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From local to global spatiotemporal chaos in a cardiac tissue model

Zhilin Qu, James N. Weiss, and Alan Garfinkel
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Two kinds of chaos can occur in cardiac tissue, chaotic meander of a single intact spiral wave and chaotic
spiral wave breakup. We studied these behaviors in a model of two-dimensional cardiac tissue based on the
Luo-Rudy | action potential model. In the chaotic meander regime, chaos is spatially localized to the core of
the spiral wave. When persistent spiral wave breakup occurs, there is a transition from local to global spa-
tiotemporal chaos.

PACS numbds): 87.19.Hh, 05.45.Jn, 87.19.Nn

INTRODUCTION —Epg) is the fast inward Na current,| 5= Ggd f(V—Eg) is

_ _ _ . the slow inward current, which is assumed to be lthiype
Spiral waves in excitable media are capable of a numbeg 2+ o rent | =G xx, (V- E) is the slow outward time-

of distinct behaviors, some of which are quite complex. dent K o =G KL (V—E is ti

Complicated meander patterns with and without spiral wavéiedpen %n K current ,I Ki_o 05183 OC(V—EKl) . Isth 'ml&
breakup have been widely observed in computer simulation¥' epeKT en currer&l, <P 03021 %(59 87Kp)_ IS o ep a-l
[1-12), in chemical reactiongl3—15, and in cardiac tissue teau current, an b=~ V+59.87) is t. € ‘0“’!
packground currentm, h, j, d, f andx are the gating vari-

[16-21]. In cardiac tissue, it has been suggested that trans bl isfving the followi ¢ diff al .
tions to chaotic meander and breakup underlie the transitioft° ©> satisfying the following type of differential equation:

to ventricular fibrillation, the principal cause of sudden car- o
diac deat{4,18,19,22 dy/dt=(y..—y)/ 7y, 2
The simplest transition in the spiral wave family is from wherey represents the gating variables. The ionic concentra-

stable(that is, stationary, periodicspiral wave to quasiperi- . i - ’_
odic meander. This has been shown to be a secondary Hoﬁ?ns are[Naj; =18 mM, [Najo=140mM, [K];=145mM,

bifurcation [23,24]. But more complicated spiral wave be- KlozSA mM, while the intracellular Ca concentration
haviors, such as hypermeander and breakup, are not we(?P y

characterized. Most studies that explicitly address the ques- Jdt=— 104 ot 4 _

tion of chaos in spiral waves have studied the breakup re- d[Cal;/dt=—10""I5+0.0710" "~ [ Calj). )
gime [2,11,25. Recent simulations have shown that self- By setting[Klo=5.4mM, the maximum conductance kf

sustained chaotic meander can occur in a FitzHugh-Nagumo- _ 2 = P
type (FHN) excitable medium[9]. In cardiac models, 2ndlki are Gx=0.282mS/cm and Gy, =0.6047 mS/c

complex meandering and spiral wave breakup have beehN€ action potential duratiofAPD) of the LR1 model is
found in a tissue model with Beeler-Reut@&R) action po- around 360 ms, which is too long to support reentry in rela-

tential kinetics[5,7,26, with a simplified model[4], and tively small tissue, as has_ been mentioned by others
with phase | of the Luo-RudyLR1) action potential model [10.12,27. To get an appropriate wavelength, channel con-
[10,12,27,2% Here we simulated a two-dimensional cardiacductance parameters must be changed. In this paper, we
tissue model with LR1 kineticE29]. We found that a transi- changed the maximum Nachannel conductance Gy,

tion from quasiperiodic meander to sustained chaotic mear= 16 mS/cni as in phase Il of the Luo and Rudy modaD],

der, and then to persistent breakup occurs. In the case @hd we changed the maximum®kchannel conductance to
chaotic meander, chaos is localized in the spiral core are&,=0.423 mS/crfito shorten the APD. As our control pa-
Fully developed spatiotemporal chaos occurs with spiratameter, we used the maximum Cachannel conductance

wave breakup. Gg (in units of mS/crA).

