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Short-time critical dynamics for the transverse Ising model

M. Santos*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, SC, Brazil

~Received 15 December 1999!

We have analyzed the short-time critical behavior for the one-dimensional quantum transverse Ising model
through Monte Carlo simulations at zero temperature. We used the scaling relation for the dynamics at the
early time stages in order to obtain the static critical exponents (b,n) and the dynamical critical exponentz for
this model. While the values found for the static exponents are in agreement with the exact ones, here, the
dynamical critical exponent is found for a quantum spin model.

PACS number~s!: 64.10.1h, 64.60.Cn, 64.60.Ht
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I. INTRODUCTION

The short-time critical dynamics, recently predicted
Janssen, Shaub, and Schmittmann@1# for the O(N) vector
model by renormalization group arguments, has been ex
sively used, with success, to determine the critical expon
of various other physical systems through numerical simu
tions out of thermodynamic equilibrium@2–6#.

The main result of this prediction is associated with
universal scaling behavior already in the initial stages of
evolution of a spin system towards the equilibrium states
the critical point. This power-law scaling form emerg
when the magnetization and the correlation length of
initial configuration are zero and very small. In addition,
occurs only after a microscopic time that is small when co
pared with macroscopic times, but is large in the microsco
sense. However, its most surprising prediction is the crit
initial increase of the magnetization, with a new independ
critical exponentu. But there is a limitation for the use o
this method, the short-time critical dynamics can be u
only for system models in which the critical point is exac
known.

More recently, it has been numerically argued that
short-time universal behavior also occurs in systems
which the initial configuration of the spin system is com
pletely ordered@6#. Besides, in this case, it is possible
localize the critical point.

In this work we have applied the short-time critical d
namics for the one-dimensional transverse Ising model
zero temperature, through numerical simulation. This mo
is very well studied in the literature and its critical param
eters are exactly known@7,8#. We have used a new Mont
Carlo method, apropriate for the investigation of the grou
state properties of quantum spin systems@9# in order to ob-
tain the time evolution of the system towards the equilibriu
states. This method is distinct from other Monte Carlo me
ods used to simulate quantum spin systems and has
extensively applied to several quantum spin models@10–14#.

We show that, by applying this method to a complete
ordered initial state, it is possible to obtain the static (b,n)
and the dynamical critical exponents~z! using the short-time
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scaling formalism. The values we obtain for the static exp
nents are in agreement with results found in the literature
the equilibrium states of the model. However, we belie
that the value found for the dynamical critical exponent
the first estimate of this exponent for the transverse Is
model.

II. TRANSVERSE ISING MODEL

We start by defining the Hamiltonian model in which th
z components of a quantum spin chain are coupled as in
usual Ising model. In addition, a transverse external field
applied on the system in order to include some noise an
avoid a completely ordered system at zero temperat
Then, we can write the following expression for the ener
of the system:

H52(
i

s i
zs i 11

z 2G(
i

s i
x , ~1!

wheres i
x ands i

z are the Pauli operators of the spini and the
parameterG gives the strength of the transverse field. D
pending on the values ofG, the system can be found in tw
distinct phases, characterized by the value of the order
rameter. In this model the order parameter is the longitud
magnetization by spinMz , defined as

Mz5
1

N (
i

s i
z , ~2!

whereN is the number of spins in the system. IfG,1, Mz
Þ0 and the system is in an ordered phase~ferromagnetic!.
Otherwise, ifG>1 the system is in a disordered phase~para-
magnetic! andMz50. The transition between the ferroma
netic and paramagnetic phases is continuous atGc51 and it
is in the same universality class as the two-dimensional Is
model, which is characterized by the following static critic
exponents:n51,b5 1

8 , and g5 3
4 . This critical behavior of

the transverse Ising model is a consequence of the fact
quantum statistical models ind dimensions can be repre
sented by classical statistical models in (d11) dimensions
@7,8#.
7204 ©2000 The American Physical Society
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III. SCALING RELATIONS

Janssen, Schaub, and Schmittmann@1# derived a scaling
relation for the relaxation of thekth moment of the magne
tization M (k)(t) at time t, for theO(N) vector model, using
the e expansion. Near the critical point it can be written a

M (k)~ t,t,L,m0!5b2kb/nM (k)~b2zt,b1/nt,b21L,bx0m0!,
~3!

where thekth moment of the magnetization is defined by

M (k)~ t !5
1

Ld K S (
i

s i~ t ! D kL . ~4!

