified also that all results were unchanged if we threw
in the sand grains with nonuniform density, provided this
density was everywhere nonzero. The latter was very useful
since it allowed us to obtain much improved statistics from
either the boundary or the central region.

Sinced;=2 forD=2, one has,=d;=2 andvy,=1, and
thereforev,= vy,, [36]. The results of the preceding section,
together withv,=z=1/v grw=5/4, give

We can see thagbg(r) approaches 1 wheR—x, r fixed.
The only fractal dimension which is consistent with both
upper and lower bounds EqR7) and(28) is 4, but there are
logarithmic corrections.

For D<4, the lower bound Eq(28) becomes stronger
because of increasing intersection probabifty(k(1]ij).
Thus, we conclude that the fractal dimension of waves is

D for D<4

_ W) — 5 (W) _ >
ds 4 for D>4, (29 Pa Ta ’

(31)

which means that the upper critical dimension for waves is 4. EW):ZTEW):5/4
Therefore, we can calculate from Eqg&l7)—(19) and
(22)—(24) the exact values of all exponents for bulk and for bulk waves and
boundary waves for all dimensioi®=2, with a single ex-
ception. This exception is the exponent of the duration dis- pipeunda) o r(boundary)_ 3
tribution in D=3, for which we need the value of (32)

v erw(D = 3), which is not known exactly. B(boundary): 5 (boundary)_ g4
t t

VI. COMPARISON WITH NUMERICAL SIMULATIONS
for boundary waves.

A.D=2 The finite-size scaling plot for the area distribution

. . . (w) inD =2 i i i
In this subsection we present the results of numericala (&) Of bulk waves inD=2 is shown in Fig. 4. In the

simulations of bulk and boundary wavesOn=2. For these inset of this figure, as well as in the insets of plots for other
the standard FSS works well. For any of the observakles distributions of waves, we show the collapses according to
—a.t, andr it can be written as the Ansatzof Eq. (1). Taking 8{"’=2 andd;=2, we see a

perfect data collapse. The finite-size scalifhgsatzof the
Py (X,L)=L"Pxg (xL™ "), (30 duration distribution is plotted in Fig. 5. These data confirm
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FIG. 5. Finite-size scaling plot of the wave duration distribution  FIG. 7. Same as Fig. 5, but for boundary wave®in 2. Again
PM")(t) for bulk waves inD=2. Here, the data collapse is achieved the data collapse is obtained with the predicted valgg§""?¥)
with B =" =5/4, which confirms again Eq31). The dashed =9/4 and v{")=5/4. The dashed lines correspond #F°!"%Y
lines represent power laws with exponemﬁg): 1. Here, the nor- =9/5, as predicted theoretically.

malization factor IrL is also needed.

that waves are not fractal, and that their duration is as pre-.
dicted by the correspondence with spanning trees and Ioo%

erased random walks.

=2 are circles[28] with radius ¢ and G~ In[(b¥&+1)Y?
b/£]. In the scaling region wherg(¢) =1, we have there-
re P")(a|b) = — (da/d&) “*dG/dé&, which gives

As was mentioned above, the avalanches started at the

boundary consist of a single wave, so for this type of ava- PO (alb)~ b B b/a®? for a>mb?
lanche the distribution of avalanches coincides with that of 2" (alb) aJat+wb? |la for a<b?2.
waves. The finite-size scaling plots for the area and duration (33)

distributions for boundary waves are shown in Fig. 6 and

Fig. 7, respectively. Again all predictions are verified,

N T check this, we simulated the BTW model with cylindrical

particular we see thad;=2, i.e., also boundary waves are o nqary conditions, and collected data for waves started at

not fractal inD=2.

distanceb from the open boundary. The results are plotted in

Finally, let us consider avalanches starting at a finite diSFig_ 8. For smalla we see indeed the bulk behavior which
tance from the boundary. The crossover from the boundary,gsses over to the boundary behaviar®? for b2<a

to bulk behavior of the wave distribution should be described_ L2

by Eq. (20). More precisely, the equipotential surfacesDn

8

10 T T T T T
~ L=32,64,128,256,512

10° 10, 10° 10 10
L a
FIG. 6. Same as Fig. 4, but for boundary wave®is 2. Again
the data collapse is obtained with the predicted valag8 ")

=3 andd;=2. The dashed lines correspond#3°"¥@Y=3/2, as
predicted theoretically.

In the latter region we also see clearly the linear de-
pendence otb.