MATHEMATICAL MODEL NUMERICAL METHODS

The partial differential equation for cardiac conduction in  \ye ysed an operator splitting method to integrate (fy.
homogeneous tissue [4,5,7,12,26 Equation(1) was split into an ordinary differential equation
) which is the ionic current term
oNV=—lign/Cy - DV*?V, (1)

. . o INV=—=lion/C, (4)
whereV (mV) is membrane potentialC,,=1 uF cm™ is

membrane capacitandd,= 1 cn¥/s is the diffusion constant, and a partial differential equation, which is the diffusion
and |y, (A cm™?) is the cellular transmembrane ionic cur- term
rent density. We used the LR1 action potential m¢&él, in

which lign=Inat s+ kit Tkp+lp. Ina=Grnam®hj(V aV=DV?V. (5)
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FIG. 1. Spiral wave snap shotgoltage decreases from white to CLn (ms)
black and spiral tip trajectoriesnia 6 cmx6 cm tissue for(a) o
Gg=0.02,(b) Gg=0.035,(c) Gg=0.0395. FIG. 3. CL return maps foBg=0.02(a), 0.035(b), 0.0395(c),

and 0.052(d). In these figures, the first 30 transient CLs were

The differential equations for the gating variabl&y. (2)]  dropped.
were integrated with the method of Rush and Larggh.
Equations(3) and (4) were integrated with a first order ex- RESULTS
plicit method, using an adaptive time step method. Details of
this method were published elsewh¢B2]. The time step ) :
varied from 0.005 to 0.05 ms. Equatidh) was integrated Moré and more complex, becoming irregular @i
using the alternating direction implicit methf®83] with time = 0-0395(Fig. 1). (A similar result has been found in a BR-
step 0.05 ms. The space step was fixed at 0.015 cm. Integrhased systermi5].) As Gg; increases further, a single intact
tion of ODEs and the PDE were carried out alternatively asspiral wave cannot exist in this tissue, and spontaneous spiral
required by the operator splitting method. No-flux boundarywave breakup occur@ig. 2). This spiral wave breakup cre-
conditions were used. ates a regime of multiple spiral waves, in which spirals are
Spiral waves were initiated by the cross field protocolcontinually being created and destroyed. In this regime, the
[17]. Tip trajectories were measured using the intersection o$piral waves rotate very irregularly and their number is also
two isovoltage contour lines 2 ms apart. The threshold foirregular(see Fig. 7 beloyv To show how complex behavior
the isovoltage contour lines is30 mV. Cycle length(CL) develops, we studied CL return maps for increasing values of
was defined as the time interval between the upstrokes af (Fig. 3). For G5;=0.02 and 0.035, the return maps were
two successive action potentials. A threshold-672 mV  simple closed ringlike structures, indicating quasiperiodic

was used to define CL. We found that all choices of iso'behavior. But wherf_asi was increased to 0.0395, the ring
volta}ge.countpur threshold betweer?O gnd—40 mV gave g icture became partly, but only partly, obscured by irregu-
qualitatively similar results, as did choices of CL threshold|ar behavior. When spiral wave breakup occurred, the CL
between—50 and—75 mV (results not shown return map shows a completely irregular pattern.

To determine when chaos occurs in the transition from
quasiperiodic meander to irregular meander, we calculated
the maximum Lyapunov exponeRt It is extremely difficult
to use Egs(1)—(3) to compute\ in the tangent space, as
defined in text book§34], i.e.,

As ESi increases, the trajectory of the spiral tip becomes

1wl
A=lme i o)

~>oct

wherew(0) is the initial perturbation vector anal(t) is the
final perturbation vector. We used an alternative method to

0.061
"-(D
é 0.03}
<
. . . . . . 0'00 . .
FIG. 2. A single spiral wave breaks into multiple spiral waves in 0.00 0.02 0.04 0.06
a 6x6 cm tissue foiGg=0.052.(a) t=100 ms,(b) t=210 ms,(c) G, (mSfem?)

t=240ms, andd) t=1000 ms. We sdt=0 when the second pulse -
initiating the spiral wave is given. FIG. 4. \ versusGg;.
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calculate\ [35]. Figure 4 shows\ versusGg;. In the quasi-
periodic regime, the calculated value ®fis zero, within o/ Electrode a
numerical error. When the irregular meander beghsn- !

creases quickly a§g; increases, showing that the chaotic
motion becomes more violent with increasiGg; .

