PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Computer simulations of phase equilibrium for a fluid confined in a disordered porous structure
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We present calculations of the phase diagrams of a Lennard-Jones 12-6 fluid confined in a disordered porous
structure made up of a dispersion of spherical particles, following up on an earlier work on the same system.
In particular we present additional calculations using more realizations of the matrix and we investigate the
applicability of the Gibbs-Duhem integration method to the calculation of phase equilibrium in these systems.
The essential picture of disordered and inhomogeneous coexisting vapor and liquid phases, which emerged in
the earlier work, is confirmed by the new calculations. However, a second phase transition associated with the
wetting of the porous material by the fluid is found to be more sensitive to variations of the matrix realization.
While for the present model this transition appears for particular realizations of the matrix, it does not seem to
survive averaging over realizations.

PACS numbgs): 61.20.Gy, 05.70.Fh, 64.60.Fr

The behavior of fluids confined in disordered porous ma- In this work we use one of the two molecular models
terials has been the subject of intense experimg¢ftd] and  considered most extensively by Page and Mon&in We
theoretical[3—5] interest over the last several years. A key model the solid as an array of spherical particles in a con-
issue in developing an understanding of the behavior of sucfiguration(realization taken from a Monte Carlo simulation
systems is to determine the coupled roles of porous materi&@f an equilibrium hard-sphere system. We use the composite
disorder, confinement, and wetting phenomena. sphere potential developed by Kaminsky and Monijrto

One of the most promising theoretical approaches to thes@odel the fluid-solid interactions, as adapted to study
systems has emerged from studies of molecular models th&hanges in the strength of the fluid-solid attracti¢@k For
treat a disordered porous material, such as a silica gel, astBe ratio of solid-fluid to fluid-fluid well depths we use
collection of particles arranged in a predetermined micro-€s¢/€ss=1.144. The fluid-fluid potential was truncated at
structure[7,8]. Such models are amenable to study by statis2.50¢; and the solid-fluid potential at 8.68;. The solid
tical mechanical theories using cluster expansion and replicgolume fraction was set to 0.386 and the size ratio between
techniqueg5,6] as well as by computer simulatigi@—13). the matrix spheres and fluid molecules is 7.055:1. All the

In recent work[9], a Monte Carlo simulation study of a calculations were carried out with the grand canonical Monte
model of a fluid confined in a silica xerogel was presented irfcarlo techniqué15] using 32 matrix particles and cell lists
which the vapor-liquid coexistence was estimated using therto reduce the computer time required for summing the inter-
modynamic integration techniques. Several conclusion@ctions in the system. The simulations were typically run for
emerged from that work. In addition to the suppression of thé@ver 16 configurations with half of these used for equilibra-
critical temperature associated with confinement, the shapiéon.
of the coexistence curve was found to reflect both the wet- We have made calculations of phase diagrams using both
ting behavior of the fluid in the porous material and thethermodynamic integration, as described in the work of Page
disorder. The results suggested an additional phase transiti@fd Monsor{9], and the Gibbs-Duhem integration technique
that was associated with the ability of the fluid to wet the[14]. The main drawback of thermodynamic integration is
more dense regions of the porous matefsaich a transition that it requires a complete adsorption/desorption isotherm for
is predicted for several model systems in the context of theoeach temperature on the phase diagram. Gibbs-Duhem inte-
ries based on the replica Ornstein-Zernike equdtin The  gration[14] offers a potentially more efficient technique and
effect of disorder was assessed through the comparison b@s been recently extended to the grand ensefible An-
the adsorption isotherms calculated for a disordered configwether alternative has been considered by Alvageal. [12]
ration of solid particles, which was obtained from an equi-and Escobedo and de Pajli3] who have used histogram
librium hard-sphere Monte Carlo simulation with those for areweighting[17] in their recent studies. This method is not
fluid confined in an ordered arrdfcc) of solid particles. The SO convenient in the present case because the very large
purpose of this paper is to follow up on this earlier work with number of particles in the simulations at high density make
additional investigations of some issues. In particular wethe distribution functions in our grand ensemble simulations
make a wider study of the dependence of the results on thextremely narrow. In the Gibbs-Duhem integration method
number of realizations of the porous matrix considered andve propagate the chemical potential of the phases in coex-
we investigate the utility of the Gibbs-Duhem integration istence along the saturation line by integrating the expression
method[14] for determining the phase coexistence in thesd 16]
systems more efficiently.
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FIG. 1. TemperaturkT/e;s VS densitypo?f/(l— n) (whereyis FIG. 2. Temperatur&T/es; VS densitypaf3f/(1— n) phase dia-

the volume fraction of the hard-sphere mafrooexistence curves grams for 12-6 fluid confined in a single realization of the disor-
for 12-6 fluid confined in an ordered fcc matrix calculated via ther-dered matrix calculated via thermodynamic integratiGspen
modynamic integratiorfopen circley and via Gibbs-Duhem inte- circles and via Gibbs-Duhem integratidnlosed circlescompared
gration(closed circlescompared with that of the bulk fluidine). with that of a bulk fluid(line).

