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Chaotic behavior in noninteger-order cellular neural networks
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In this paper, a simple system showing chaotic behavior is introduced. It is based on the well-known concept
of cellular neural network§CNNs), which have already given good results in generating complex dynamics.
The peculiarity of the CNN model consists in the fact that it replaces the traditional first-order cell with a
noninteger-order one. The introduction of the fractional cell, with a suitable choice of the coupling parameters,
leads to the onset of chaos in a simple two-cell system. A theoretical approach, based on the harmonic balance
theory, has been used to investigate the existence of chaos. A circuit realization of the proposed fractional
two-cell chaotic CNN is reported and the corresponding strange attractor is also shown.

PACS numbgs): 84.35+i, 05.45~a, 07.50.Ek, 84.36:r

I. INTRODUCTION d=™h(t)
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In recent literature, increasing interest has been devoted to dt 0
noninteger-order systems, because of the wide variety of
their application fields[1,2]. Referring in particular to whereI'( ) is the factorial function. It must be noted that
[3—17], fractional-order systems with complex dynamicsh(t) may be any function for which the integral in E®)
have been studied in a theoretical way. In this paper, a sysxists. In the frequency domain, high-order model approxi-
tem is proposed, and then realized, based on cellular neuraiations are used. In fact, an exact representation of a frac-
networks of noninteger-order, which could be obtained as ational system would require an infinite number of linear
extension of canonical cellular neural netwol&NNS) [4]  time-invariant systems represented by an alternative succes-
by replacing the first-order block with am-order one (n  sion of poles and zerd4]. The choice of the approximation
being a nonintegér In particular, considering a two-cell au- degree depends on the desired bandwidth, which is strictly
tonomous CNN, it is shown that, as the ordeof each cell related to the model order. However, in our analysis, the aim
reaches a particular rational value, routes to chaos are digf which is circuit realization, we shall use the following
covered. This fact further proves that chaos can be observedaock:
in nonlinear autonomous systems whose differential equa-
tions are characterized by an order derivative less than 3 and
therefore the ordemin each cell acts as a further bifurcation G(s)
parameter. In Sec. Il, fractional systems will be briefly over-
viewed, while in Sec. Ill, a model of a fractional CNN will
be presented. In Sec. IV, chaotic phenomena in thevith 1<m<2. It could be considered as a noninteger-order
fractional-order CNN are investigated using the harmonidntegrator with a unitary negative feedback. The behavior of
balance approacfb]. In Sec. V, a circuit realization of the such a system strictly resembles that of a second-order sys-
proposed fractional two-cell chaotic CNN is discussed andem with two dominant complex-conjugate poles p,

T (1tgm ®

the corresponding strange attractor is shown. =e=17M [10]. Moreover, when the orden is rational
=N/D with N,D integer$ the number of roots is finitewith
Il. OVERVIEW OF FRACTIONAL SYSTEMS a maximum ofN) and therefore the dominant pole approxi-

) = ) mation is closer to reality. This will be useful for the circuit
Fractional system&r more specifically, noninteger-order gesign in Sec. V.

system$ can be considered as a generalization of integer-

order systems. The most common example of fractional sys-

tems transfer function is given by IIl. NONINTEGER ORDER CNNs

Chua and Yang introduced the cellular neural network in
H(s)= i 1) 1988 as a nonlinear dynamic system composed by an array
' of elementary and locally interacting nonlinear subsystems
(celly [4]. A particular two-cell autonomous CNN intro-

havingm real and which is called a “fractional integrator” duced in[11] is described by the following equations:
and can be found in studying many physical phenomena
[6,7]. The study of fractional systems may be approached in dy,
the time domain by using the following noninteger-order in- gr - Yatanf(yd) taf(ys),
tegration operatof8,9]: @

dy,

—=—Yatanf(y) +axf(y,),
*Electronic address: mporto@dees.unict.it dt Y2 8z1f (Y1) Tazf (y2)
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wherey; is the state variable ané(y;)=0.5y;+1|—|y; O et it \

—1|] is the cell piecewise linear output function. The param- 021 tehing !
etersa;, weight the influences on th¢h cell state of thekth 0.22

088 0.90920940056098 1 1.021.041.06 1.08

cell output {,k=1,2). They are commonly called feedback ol

cloning templates and slight changes in them may drive the
CNN to very different forms of behavior. A CNN with such FIG. 2. Nyquist plot ofG(w) and —1/D(u,w). The prediction

a low number of cells cannot show chaotic behavidr], of a stable limit cycle is performed by looking at the intersection
since 3 is the minimum order in an autonomous system fopoint.

