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Elastic stability of DNA configurations. II. Supercoiled plasmids with self-contact

Bernard D. Coleman,1,* David Swigon,1,† and Irwin Tobias2,‡

1Department of Mechanics and Materials Science Rutgers, The State University of New Jersey, Piscataway, New Jersey 08
2Department of Chemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
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Configurations of protein-free DNA miniplasmids are calculated with the effects of impenetrability and
self-contact forces taken into account by using exact solutions of Kirchhoff’s equations of equilibrium for
elastic rods of circular cross section. Bifurcation diagrams are presented as graphs of excess link,DL, versus
writhe,W, and the stability criteria derived in paper I of this series are employed in a search for regions of such
diagrams that correspond to configurations that are stable, in the sense that they give local minima to elastic
energy. Primary bifurcation branches that originate at circular configurations are composed of configurations
with Dm symmetry (m52,3, . . . ). Among theresults obtained are the following.~i! There are configurations
with C2 symmetry forming secondary bifurcation branches which emerge from the primary branch withm
53, and bifurcation of such secondary branches gives rise to tertiary branches of configurations without
symmetry.~ii ! Whether or not self-contact occurs, a noncircular configuration in the primary branch withm
52, called brancha, is stable when for it the derivativedDL/dW, computed along that branch, is strictly
positive.~iii ! For configurations not ina, the conditiondDL/dW.0 is not sufficient for stability; in fact, each
nonplanar contact-free configuration that is in a branch other thana is unstable. A rule relating the number of
points of self-contact and the occurrence of intervals of such contact to the magnitude ofDL, which in paper
I was found to hold for segments of DNA subject to strong anchoring end conditions, is here observed to hold
for computed configurations of protein-free miniplasmids.

PACS number~s!: 87.10.1e, 46.70.Hg, 02.40.2k, 46.32.1x
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I. INTRODUCTION

In paper I of this series on the theory of the elastic r
model for DNA@1#, we derived several criteria for the elast
stability of a calculated equilibrium configuration of a DN
segment that is either a plasmid~i.e., a closed ring! or a
linear segment subject to strong anchoring end conditio
We here apply the criteria to a classical problem: analysi
the stability of supercoiled configurations of protein-fr
plasmids.~See, e.g., Le Bret@2# and Ju¨licher @3#.!

Our results hold for the theory of the commonly em
ployed elastic rod model which treats a DNA segment as
intrinsically straight, homogeneous, inextensible rod w
elastic properties that are characterized by two elastic c
stants, the flexural rigidityA and the torsional rigidityC.
Hence, the configurationZ of a DNA segment is determine
once one has specified the curveC representing the duple
axis and the densityDV of the excess twist aboutC. The
elastic energyC of the segment is the sum of a bendin
energyCB which depends on the curvaturek of C and a
twisting energyCT which depends onDV. Thus,

C5CB1CT , ~1!

and, whenC, CB , and CT are expressed in units ofA/L
with L the length of the segment,
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k~s!2ds, CT5
vL

2 E
0

L

DV~s!2ds, ~2!

where

v5C/A. ~3!

In earlier studies of the elastic rod model~cf. Refs.
@4–6#!, explicit ~and exact! solutions of Kirchhoff’s equa-
tions were employed to calculate equilibrium configuratio
free from points of self-contact. The configurations and
furcation diagrams shown here and in paper I were ca
lated using generalizations of those explicit solutions
cases in which excluded volume effects and forces aris
from self-contact must be taken into account.

We are concerned with plasmids, i.e., segments for wh
both DNA strands form closed curves. The excess link i
plasmid, DL, is a topological constant, which, by a no
familiar result@7,8#, obeys the equation

DL5W1DT, ~4!

in which,

DT5
1

2p E
0

L

DV ds, ~5!

andW is the writhe of the closed curveC. There are severa
equivalent definitions of writhe; one, due to Fuller@9#, was
mentioned in paper I. For a sufficiently smooth curveC, one
may write ~see, e.g., the introductory survey@10#!
759 ©2000 The American Physical Society
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W5
1

4p E
0

LE
0

L t~s!3t~s* !•@x~s!2x~s* !#

ux~s!2x~s* !u3
ds ds* , ~6!

in which t(s) is the unit tangent vector forC, andx(s) is the
location in space of the point onC with arc-length paramete
s.

We confine our attention to knot-free plasmids which a
modeled as elastic, but impenetrable, closed rods~i.e., rings!
for which the cross sections are circular with an invaria
diameterD. The two important parameters for the calcu
tions we present arev and

d5D/L. ~7!

We assume that no external forces act on the plas
under consideration, and that disjoint subsegments of
plasmid can interact only through contact. We assume
ther that when such contact occurs, the contact forces
normal to the surfaces of segments involved and mom
are not exerted at points of contact; hence changes in
figuration do no work against the contact forces.

A configuration is called anequilibrium configurationif
d C, the first variation ofC, vanishes for each variationdZ
in configuration that isadmissiblein the sense that it is com
patible with the imposed constraints, which include the
quirement that such topological properties as the value
DL and the knot-free state ofC be preserved.

In the units employed for Eqs.~1! and~2!, those equations
imply that the resultant moment on the cross section w
arc-length parameters is

M ~s!5t 3
dt

ds
1vDVt. ~8!

In an equilibrium configuration of the plasmid, at values os
other than those characterizing points of self-contact,M (s)
and the resultant forceF(s) obey the equations

dF

ds
50,

dM

ds
5F3t. ~9!

