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From local to global spatiotemporal chaos in a cardiac tissue model

Zhilin Qu, James N. Weiss, and Alan Garfinkel
Departments of Medicine (Cardiology) and Physiological Science, University of California at Los Angeles, Los Angeles, California

~Received 13 July 1999!

Two kinds of chaos can occur in cardiac tissue, chaotic meander of a single intact spiral wave and chaotic
spiral wave breakup. We studied these behaviors in a model of two-dimensional cardiac tissue based on the
Luo-Rudy I action potential model. In the chaotic meander regime, chaos is spatially localized to the core of
the spiral wave. When persistent spiral wave breakup occurs, there is a transition from local to global spa-
tiotemporal chaos.

PACS number~s!: 87.19.Hh, 05.45.Jn, 87.19.Nn
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INTRODUCTION

Spiral waves in excitable media are capable of a num
of distinct behaviors, some of which are quite comple
Complicated meander patterns with and without spiral w
breakup have been widely observed in computer simulat
@1–12#, in chemical reactions@13–15#, and in cardiac tissue
@16–21#. In cardiac tissue, it has been suggested that tra
tions to chaotic meander and breakup underlie the trans
to ventricular fibrillation, the principal cause of sudden c
diac death@4,18,19,22#.

The simplest transition in the spiral wave family is from
stable~that is, stationary, periodic! spiral wave to quasiperi
odic meander. This has been shown to be a secondary H
bifurcation @23,24#. But more complicated spiral wave be
haviors, such as hypermeander and breakup, are not
characterized. Most studies that explicitly address the qu
tion of chaos in spiral waves have studied the breakup
gime @2,11,25#. Recent simulations have shown that se
sustained chaotic meander can occur in a FitzHugh-Nagu
type ~FHN! excitable medium @9#. In cardiac models,
complex meandering and spiral wave breakup have b
found in a tissue model with Beeler-Reuter~BR! action po-
tential kinetics @5,7,26#, with a simplified model@4#, and
with phase I of the Luo-Rudy~LR1! action potential mode
@10,12,27,28#. Here we simulated a two-dimensional cardi
tissue model with LR1 kinetics@29#. We found that a transi-
tion from quasiperiodic meander to sustained chaotic me
der, and then to persistent breakup occurs. In the cas
chaotic meander, chaos is localized in the spiral core a
Fully developed spatiotemporal chaos occurs with sp
wave breakup.

MATHEMATICAL MODEL

The partial differential equation for cardiac conduction
homogeneous tissue is@4,5,7,12,26#

] tV52I ion /Cm1D¹2V, ~1!

where V ~mV! is membrane potential,Cm51 mF cm22 is
membrane capacitance,D51 cm2/s is the diffusion constant
and I ion (mA cm22) is the cellular transmembrane ionic cu
rent density. We used the LR1 action potential model@29#, in
which I ion5I Na1I Si1I K1I K11I Kp1I b . I Na5ḠNam

3h j(V
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2ENa) is the fast inward Na1 current,I Si5ḠSid f(V2ESi) is
the slow inward current, which is assumed to be theL-type
Ca21 current,I K5ḠKxx1(V2EK) is the slow outward time-
dependent K1 current, I K15ḠK1K1`(V2EK1) is time-
independent K1 current,I Kp50.0183Kp(V2EKp) is the pla-
teau K1 current, andI b50.03921(V159.87) is the total
background current.m, h, j, d, f, andx are the gating vari-
ables, satisfying the following type of differential equation

dy/dt5~y`2y!/ty , ~2!

wherey represents the gating variables. The ionic concen
tions are@Na# i518 mM, @Na#05140 mM, @K# i5145 mM,
@K#055.4 mM, while the intracellular Ca21 concentration
obeys

d@Ca# i /dt521024I Si10.07~10242@Ca# i !. ~3!

By setting@K#055.4 mM, the maximum conductance ofI K

and I K1 are ḠK50.282 mS/cm2 and ḠK150.6047 mS/cm2.
The action potential duration~APD! of the LR1 model is
around 360 ms, which is too long to support reentry in re
tively small tissue, as has been mentioned by oth
@10,12,27#. To get an appropriate wavelength, channel co
ductance parameters must be changed. In this paper
changed the maximum Na1 channel conductance toḠNa
516 mS/cm2 as in phase II of the Luo and Rudy model@30#,
and we changed the maximum K1 channel conductance t
ḠK50.423 mS/cm2 to shorten the APD. As our control pa
rameter, we used the maximum Ca21 channel conductance
ḠSi ~in units of mS/cm2!.