The above shows that our understanding of waves in the
2D BTW model is basically complete. In contrast, and in
spite of numerous efforts, the scaling behavioaeflanches
in the two-dimensional BTW model is still an open problem.
This is due to multiple topplings. The average number of
waves in an avalanche scales[2$

(n)~InL. (39
There are also several results known about correlations in the
sizes of successive wav§s,21,37,38. Nevertheless, even
the most basic questions such as the distribution of the
dependence afi on the area are not yet solved.

Equation(34) would be most easily explained B,(n)
were simply~ 1/n?. Present data seem to agree with this for
the largest latticesFig. 9), but actually the data are better
fitted with a power 12 than with 1h? (see inset Similar
results are obtained fgmn),, the average number of waves
in avalanches with fixea (Fig. 10. Although they seem to
scale like a power of, as assumed ifil5], a closer study
shows significant deviations which seem hard to explain as
finite-size effects.
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FIG. 8. Area distributions of waves initiated at different dis-
tancesb from the boundary for a system of size 266024. Each
curve is averaged over approximately®I@valanches. The dashed
lines correspond to the bulkr{=1) and boundary £°u"%Y)
=3/2) scaling behavior, respectively. The distributions are multi-
plied by b~*N(b),N(b)=fP"(alb)da in order to have the
curves collapsing for larga. Inset: the rescaled distributions for
b=28,16,32,64 demonstrate that the crossover from bulk to boun
ary behavior takes place at values of area of otfer

FIG. 10. Average number of wavés), as a function of the
avalanche areafor D=2 and various system sizesAlthough the
main figure looks straight at first, the inset displaying the rescaled
average shows significant deviations from the assumed pure power-
law behavior[15]. The data were collected from nondissipative
avalanches initiated at the center region of the square lattice with
open boundaries. Thus the curvature seen in the inset cannot come
OIfrom avalanches reaching the boundary.

(W) — (w)
There are several recent pap§t®,39 which try to ex- 2" V- (vlvz)or bulk - waves we now ha‘{ffa =4, 73
74/3, Bt = 1/VLERW+ 1=~ 2623, and Tt = 1+ VLERW

plain these problems by unexpected features of avalanches |
which reach the boundary. But data such as those shown iﬁl-elg- Fdor boundbarydwaves, thebcordrespondmg numbers
Figs. 1 and 10 indicate that there are already problems witR'® BY°"@V=4, rPounaaV=g/3, gL 1y oy + 2
avalanches which do not reach the boundary. ~3.623, andr{""*V=1+ 20 py~2.232. For theseB
values, the data collapses of bulkigs. 11 and 1P and
boundary(Figs. 13 and 1#waves are perfect. They confirm
also the analytical predictions for theexponents, verifying
Simulations of waves of the BTW model id=3 also in particular that the waves have fractal dimensir 3.
give good agreement with our analytical results of Secs. IV Due to the rarity of multiple topplings, avalanche distri-
butions coincide within the displayed accuracy with wave

B.D=3

10° =0 . . distributions, when plotted as in Fig. 11 and Fig. 12. In order
D=2
~ . 10
102 T~-.L[=64,128,256,512,1024 | 10 N ' '
s o 1-64,128,256
D=3
-4
10 B 108 L |
2 -
~ 10° - 5 10" ¢ 1o’ i
o’ 100 | 10" |
< —
10° i ~ =107
10° rg T
s 10
n -2 4
_10 ) | 107 107, 5 5 1
0y 10 100 10
n )
1041 0* 10° 10° 10* 10°
FIG. 9. Probability distribution of the number of wavesn an aL'S
avalanche foD=2. The dashed line corresponds to the power-law
behaviorP,(n)~n~2 as predicted ii15]. The data were collected FIG. 11. Finite-size scaling plots of the area distribution

from avalanches initiated at the center region of the square Iattic@éw)(a) for bulk avalanches irD=3. Assuming compact ava-
with cylindrical boundaries. The inset shows the same data multitanches ;=3) we get good data collapses and the resulﬁiﬁﬂj
plied by n?. There, the dashed line isn~ %%, exponent agrees with the theoretical predictidashed lines
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FIG. 12. Finite-size scaling plots of the duration distribution
PM(t) for bulk avalanches ifD=3. Using compact avalanches

tL”

FIG. 14. Finite-size scaling plot of the duration distributions for
boundary waves inrD=3. The data collapses confirm agamn

=1/v grw, and the dashed line demonstrates the agreement with

z=1/ we get good data collapses and the result
( VLERW) get g P i the predicted value for{Poundam),

exponent agrees with the theoretical predictidashed lines

(W) ~ i is to-
to show significant results for multiple topplings, we have to\Ve should haveP;"(a)da~(n),P,(a)da. Using this to

present the data differently. In Fig. 15 we plotted the averag

number of waves at fixed, (n),, against Ira. Neither using
a logarithmic scale fofn), (main figurg nor a linear scale

(inse) give perfectly straight lines. Thus the data can bet

. . ; i (w)
interpreted either as a power law with a very small exponent©" the difference between, and 7.