the onset of chaogl2]. Our aim is to design a cell model,

whose order could ben instead of 1(with 1<m<2), in  (i); (i) interaction between the limit cycle and the equilib-
order to build a two-cell chaotic fractional CNN. By choos- rium point, that isy(t) = E for somet; (iv) low-pass filtering
ing a;,= —ay;= —s (opposite-sign templatgsa mathemati-  characteristics of5(s). In order to establish the existence of
cal formalization of a fractional two-cell CNN is given by chaos for noninteger-order CNNs, the following four steps

the following equations: must be performed.
d™y, A. Equilibrium point analysis
—=—y1tpif(y) —sf(y,), ' ' .
d In [16] it has been proven that a given noninteger-order
(5 system, such as Eqgé), contains all the equilibrium points
dmy, of the corresponding integer-order system, i.e., the system
e —Yatsf(yl)+p2f(y2), having the same parameter set, byt=m,=1. Moreover,

from [11] direct calculations show that, by fixing;=1.2
andp,=2 and varyings, up to five equilibria, depending on
s, can be found: one in the linear regitthe origin which is
unstablg, two in partial saturation regionsE(s and — E
which are unstable and two in saturation region€&€{ and
—Eg). For the corresponding noninteger-order system, direct
IV. CHAOS PREDICTION IN NONINTEGER-ORDER calculation of the five equilibrium points, obtained by setting
CNNs the derivatives in Eqs(5) to zero, leads to the following

The topic of this section is to prove the existence of cha—Cond'.t'onS:*_ o=~ EP5<O<EPS.< ES' I must be .noted
otic behavior in the two-cell noninteger-order CNN. Toward f[hat, ifs>s .:0'58’ every equilibrium vanisheboth in the
this aim, the harmonic balance approdéj is used. The integer an_d in the noninteger-order syslewc_ept for the
harmonic balance theory has been extensively used in th igin (which in our case generates _the limit CWI&”Q’
literature to detect conditions for the onset of bifurcation! erefore, according to the conjecture in EGS, no chaotic
phenomena in nonlinear circuits and systdf43-15, and

in which the first-order derivatives in Eq$4) have been
replaced bym-order derivativesrf being noninteger More-
over,s>0 andp;>0, p,>0 will be assumed.

behavior can be observed. Concluding, it could be said that,

it is quite general because it only requires that the considered L .
system can be, as shown in Fig. 1, decomposed into two TABLE I. Dlstorthn |nde>.<A for dlfferent.values of the param-
parts: a linear par{represented by the transfer function St€f M and comparison with the behavior of the system (
G(s)] and a nonlinear ongN( )]. The basic idea is to view =periodic, PB=period doubling, SSsingle scroll, DS-double

. S BN A . scroll chaok
chaos as a kind of “noisy limit cycle.” In other words, there
must exist suitable conditions which lead to a perturbation of

Interaction System Max. positive

a limit c_yc_Ie. A classical techniqu_e to predict the existe_nce of, A (U>E, behavior Lyap. exp.
stable limit cycles is the harmonic balance method. It is able
to detect apredicted limit cycle subject to the existence of 1.2 0.0238 No P

suitable filtering hypothesdse., that other frequencies, be-

sides the fundamental one, are strongly attenuated by the?® 0.0365 No PD

low-pass characteristics of the sysiermhe predicted exis- 1.27 0.04 Yes sSS 0.1
tence of chaos can be synthesized with the fulfillment of the

following conditions:(i) existence of an unstable equilibrium 1-3 0.045 Yes DS 0.6
point y=E; (ii) existence of a predicted stable limit cycle, ; 55 0.094 Yes Ss 0.76

denoted by;?(t), not generated by the equilibrium point in




778

-3

13 132 134

m

1.26 1.28

¥2
{b)

FIG. 3. Bifurcation diagram fors=0.37 (a) and the strange
attractor obtained whem=1.3 (b).
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FIG. 4. Comparison between the impulse response for a system
of orderm= 1.3 (solid line) and its approximatioridashed lingvia
a time-varying second-order systdsee text

d—m
S dtm

Y2 [—Y2tsfs(yr)+pofs(y2)]. (7)

Substituting Eqs(5) into Eq. (7) and then Eqgs(7) into the
first equation of Eqs(5), we get

d™My,
dtm +y1=pafs(y1) —sfs
X a ™ fol et e y
dtm| ° | s\ gm 7t
o P2 dlel_pz
P1fs(y1) S g s
P1P2

+ 8

fs(yl)l ) .