NUMERICAL METHODS

We used an operator splitting method to integrate Eq.~1!.
Equation~1! was split into an ordinary differential equatio
which is the ionic current term

] tV52I ion /Cm , ~4!

and a partial differential equation, which is the diffusio
term

] tV5D¹2V. ~5!
727 ©2000 The American Physical Society
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The differential equations for the gating variables@Eq. ~2!#
were integrated with the method of Rush and Larsen@31#.
Equations~3! and ~4! were integrated with a first order ex
plicit method, using an adaptive time step method. Details
this method were published elsewhere@32#. The time step
varied from 0.005 to 0.05 ms. Equation~5! was integrated
using the alternating direction implicit method@33# with time
step 0.05 ms. The space step was fixed at 0.015 cm. Inte
tion of ODEs and the PDE were carried out alternatively
required by the operator splitting method. No-flux bounda
conditions were used.

Spiral waves were initiated by the cross field protoc
@17#. Tip trajectories were measured using the intersection
two isovoltage contour lines 2 ms apart. The threshold
the isovoltage contour lines is230 mV. Cycle length~CL!
was defined as the time interval between the upstroke
two successive action potentials. A threshold of272 mV
was used to define CL. We found that all choices of is
voltage countour threshold between220 and240 mV gave
qualitatively similar results, as did choices of CL thresho
between250 and275 mV ~results not shown!.

FIG. 1. Spiral wave snap shots~voltage decreases from white t
black! and spiral tip trajectories in a 6 cm36 cm tissue for~a!

ḠSi50.02, ~b! ḠSi50.035,~c! ḠSi50.0395.

FIG. 2. A single spiral wave breaks into multiple spiral waves

a 636 cm tissue forḠSi50.052.~a! t5100 ms,~b! t5210 ms,~c!
t5240 ms, and~d! t51000 ms. We sett50 when the second puls
initiating the spiral wave is given.
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RESULTS

As ḠSi increases, the trajectory of the spiral tip becom
more and more complex, becoming irregular atḠSi
50.0395~Fig. 1!. ~A similar result has been found in a BR
based system@5#.! As ḠSi increases further, a single intac
spiral wave cannot exist in this tissue, and spontaneous s
wave breakup occurs~Fig. 2!. This spiral wave breakup cre
ates a regime of multiple spiral waves, in which spirals a
continually being created and destroyed. In this regime,
spiral waves rotate very irregularly and their number is a
irregular~see Fig. 7 below!. To show how complex behavio
develops, we studied CL return maps for increasing value
ḠSi ~Fig. 3!. For ḠSi50.02 and 0.035, the return maps we
simple closed ringlike structures, indicating quasiperio
behavior. But whenḠSi was increased to 0.0395, the rin
structure became partly, but only partly, obscured by irre
lar behavior. When spiral wave breakup occurred, the
return map shows a completely irregular pattern.

To determine when chaos occurs in the transition fr
quasiperiodic meander to irregular meander, we calcula
the maximum Lyapunov exponentl. It is extremely difficult
to use Eqs.~1!–~3! to computel in the tangent space, a
defined in text books@34#, i.e.,

l5 lim
t→`

1

t
ln

iw~ t !i
iw~0!i ,

wherew(0) is the initial perturbation vector andw(t) is the
final perturbation vector. We used an alternative method

FIG. 3. CL return maps forḠSi50.02~a!, 0.035~b!, 0.0395~c!,
and 0.052~d!. In these figures, the first 30 transient CLs we
dropped.

FIG. 4. l versusḠSi .
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FIG. 5. x coordinate of the spiral tips~left!
and their FFT power spectrum over 20 s

~right!. Tissue size 6 cm36 cm. ~a! ḠSi50.02;

~b! ḠSi50.035; ~c! ḠSi50.0395.
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calculatel @35#. Figure 4 showsl versusḠSi . In the quasi-
periodic regime, the calculated value ofl is zero, within
numerical error. When the irregular meander begins,l in-
creases quickly asḠSi increases, showing that the chao
motion becomes more violent with increasingḠSi .