These two balance equations, withM as in Eq.~8!, yield a
system of equations forC and DV which can be solved in
terms of elliptic functions and integrals for a subsegm
between points of self-contact~see, e.g., Refs.@4# and @6#!.
Each such solution is determined by six solution paramet
A plasmid withn points of contact has 2n contact-free sub-
segments, and hence its configuration is determined w
12n solution parameters are specified. The condition of p
assignedDL and equations rendering precise geometric c
straints at contact points and laws of balance of forces
moments at those points~i.e., Eqs.~44! and ~45! of paper I!
yield 12n equations which can be solved to calculate
solution parameters@11#. In this manner we obtain the~con-
stant! value ofDV and a precise analytic representation oC
for equilibrium configurations in which self-contact occurs
a finite number of points. The closed form expressions foC
yield formulas that greatly facilitate calculations both of t
elastic energyC ~cf. Ref. @5#! and of the integral alongC of
the geometric torsion~cf. Ref. @6#!. Once the torsion integra
is known, the writheW of C is determined to within an
e
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integer, called the self-link~cf. Refs. @7# and @12#!. In the
cases considered here, that integer is not difficult to evalu
~for details see Refs.@6# and @11#!.

As in paper I, we here call equilibrium configurationZ #

stableif it gives a strict local minimum toC in the class of
configurations compatible with the constraints. In oth
words,Z # is stable if and only if it has a neighborhoodN
such thatC(Z).C(Z #) for each configurationZ in N that
is not equivalent toZ # and is accessible fromZ # by a ho-
motopy compatible with the constraints.~Lack of equiva-
lence means that the two configurations,Z # andZ, differ in
distribution of twist density or are such that the correspo
ing curves,C # andC, are not congruent, or both.!

As we remarked in paper I, our definition of stability, as
requires thatC have a strictlocal minimum, differs from a
concept of stability often used in physics~see, e.g., Ref.@3#!
which, in the present subject, would requireC to have a
global minimum, i.e., to not exceed its minimum value fo
any other configuration that may be reached by an arbitra
large variation compatible with the constraints. A configu
tion that is stable according to our definition but does no
give a global minimum to the appropriate energy would
called ‘‘metastable’’ in other contexts.

When a configurationZ # is a member of a one-paramet
family E of equilibrium configurationsZ for which one can
takeDL, DT, andC to be given by functionsDLE, DT E,
andCE of W, as in bifurcation diagrams presented here a
in paper I,Z # is stable only if the slope of the graph ofDL
versusW for E is not negative atZ #. Thus the relation

dD LE/dW>0, ~10!

which we call theE condition, is a necessary~but not suffi-
cient! condition for stability.~This condition, derived in pa-
per I under assumptions more general than the present,
obtained in a different form in a seminal paper by Le B
@2#.!

On a cautionary note we mention, as we did in pape
that there are exceptional families of equilibrium configu
tions for which DL is not determined byW, because, for
them, equilibrium is maintained whenDL is changed withC
kept constant. Such is the case for those configurations
plasmid in whichC is a true circle, i.e., the configuration
that form the ‘‘trivial branch,’’ which is labeledz in the
bifurcation diagram shown in Fig. 1 below.

An equilibrium configuration inE for which the excess
twist densityDV vanishes remains an equilibrium config
ration when the plasmid is nicked, i.e., when one of its t
DNA strands is severed. In paper I it is shown that
strengthened form of the relation~10!, namely,

dD LE/dW>1, ~11!

called the ncondition, is a necessary condition for an equ
librium configuration inE with DV50 to be stable both
before and after nicking.

In order for an equilibrium configurationZ # to be stable,
it is necessary that, for eachj between 0 andL, there hold
u(j)>0, whereu(j) is the slope of the graph ofDL versus
W for the family of equilibrium configurations of the plas
mid that containsZ # and is subject to the additional cond
tion that the subsegment withj<s<L be held rigid.@For the
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PRE 61 761ELASTIC STABILITY OF DNA . . . . II. . . .
formal definition of u(j) see Eq.~29! of paper I.# In the
present paper we shall show that this condition, which w
derived in paper I and there called theu condition, can fur-
nish a practical method of demonstrating that certain c
figurations that obey theE condition are in fact unstable.

In order for an equilibrium configuration to be stable it
necessary that the curveC representing the duplex axis give
strict local minimum to the bending energyCB in the class
of curves that obey constraints and have the same writh
C. ThisW condition, like theu condition, can yield a method
of further testing the stability of configurations known
obey theE condition.

Arguments given in paper I show that strengthened for
of the E condition and theW condition can be combined t
obtain a conditionsufficientfor stability, called the Scondi-
tion, which in the present context may be stated as follo
An equilibrium configuration Z # in E is stable if
dDLE/dW.0 at Z # and, in addition, curveC(Z #) has a
neighborhoodN such that for eachZ* in the family E with
writhe W * close toW #, there holdsCB„(C ).CBC(W* )…
for every closed curveC in N that has writheW* and is not
congruent toC(W* ).

In the next section of the paper we present calcula
equilibrium configurations for plasmids and applications
the criteria just stated. The configurations and bifurcat
diagrams shown were obtained using the generalized me
of explicit solution. The basic parameters in our theory
d5D/L andv5C/A. For the cross-sectional diameterD of
DNA we employed 20 Å, and we choseL to be the length of
a segment for which the numberN of base pairs~bp! is 359
~i.e., L535933.4 Å). When v and the configuration~or,
equivalently, the solution parameters! are known, the equa
tions of the theory enable us to calculateC, CB , andCT in
units ofA/L ~cf. Eqs.~19!–~20! of Ref. @5#, which are easily
evaluated expressions forC, CB , andCT in terms of solu-
tion parameters!. To express our reported values ofC and
CB in kcal/mol, we needed a value forA; we choseA
52.058310212erg nm, which corresponds to a persisten
length of 500 Å at 298 K~cf. Ref. @13#!.