S+——
S

for suitable parameter values, the unstable equilibria needed gy the form of Eq.(8) and taking into consideration

in our hypothesisy; =+ E,J exist.

B. Limit cycle detection

Fig. 1, it is derived that the first member represents the linear
subsystem with a transfer function of the fof8), while the
second member in Ed8), it represents the nonlinear sub-

In order to establish the conditions under which a stabléSystem. As regards the noninteger orders and m,, the
limit cycle exists, the describing function of the nonlinear c@se my=m,=m will be considered below. Taking/,
part of the system must be introduced. Taking into account U Sin(wt), the describing function oN( ) is given by

fs(y)=tanh(y), the smooth approximation @{y), from the
first equation in Egs(5), it holds that

d™My,
dt™

1
fs(Y2):S( +y1plfs(y1))

and, due to the invertibility of4(y), it becomes

_1(

Another expression of, can be obtained by integrating the
second equation of Eq&5):

d™y,
dtm

Y2:fsl( +yl_p1fs(Y1))>- (6)

b,—ja
D(u,w)= 1UJ =

where  a;=w/7[3™“N(u,w,t)cos@t)dt  and
= ol 72" “N(u,w,t)sin(t)dt.

From the analysis of EJ6), it is clear that the existence
field for D(u,w) is represented by the paits and w for
which the argument of the 1‘unctic11§l in Eq. (6) lies in the
interval [ —1,1]. Direct calculations show that takes on
bounded values inside the existence fielddi, w), denot-
ing that, if a limit cycle does exist, it has a limited amplitude.
Limit cycle detection is performed by looking for intersec-
tions betweer(j w) and—1/D(u, ) in the complex plane.
Figure 2 shows a graphic representationGifj ») (dotted

by
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FIG. 5. Circuit realization of the fractional order two-cell CNN.

line) and a family of curves(solid line) depicting indicate suitable low-pass dynamics in the system, thus veri-
—1/D(u,w) for different values ofw. In the figure the ar- fying the filtering hypotheses behind the applicability of the
rows indicate the increasing values @fandu for G(j w) harmonic balance approach.
and —1/D(u,w), respectively. From Fig. 2 it can be con-  In order for the onset of chaos to occur, as already out-
cluded that there are a number of intersections betweelined, the stable limit cycle has to be perturbed. The mecha-
G(jw) and the functions-1/D(u,w), but only one takes nism of perturbation leadd to grow, until a bifurcation
place with a matched. This condition is clearly observed condition is met A=7). Beyond this value, chaos takes
and takes place fo6G(jw)=—1/D(u,w), with @=0.1. In  place. Thereforey can be viewed as a bifurcation point for
particular, the intersection takes place ot 1.07, revealing the parameteA, quantifying the transition between periodic
the presence of a stable limit cyclin agreement with the and chaotic motions. In this perspective the use of the har-
Loeb criterion[5]) of amplitudeu and frequencyw. monic balance approach to detect chaos has the same
strength as the describing function method for limit cycle
prediction. This assertion is sustained by the large number of
C. Interaction between the limit cycle and the equilibrium point applications to new as well as classical chaotic systems, al-

This interaction can take place onlyuf>E,; otherwise ways providing quite accurate results. In the case of the
no perturbation is observed in the periodic motion. Such 4'0ninteger-order syste(s) (with m; =m,=m), as the order
condition is fulfilled, since fors=0.37, direct calculationS gy ypeceeemmmommooooom oo ,
lead to E,=1.04 and, by the considerations previously ;
made,u=1.07.

D. Filtering characteristics

A numerical value to weight these filtering characteristics °V
is the so-calledlistortion index[5]:

yo® =yl

A= Tl ©

wherey(t) is the distorted signaly(t) the undistorted one, FIG. 6. PSPICE phase portrait for two state variables of the
and| |, denotes thd_? norm. Clearly, small values ok fractional two-cell circuit.
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m grows to 1.3,A increases from 0.02 to 0.045. The value the types; ,= o(t) £ jw(t). Therefore, we want to perform
0.04 can be considered as the “bifurcation” valye as it  the following approximation:

results from the various numerical examples summarized in

Table I. The values of the distortion index are quite small,

guantifying the suitable filtering hypotheses needed for the

applicability of the harmonic balance approach. Moreover, g(t)= : e’Otsin w(t)t]. 11
the distortion index values fully agree with those obtained in w(t) +w(t)t