(N)a~a% a~0.06 (35)
or as a logarithmic growth.
In the latter case, we would of course havf’=r,

=r714. In the opposite case of a power law with exponant

~0.06, we can give crude estimates for the differences be-
tween theser exponents, using some heuristic assumptions.

The first assumption is that different waves in the same
avalanche involve essentially the same sites. If this is true,

12

ether with Eq.(35), we find 7,=4/3+ a~1.39. Since the

asic assumption here is most likely not justified, this is only
a very crudgand most likely too large, in particular since
he growth of(n),P,(a)da could be logarithmit estimate

An estimate for the difference betweey and 7 is ob-
tained as follows. An upper bound for the size of an ava-
lanche of area containingn waves iss<na. Therefore, the
assumptions~(n),a leads to the maximal difference be-

10 . .
~ 2
~ -3
L=64,128,256 S
° -
10 D=3
10° | .
S 10° | L=16,32,64,128,256,512
e 107 . 1 |
2 g0 - G > = 5 3
10 LA - 10 10 10 10 10
gg 10° a
10° L . FIG. 15. Average number of wavés), as a function of the
00 107 10"“_3 107 10° avalanche area for D=3 and various values of the system size
. al In order to minimize finite-size effects, cylindrical boundary condi-

10"
-3
al

tions with one open and two periodic directions were used and
one-half of all sand grains were thrown onto the central planes
=L/2 andy=L/2+1. They axis is logarithmic in the main plot

FIG. 13. Finite-size scaling plots of the area distribution for and linear in the inset. Neither way of plotting gives perfectly

boundary waves irD=3. The data collapses confirm agaih

straight lines in the region where that data for differentollapse.

=3, and the dashed line demonstrates the agreement with the prafthough the main figure looks more straight at first sight, a more

dicted value forr{Poundam),

careful inspection shows a slight downward curvature.
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tween the area and size exponents. Using (B we get 0.10 T
aESl/(lJra)- Then, Eq(?) giVeS (’Ts_l)Z(Ta_l)/(l‘i‘ 01) L=32,64,96,128,144 // D=4
and we can conclude that
0.08 |
¢ (7,-1)=0.02 (36)
Ta— TsS 77— (7, 1)<0.02.

1ta 0.06 |

A direct verification of such slight differences between the “«

exponents could be tried by plotting ratios of the distribu- “~
tions, as was done in Fig. 1 f@=2. We do not show any
such ratio here, since they are all very close to 1 in the regior
where the distributions should follow power laws, and the

0.04

0.02

deviations from 1 seem not to be simple powers.

C.D=4
As the dimension of the BTW model increases, multiple

toppling events in avalanches become more and more rare.

For D=4 it was shown in[26] that (n), grows not faster
than logarithmically, i.e.«=0. As we already mentioned in
the preceding subsection, this meatl¥ =r,=r,, i.e., the
scaling behavior of waves and avalanche®is 4 is char-
acterized by the same exponents and scaling functions.
At the upper critical dimensio® =4, logarithmic cor-

0.00 :
1

10 100 1000
14

10000

FIG. 16. The gyration radius of avalanches as a function of their
duration. We plot the sixth power of the average rescaled gyration
radius,[rt 1%, in a logarithmic diagram, since this should result
in a straight line according to Ed41). Such a linear regime is
indeed observeddashed line; its slope and intercept are not pre-
dicted by theory, and it increases with the system size

rections to the simple scaling are essential. The probabilitynean-squared radius of avalanches with fixed durétiare
distributions of the radius, duration, area, and the scalinghown in Fig. 16. More precisely, since we expect

relations between them are expected to have the fafin

[25])

Pr<r>~('”rr3), t ~%, . ~('Z§l,
(37)
and
ré r?
aN(Inr)"‘a’ tN(Inr)Nt' 8

respectively.
The exponents of logarithmic correctiors, X5, X;, Na,

andN; obey the scaling relatio25]
X, =Xa+N,/2,

Xr=Xt+ Nta (39)

which follow straightforwardly from Eqs(37) and (38).