Although we have in hand an easily applied rule for tra
forming the bifurcation diagram~presented as a graph ofDL
versusW! for one value ofv into the bifurcation diagram for
another value ofv @Eq. ~40! of paper I#, and we do describe
the way in which the stability of equilibrium configuration
depends onv, we have chosen to present diagrams withv
set equal to 1.5, a value that corresponds to the very high
of the range of experimental results forC @14,15#, because it
is only at high values ofv that there are ranges ofDL in
which stable nonplanar contact-free configurations occur~cf.
Jülicher @3#!. The low end of the range of experimental d
terminations ofC yields 0.7 forv @16,17#. Section II con-
cludes with a figure showing how the class of stable confi
rations forv51.5 differs from that forv50.7.

Here, as in paper I, our calculations are intended to ill
trate a method of investigating the elastic stability of co
figurations, not to argue that specific values ofv or D are
appropriate for the ratio of the elastic moduli or the effect
diameter of DNA.

The results we present in Sec. II have been obtained w
rigor and precision in the theory under consideration, nam
that in which a DNA segment is modeled as a homogene
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rod obeying the special case of Kirchhoff’s constitutive re
tions in which the rod is assumed to be not only both ine
tensible and kinematically symmetric, but also of circu
cross section. Without dwelling on the obvious limitations
such a model as a representation of a true DNA segment
should like to make two cautionary remarks about the ap
cability of our results that touch on matters other than
lack of homogeneity and axial symmetry in actual DNA se
ments:

~i! Since the value ofN employed in our calculations cor
responds to approximately 2.5 persistence lengths under
mal experimental conditions, we do not claim that the co
figurations we calculate would be free from fluctuations,
that for them one can set differences inC equal to differ-
ences in the free energy of supercoiling.~For calculations of
the free energy of supercoiling for miniplasmids see, e
Refs.@18–22#.!

~ii ! The calculations we report do not account for the
fects of electrostatic repulsion. To do so in an approxim
way, one may consider replacing the~average! ‘‘geometric’’
value ofD by an ‘‘effective’’ value, sayDf, with f .1 ~see,
e.g., Refs.@23# and @24#!. When electrostatic effects are ab
sent, calculations of the type we have performed for pl
mids of sizeN and ~geometric! cross-sectional diameterD
are applicable to plasmids of sizeNf with diameterDf. Equi-
librium configurations for specified values ofDL remain es-
sentially the same under such rescaling; i.e., curveC under-
goes a similarity transformation with scale factorf, the
excess twistDT ~as well as the writheW! remains invariant,
and the elastic energyC ~in units of kcal/mole! changes to
C f5C/ f . One may hope that if one choosesf judiciously,
one can obtain, from calculations that ignore electrosta
forces, useful, albeit approximate, values of properties o
miniplasmid of sizeNf and geometric diameterD that is
subject to electrostatic effects.

In Appendix A we discuss an illustrative example whic
shows that, once one is able to find all the equilibrium co
figurations in a given region of the (DL, W! plane, or,
equivalently, in the~C, DL) plane, one can find lowe
bounds for energy barriers for the various pathways
which a transition at fixedDL from one~locally! stable state
to another stable state can be realized. We remark there
before the estimate of activation energy which that exam
yields can be accepted with confidence, it will be necess
to resolve an open problem mentioned in the last paragr
of Sec. II.

II. CONFIGURATIONS AND BIFURCATION DIAGRAMS

For each pair (N,DL), a plasmid has at least one, an
usually several, equilibrium configurations~see, e.g., Refs
@2# and @3#!. As DL varies at fixedN, these configurations
vary and form families of equilibrium configurations. W
focus our attention on groups of such families, also cal
branches, that contain configurations with three or few
points of maximum curvature and that are connected t
branch, called thetrivial branch, which is made up of the
configurations for whichC is a circle. In the figures tha
trivial branch is labeledz and is shown as a dotted line
Branchesa andb, which originate at a bifurcation point o
the trivial branch, are shown as heavy solid lines and
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calledprimary bifurcation branches. Branches that originate
at bifurcation points of a primary branch~and hence are con
nected toz by a single primary branch! are calledsecondary
bifurcation branches. In the figures the secondary branch
have labels that bear subscripts, e.g.,b I , b II , ..., and are
shown as light solid curves. Atertiary bifurcation branch,
b II* , that originates at a bifurcation point of the seconda
branchb II is also shown as a light solid line~see Fig. 1!.

Since the~protein-free and knot-free! plasmids we con-
sider have a symmetry such that for equilibrium configu
tion the transformationDL→2DL takesW into 2W and
leavesC unchanged, we takeDL to be positive.

WhenDL is less than a critical value,DL* , a miniplas-
mid has just one equilibrium configuration and it belongs
z. In the present case (N5359, v51.5), DL* 51.029 and
there are two equilibrium configurations withDL5DL* :
one is inz, and the other, withW* 50.927, has a single poin
of self-contact and corresponds to the pointA1 on brancha.

Each point ofz for which

DL5v21Am221, m52,3,4, . . . , ~12!

is a bifurcation point at which a family of solutions wit
WÞ0 intersectsz, i.e., at which a primary branch originate
@25#. We call the integerm in Eq. ~12! the index of the
primary branch. The first such bifurcation ofz occurs at
DL5DLa5v21) and gives rise to brancha which has an
index of 2; the second occurs atDL5DLb5v212& and
gives rise to the brancha which has an index of 3. We not
that DL* is the smaller of the two numbersDLa and
DL~A1!, where A1 is the configuration of minimum writhe
which ~i! lies in the brancha and~ii ! is such that the plasmid
has a point of self-contact.