In order to study the transition from quasiperiodicity to
chaos, we first verified that the pretransition behavior is truly
quasiperiodic. For the lower values Gfg;, all the peaks in
the Fourier spectrum can be expressedhdg+ nf,, with m
andn integerq 34], showing that the motion is quasiperiodic o ;
with the basic frequency, and modulating frequencf, . \ Rkl
But for Gg;=0.0395, not all the peaks can be expressed as 0 \N\N\[\ :
mfy+nf; [Fig. 5(c)], and so new frequencies have emerged. *or o . I‘EIectr>ode‘b

The irregular motion of the tip persists for the entire 20 Ot b b by

V (mV)
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simulated seconds of activitfabout 250 rotations While 2 ol

we suspect that this is not likely to be a transient, we cannot 3 4, , IR R VR
rule out the existence of “chaotic supertransients” as have 1000 1500 2000
been seen in other spatiotemporal examp&s,37. Note time (ms) Crectrode a

that the tip coordinate displays a small long-term drift, as has o}
been observed in the FHN-type mod®@]. This drift may be
due to the interactions of the spiral wave with the no-flux
boundary.

Electrode b
To further investigate chaos in this system, we used per- 0 \
turbations to study the system response. Figure 6 shows thez - ‘
effects of perturbations to a quasiperiodically meandering > -sof 1

V (mV)

S
E 40
spiral wave and to a chaotically meandering spiral wave. A 1000 ] (150)0 2000
ime (ms

perturbation to a quasiperiodically meandering spiral wave

did not give rise to a clearly observable discrepancy from the |G, 6. A local perturbation was given in either electrode a or b
original time series of action potentials. Instead, there is 3y demonstrate the “butterfly effectisensitive dependence on ini-
small phase shift in the tip trajectof¥ig. 6@]. But a per- tjal conditions, often held to be defining of chao¥oltage traces
turbation to a chaotically meandering spiral wave close to theleft) and tip trajectoriesright) are shown. The tissue size is 6
spiral tip gave rise to larger differences, in both the timecmx6 cm. Perturbation was given in one computational “cell”
series of action potentials and in tip trajectori&sg. 6b)]. (0.015 cmx0.015 cm), by holding the voltage at 0 mV for 2 ms in
This again shows that irregular meander is chaotic. Howevethat site. Electrode a is at=3.6 cm andy=3 cm which is very
if a perturbation was delivered in a place far from the tip,close to the spiral tip area; electrode b isxaty=0.75 cm which is
there was no effect on either the time series of action poterfar away from the spiral tip area. Solid lines are before perturbation,
tials or on the tip trajectoriefFig. 6(c)]. This indicates that the dashed lines are after perturbation. Arrows indicate the time at
chaos in a chaotically meandering spiral wave is localized irwhich the perturbation was givefa) Gg=0.02, perturbation was
the core area, not in the arm far from the core. given at electrode ap) Gg=0.04, perturbation was given at elec-
In contrast to the chaotic meander case, in the breakupode a;(c) the same agh) but the perturbation was given at elec-
regime, a local perturbation in the tissue propagates quicklyrode b.
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FIG. 8. (a) and(b) Ax and(y) versus time. The inset ita) is an
enlarged view ofAx for the first 300 ms(c) Contour plots of spiral
FIG. 7. (a) Tip numbers versus time for the cases wisiolid waves fort=700 and 4000 ms. At=700 ms, the spiral waves are
line) and without(dotted line added local perturbatiortb) Snap ~ Symmetric with respect to the center line of tissueidirection, at
shots fort=1000, 1500, 2200 ms. Upper panel is the case with nd=4000 ms, this symmetry was lost. Tissue size is &«&tm and
perturbation, lower panel is the case with perturbation. The localGs;=0.04.
perturbation was delivered at 890 ms in area of 0.06<6m96 cm

