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Chaotic behavior in noninteger-order cellular neural networks

P. Arena, L. Fortuna, and D. Porto*
Dipartimento Elettrico Elettronico e Sistemistico, Universita´ degli Studi di Catania, viale A. Doria 6, 95125 Catania, Italy

~Received 2 September 1998!

In this paper, a simple system showing chaotic behavior is introduced. It is based on the well-known concept
of cellular neural networks~CNNs!, which have already given good results in generating complex dynamics.
The peculiarity of the CNN model consists in the fact that it replaces the traditional first-order cell with a
noninteger-order one. The introduction of the fractional cell, with a suitable choice of the coupling parameters,
leads to the onset of chaos in a simple two-cell system. A theoretical approach, based on the harmonic balance
theory, has been used to investigate the existence of chaos. A circuit realization of the proposed fractional
two-cell chaotic CNN is reported and the corresponding strange attractor is also shown.

PACS number~s!: 84.35.1i, 05.45.2a, 07.50.Ek, 84.30.2r
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I. INTRODUCTION

In recent literature, increasing interest has been devote
noninteger-order systems, because of the wide variety
their application fields@1,2#. Referring in particular to
@3–17#, fractional-order systems with complex dynami
have been studied in a theoretical way. In this paper, a
tem is proposed, and then realized, based on cellular ne
networks of noninteger-order, which could be obtained as
extension of canonical cellular neural networks~CNNs! @4#
by replacing the first-order block with anm-order one (m
being a noninteger!. In particular, considering a two-cell au
tonomous CNN, it is shown that, as the orderm of each cell
reaches a particular rational value, routes to chaos are
covered. This fact further proves that chaos can be obse
in nonlinear autonomous systems whose differential eq
tions are characterized by an order derivative less than 3
therefore the orderm in each cell acts as a further bifurcatio
parameter. In Sec. II, fractional systems will be briefly ov
viewed, while in Sec. III, a model of a fractional CNN wi
be presented. In Sec. IV, chaotic phenomena in
fractional-order CNN are investigated using the harmo
balance approach@5#. In Sec. V, a circuit realization of the
proposed fractional two-cell chaotic CNN is discussed a
the corresponding strange attractor is shown.

II. OVERVIEW OF FRACTIONAL SYSTEMS

Fractional systems~or more specifically, noninteger-orde
systems! can be considered as a generalization of integ
order systems. The most common example of fractional s
tems transfer function is given by

H~s!5
1

sm
, ~1!

havingm real and which is called a ‘‘fractional integrator
and can be found in studying many physical phenom
@6,7#. The study of fractional systems may be approache
the time domain by using the following noninteger-order
tegration operator@8,9#:
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d2mh~ t !

dt2m
5F 1

G~m!
E

0

t

~ t2y!m21h~y!dyG , ~2!

whereG( ) is the factorial function. It must be noted tha
h(t) may be any function for which the integral in Eq.~2!
exists. In the frequency domain, high-order model appro
mations are used. In fact, an exact representation of a f
tional system would require an infinite number of line
time-invariant systems represented by an alternative suc
sion of poles and zeros@1#. The choice of the approximation
degree depends on the desired bandwidth, which is stri
related to the model order. However, in our analysis, the a
of which is circuit realization, we shall use the followin
block:

G~s!5
1

~11s!m
~3!

with 1,m,2. It could be considered as a noninteger-ord
integrator with a unitary negative feedback. The behavior
such a system strictly resembles that of a second-order
tem with two dominant complex-conjugate poles inz1,2
5e6 j p/m @10#. Moreover, when the orderm is rational (m
5N/D with N,D integers! the number of roots is finite~with
a maximum ofN) and therefore the dominant pole approx
mation is closer to reality. This will be useful for the circu
design in Sec. V.

III. NONINTEGER ORDER CNNs

Chua and Yang introduced the cellular neural network
1988 as a nonlinear dynamic system composed by an a
of elementary and locally interacting nonlinear subsyste
~cells! @4#. A particular two-cell autonomous CNN intro
duced in@11# is described by the following equations:

dy1

dt
52y11a11f ~y1!1a12f ~y2!,

~4!