where A in front of a quantity denotes a difference in that the shape of the coexistence curve for the confined fluid is
property between the two phases and it is understood that theery similar to that of the bulk fluid although the critical
derivative is being evaluated along the coexistence curveaemperature is substantially lowered by confinenéuai.
This equation has the form of an ordinary differential equa- In Fig. 2 the corresponding comparison is shown for the
tion and can be integrated to giye,,.,=f(T). The choice disordered matrix using the same realization considered in
of integrator is influenced by the need to minimize the num-the earlier work[9]. The implementation of the Gibbs-
ber of evaluations on the right-hand side of EL, since this  Duhem integration turned out to be more problematic in this
requires a computer simulation of each coexisting phase. Farase. First of all we note that in the earlier results of Page
this reason predictor-corrector techniques have an advantaged Monsor{9] the phase diagram shows evidence of a sec-
over Runge-Kutta and some other more sophisticated metlond phase transition at the low density side of the main co-
ods. We use the third order Adams-Bashforth predictorexistence region. The coexistence points marked here were
corrector schem¢18], which is a reasonable compromise estimated simply on the basis of the jumps in the adsorption
between simplicity and stability properties. For the start upisotherms. To carry out the thermodynamic integration, the
of this scheme we need the first three valuestf[dT) (we  isotherms were integrated assuming that these jumps marked
call this a start up sgtwhich requires an independent calcu- the equilibrium points, an assumption that does not signifi-
lation of the coexistence properties using thermodynamic ineantly impact the accuracy of the calculated vapor-liquid co-
tegration. Nevertheless, the Gibbs-Duhem integratiorexistence properties. Thus for the Gibbs-Duhem integration
method is still potentially much less time consuming thanwe only attempted a calculation of the main coexistence re-
thermodynamic integration. gion. As can be seen there is good agreement between the
We have tested the Gibbs-Duhem approach for two caseswo calculation methods. However, to obtain this agreement
the ordered fcc matrix and a single realization of the disorwe had to restart the integration froRf =0.70 with the start
dered matrix. In Fig. 1 we compare phase diagrams calcudp setT* =0.65, 0.675, and 0.70. At this point the phase
lated via Gibbs-Duhem integration with those obtained viadiagram obtained via thermodynamic integration shows a
thermodynamic integratiofiL1] for the fluid confined in the significant increase in the coexisting vapor density. The
fcc matrix. In this figure the bulk vapor-liquid coexistence Gibbs-Duhem integration would not have captured this effect
curve, corrected for the effect of truncating the potential, isif we had not restarted the integration wiltf =0.7 in the
also shown. This was calculated from the accurate equatiostart up set. Gibbs-Duhem integratifi,16 has been suc-
of state of Johnsost al.[19]. For the Gibbs-Duhem integra- cessfully applied most often to systems with relatively
tion we used a temperature intervAlT* =0.025 (where  smoothly changing coexistence densities as a function of
T* =kT/es4) with the start up sefl* =0.6, 0.625, and 0.65 temperature. A system like the present one requires addi-
(for the highest temperature shown we restarted the Gibbgional tests of the phase behavior and a more sophisticated
Duhem integration withAT* =0.0125 and a start up set integration scheme with a smaller integration step, thereby
T*=0.775, 0.7875 and 0.8 with the values at the middlereducing the effectiveness of the approach.
temperature obtained by interpolatjoVe see that there is We now turn to the calculation of the phase diagram av-
very good agreement between the two methods for calculatraged over several different realizations of the porous ma-
ing the phase coexistence. Notice that for this ordered matriterial. We used only thermodynamic integration in this cal-
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FIG. 3. Temperatur&T/ess VS densitypa?f/(l— n) phase dia-
grams for 12-6 fluid confined in a single realization of the disor-

dered matrixopen circlesand for the multiple realizationglosed ~ 2ngles for adsorption and desorption, respectivalyd averaged
circles. ten realizations foF* = 0.6 and 0.65. and five realizations °VE' t€n realization&closed circles and triangles for adsorption and

for the rest of the poinjscompared with that of a bulk fluidine). ~ desorption, respectivelyDashed lines connect phases in coexist-
ence for the single realizatiofight line) and for multiple realiza-