In order to study the transition from quasiperiodicity
chaos, we first verified that the pretransition behavior is tr
quasiperiodic. For the lower values ofḠSi , all the peaks in
the Fourier spectrum can be expressed asm f01n f1 , with m
andn integers@34#, showing that the motion is quasiperiod
with the basic frequencyf 0 and modulating frequencyf 1 .
But for ḠSi50.0395, not all the peaks can be expressed
m f01n f1 @Fig. 5~c!#, and so new frequencies have emerg

The irregular motion of the tip persists for the entire
simulated seconds of activity~about 250 rotations!. While
we suspect that this is not likely to be a transient, we can
rule out the existence of ‘‘chaotic supertransients’’ as ha
been seen in other spatiotemporal examples@36,37#. Note
that the tip coordinate displays a small long-term drift, as
been observed in the FHN-type model@9#. This drift may be
due to the interactions of the spiral wave with the no-fl
boundary.

To further investigate chaos in this system, we used p
turbations to study the system response. Figure 6 shows
effects of perturbations to a quasiperiodically meander
spiral wave and to a chaotically meandering spiral wave
perturbation to a quasiperiodically meandering spiral wa
did not give rise to a clearly observable discrepancy from
original time series of action potentials. Instead, there i
small phase shift in the tip trajectory@Fig. 6~a!#. But a per-
turbation to a chaotically meandering spiral wave close to
spiral tip gave rise to larger differences, in both the tim
series of action potentials and in tip trajectories@Fig. 6~b!#.
This again shows that irregular meander is chaotic. Howe
if a perturbation was delivered in a place far from the t
there was no effect on either the time series of action po
tials or on the tip trajectories@Fig. 6~c!#. This indicates that
chaos in a chaotically meandering spiral wave is localized
the core area, not in the arm far from the core.

In contrast to the chaotic meander case, in the brea
regime, a local perturbation in the tissue propagates quic
y

s
.

ot
e

s

r-
he
g
A
e
e
a

e

r,
,
n-

n

p
ly

FIG. 6. A local perturbation was given in either electrode a o
to demonstrate the ‘‘butterfly effect’’~sensitive dependence on in
tial conditions, often held to be defining of chaos!. Voltage traces
~left! and tip trajectories~right! are shown. The tissue size is
cm36 cm. Perturbation was given in one computational ‘‘cel
~0.015 cm30.015 cm!, by holding the voltage at 0 mV for 2 ms in
that site. Electrode a is atx53.6 cm andy53 cm which is very
close to the spiral tip area; electrode b is atx5y50.75 cm which is
far away from the spiral tip area. Solid lines are before perturbat
the dashed lines are after perturbation. Arrows indicate the tim

which the perturbation was given.~a! ḠSi50.02, perturbation was

given at electrode a;~b! ḠSi50.04, perturbation was given at elec
trode a;~c! the same as~b! but the perturbation was given at ele
trode b.
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in both time and space, leading to very divergent spatiote
poral patterns. Figure 7 shows the tip number versus time
the cases with and without perturbation, and some volt
snapshots. Although the perturbation was delivered at 0.8
the spatial patterns are almost identical at 1 s. At 1.5 s,
of the pattern differs, and at 2.2 s, the spatial patterns
completely different.

We also initiated multiple spiral waves in the tissue
study their interactions. We first initiated two counte
rotating spiral waves which were symmetric with respect
the central horizontal line, i.e., one is the other’s mirror i
age. With this symmetry,Dx5x12x2 must be zero and
^y&5(y11y2)/2 must be a constant, where (x1 ,y1) and
(x2 ,y2) are the tip positions of the two spiral waves. Wh
we initiated such a pair of spirals in the chaotic mean
regime, neitherDx50 nor ^y&5const were maintained; in
stead, these quantities oscillated violently in a chaotic m
ner indicating that the pair of synchronously rotating spi
waves was desynchronized~Fig. 8!. This happened becaus
numerical error in the simulation was amplified by the ch
otic behavior of the spiral waves. A careful examination
our data for bothDx and ^y& shows thatDx is exactly zero
and^y& is exactly 3.0 within the first 100 ms~see the inset in
Fig. 8!. Afterwards errors occurred in eitherDx or ^y&,