dy2

dt
52y21a21f ~y1!1a22f ~y2!,
776 ©2000 The American Physical Society



m

ck
th
h

fo
l,

s-

y

ha
rd

t
on

r
tw
n

e
o
o

b
f
-
t

th

e,
n

b-

of
ps

er

tem

ect
ng

hat,

on

-
(

PRE 61 777CHAOTIC BEHAVIOR IN NONINTEGER-ORDER . . .
where yi is the state variable andf (yi)50.5@ uyi11u2uyi
21u# is the cell piecewise linear output function. The para
etersaik weight the influences on thei th cell state of thekth
cell output (i ,k51,2). They are commonly called feedba
cloning templates and slight changes in them may drive
CNN to very different forms of behavior. A CNN with suc
a low number of cells cannot show chaotic behaviors@11#,
since 3 is the minimum order in an autonomous system
the onset of chaos@12#. Our aim is to design a cell mode
whose order could bem instead of 1~with 1,m,2), in
order to build a two-cell chaotic fractional CNN. By choo
ing a1252a2152s ~opposite-sign templates!, a mathemati-
cal formalization of a fractional two-cell CNN is given b
the following equations:

dmy1

dtm
52y11p1f ~y1!2s f~y2!,

~5!

dmy2

dtm
52y21s f~y1!1p2f ~y2!,

in which the first-order derivatives in Eqs.~4! have been
replaced bym-order derivatives (m being noninteger!. More-
over,s.0 andp1.0, p2.0 will be assumed.

IV. CHAOS PREDICTION IN NONINTEGER-ORDER
CNNs

The topic of this section is to prove the existence of c
otic behavior in the two-cell noninteger-order CNN. Towa
this aim, the harmonic balance approach@5# is used. The
harmonic balance theory has been extensively used in
literature to detect conditions for the onset of bifurcati
phenomena in nonlinear circuits and systems@5,13–15#, and
it is quite general because it only requires that the conside
system can be, as shown in Fig. 1, decomposed into
parts: a linear part@represented by the transfer functio
G(s)# and a nonlinear one@N( )#. The basic idea is to view
chaos as a kind of ‘‘noisy limit cycle.’’ In other words, ther
must exist suitable conditions which lead to a perturbation
a limit cycle. A classical technique to predict the existence
stable limit cycles is the harmonic balance method. It is a
to detect apredicted limit cycle, subject to the existence o
suitable filtering hypotheses~i.e., that other frequencies, be
sides the fundamental one, are strongly attenuated by
low-pass characteristics of the system!. The predicted exis-
tence of chaos can be synthesized with the fulfillment of
following conditions:~i! existence of an unstable equilibrium
point y5E; ~ii ! existence of a predicted stable limit cycl
denoted byyW (t), not generated by the equilibrium point i

FIG. 1. System configuration.
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~i!; ~iii ! interaction between the limit cycle and the equili
rium point, that is,yW (t)5E for somet; ~iv! low-pass filtering
characteristics ofG(s). In order to establish the existence
chaos for noninteger-order CNNs, the following four ste
must be performed.

A. Equilibrium point analysis

In @16# it has been proven that a given noninteger-ord
system, such as Eqs.~5!, contains all the equilibrium points
of the corresponding integer-order system, i.e., the sys
having the same parameter set, butm15m251. Moreover,
from @11# direct calculations show that, by fixingp151.2
andp252 and varyings, up to five equilibria, depending on
s, can be found: one in the linear region~the origin which is
unstable!, two in partial saturation regions (Eps and 2Eps
which are unstable!, and two in saturation regions (Es and
2Es). For the corresponding noninteger-order system, dir
calculation of the five equilibrium points, obtained by setti
the derivatives in Eqs.~5! to zero, leads to the following
conditions: 2Es,2Eps,0,Eps,Es . It must be noted
that, if s.s* 50.58, every equilibrium vanishes~both in the
integer and in the noninteger-order system!, except for the
origin ~which in our case generates the limit cycle! and,
therefore, according to the conjecture in Eqs.~5!, no chaotic
behavior can be observed. Concluding, it could be said t

FIG. 2. Nyquist plot ofG(v) and21/D(u,v). The prediction
of a stable limit cycle is performed by looking at the intersecti
point.

TABLE I. Distortion indexD for different values of the param
eter m and comparison with the behavior of the systemP
5periodic, PD5period doubling, SS5single scroll, DS5double
scroll chaos!.

m D
Interaction
(u.Eps)

System
behavior

Max. positive
Lyap. exp.

1.2 0.0238 No P

1.25 0.0365 No PD

1.27 0.04 Yes SS 0.1

1.3 0.045 Yes DS 0.6

1.35 0.094 Yes SS 0.76
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for suitable parameter values, the unstable equilibria nee
in our hypothesis (y156Eps) exist.

B. Limit cycle detection

In order to establish the conditions under which a sta
limit cycle exists, the describing function of the nonline
part of the system must be introduced. Taking into acco
f s(y)5tanh(y), the smooth approximation off (y), from the
first equation in Eqs.~5!, it holds that

f s~y2!52
1

s S dm1y1

dtm1
1y12p1f s~y1!D

and, due to the invertibility off s(y), it becomes

y25 f s
21S 2

1

s S dm1y1

dtm1
1y12p1f s~y1!D D . ~6!