In these equations,t5(T2Tc)/Tc is the reduced tempera
ture,L is the linear lattice size,d is the spatial dimension o
the system,m0 is the nonzero initial magnetization,b is the
spatial scaling factor,b and n are, respectively, the stati
critical exponents of the magnetization and of the correlat
length,z is the dynamical critical exponent andx0 is a new
independent critical exponent, that governs the initial
crease of the magnetization. The initial state is obtained fr
a high-temperature state after a sudden quenching. Th
fore, the initial magnetization and the initial correlatio
length are very small. This scaling law has the same form
that of the dynamic finite-size scaling theory, valid at t
thermodynamical equilibrium@15# when the initial configu-
ration is completely ordered. Then, takingm051, the scaling
relation given by Eq.~3! becomes

M (k)~ t,t,L !5b2kb/nM (k)~b2zt,b1/nt,b21L !. ~5!

Jasteret al. @6# assumed that this scaling relation is al
valid for short times and used the scaling relations~3! and
~5! to determine the critical exponents for the thre
dimensional Ising model. In both cases the results obtai
are comparable with those found in numerical simulations
equilibrium. However, relation~5! also allows us to deter
mine the critical temperature of the model and provides m
accurate results than those obtained by relation~3!.

In this work we assume a relation similar to Eq.~5! for
thekth moment of the longitudinal magnetization of the on
dimensional~1D! transverse Ising model already in the in
tial stages of the evolution, when the initial configuration
the system is completely ordered. Then, if we define thekth
moment of the longitudinal magnetization, at timet, as

Mz
(k)~ t !5

1

L K S (
i

s i
z~ t ! D kL , ~6!

we can assume the following short-time scaling relation:

Mz
(k)~ t,z,L !5b2kb/nMz

(k)~b2zt,b1/nz,b21L !, ~7!

wherez5uGc2Gu is the reduced strength of the transver
field. For k51 the above equation gives the time evoluti
of the longitudinal magnetization. In this case, if we choo
b5t1/z for the spatial scaling factor we can show, for suf
ciently large values ofL, that the following scaling relation is
valid:

Mz~ t,z!5t2b/nzMz~1,t1/nzz!. ~8!
n

-
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Therefore, at the critical point, wherez50,

Mz~ t !; t2u1, ~9!

where u15b/nz. With this relation it is possible to deter
mine the dynamical critical exponentz if b andn are given.
However, other relations can be obtained from the sca
relation ~7!. For instance, taking the derivative in both sid
of Eq. ~8! with respect toz we can show that the logarithmi
derivative of the longitudinal magnetization evolves in tim
at the critical point, as

dzMz~ t,z!uz50;tu2 , ~10!

whereu251/nz and

dz5
]

]z
ln. ~11!

Another important quantity, which is used to character
the critical point in numerical simulations at equilibrium,
the Binder’s cumulant. Here, we have defined a simil
quantity using the second moment of the order paramete

Uz~ t !5
Mz

(2)~ t !

@Mz~ t !#2
21. ~12!

Within the short-time scaling arguments we can show th

Uz~ t !;tu3, ~13!

whereu35d/z andd is the spatial dimension of the system
Therefore, we have three dynamical scaling relations

three unknown exponents. That is, through Eqs.~9!, ~10!,
and ~12! we can determine each one of the exponentsz,b,
andn. Although the 1D transverse Ising model presents
exact solution at equilibrium, we cannot obtain the ex
value of the dynamical critical exponentz. Only for the dy-
namical Ising model in one dimension is it possible to fi
the exact value ofz, as was shown by Glauber@16# almost 40
years ago. To the best of our knowledgez has not been
obtained for a quantum spin model. In this work we ha
performed Monte Carlo simulations to determine the init
relaxation towards equilibrium and to obtain the related
ponentsu i ,i 51,2, and 3.

IV. MONTE CARLO METHOD AND
NUMERICAL RESULTS

The Monte Carlo method used in this work was specia
introduced in order to study the ground-state properties
quantum spin systems@9#. The method is based on the fa
that statistical quantum models ind dimensions can be
mapped into the statistical classical models ind11 dimen-
sions @7,8#. In addition, it takes into account that a matr
with non-negative elements can be regarded as a tran
matrix of a classical statistical model, with the value of t
leading eigenvalue and its eigenvector providing the stat
cal properties of the model. Then, this Monte Carlo alg
rithm gives information about the leading eigenvector.