in the center of the tissue. We hold the voltage at that area at 0 MY, hich pecame amplified by the chaotic nature of the spiral
for 2 ms, which did not create any new waves and did not Signiﬁ'wave. We carried out the same simulation in the quasiperi-
cantly change the snapshot, as shown in the results above. odic meander regime, antix always remained on the order
of 10" %cm, which is the numerical error. To study how one
in both time and space, leading to very divergent spatiotemspiral wave responded to the other in the chaotic meander
poral patterns. Figure 7 shows the tip number versus time foregime, we gave a perturbation tme of the two spiral
the cases with and without perturbation, and some voltag&aves shown in Fig. 8. Although the perturbation made the
snapshots. Although the perturbation was delivered at 0.89 swo spiral waves desynchronif&igs. 9a) and 9b)], the
the spatial patterns are almost identical at 1 s. At 1.5 s, patinperturbed spiral wave was largely unaffecf&. 9d)].
of the pattern differs, and at 2.2 s, the spatial patterns arg Figs. 9c¢) and 9d), we plotted the two spiral tip trajecto-
completely different. ries fromt=2000 to 4000 ms for the cases with and without
We also initiated multiple spiral waves in the tissue toperturbation. The tip trajectory of the perturbed spiral wave
study their interactions. We first initiated two counter- diverges strongly from the original trajectory, but the tip tra-
rotating spiral waves which were symmetric with respect tojectory of the unperturbed spiral wave is almost identical to
the central horizontal line, i.e., one is the other's mirror im-the original tip trajectory.
age. With this symmetryAx=x;—Xx, must be zero and We also initiated four spiral waves in the tissue to study
(y)=(y1t+Yy2)/2 must be a constant, wherex;(y;) and their interactions. A perturbation was delivered to the core
(x2,y») are the tip positions of the two spiral waves. Whenarea of one of the four spiral waves at 200 ms after the
we initiated such a pair of spirals in the chaotic meandeinitiation. This perturbation is strong enough to break the
regime, neithelx=0 nor (y)=const were maintained; in- initial symmetry but not to create new spiral waves. In the
stead, these quantities oscillated violently in a chaotic manguasiperiodic meander regime, this perturbation only broke
ner indicating that the pair of synchronously rotating spiralthe initial symmetry, and made the waves rotate in different
waves was desynchronizéBig. 8). This happened because phaseqFigs. 1Ga) and 1@b)]. But in the chaotic meander
numerical error in the simulation was amplified by the cha-regime, the situation is different. A suitable perturbation may
otic behavior of the spiral waves. A careful examination ofcause spiral wave breakup. In Figs(ddand 1@qd), we show
our data for bothAx and(y) shows thatAx is exactly zero one such simulation. 600 ms after the perturbation, sponta-
and(y) is exactly 3.0 within the first 100 msee the insetin neous spiral wave breakup occurrgfig. 10c)] and the
Fig. 8). Afterwards errors occurred in eithexx or (y), number of tips changed quickly with timM&ig. 10d)], simi-
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FIG. 9. (a) and(b) Ax and(y) versus time, for the pair of spiral ] ) o
waves shown in Fig. 8, one of which is perturbég.and(d) show FIG. 10._Snap shots of sgral waves at different time @%I.
tip trajectories for the simulation without perturbatisolid line ~ =0.02(@), Gs=0.035(b), andG;=0.04(c). (d) Number of spiral

and with perturbatioridashed ling The perturbation was delivered tips versus time foGg;=0.04. Tissue size is 6 crb cm. Pertur-
at an area of 0.06 cm0.06 cm close to one of the tips of the two bations were given to one of the four spiral waves at 200 ms.
spiral waves shown in Fig. 8, by holding the voltage at 0 mV for 2 o
ms. Tip trajectories shown it) and(d) are fromt=2000 to 4000 otic meander occurs &g; is increased. This chaotic mean-
ms. The arrow in@) shows the time at which the perturbation was der is “local chaos,” in the sense that the chaos is localized
given. The parameters are the same as in Fig. 8. to the spiral core. Spectral analysis applied to the transition
shows that a two-frequency quasiperiodic motion undergoes
lar to what occurred in the breakup regirfféig. 7). How-  a transition to weakly chaotic motion. The weakly chaotic
ever, breakup in the chaotic meander regime was not inevistate displays at least one new frequency, which would sug-
table; it required two spiral waves to be close enough tdJest a “quasiperiodic transition to chao$38]. Several dis-
invade each other's territory and interact strongly. If the chalinct pathways from quasiperiodicity to chaos, such as “torus
otically meandering spiral waves are far apart, they rotatéloubling” and “torus breakdown” have been identified
independently. Chaotic meander is crucial for this type ofl39)- A “torus breakdown” transition from quasiperiodicity
breakup, because it amplifies the perturbation and makes tH@ €haos was previously found in a cardiac tissue model
spiral wave move in a very different phase. Such ased on simplified three-variable cell kineti¢9], but none

perturbation-induced breakup was never observed in the qu% these well-known scenarios seems to be present here in
N . . . X e model with LR1 kinetics.
siperiodic meander regime in our simulations.
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