Another expression ofy2 can be obtained by integrating th
second equation of Eqs.~5!:

FIG. 3. Bifurcation diagram fors50.37 ~a! and the strange
attractor obtained whenm51.3 ~b!.
ed

e

nt

y25
d2m2

dt2m2
@2y21s fs~y1!1p2f s~y2!#. ~7!

Substituting Eqs.~5! into Eq. ~7! and then Eqs.~7! into the
first equation of Eqs.~5!, we get

dm1y1

dtm1
1y15p1f s~y1!2s fs

3S d2m2

dt2m2
F f s

21S 2
1

s S dm1y1

dtm1
1y1

2p1f s~y1!D D 2
p2

s

dm1y1

dtm1
2

p2

s
y1

1S s1
p1p2

s D f s~y1!G D . ~8!

From the form of Eq.~8! and taking into consideration
Fig. 1, it is derived that the first member represents the lin
subsystem with a transfer function of the form~3!, while the
second member in Eq.~8!, it represents the nonlinear sub
system. As regards the noninteger ordersm1 and m2, the
case m15m25m will be considered below. Takingy1
5u sin(vt), the describing function ofN( ) is given by

D~u,v!5
b12 ja1

u
,

where a15v/p*0
2p/vN(u,v,t)cos(vt)dt and b1

5v/p*0
2p/vN(u,v,t)sin(vt)dt.

From the analysis of Eq.~6!, it is clear that the existence
field for D(u,v) is represented by the pairsu and v for
which the argument of the functionf s

21 in Eq. ~6! lies in the
interval @21,1#. Direct calculations show thatu takes on
bounded values inside the existence field ofD(u,v), denot-
ing that, if a limit cycle does exist, it has a limited amplitud
Limit cycle detection is performed by looking for interse
tions betweenG( j v) and21/D(u,v) in the complex plane.
Figure 2 shows a graphic representation ofG( j v) ~dotted

FIG. 4. Comparison between the impulse response for a sys
of orderm51.3 ~solid line! and its approximation~dashed line! via
a time-varying second-order system~see text!.
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FIG. 5. Circuit realization of the fractional order two-cell CNN.
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line! and a family of curves ~solid line! depicting
21/D(u,v) for different values ofv. In the figure the ar-
rows indicate the increasing values ofv and u for G( j v)
and 21/D(u,v), respectively. From Fig. 2 it can be con
cluded that there are a number of intersections betw
G( j v) and the functions21/D(u,v), but only one takes
place with a matchedv. This condition is clearly observe
and takes place forG( j vI )521/D(u,vI ), with vI 50.1. In
particular, the intersection takes place foru51.07, revealing
the presence of a stable limit cycle~in agreement with the
Loeb criterion@5#! of amplitudeu and frequencyvI .

C. Interaction between the limit cycle and the equilibrium point

This interaction can take place only ifu.Eps; otherwise
no perturbation is observed in the periodic motion. Suc
condition is fulfilled, since fors50.37, direct calculations
lead to Eps51.04 and, by the considerations previous
made,u51.07.

D. Filtering characteristics

A numerical value to weight these filtering characterist
is the so-calleddistortion index@5#:

D5
iy0~ t !2y~ t !i2

iy0~ t !i2
, ~9!

wherey(t) is the distorted signal,y0(t) the undistorted one
and i i2 denotes theL2 norm. Clearly, small values ofD
n

a

s

indicate suitable low-pass dynamics in the system, thus v
fying the filtering hypotheses behind the applicability of t
harmonic balance approach.

In order for the onset of chaos to occur, as already o
lined, the stable limit cycle has to be perturbed. The mec
nism of perturbation leadsD to grow, until a bifurcation
condition is met (D5h). Beyond this value, chaos take
place. Therefore,h can be viewed as a bifurcation point fo
the parameterD, quantifying the transition between period
and chaotic motions. In this perspective the use of the h
monic balance approach to detect chaos has the s
strength as the describing function method for limit cyc
prediction. This assertion is sustained by the large numbe
applications to new as well as classical chaotic systems
ways providing quite accurate results. In the case of
noninteger-order system~5! ~with m15m25m), as the order

FIG. 6. PSPICE phase portrait for two state variables of
fractional two-cell circuit.
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780 PRE 61P. ARENA, L. FORTUNA, AND D. PORTO
m grows to 1.3,D increases from 0.02 to 0.045. The valu
0.04 can be considered as the ‘‘bifurcation’’ valueh, as it
results from the various numerical examples summarize
Table I. The values of the distortion index are quite sm
quantifying the suitable filtering hypotheses needed for
applicability of the harmonic balance approach. Moreov
the distortion index values fully agree with those obtained
@5#, where a comparison between the harmonic balance
diction and the actual behavior of Chua’s circuit was
ported, showing that suitable values ofD range in the inter-
val @0.02, 0.05# andh50.04.