Using arguments similar to those at the end of the preced-

ing subsection, we obtain an inequality for the exponents o
logarithmic corrections for waves and avalanches,

(40

xW=x,<xs.

2
¥~(In )13, (41)

we pIotted[(r}f/t]3 against Irt. Apart from very larget
when the finiteness of the lattice makes itself seen, we ob-
serve essentially a straight lingvhich is a bit fortuitous
since there are alsotléorrections which are important for
small t). At the same time, a power-law dependerﬁc&et2
~12” with »>1/2, as would be expected B.>4, seems
ruled out.

For the other exponents, ,X,,X;,N, we can only give
inequalities from the analytical results of Sec. V. The upper
bound Eq.(27) for the density of waves leads to the relation

p(r)~(Inr)=°% 6=1. (42)
Using this asymptotics and E¢lL1), we get
Inr)?
PO~ G()p(r) ~ 3) , (43)
f r

which givesx,= 6. The areaa of a wave scales in leading
order as

4

This allows us to compare below analytical estimations for L 3
: . a~ | p(r')yr'3dr' ~ , (44)
waves with numerical results for avalanches. 1 (Inr)?
It follows from Lawler’s resultd 34] discussed in Sec. V
thatN,= 1/3 exactly. But as with all logarithmic corrections, giving N,= 6. Hence, from Eq(39) we have
a numerical verification is not easy. The main reason is that .
the logarithms are never very much larger than 1, even for Xa=012=73. (45)

the largest simulations. Therefore, the next-to-leading terms In order to verify these predictions — and to verify, in the
(which are typically suppressed by powers of the same logdfirst place, that deviations from power laws with the mean-
rithms) are in general not negligible. In view of this, the field exponentsr, =3, 7,=2,7,=3 cannot be eliminated by
disagreement with recent simulatiof5] which had sug- changing these exponents — we performed extensive simu-
gestedN;~1/2 should not be taken seriously. Data for thelations. Numerical data of the size distributidh(s) are
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10° . . . . tices forD=2. We have proved analytically that waves as
12 D=4 well as boundary avalanches do exhibit critical behavior and
that their probability distributions display power-law asymp-
. totics. We have derived exact values of critical exponents of
these distributions. We have proven analytically that the up-
per critical dimension of the BTW model 3,=4, showing
that previously observed deviations from mean-field behav-
. ior at D=4 [17,4Q are due to logarithmic corrections. All
these results have been confirmed by extensive numerical
simulations. During these simulations we have also verified
that wave distributions follow the standard finite-size scaling
Ansatz The exponent of the leading logarithmic correction to
the distribution of avalanche lifetime®r, more precisely,
lifetimes of waveghas been derived exactly from the known
5 s asymptotics of loop-erased random walks. Estimations are
given for the exponents of the logarithmic corrections to the

FIG. 17. Area distributions for avalanchesin=4. In order to  Other distributions. _
render the plots more significant, first of all the dominaniepen- We therefore have now a rather complete picture of the
dence was removed by multiplying wits”2 Then, in order to  dynamics of single waves in the BTW model for all dimen-

check whether the remainirgydependence in the scaling region is sions. ForD=4 this means that we also understand ava-
compatible with logarithmic corrections as proposed in@d), we  lanche dynamics, since multiple topplings are so rare that
also divided by powers (Is) and shifted the resulting curves hori- they can be neglected. F&r=2, the latter is certainly not
zontal_ly and verf[ically in order to avoid overlaps. The best agreeyrye and our understanding of avalanche dynamics is still
ment is found withx~0.25. incomplete. FoD =3, finally, multiple topplings represent a
small but not negligible effect, and we have hope that the
problem will be solved soon.

shown in Fig. 17. Lattice sizes range frob=32 to L
=144. After multiplying withs®?, we see indeed no indica-
tion that the remaining dependence follows a clean power
law. In order to find the expected logarithmic corrections, we
multiplied these data by (I§)*s, with several trial values for
the exponenk,. Taken at face value, this would give best ACKNOWLEDGMENTS
fits with x,~0.25. In view of inequality(39) and of the
difficulties in obtaining correct logarithmic corrections men-
tioned above, we propose that indeed= 3. From the rela-
tions Eq.(39) we get therx,=N,=1 andx,=3.
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