A list of possible symmetry groups of contact-free eq
librium configurations of closed elastic rods withDLÞ0 was
given by Domokos@26#. ~His analysis rests on the assum

FIG. 1. Bifurcation diagram for a protein-free DNA plasm
with N5359 andv51.5 drawn as a plot ofDL versusW. Shown
as a dotted~vertical! line is the trivial branchz; two branches,a and
b, resulting from bifurcation ofz are shown as heavy solid curve
four branches,b I , b II , b III , andb IV , arising from secondary bi-
furcations ofb, and one tertiary branchb II* emerging fromb II , are
shown as light solid curves.
y

-

-

tion that the force vectorF is independent ofs, an assump-
tion valid when self-contact does not occur.! We find that for
eachm>2, the symmetry group of all configurations in th
primary branch with indexm is the dihedral groupDm of
order 2m. Hence, whether or not self-contact is present,
curveC for a configuration on the primary branch of indexm
has a singlem-fold symmetry axis that is perpendicular t
the planeP containing the 2m points at which the curvature
k of C has a local extremum~i.e., a maximum or a mini-
mum!. Each of them lines that intersect them-fold symmetry
axis and pass through two extrema ofk is a twofold symme-
try axis.

It is clear that on the trivial branchz there holds
dW/dDL50, andDL, DT, and C are not given by func-
tions of W. Although the theory of theE condition andu
condition is not directly applicable to configurations inz, one
can show that those circular configurations are stable w
DL is less thanDLa, and unstable whenDL is greater than
DLa. ~A formal proof of this assertion is given in Appendi
B.!

In Fig. 2 we give graphs ofCB versusW for the branches
of the bifurcation diagram of Fig. 1. The utility of suc
graphs for investigation of the stability of calculated equili
rium configurations of plasmids was noted by Le Bret@2#.
Arguments given in paper I imply that here, on each no
trivial branch,

dCB
E/dW54p2vDT E. ~13!

This relation, which follows from Eq.~20! of paper I with
P50 @see also Ref.@9#, Eq. ~5!#, tells us that the data in Fig
2 determineDL as a function,DLE, of W, i.e., Fig. 1 can be
reconstructed from Fig. 2.

As the configurations inz have zero writhe and bendin
energy 2p2 ~in units ofA/L), the trivial branch reduces to
single point in Fig. 2. It follows from Eqs.~12! and~13! that
the primary bifurcation branches correspond to curves in F
2 with initial slopes given by

dCB
E

dW U
W50

54p2Am221. ~14!

FIG. 2. Graphs of bending energyCB versusW for branches of
the bifurcation diagram of Fig. 1.
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FIG. 3. Graphs ofDL versusW, andC ver-
susDL, for branchesz anda. The configurations
corresponding to pointss and d are shown in
Fig. 4.
s
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A configuration that minimizesCB in the class ofequi-
librium configurations with a given writhe also minimize
CB in the class ofall configurations with the same writhe
Hence, the calculations that gave us Fig. 2 tell us that
each writhe the global minimum ofCB at that writhe is
attained by a configuration in brancha.

Details of the graph ofDL versusW for brancha are
shown in Fig. 3~a!. For n50, 1, 2, and 3, the configuration
with n points of self-contact correspond to points on th
graph between An and An11 and form smooth families o
equilibrium configurations. As we know that the brancha is
a locus of configurations that minimizeCB at fixedW, we
can apply the S condition and assert that a configurationa
is stable if~and only if! it obeys theE condition. Although
dDL/dW suffers a jump at the points An, in the present case
the right-hand and left-hand derivatives are positive at2

and A3, and hence the configurations corresponding to th
points are stable. At A1, dDL/dW has left- and right-hand
derivatives that have opposite signs; at the point X, show
a solid circle in Fig. 2, the derivativedDL/dW is continuous
r

t

e

as

but changes sign. As the branch traverses the points A1 and
X, the corresponding configurations either gain or lose s
bility; such points are calledpoints of exchange of stability.
Since, in the present case,DL is a ~strictly! increasing func-
tion of W between A0 and X, and between A1 and A4, but is
a decreasing function between X and A1, the configurations
in a with W either between its values at A0 and X, or be-
tween its values at A1 and A4 are stable, and those withW
between its values at X and A1 are unstable.

The configuration A0 ~at which a branches off fromz!,
the configuration X~which lies in a between the circular
configuration A0 and the ‘‘figure 8’’ configuration A1 and
which hasdDL/dW50), and the configurations A1,...,A4

are shown in Fig. 4. Each of these configurations hasD2
symmetry, i.e., has three twofold symmetry axes, two
which lie in the planeP. As DL increases, the number o
self-contact points in a configuration on the brancha in-
creases in the sequence 1, 2, 3, untilDL attains its value at
A4. ~For the values ofv andD/L employed here, that value
of DL is 2.521.! A configuration withDL near to, but greater
d: the
the
ow.
FIG. 4. As explained in the text, configurations at X and A1 are points of exchange of stability, and for eachn, An is the configuration
of smallest writhe in brancha with n points of self-contact. Here, as in Figs. 6, 8, 9, and 11, the following conventions are employe
top row shows the projection ofC on planeP with the twofold symmetry axes inP, drawn as dashed lines. The bottom row shows
plasmid depicted as a tube of diameter 20 Å viewed at an angle of 75° toT. The scale is constant in each row, but is reduced in the top r
C is given in kcal/mol.
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FIG. 5. Graphs ofDL versusW andC versus
DL for branchesz, b, b I , b II , and b II* . The
configurations corresponding to pointss, n, and
h are shown in Figs. 6, 8, and 9. Branchb is
shown as a heavy solid curve~with kinks at B1

and B2) and branchesb I , b II , and b II* as light
curves~with kinks at BI

2 and BII
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than, 2.521 has two isolated points and an interval of s
contact; for such a configuration,k attains its minimum at
the two values ofs corresponding to the midpoint of th
interval of self-contact.