culation. Adsorption isotherms we calculated for eachtions (left line). Here\? is the activity at vapor-liquid coexistence
realization at every temperature point and then averaged ovéar the bulk.
the realizations to produce a single average isotherm. This
isotherm was then used in the thermodynamic integratioon the left side of the phase diagram for the single realization
procedure to calculate properties of the phases in coexistase. We have found steplike behavior in this region for
ence. Thermodynamic integration requires knowledge of asome of the isotherm&@s was the case for the two realiza-
initial grand potential density for a condensed fluid state outtions looked at by Page and Mons#) but not others and
side the two-phase region. These values were estimated udere is some variation in the location of the step between
ing a single matrix realization, since at high temperatureglifferent realizations.
and high densities the properties of the confined fluid be- It is also of interest to compare the averaged adsorption
come relatively insensitive to changes in the matrix realizaisotherms with those for a single realization and such a com-
tion. parison is shown foff* =0.60 in Fig. 4. It can be seen that
The results for the phase diagram calculated in this wayhe coexistence densitidgsonnected with dashed lineare
are shown in Fig. 3 together with those for the single realsimilar for both the multiple and single realization isotherms.
ization considered in the earlier work. Results at the lowesit the same time it is clear that the second transition seen for
two temperatures T* =0.6 and T* =0.65) were averaged the single realization isotherrtat about\/\°=0.0002) is
over ten matrix realizations and those at the higher temperaiot present for the averaged isotherm. On the other hand,
tures were averaged over five realizations. Again the coexthere is very close agreement of the high density branches of
istence curve for the bulk fluid is also shown. There arethe isotherms in the two cases.
several things to notice about these results. First there is very Given this new information it is worthwhile to reflect
good agreement for the liquid phase coexistence densities tfiefly on the status of the second phase transition. The evi-
the confined fluid between the single realization results andence for this transition in the single realization studied by
the realization averaged results. Also, while there are somBage and Monsoff] is quite convincing and has been con-
quantitative differences, the vapor phase densities follow dirmed for the case of the repulsive matrix that was also
similar trend in the two cases. A key feature here is the higttonsidered in that work by Escobedo and de P4bR&j as
density of the vapor phase relative to that in the bulk. This iswvell as for single realizations of models with equal sized
due to the presence of relative high density fluid in the lowersolid and fluid particle$12,13. The possibility of an addi-
porosity regions of the matrix. This point is well illustrated tional phase transition arises because of the variation in po-
by the computer graphics visualization in Fig. 14 of the sec+osity in the system leading to regions of low porosity that
ond paper by Page and Monsf#1 and qualitatively similar can span the sample. The second transition seen by Page and
behavior is seen in visualizations for other matrix realiza-Monson[9] is associated with the filling of such a sample
tions. In both the single realization case and the averagespanning region of low porosity. What appears to happen for
results we observe a significant narrowness of the phase dithe present model is that these sample spanning regions of
gram toward higher densities and a shoulder in the vapodlow porosity are fragile to variations in matrix realization
densities in the temperature region betwé@én=0.65 and (whether this true for other size ratios is not cle@f course
T* =0.75. On the other hand, averaging over several matrixa similar analysis applies to the main vapor-liquid transition.
realizations eliminates the apparent second transition showFhe existence of this transition requires the presence of a

FIG. 4. Adsorption/desorption isotherms of den$zity?f vs rela-
tive activity A/\° at kT/e;;=0.6 for the 12-6 fluid confined in a
single realization of the disordered matrigpen circles and tri-
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region of high porosity, which is sample spanning. Our re-equation more accurate for a given step size in tempepature
sults indicate that for the present system the existence afhich is not always the case in these systems. Phase diagram
such regions is robust to variations in the realization. Hys-calculations were presented based on adsorption isotherms
teresis between high and low density branches in the adsorpveraged over several realizations of the porous structure
tion isotherms indicative of the vapor-liquid transition is carried out via thermodynamic integration. Such features of
seen for all the realizations we have studied. Moreover byhe phase behavior as lowering of the critical temperature,
varying the parameters in the model we can obtain hysteresigarrowness of the coexistence region, and its shift toward
loops that bear a remarkable resemblance to those seen &fgher densities that were seen in earlier results for a single
perimentally[11]. realization[9] are preserved in the averaging over realiza-

To summarize, we have presented some new results s However, the second transition seen for a single real-

th? calculgtlon Qf phas_e diagrams for a molecu_lar model of fation turned out to be much more realization sensitive and
fluid confined in a disordered porous material. We have

tested the applicability of the Gibbs-Duhem integration tech—It does not seem to survive the averaging over realizations.
nigue to this problem. With this technique we have been able

to reproduce results obtained via thermodynamic integration. This work was supported by the National Science Foun-
However the method works best when the coexistence demtation (Grant Nos. CTS-9700999 and CTS-9906)/9We
sities are relatively smoothly varying functions of tempera-are grateful to E. Kierlik, G. Tarjus, and M. L. Rosinberg for

ture (a feature that makes the solutions of the differentialongoing discussions on the issues under study in this work.
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