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Phase transition in globally coupled Rssler oscillators
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Kyushu University, Kasuga, Fukuoka 816-8580, Japan
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We study a population of identical Bsler oscillators with global coupling. When the coupling constant is
increased, an order-disorder-type phase transition occurs. Partial phase synchronization occurs in the ordered
phase, although the amplitude of the oscillation is randomly distributed. We analyze the phase transition with
a self-consistent method.

PACS numbg(s): 05.45.Xt, 64.60.Cn

Coupled oscillator models have been intensively studiedveraged motiorx(t)) exhibits a sinusoidal motion with a
as typical nonlinear-nonequilibrium systeni$—3]. Such  definite amplitude and a frequency d#=0.017. Each oscil-
coupled oscillator models are used for the description ofator exhibits more chaotic time evolution; however, the av-
Josephson-junction arrays or biological rhythms. Collectiveeraged motion is fairly regular.
oscillatory motion appears in a population of oscillators with  Figure 2 displays a snapshot d&k;(t),y;(t)] for i
different natural frequencies or in a population of identical=1,2,... N atd=0.01 and 0.017. Ai=0.01, (x(t))~0;
oscillators under external noises, when the mutual couplingherefore, each oscillator's motion is almost independent and
is increased. A mean-field theory can be applied for the glothe snapshot profile oi{,y;) is randomly distributed in the
bally coupled oscillator systems. On the other hand, we hav@/hole region of the Rssler attractor. Ad=0.017, the col-
found a phase transition in a coupled map lattice where eadlective motion appears and each oscillator tends to be syn-
dynamical element exhibits deterministic chg@s5]. We  chronized by the collective oscillation. This phenomenon is
will show a macroscopic transition like a phase transition insimilar to the order-disorder phase transition in thermody-
a large population of identical Reler oscillator$6]. namic systems. A similar transition was also found by Pik-

The model equation is written as ovsky, Rosenblum, and Kurth8]. They mainly discussed

N mutual synchronization in a population of oscillators with
dx; d different natural frequencies. We discuss the order-disorder
gt YitEty ,Zl (X =x)), transition in a population of identical oscillators with a self-
consistent method.

We assume that the averaged motion can be approximated

%zxﬁayi , (1) by a sinusoidal wave._That is,l\lEjN:lxj(t)=<x(t)) is as-
sumed to beXy+ X;sin(wt), where X, denotes a time-
dz averaged value ofx(t)), and X;,» denote the amplitude
E:b‘FXiZi_CZi, 10 l I I I
wherea, b, andc are parameters of the Bsler equationg 5 8
is the coupling constant, ard is the total number of oscil- A
lators. For parameters such as-0.15,b=0.2, andc= 10, ¥ 0 ~
the power spectrum of(t) manifests itself in sharp peaks, sl |
the phase of each oscillator is well defined, and the phase
synchronization occurs easily. The phase synchronization is -10 L ! L L
a phenomenon in which the amplitudes of chaotic oscillators (q) 900 3920 3940 3960 3980 4000
are not synchronized but the phases are s_ynchronﬁvzeﬂ_l. 10
As ais increased fob=0.2 andc= 10, the Rassler attractor oo
becomes a funnel-like attractor and the projection of the at- 5
tractor into thex-y plane does not have a hole region for A /\MM{\/\M/\MM{\
>0.18. For parameters such @s=0.195,b=0.2, andc g o
=10, the peaks of the power spectrumx¢f) are broad, and Y v U \] U \] U U U v \j V \) \) \j
the oscillation is noisier. We will show numerical results for ST i
parametera=0.195,b=0.2, andc=10. Figure 1 displays a 10 . . . .
time sequence of the average of;; ie., (x(t)) ) 3900 3920 3940 3960 3980 4000
=(LN)=L (1) for N=2000. The numerical simuation
was performed with the Runge-Kutta method. ds 0.01, FIG. 1. Time sequences of the averaged motior(t))

the time sequencéx(t)) seems to be rather random and the=(1/N)=]_,x;(t) by Eq. (1) for a=0.195p=0.2¢=10, andN
amplitude of the averaged motion is small. However, the=2000 at(a) d=0.01 and(b) 0.017.
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'20_20 _1'0 ('J 1'0 2 FIG. 3. Fourier amplitud for the frequency as a function of
(b) X f in the forced Resler equatior2) at (a) d=0.01 and(b) 0.017.
FIG. 2. Snapshot profiles ofx(,y;) at (@) d=0.01 and(b) To+T
0.017. X1=(2IT) iT (x(t))sin(wt)dt
0

and the frequency of the sinusoidal oscillation. Then the cou- N

pling term d/NE}\'Zl(xj—xi) in the model equatior(1) is _ iTO*T e
reduced tod[ Xg+ X;Sin(wt)—x]. The equation for each os- (2 To (1/N)j§1 Xj(Dsinwt)dt
cillator is equivalent to the forced Reler equation:

N
To+T
dx = (t)si
oy 2t d[Xot Fsin(wt) X}, 2/(NT)J_§=:1 - X;(t)sin(wt)dt.
dy Each oscillatoij obeys the same equatid®) independently
a=x+ ay, (2)  and the quantity (27)f12”xj(t)sin(wt)dt takes the same

value X for everyj. The averaged valu¥, is therefore equal

z to X for the forced Resler equatior{2); that is, the ampli-
a=b+XZ—CZ, tude X, of the averaged motion is equal to the temporal
averageX of the degree of the phase synchronization to the

where the amplitude of the forcirfgs equal toX;. We have external periodic forceX; is also equal td. The condition
investigated Eq(Z) by Changing for certain fixed values of szlzf represents the self-consistent condition that the
X, andw. The time sequence aft) is chaotic; however, the averaged motiokix(t))=X,+ X sin(wt) plays the role of the
motion tends to be Synchronized to the external periodi@xternal force to each oscillator. The intersection of ¥e
force. To measure the degree of the synchonization, we have X(f) curve andX=f gives a self-consistent solution. The

calculated the amplitude of the sinusoidal component witHntersection isX=0 for d=0.01. It implies that collective
frequencyw in the chaotic time sequencgt) by motion cannot occur for the parameter. The self-consistent

solutions areX=0 and 5.21 ford=0.017. The solutiorX

=0 may be unstable and the nontrivial soluti¥r-5.21 is
realized, which implies the appearance of the collective os-
cillation. On the other hand, we have calculated the ampli-
The quantityX does not depend on an initial valuexdtt) or ~ tude of the collective oscillation in the time evolution of Eq.
T, if T is sufficiently large. Figure 3 displays the relation of (1) by
X andf for the parameter&) d=0.01X,=0.123w=1.012 —
and (b) d=0.017X,=0.143w=1.016. The time interval _ \/ i 0 IRVEY.

=40000 is used. The parametets and w are numerically A (M) To (1) = Xo)dt

estimated values from the time sequefxg)) by the direct

numerical simulation of Eq(1). The amplitudeX; of the If the averaged motion is expressed dx(t))=Xg
averaged motion in Eq1) is written as + Xysin(wt), A is equal toA=X,/\2=X/2. Figure 4 dis-

To+T .
X=(2IT) iT X(t)sin wt)dt.
0
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FIG. 4. Root-mean-square amplitudeof the collective oscilla-

tion as a function of the coupling constant. The square marks denote FIG. 5. Phase shifte between the time sequenggt) by the

the values from the direct numerical simulation of Etj). and the  forced R@sler equatiorf2) and sint) as a function ofw.

+ marks denote the values obtained by the self-consistent method

shown in Fig. 3. the direct numerical simulation of Eql). The phase shift
decreases as is increased. This is becausft) tends to lag

plays the numerically obtained values Afas a function of  pehind the external force sia(), as the frequencyw is

the coupling constand. The points marked by squares de- faster. The averaged motion Bft) should be equal to the

note A by the direct numerical simulation of E€L) and the  external force by the self-consistent condition. It implies that

points marked by+ denoteA=X/\2 obtained by the self- the phase shift should be zero. The phase shift0 for

consistent method shown in Fig. 3. The valueXgfandw ~ ~1.0152. It is close to the numerical value~1.016 by the
are assumed b¥,=0.0968+2.63 and w=1.005+ 0.654, direct simulation of Eq(1) atd=0.017.
which are linear fittings oX, and w obtained from the av- To summarize, we have analyzed an order-disorder-type

eraged motion(x(t)) in the time evolution by Eq(1) for  phase transition in globally coupled &er oscillators with
severald. The self-consistent solution is a good approxima-a self-consistent method. In the disordered phase, each oscil-
tion. lator's motion is nearly independent. Some phase synchroni-
We have used a certain value of the frequeacyf the  zation occurs and collective oscillation appears in the or-
averaged motion to calculate E@2). The frequencyw dered phase. The collective motion is assumed to be a simple
should also be obtained with a self-consistent method. If thginusoidal oscillation, and the amplitude and the frequency
frequencyw is changed in Eq(2), x(t) tends to be synchro- have been numerically obtained by a self-consistent method
nized to the periodic force with the frequenay However, from the chaotic motion of the forced Bsler equation. The
there may be a phase shift between the external forcself-consistent method gives a good intuitive interpretation
f sin(wt) andx(t). To measure the phase shift, we have cal-for the appearance of the collective motion.
culated X:(2fl')f13”x(t)sin(wt)dt and Y=(2/T)f18” The averaged values of chaotic motion are generally not
X(t)cost)dt. The time-averaged phase shift is evaluated bys’m.OOth functpns of the parameters. For_examp!e, thgre may
exist many window structures of periodic solutions in any
a=arctarfY/X). parameter ranges. However, roughly speaking, the dynamical
transition in a globally coupled chaotic oscillator is inter-
Figure 5 displays the relation o& and w for d=0.017, preted to be an analogue of the order-disorder-type phase
X0=0.143, and=5.22, which are the values estimated from transition in thermodynamic systems.
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