The value ofW corresponding to point X is sensitive t
v. Had we here putv51.4, as we did in a discussion o
mononucleosomes in paper I, the interval between A0 and X
would have been too small to show clearly in Figs. 3~a! and
3~b!. Recent calculations discussed below show that w
v51.375 ~i.e., whenv5 11

8 ), dDL/dW50 at point A0 on
brancha, and hence points A0 and X then coincide. Thus, a
of the nonplanar contact-free configurations on brancha are
unstable ifv<1.375. In addition, we have found that whe
v51.993, points X and A1 coincide, which implies that al
the configurations on brancha are stable ifv.1.993. Be-
cause configurations A0 and X do not show self-contact, bu
the configuration A1 does, the value ofv for which X and A0

coincide is independent of the plasmid size and cro
sectional diameterD, but the value ofv at which X and A1

coincide depends on the ratiod5D/L.
With the exception of Ref.@2#, the literature on bifurca-

tion branches in the theory of the elastic rod model
protein-free plasmids deals primarily with brancha. Some
relevant recent papers are those of Ju¨licher @3#, Yang et al.
@27#, and Westcottet al. @28#. Jülicher @3# modeled a plasmid
as an impenetrable rod with zero cross-sectional diam
and considered a configuration stable only if it gives a glo
minimum toC at fixedDL. If one identifies the configura
tions that Ju¨licher refers to as ‘‘interwound’’ with those ina
that show two or more points of self-contact, and takes i
account differences in assumptions about the diamete
cross-sections, then his~v, DL)-phase diagram and observ
tions about the dependence onW of CB for configurations in
a become compatible with the results shown here in Figs
3~b!, and 12. Yanget al. @27# and Westcottet al. @28# present
not stability analyses but numerical calculations. Yanget al.
@27# developed a finite element method in which self-cont
is taken into account by introducing a penalty functio
Westcottet al. @28# employed a finite difference method an
accounted for the excluded-volume effect that arises fro
Debye-Hückel–type electrostatic repulsion. Each of the cit
papers contains examples of calculated configurations
evident D2 symmetry.

There are ranges ofv ~with upper bounds depending o
d! for which there are values ofDL where either~i! both
f-

n

s-

r

er
l

o
of

2,

t
.

a

th

branchz and brancha contain stable equilibrium configura
tions with the sameDL, or ~ii ! brancha contains two such
stable configurations. The values ofv, N, andD which yield
Fig. 3 are such that both~i! and ~ii ! can occur~for separate
ranges ofDL). We have found that for the present value
d, ~i! occurs whenv,1.707 andDL~A1!,DL<DL~A0!
5DLa, and ~ii ! occurs when 1.375,v,1.993 and
max@DL(A1),DLa#,DL,DL(X). When v.1.993, for
eachDL there is precisely one stable equilibrium configur
tion in the union of branchesz anda.

Perhaps of greater importance than the observations
made, at least for those concerned with topoisomer distr
tions, is the fact that there is a range ofv ~which is v
,1.600 for the present value ofd! such that for a small
interval of values ofDL bounded above byDLa there are
not only two stable configurations, one ina with a single
point of self-contact, i.e., a ‘‘figure 8,’’ and the other inz,
but, in addition, the ‘‘figure 8’’ configuration haslower elas-
tic energy than the circular configuration.~See also Le Bret
@2#, Tsuru and Wadati@29#, and Ju¨licher @3#.!

The graph ofDL versusW for b, which branches off
from z at B0 and has index 3, is shown in Figs. 1 and 5~a!.
The configurations inb have D3 symmetry. Those betwee
B0 and B1 are contact-free, those between B1 and B2 have
three points of self-contact, and those withDL greater than
but close to its value~4.653! at B2 have six points of self-
contact.~See Fig. 6.!

For each branch that bifurcates fromz ~including branch
b! there is an interval of values ofW containingW50 for
which the corresponding equilibrium configurations a
contact-free.~In fact, all nontrivial contact-free configura
tions are in primary bifurcation branches.! We have found
that the contact-free equilibrium configurations in prima
branches with indexm.2 do not obey theu condition and
hence cannot be stable, even if they obey theE condition.
~See, for example, the graph ofu(j) versusj/L shown in
Fig. 7 for the configurationU, which does obey theE con-
dition.! It follows that a protein-free plasmid can have no
planar stable equilibrium configurations that are contact-f
only if v.1.375, and if such configurations occur, they mu
be in a. This conclusion is stronger than a result of Le Br
@2# to the effect that for such a plasmid to have stable, n
planar, contact-free configurations it is necessary thatv.1.

Let vm be the value ofv for which the branch that bifur-
cates fromz with index m is such thatdDL/dW50, at the
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FIG. 6. Selected configura
tions in the branchb. Bn denotes
the configuration of smalles
writhe in b with 3n points of self-
contact. Shown are B0, B1, and
B2. The configurations at points F
and G would remain in equilib-
rium if the plasmid were nicked; F
is unstable; G is stable and woul
remain so after nicking. P is the
configuration at the point of sec
ondary bifurcation.
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point whereW50. If v.vm , then there are contact-fre
configurations in the branch with indexm obeying theE
condition, but ifv,vm there are no such contact-free co
figurations in the branch. Applying the explicit solutio
method for contact-free equilibrium solutions@4–6# to an
analysis of solutions near to the circular solutions withDLk
as in Eq.~12!, we have found that, to within eight significan
figures forvm ,

vm2153/~2m2!. ~15!

In particular, v25 11
8 and, as stated above, ifv. 11

8 , the
interval of points ina corresponding to stable equilibrium
configurations is not empty.~For m.2, if v.vm , the
branch with indexm will have an interval with contact-free
equilibrium configurations that obey theE condition, but, as
we have noted, are unstable.!

Since the value ofv that we are using exceedsv35 7
6 ,

there is an interval of writhe values, which in the prese
case is 0,W,0.900, for which the configurations inb are
contact-free and havedDL/dW.0. For 0.900,W,1.948
~where 1.948 is the writhe of B1), dDL/dW,0. Because all
the contact-free configurations inb are unstable, the point in
b whereW50.900 isnot a point of exchange of stability.