The method is implemented as a Markov process,
which the stationary probability of a given configuration
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written as a product of transfer matrices. The transition pr
ability between two configurations obeys the detailed b
ance condition and the system evolves in time according
the Metropolis prescription. A complete description of th
method, applied to the one-dimensional transverse Is
model can be found in Ref.@13#.

In this work we have performed simulations for chains
linear sizeL5256 over 1000 samples and we have measu
the quantities given by Eq.~6!, for k51 and k52, at the

FIG. 1. The log-log plot of the magnetization vs time for the tw
dimensional Ising model at the critical value of the temperature

FIG. 2. Time evolution of the longitudinal magnetizationMz(t),
on a log-log scale, for the one-dimensional transverse Ising m
at the critical value of the amplitude of the transverse field. T
points represent the MC data and the continuous line is the be
to the data points.
-
l-
to

g

f
d

critical point Gc51. In order to obtain the time evolution o
the logarithmic derivative of the magnetization we have a
performed simulations atG5Gc60.005, and we have use
the quadratic interpolation algorithm to do the derivative
each timet. As usual, the time unit is given in Monte Carl
step ~MCS!, which is defined by a complete update of th
spins of the system.

At this point a comment about the microscopic time

el
e
fit

FIG. 3. Time evolution of the Binder’s cumulantUz(t), on a
log-log scale, for the one-dimensional transverse Ising model at
critical value of the amplitude of the transverse field. The poi
represent the MC data and the continuous line is the best fit to
data points.

FIG. 4. The log-log plot of the logarithmic derivative of th
longitudinal magnetization with respect toz vs time for the one-
dimensional transverse Ising model at the critical value of the a
plitude of the transverse field. The points represent the MC data
the continuous line is the best fit to the data points.
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necessary. Different from the simulations of the tw
dimensional Ising model, the microscopic time in our mod
is not very small. In fact, we can see in Figs. 1 and 2 the ti
evolution of the order parameter, represented by the po
for both models. Whereas for the Ising model the mic
scopic time is smaller than 10 MCS, for the transverse Is
model it is about 7000 MCS. Therefore only after this val
of time the longitudinal magnetization exhibits a power-la
scaling form. Then, the simulations were carried out
times up to 105, and the plotted quantities were analyzed
73103,t,13105 MCS, at time intervals of 103 MCS.

Now, we investigate the short-time behavior of the tra
verse Ising model in order to obtain the critical exponents
Fig. 2 we have plotted, on the log-log scale, the longitudi
magnetization vs time. The points represent the MC d
while the full line gives the best fit to the data points. T
slope of this line isu150.061660.0004. The time evolution
of the dynamic Binder’s cumulant is exhibited in Fig. 3 on
log-log scale. From the best fit to the data points we obt
u250.53160.002. Finally, in Fig. 4 we present the log-lo
plot for the logarithmic derivative of the longitudinal mag
netization as function of time. The slope of the full line
u350.51460.003. Therefore, with these values, and us
Eqs.~9!, ~10!, and~12!, it is possible to show that the expo
nentsb, n, andz are given by

b50.11960.002,

n51.0360.01,

and
. B
-
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ts,
-
g

r
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l

a,

in

g

z51.88360.007.

The relative errors in the values of the static exponents
less than 5%, when compared with their exact values.
value found for the dynamical critical exponent is close
the best value@5# accepted for the two-dimensional Isin
model using the Metropolis prescription. We believe that t
value is the first estimate of the dynamical critical expon
for a quantum spin model.

V. CONCLUSIONS

We have used the short-time scaling law to determ
some critical exponents of the transverse Ising model in
dimension at zero temperature. The Monte Carlo method
ployed to obtain the relaxation of the order parameter alre
at the initial stages of the evolution towards the thermo
namical equilibrium was recently introduced and is approp
ated to obtain the ground-state properties of quantum s
models. To the best of our knowledge, an estimate of
dynamical critical exponentz for quantum models has no
been obtained until now. On the other hand, the values fo
for the static critical exponents are in agreement with
exact ones.
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