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Short-time critical dynamics for the transverse Ising model
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We have analyzed the short-time critical behavior for the one-dimensional quantum transverse Ising model
through Monte Carlo simulations at zero temperature. We used the scaling relation for the dynamics at the
early time stages in order to obtain the static critical expongbits)(and the dynamical critical exponenfor
this model. While the values found for the static exponents are in agreement with the exact ones, here, the
dynamical critical exponent is found for a quantum spin model.

PACS numbegps): 64.10+h, 64.60.Cn, 64.60.Ht

[. INTRODUCTION scaling formalism. The values we obtain for the static expo-
nents are in agreement with results found in the literature for

The short-time critical dynamics, recently predicted bythe equilibrium states of the model. However, we believe
Janssen, Shaub, and Schmittmah for the O(N) vector  that the value found for the dynamical critical exponent is
model by renormalization group arguments, has been exteﬁhe first estimate of this exponent for the transverse Ising
sively used, with success, to determine the critical exponent&odel.
of various other physical systems through numerical simula-
tions out of thermodynamic equilibriufi2—6].

The main result of this prediction is associated with a
universal scaling behavior already in the initial stages of the We start by defining the Hamiltonian model in which the
evolution of a spin system towards the equilibrium states aZ components of a quantum spin chain are coupled as in the
the critical point. This power-law scaling form emergesusual Ising model. In addition, a transverse external field is
when the magnetization and the correlation length of thexPplied on the system in order to include some noise and to
initial configuration are zero and very small. In addition, it v0id a completely ordered system at zero temperature.
occurs only after a microscopic time that is small when com-T"€n, we can write the following expression for the energy
pared with macroscopic times, but is large in the microscopi® the system:
sense. However, its most surprising prediction is the critical
initial increase of the magnetization, with a new independent . 2 X
critical exponentd. But there is a limitation for the use of H= _Z i Ui+1_r§i: i @
this method, the short-time critical dynamics can be used
only for system models in which the critical point is exactly
Known. whereo] andof are the Pauli operators of the spiand the

More recently, it has been numerically argued that theParameted” gives the strength of the transverse field. De-
short-time universal behavior also occurs in systems foP€nding on the values df, the system can be found in two
which the initial configuration of the spin system is com- distinct phases, characterized by the value of the order pa-

pletely ordered6]. Besides, in this case, it is possible to rameter. In this model the order parameter is the longitudinal
localize the critical point. magnetization by spi,, defined as

In this work we have applied the short-time critical dy-
namics for the one-dimensional transverse Ising model, at 1
zero temperature, through numerical simulation. This model MZZN 2 ot )
is very well studied in the literature and its critical param- '
eters are exactly knowf7,8]. We have used a new Monte
Carlo method, apropriate for the investigation of the groundwhereN is the number of spins in the system.llkK1, M,
state properties of quantum spin systd®kin order to ob- #0 and the system is in an ordered phé&®gromagneti.
tain the time evolution of the system towards the equilibriumOtherwise, ifl’=1 the system is in a disordered phégara-
states. This method is distinct from other Monte Carlo meth-magneti¢ andM,=0. The transition between the ferromag-
ods used to simulate quantum spin systems and has beeptic and paramagnetic phases is continuous.atl and it
extensively applied to several quantum spin mof&s-14. is in the same universality class as the two-dimensional Ising
We show that, by applying this method to a completelymodel, which is characterized by the following static critical
ordered initial state, it is possible to obtain the staji; ) exponentswy=1,8=3%, and y=3. This critical behavior of
and the dynamical critical exponer® using the short-time the transverse Ising model is a consequence of the fact that
guantum statistical models id dimensions can be repre-
sented by classical statistical models oh-+1) dimensions
*Electronic address: marcio@fisica.ufsc.br [7,8].
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Ill. SCALING RELATIONS Therefore, at the critical point, whege=0,

Janssen, Schaub, and Schmittmhhderived a scaling M, (t)~ t= 1, 9)
relation for the relaxation of thkth moment of the magne-
tization M(®(t) at timet, for the O(N) vector model, using where 6,= 8/vz. With this relation it is possible to deter-
the € expansion. Near the critical point it can be written as mine the dynamical critical exponenif 8 andv are given.
However, other relations can be obtained from the scalin
MOt 7,L,m) =b ="M O (b7, b 7,6 L, b*omy), relation (7). For instance, taking the derivative in both sidesg
3 of Eq. (8) with respect taZ we can show that the logarithmic

where thekth moment of the magnetization is defined by ~derivative of the longitudinal magnetization evolves in time,
at the critical point, as