We have remarked that the contact-free configuration
b fail to obey theu condition. One also can show that tho
configurations do not obey theW condition by constructing
admissible variations withdW50 that lowerCB . Consider,
for example, the configuration labeled U in Fig. 5 which h
t

in

s

W50.5, DL51.975, and is shown in Fig. 8, whereq0 de-
notes the distance~32.8 nm! between the two points of ex
trema of curvature ofC that lie on the twofold axes of sym
metry for U. We have constructed a one-parameter setH of
configurations U~h! of the plasmid such that each configur
tion in H yields dC50 for each variation inC obeying the
constraints that~i! C has a twofold axis of symmetry,~ii ! W
stays at its value in the configuration U,~iii ! the distance
between the points on the symmetry axis
q5(12h)q0 . The members ofH with h50.05, 0.2, and
0.668 are shown in the figure. Clearly, U is inH with h
50, and the variation (dZ)h that takes U into U~h! hasdW
50. In the present case,CB~U~h!!,CB~U! for eachhÞ0, no
matter how small. The configuration U* ~corresponding to
h50.668) is an equilibrium configuration of the plasmid a
it lies in brancha.

We now turn to the configurations inb with self-contact.
Such configurations have loops. For rods and ropes the
cept of a loop is intuitive. DNA segments, such as the s
segmentDf of a miniplasmid in a mononucleosome~cf. pa-
per I!, that are subject to constraints that keep endpoint
proximity are often called loops, even if free from se
contact. Here, when we call a subsegment of a protein-
plasmid a loop, we presuppose that its ends are in contac
sufficiently large values of the writhe, a loop shows se
contact not only at its end points, but also in its interior. It
in agreement with current usage to call a loop with more th
one self-contact aplectonemic loop, or, for short, aplec-
toneme.
,

n
In
FIG. 7. Graphs ofu versusj/L for configura-
tions U and G in branchb that, as seen in Fig. 5
obey theE condition withdDL/dW strictly posi-
tive. The plasmid is contact-free in configuratio
U and has three points of self-contact in G.
both cases,u→` asj→01. For G,u(j).0 for
all 0<j,L; for U, u(j) vanishes at two values
of j, and there are two singular values ofj
~marked with vertical dotted lines! at whichu→
1` from the left and2` from the right.
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FIG. 8. The configurations U(h) are the result
of special deformations of U~described in the
text! that change the distance between pointsa
and b from q0 to (12h)q0 while keepingW
fixed. It turns out that this one-parameter set
deformations lowersCB .
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When DL exceeds its value at B1, the configurations in
the branchb have three congruent loops. Between B1 and
B2, each such loop has one point of self-contact~at its end-
points!. For W ~or, equivalently, forDL) greater than its
value at B2, these loops are plectonemes.

Points B1 and P are points of secondary bifurcation.
B1, the point onb with the smallestDL for which self-
contact occurs, branchesb I and b II originate. Two other
branches,b III andb IV , originate at P. Although, as we hav
remarked, the configurations inb have ~in accord with the
known properties of primary branches! one threefold sym-
metry axis and three twofold symmetry axes, those
b I–b IV have a symmetry corresponding to group C2 of order
2, i.e., have only a single twofold symmetry axis and it
unique.~See Figs. 9 and 11.! The configurations inb I have
one loop which, asDL increases above its value at BI

2, be-
comes plectonemic. The configurations inb II have two such
loops, which are congruent. The configurations inb III and
b IV have three loops, of which one intersects the symme
axis and the other two are congruent. Inb III , the loop that
intersects the symmetry axis becomes plectonemic wheW
increases above its value at BIII

2 . In b IV , the two congruent
loops become plectonemic whenW increases above its valu
at BIV

2 . In each case that we have studied, the numbe
self-contacts in a plectonemic loop increases in the sequ
1, 2, 3, with an interval of points of self-contact occurring
higher DL. ~Such is the case also for the extranucleosom
loop of miniplasmids in mononucleosomes~see paper I! and
for plectonemic loops in linear DNA segments subject
tension and torsional moments@11#.!

When we say thatb I , b II , b III , andb IV ‘‘originate’’ at a
secondary bifurcation point, i.e., are ‘‘secondary branche
that ‘‘branch off’’ from the primary branchb, we employ a
terminology that follows a natural convention: if, as a para
eter ~e.g., DL or W! is varied, a primary branch enters
point and several other branches exit from the point w
precisely one of the exiting branches having the symme
properties of the primary branch, we consider the branch
exits with the original symmetry to be the continuation of t
primary branch and the others to be secondary branches
originate at the bifurcation point.

The notation we used in Figs. 5–11 when we labe
points B0, B1, B2, BI

2, etc., has the following property: Th
configurations in each branchba ~whereba stands forb, b I ,
b II , b III , b IV) that show at least one loop withp self-
contacts, but no loop withp11 contacts, correspond to th
n

ry

of
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points in ba between Ba
p and Ba

p11. In this notation, points
BI

1 and BII
1 are the same as point B1 and hence are labeled B1,

and points BIII
1 and BIV

1 are the same as point P.
The secondary branchb II has a bifurcation pointS, at

which a tertiary branch,b II* , originates. The configuration
in b II* have no discernible symmetry; each contains two n
congruent loops. AsW increases, one loop becomes ple
tonemic, while the other appears to ‘‘flatten’’~or ‘‘become
more planar’’! as well as ‘‘tighten’’ ~or increase in bending
energy! ~see Fig. 9!.

As shown in Fig. 5~a!, the graphs ofDL versusW for
branchesb, b I , b II cross the lineDL5W. The configura-

FIG. 9. Shown here are: BI
2, the configuration of smallest writhe

in b I with two points of self-contact; BII
2, the configuration of small-

est writhe inb II with four points of self-contact; S, the configura
tion at the point of tertiary bifurcation ofb II ; and BII*

3, the con-
figuration of smallest writhe inb II* with four points of self-contact.
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FIG. 10. Graphs ofDL versusW, andC ver-
susDL, for branchesb, b III , andb IV . The con-
figurations corresponding to pointss are shown
in Fig. 11.
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tions corresponding to those crossing points would remai
equilibrium if the plasmid were nicked. Such points o
branchb are labeled F and G and markedn in Fig. 5~a!. At
F, dDL/dW,1, and hence the corresponding configurat
is unstable. Since point G lies between B1 and P, the con-
figuration corresponding to G obeys theu condition~see Fig.
7! and, since it obeys the conditiondDL/dW.1, if it is
stable, it will remain so when the plasmid is nicked.