[5], where a comparison between the harmonic balance pre-

diction and the actual behavior of Chua’s circuit was re-

ported, showing that suitable values/®frange in the inter- A possible choice is to assumg(t) = o, and w(t)= w,
val [0.02, 0.03 and =0.04. + wot*, with <0, in order to haver(=)= oy and w(=)

RemarksThe role played played by the noninteger order=,  Functions(10) and (11) are plotted, respectively, in
mis fundamental. In fact, this parameter modulates the nonsglig and in dotted lines in Fig. 4 for the rational valme
linear subsystenN(y?',y1,t), and consequently its describ- —1 3 and witha=—0.9. From the figure the suitability of
ing function. Therefore, under a certain threshold for thethe approximation of function€l0) with (11) can be appre-
noninteger order, no intersection in the Nyquist plot takessiated. Expressiorill) can be considered as the capacitor
place, the limit cycle vanishes, and the onset of chaos igoltage impulse response of an RLC series circuit character-

prevented, as shown in the bifurcation diagrams in Fg).3 ized by the following time-varying capacitance:
In this way the ordem assumes the role of a bifurcation

parameter for the system. Moreover, f3¥ s* no interaction

is possible because the unstable equilibrium points vanish. mn

[w(t)+w(t)t]2+R%4L2’

C(t)= (12

E. Numerical examples

Let us consider the fractional two-cell CNN model given
in [5]. According to .the analysis developed in the Pr‘?cedmg/vhereR andL are chosen such that it ocClREL = — . A
section, several simulations were performed fixipg  complete scheme of a two-cell fractional CNN is reported in
=1.2, p,=2, s=0.37 and varyingn from 1.2 to 1.35. Dif- g, 5. Each cell is composed of two main parts: the first one
ferent forms of behavior were .detected, as shown in Table 'implements the output nonlinearity by exploiting the natural
for_d|fferent values of the noninteger order The va_llue of _ saturation of an operational amplificsee SAT1 and SAT2
A is also reported for each experiment, and the interactiog, Fig. 5), while the second paftINEAR 1 and LINEAR 2
between the limit cycle and the unstable equilibrium point isis gevoted to realizing the noninteger dynamic through a
checked. As outlir!ed in the precgding section, this phenomﬂme-varying RLC circuit. The time-varying capacitor was
enon takes place ii>Es. Analysis of Table | reveals that modeled using a voltage-driven voltage generator, a multi-
for m<1.27 only equilibria or periodic solutions can be plier, and an external voltage soufggoportional toC(t) in
found. Form=1.27, a chaotic trajectory is observed through Eq. (12)], which modulates the voltage in the branch of the
a single scroll behavior. Increasing valuesnofead to fur-  cgnstant capacitolC. The strange attractor obtained by
ther chaotic motions, as proven by computation of the maxipsp|CE simulation of the two-cell fractional CNN is shown
mum positive Lyapunov exponent. In particular, far=1.3  jn Fig. 6. Several experiments with a number of circuits re-
double scroll behavior occurs, as can also be seen from Figyized for different values om, p, ands were performed.

3(b), where the chaotic attractor is depicted. The omder Chaotic attractors were discovered in agreement with the pa-
=1.27 therefore seems to be critical together with the correrameter conditions previously derived analytically.

spondingA value.

V. CIRCUIT DESIGN
VI. CONCLUSIONS
The main problem in designing a fractional two-cell CNN ) . .
is to realize the linear block with the transfer function I this paper it is shown that fractional order cells may be

G(s)=1/(1+s™). Its corresponding impulse response is  Used to design chaotic cellular neural networks. A particular
cell structure of an order less than 2 has been considered,

showing that in a two-cell fractional CNN, as the noninteger
order m varies, it is possible to discover a wide variety of
(—1)k-1km-1 chaotic dy_namics. C_ondiftions on the onset of chaos have
R (10) been studied in detail using the harmonic balance strategy.
I'(km) Bifurcation diagrams for the noninteger-order CNN have
been derived. A simple circuit realization of a two-cell cha-
otic fractional CNN has been proposed using time-varying
As outlined in Sec. Il, the transfer functidh(s)=1/(1  reactive components. The results obtained reveal a full
+s™ (1<m<2) has two dominant poles i, ,=e~)™™  agreement between the behavior predicted by the harmonic
Our aim is to represent E¢Q) through the impulse response balance approach and the actual dynamics shown by the cir-
of a linear system showing two complex-conjugate poles otuit realization.

g<t>=L*1(G<s>,t>=k§1
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