Remarks.The role played played by the noninteger ord
m is fundamental. In fact, this parameter modulates the n
linear subsystemN(y1

m,y1 ,t), and consequently its describ
ing function. Therefore, under a certain threshold for
noninteger order, no intersection in the Nyquist plot tak
place, the limit cycle vanishes, and the onset of chao
prevented, as shown in the bifurcation diagrams in Fig. 3~a!.
In this way the orderm assumes the role of a bifurcatio
parameter for the system. Moreover, fors.s* no interaction
is possible because the unstable equilibrium points vanis

E. Numerical examples

Let us consider the fractional two-cell CNN model give
in @5#. According to the analysis developed in the preced
section, several simulations were performed fixingp1
51.2, p252, s50.37 and varyingm from 1.2 to 1.35. Dif-
ferent forms of behavior were detected, as shown in Tab
for different values of the noninteger orderm. The value of
D is also reported for each experiment, and the interac
between the limit cycle and the unstable equilibrium poin
checked. As outlined in the preceding section, this phen
enon takes place ifu.Eps. Analysis of Table I reveals tha
for m,1.27 only equilibria or periodic solutions can b
found. Form51.27, a chaotic trajectory is observed throu
a single scroll behavior. Increasing values ofm lead to fur-
ther chaotic motions, as proven by computation of the ma
mum positive Lyapunov exponent. In particular, form51.3
double scroll behavior occurs, as can also be seen from
3~b!, where the chaotic attractor is depicted. The orderm
51.27 therefore seems to be critical together with the co
spondingD value.

V. CIRCUIT DESIGN

The main problem in designing a fractional two-cell CN
is to realize the linear block with the transfer functio
G(s)51/(11sm). Its corresponding impulse response is

g~ t !5L21
„G~s!,t…5 (

k51

`
~21!k21tkm21

G~km!
. ~10!

As outlined in Sec. II, the transfer functionF(s)51/(1
1sm) (1,m,2) has two dominant poles ins1,25e6 j p/m.
Our aim is to represent Eq.~9! through the impulse respons
of a linear system showing two complex-conjugate poles
in
l,
e
r,
n
e-
-

r
n-

e
s
is

.

g

I,

n
s

-

i-

ig.

-

f

the types1,25s(t)6 j v(t). Therefore, we want to perform
the following approximation:

g̃~ t !5
1

v~ t !1v̇~ t !t
es(t)t sin@v~ t !t#. ~11!

A possible choice is to assumes(t)5s0 and v(t)5v0
1v0tl, with l,0, in order to haves(`)5s0 and v(`)
5v0. Functions~10! and ~11! are plotted, respectively, in
solid and in dotted lines in Fig. 4 for the rational valuem
51.3 and withl520.9. From the figure the suitability o
the approximation of functions~10! with ~11! can be appre-
ciated. Expression~11! can be considered as the capaci
voltage impulse response of an RLC series circuit charac
ized by the following time-varying capacitance:

C~ t !5
1/L

@v~ t !1v̇~ t !t#21R2/4L2
, ~12!

whereR andL are chosen such that it occursR/2L52s0. A
complete scheme of a two-cell fractional CNN is reported
Fig. 5. Each cell is composed of two main parts: the first o
implements the output nonlinearity by exploiting the natu
saturation of an operational amplifier~see SAT1 and SAT2
in Fig. 5!, while the second part~LINEAR 1 and LINEAR 2!
is devoted to realizing the noninteger dynamic through
time-varying RLC circuit. The time-varying capacitor wa
modeled using a voltage-driven voltage generator, a mu
plier, and an external voltage source@proportional toC(t) in
Eq. ~12!#, which modulates the voltage in the branch of t
constant capacitorC. The strange attractor obtained b
PSPICE simulation of the two-cell fractional CNN is show
in Fig. 6. Several experiments with a number of circuits
alized for different values ofm, p, and s were performed.
Chaotic attractors were discovered in agreement with the
rameter conditions previously derived analytically.

VI. CONCLUSIONS

In this paper it is shown that fractional order cells may
used to design chaotic cellular neural networks. A particu
cell structure of an order less than 2 has been conside
showing that in a two-cell fractional CNN, as the noninteg
order m varies, it is possible to discover a wide variety
chaotic dynamics. Conditions on the onset of chaos h
been studied in detail using the harmonic balance strate
Bifurcation diagrams for the noninteger-order CNN ha
been derived. A simple circuit realization of a two-cell ch
otic fractional CNN has been proposed using time-vary
reactive components. The results obtained reveal a
agreement between the behavior predicted by the harm
balance approach and the actual dynamics shown by the
cuit realization.
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