Analysis of the stability of configurations in branchesb,
b I–b IV , andb II* requires care. By using theu condition, we
can show that not only the contact-free configurations inb
but also all the configurations~with self-contact points! that
are in b I , b II , or b II* , or are inb with W greater than its
value at P, or inb III between P and BIII

2 , or in b IV between P
and BIV

2 are unstable, whether or not they obey theE condi-
tion. The remaining configurations, namely those inb be-
tween B1 and P, those inb III with W greater thanW(BIII

2 ),
and those inb IV with W greater thanW(BIV

2 ), obey theu
condition. Verification that the S condition holds suffices
prove stability, but such verification usually is not easy, b
cause for equilibrium configurations other than those on
brancha it is a very difficult matter to prove thatCB has a
~local! minimum at fixedW.

Our experience indicates that whenever an equilibri
configurationZ # of a plasmid fails to obey theu condition,
we can find a counterexample showing thatZ # does not give
a strict~local! minimum toCB at fixedW ~see, e.g., Fig. 8!.
As we have not been able to find such counterexamples
in

n

-
e

or

configurations that do obey theu condition, we conjecture
with as yet no formal proof, that satisfaction of theu condi-
tion is not only necessary, but also sufficient for stability
an equilibrium configuration of a plasmid. Consequences
this conjecture of sufficiency of theu condition for stability
of configurations of plasmids will be studied in Appendix A
We consider the development of methods of proving or d
proving the validity of the conjecture to be a major op
problem in our subject. To give some idea of the importan
of the problem, we remark that, if the conjecture is corre
then configurations corresponding to points of the hea
solid curves in Fig. 12 are stable~in the sense that they giv
to C strict local minima in the class of configurations wi
equalDL!, but, until the validity of the conjecture is estab
lished, we can assert with absolute certainty only that
segments of branches which are drawn as light curves in
figure are composed of unstable configurations and the
ments of the branchesz and a drawn as heavy curves ar
composed of stable configurations.
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FIG. 11. Selected configura
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FIG. 12. Graphs ofC versusDL for the vari-
ous primary and secondary branches discusse
this paper. Light curves: configurations that d
not obey theu condition and hence are not stabl
Heavy curves: configurations that obey theu con-
dition. As the configurations of the brancha for
which DL exceeds its value at A4 ~open circle!
have intervals of self-contact, they were com
puted by an extension of the explicit-solutio
method employed here and in paper I for config
rations showing only a finite number of points o
self-contact.
le

ey

de
ge
ry
n
m

k

ht

an
APPENDIX A:
TRANSITIONS BETWEEN CONFIGURATIONS

Figure 12 contains graphs ofC versusDL for fixed val-
ues ofN andD, and two values ofv5C/A near the extreme
points of the range ofv that has been reported as compatib
with experiment. In each case there is a critical valueDLc of
DL such that each configuration in brancha gives aglobal
minimum toC whenDL.DLc ~at v51.5, DLc51.123; at
v50.7,DLc51.848) and there is an intervalJ of values of
DL.DLc for which there are two configurations that ob
the u condition: A~DL! in a and B~DL! in b.

In this Appendix we discuss matters that can be regar
as extrapolations of results given in the text, and that sug
routes by which one may seek to extend the present theo
the point where it permits treatment of the kinetics of tra
sitions between locally stable configurations. If we assu
the validity of the conjecture of sufficiency of theu condition
for stability of equilibrium configurations of plasmids@30#,
then, for eachDL in J, the configuration B~DL! gives a local
minimumC„B~DL!… to C, and it becomes meaningful to as
questions about the activation energyDC for a transition
from B~DL! to A~DL!. A familiar ‘‘mountain pass theorem’’
then tells us that, for a givenDL in J, DC is no less than the
d
st
to
-
e

minimum DC #(DL) of differences betweenC„B~DL!… and
C at unstable equilibrium configurations with the sameDL.
We find that, asDL varies overJ, the maximum value,
DC†, of these lower bounds,DC #(DL), is attained atDL
5DL†53.282 for v51.5, and atDL†54.335 for v50.7.
We here focus our attention on the transitions B(DL†)
→A(DL†).

For bothv51.5 andv50.7, whenDL5DL†, there are
four unstable equilibrium configurations close to B(DL†):
one on each of the secondary branches,b I , b II , and two on
the tertiary branchb II* . These are labeled BI, BII, BII ~1!* , BII ~2!*
in Fig. 13. Forv51.5 and 0.7, the lower bound of the heig
of the energy barriers atDL†, i.e., DC†5DC #(DL†), is
attained on two paths, one taking B to A through BII, and the
other taking B to A through BII ~1!* . ~For v51.5, DC†

53.48 kcal/mol or 5.6kB T per molecule atT5310 K; for
v50.7,DC†53.29 kcal/mol or 5.3kB T.) These, as well as
transition paths from B to A involving the configurations BI

and BII ~2!* , and hence with energy barriers higher th
DC #(DL†) ~albeit less than 1/2kB T higher in the case of
the path B→BI~2!* →A! are depicted in Fig. 14.