FIG. 7. ~a! Tip numbers versus time for the cases with~solid
line! and without~dotted line! added local perturbation.~b! Snap
shots fort51000, 1500, 2200 ms. Upper panel is the case with
perturbation, lower panel is the case with perturbation. The lo
perturbation was delivered at 890 ms in area of 0.06 cm30.06 cm
in the center of the tissue. We hold the voltage at that area at 0
for 2 ms, which did not create any new waves and did not sign
cantly change the snapshot, as shown in the results above.
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which became amplified by the chaotic nature of the sp
wave. We carried out the same simulation in the quasip
odic meander regime, andDx always remained on the orde
of 1024 cm, which is the numerical error. To study how on
spiral wave responded to the other in the chaotic mean
regime, we gave a perturbation toone of the two spiral
waves shown in Fig. 8. Although the perturbation made
two spiral waves desynchronize@Figs. 9~a! and 9~b!#, the
unperturbed spiral wave was largely unaffected@Fig. 9~d!#.
In Figs. 9~c! and 9~d!, we plotted the two spiral tip trajecto
ries fromt52000 to 4000 ms for the cases with and witho
perturbation. The tip trajectory of the perturbed spiral wa
diverges strongly from the original trajectory, but the tip tr
jectory of the unperturbed spiral wave is almost identical
the original tip trajectory.

We also initiated four spiral waves in the tissue to stu
their interactions. A perturbation was delivered to the co
area of one of the four spiral waves at 200 ms after
initiation. This perturbation is strong enough to break t
initial symmetry but not to create new spiral waves. In t
quasiperiodic meander regime, this perturbation only bro
the initial symmetry, and made the waves rotate in differ
phases@Figs. 10~a! and 10~b!#. But in the chaotic meande
regime, the situation is different. A suitable perturbation m
cause spiral wave breakup. In Figs. 10~c! and 10~d!, we show
one such simulation. 600 ms after the perturbation, spo
neous spiral wave breakup occurred@Fig. 10~c!# and the
number of tips changed quickly with time@Fig. 10~d!#, simi-

o
al

V
-

FIG. 8. ~a! and~b! Dx and^y& versus time. The inset in~a! is an
enlarged view ofDx for the first 300 ms.~c! Contour plots of spiral
waves fort5700 and 4000 ms. Att5700 ms, the spiral waves ar
symmetric with respect to the center line of tissue inx direction, at
t54000 ms, this symmetry was lost. Tissue size is 6 cm36 cm and

ḠSi50.04.
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lar to what occurred in the breakup regime~Fig. 7!. How-
ever, breakup in the chaotic meander regime was not in
table; it required two spiral waves to be close enough
invade each other’s territory and interact strongly. If the c
otically meandering spiral waves are far apart, they rot
independently. Chaotic meander is crucial for this type
breakup, because it amplifies the perturbation and makes
spiral wave move in a very different phase. Su
perturbation-induced breakup was never observed in the
siperiodic meander regime in our simulations.

CONCLUSION

We have shown, in a cardiac tissue model with LR1
netics, that a transition from quasiperiodic meander to c

FIG. 9. ~a! and~b! Dx and^y& versus time, for the pair of spira
waves shown in Fig. 8, one of which is perturbed.~c! and~d! show
tip trajectories for the simulation without perturbation~solid line!
and with perturbation~dashed line!. The perturbation was delivere
at an area of 0.06 cm30.06 cm close to one of the tips of the tw
spiral waves shown in Fig. 8, by holding the voltage at 0 mV fo
ms. Tip trajectories shown in~c! and~d! are fromt52000 to 4000
ms. The arrow in~a! shows the time at which the perturbation w
given. The parameters are the same as in Fig. 8.
s

c-
i-
o
-

te
f
he
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otic meander occurs asḠSi is increased. This chaotic mean
der is ‘‘local chaos,’’ in the sense that the chaos is localiz
to the spiral core. Spectral analysis applied to the transi
shows that a two-frequency quasiperiodic motion underg
a transition to weakly chaotic motion. The weakly chao
state displays at least one new frequency, which would s
gest a ‘‘quasiperiodic transition to chaos’’@38#. Several dis-
tinct pathways from quasiperiodicity to chaos, such as ‘‘to
doubling’’ and ‘‘torus breakdown’’ have been identifie
@39#. A ‘‘torus breakdown’’ transition from quasiperiodicity
to chaos was previously found in a cardiac tissue mo
based on simplified three-variable cell kinetics@19#, but none
of these well-known scenarios seems to be present her
the model with LR1 kinetics.
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FIG. 10. Snap shots of spiral waves at different time forḠSi

50.02 ~a!, ḠSi50.035~b!, andḠSi50.04 ~c!. ~d! Number of spiral

tips versus time forḠSi50.04. Tissue size is 6 cm36 cm. Pertur-
bations were given to one of the four spiral waves at 200 ms.
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