The total decrease inC for the transition B→A at DL† is
-

hs
f

FIG. 13. Graphs ofDL versusW andC ver-
sus DL for v51.5. The configurations corre
sponding to pointss haveDL5DL†53.282 and
are shown in Fig. 14. The corresponding grap
for v50.7 have the same structure with, o
course, a change inDL† and the values ofC at
BI, BII, BII ~1!* , BII ~2!* , and A.
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FIG. 14. Transition diagram for configura
tions with v51.5 and DL5DL†53.282. The
configuration labeled A is that which minimize
C in the class of configurations withDL5DL†,
B is a locally stable configuration inb, and BI,
BII, BII ~1!* , BII ~2!* are unstable equilibrium configu
rations. The numbers above the arrows indicati
the direction of transitions give the correspondin
increments inC ~in units ofkB T). An analogous
diagram holds forv50.7, which yields DL†

54.335, increments inC as shown in parenthe
ses, and configurations B, BI, BII, BII ~1!* , BII ~2!* and
A that ~with the scale and lines of view em
ployed! are nearly indistinguishable from thos
shown here.
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19.4kB T for v51.5 and 20.5kB T for v50.7. Our calcu-
lation of the configurations A(DL†) and their energies fo
cases in which self-contact occurs in intervals required
extension of the method used elsewhere in the pape
forthcoming paper will deal with explicit representations
equilibrium configurations with intervals of self-contact.

The calculations summarized in Fig. 14, although giv
for illustrative purposes only, suggest the following conc
sion: although the valueDL† of DL that maximizes the
lower boundDC #(DL) for the activation energy for a tran
sition from the branchb is sensitive to the value ofv, that
maximum,DC†5DC #(DL†), is not.

APPENDIX B: STABILITY OF CIRCULAR
CONFIGURATIONS OF MINIPLASMIDS

The fact that for each specified value of the writhe t
bending energyCB of a miniplasmid is minimized on branc
a yields a straightforward proof that an equilibrium config
ration Z # in z, i.e., with C # a circle, is stable if 0
,DL(Z #),DLa, and is unstable if DL(Z #).DLa,
where, by Eq.~12!, DLa5v21). That proof goes as fol-
lows.

According to our definition, an equilibrium configuratio
Z # of a plasmid is stable if there is a neighborhood ofZ #

such that for each configurationZ in that neighborhood tha
hasDL equal toDL(Z #) and is not equivalent toZ #, there
holdsC(Z).C(Z #). To prove thatZ # is unstable, it suf-
fices to show that in each neighborhood ofZ # there is a
configurationZ † with DL equal to DL(Z #) and C(Z †)
,C(Z #).

Let us writeDL #, DT #, W #, C #,C # etc., forDL(Z #),
DT(Z #), W(Z #), C(Z #), C(Z #), etc. Of course, sinceC #

is a circle,W #50. In the units employed forCB andCT in
Eqs. ~2!, the bending energy of a circle is equal to 2p2;
henceCB

#52p2. Moreover, the bending energy of a circle
strictly less than the bending energy of all noncircular clos
curves. SinceDV is independent ofs in an equilibrium con-
n
A

n
-

d

figuration, Eqs. ~2! and ~4! yield C I
#52p2v(DT #)2

52p2v(DL #)2.
We suppose first that 0,DL #,DLa. Let Z be a con-

figuration that is not equivalent toZ # and is in an appropri-
ately chosen neighborhood ofZ # with DL(Z)5DL #, and
let Ẑ be the equilibrium configuration in brancha with
W(Ẑ)5W(Z), and hence withCB(Z)>CB(Ẑ). In view of
the fact that, of all configurations with a given value ofDT,
that for which DV is constant minimizesCT , we have
CT (Z)>2p2vDT(Z)2 and, by Eqs.~1! and ~4!,

C~Z!2C #5CT~Z!2CT
#1CB~Z!2CB

#

>24p2vDL #W~Z!1CB~Ẑ!22p2

1O„W~Z!2
…. ~B1!

SinceC(Ẑ) is a closed curve,CB(Ẑ)>2p2. If W(Z),0,
then, becauseDL.0, we haveC(Z).C #. If W(Z)50,
then, we haveDL(Z)5DL # andDT(Z)5DT #, and in or-
der forZ to not be equivalent toZ #, it must be the case tha
C~Z! is not a circle andCB(Z).2p2, which again yields
C(Z).C #. For the remaining possibility, i.e.,W(Z).0,
we note that asW #50, the neighborhood ofZ # in which Z
lies can be chosen so thatW~Z! is small and, by Eqs.~12!

and ~14! ~with m52) and the facts thatCB(Ẑ)>2p2 and
W(Ẑ)5W(Z), we have

CB~Ẑ!52p214p2vDLaW~Z!1O„W~Z!2
…, ~B2!

which, when combined with the relation~B1!, yields

C~Z!2C #>4p2v~DLa2DL #!W~Z!1O„W~Z!2
…,
~B3!

and hence shows that, if the neighborhood ofZ # is chosen
small enough, thenC(Z).C #, even if W(Z).0; this
completes the proof thatZ # is stable whenDL #,DLa.
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Suppose now thatDL #.DLa. For each positive numbe
C†, let Ẑ be the configuration ina with writhe W†, and let
Z† be the configuration withC(Z†)5C(Ẑ) that hasDV in-
dependent ofs and such thatDL(Z†)5DL # @i.e., such that
DT(Z†)5DL #2W†#. As W†→0, the configurationZ† ap-
proachesZ #. By Eq. ~2!, CT(Z†)52p2v(DL #2W†)2,
and the argument that gave us~B2! here yields

CB~Z†!52p214p2vDLaW†1O„~W†!2
…. ~B4!

Hence,
e

es

of

s

ns

re
,

C~Z†!2C #52p2
„112vDLaW†1v~DL #2W†!2

…

22p2
„11v~DL #!2

…

524p2v~DL #2DLa!W†1O„~W†!2
….

~B5!

BecauseDL #.DLa, the right-hand side of Eq.~B4! is
negative, i.e.,C(Z†),C # whenever W† is sufficiently
small.
,
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