1 k
M(k)(t)zﬁ<(§i: O'i(t)) > (4) SM(t,0)] —o~t7%, (10)

i ) where 6,=1/vz and
In these equationsz=(T—T.)/T. is the reduced tempera-

ture, L is the linear lattice size] is the spatial dimension of

the systemmy is the nonzero initial magnetizatiob,is the 552(9—5'”- (13)
spatial scaling factorg and v are, respectively, the static

critical exponents of the magnetization and of the correlation = Another important quantity, which is used to characterize
length, zis the dynamical critical exponent ang is a new  the critical point in numerical simulations at equilibrium, is
independent critical exponent, that governs the initial in-the Binder's cumulant. Here, we have defined a similiar

crease of the magnetization. The initial state is obtained fror@luantity using the second moment of the order parameter
a high-temperature state after a sudden quenching. There-

fore, the initial magnetization and the initial correlation M@t
length are very small. This scaling law has the same form as U,(t)= 5~ (12
that of the dynamic finite-size scaling theory, valid at the [M(1)]

thermodynamical equilibriunpl5] when the initial configu-

ration is completely ordered. Then, taking=1, the scaling

relation given by Eq(3) becomes U (t)~t% (13)
zZ )

Within the short-time scaling arguments we can show that

(K) —hkBlvp (K (=2 pllv- |~ 1
MP(t, L) =b MP(b™,b™ b L), ®) where §;=d/z andd is the spatial dimension of the system.

Jasteret al. [6] assumed that this scaling relation is also ' nerefore, we have three dynamical scaling relations for
valid for short times and used the scaling relatié@sand  hrée unknown exponents. That is, through E@, (10),
(5) to determine the critical exponents for the three-and(12) we can determine each one of the exponenp
dimensional Ising model. In both cases the results obtaine@"d »- Although the D transverse Ising model presents an
are comparable with those found in numerical simulations agXact solution at equilibrium, we cannot obtain the exact
equilibrium. However, relatior5) also allows us to deter- Vvalue of the dynamical critical exponentOnly for the dy-

mine the critical temperature of the model and provides moré@mical Ising model in one dimension is it possible to find
accurate results than those obtained by relat®n the exact value of, as was shown by GlaubEt6] almost 40

In this work we assume a relation similar to E§) for ~ Y&&rs ago. To the best of our knowledgehas not been

thekth moment of the longitudinal magnetization of the one-obtained for a quantum spin model. In this work we have
dimensional(1D) transverse Ising model already in the ini- performed Monte Carlo simulations to determine the initial

tial stages of the evolution, when the initial configuration of "€laxation towards equilibrium and to obtain the related ex-

the system is completely ordered. Then, if we definekihe ~ PONentsé;,i=1,2, and 3.
moment of the longitudinal magnetization, at tites

M§k><t>=%<(2 af(t)

IV. MONTE CARLO METHOD AND

k> ©) NUMERICAL RESULTS

The Monte Carlo method used in this work was specially
introduced in order to study the ground-state properties of
guantum spin systen{€]. The method is based on the fact

Mgk)(tlg,l_):b—kﬁ/vMgk)(b—zt'bl/va—lL)' 7) that stati_stical quant_ur_n models_ id dimensi_ons can be
mapped into the statistical classical modeldin 1 dimen-
where §=|]—‘C—I‘| is the reduced Strength of the transverseSionS [7,8] In addition, it takes into account that a matrix
field. Fork=1 the above equation gives the time evolutionWith non-negative elements can be regarded as a transfer
of the longitudinal magnetization. In this case, if we chooseMatrix of a classical statistical model, with the value of the
b=t for the spatial scaling factor we can show, for suffi- leading eigenvalue and its eigenvector providing the statisti-

ciently large values of, that the following scaling relation is cal properties of the model. Then, this Monte Carlo algo-
valid: rithm gives information about the leading eigenvector.

The method is implemented as a Markov process, in
M,(t,0) =t #""M (1t%¢). (8)  which the stationary probability of a given configuration is

we can assume the following short-time scaling relation:
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t FIG. 3. Time evolution of the Binder's cumulahi,(t), on a

log-log scale, for the one-dimensional transverse Ising model at the
critical value of the amplitude of the transverse field. The points
represent the MC data and the continuous line is the best fit to the

i ; - dat ints.
written as a product of transfer matrices. The transition prob- ata points

ability between two configurations obeys the detailed bal- ) ) ) )

ance condition and the system evolves in time according t§'itical pointI’c=1. In order to obtain the time evolution of

the Metropolis prescription. A complete description of this the Ioganthrmc derllvat|ve of the magnetization we have also

method, applied to the one-dimensional transverse Isingerformed simulations af =I'c+0.005, and we have used

model can be found in Ref13]. e quadratic interpolation algorithm to do the derivative at
In this work we have performed simulations for chains ofach timet. As usual, the time unit is given in Monte Carlo

linear sizeL = 256 over 1000 samples and we have measured§€P (MCS), which is defined by a complete update of the

the quantities given by Eq6), for k=1 andk=2, at the SPINS of the system. _ o
At this point a comment about the microscopic time is

FIG. 1. The log-log plot of the magnetization vs time for the two-
dimensional Ising model at the critical value of the temperature.
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FIG. 2. Time evolution of the longitudinal magnetizatibhy(t), FIG. 4. The log-log plot of the logarithmic derivative of the
on a log-log scale, for the one-dimensional transverse Ising moddbngitudinal magnetization with respect fovs time for the one-
at the critical value of the amplitude of the transverse field. Thedimensional transverse Ising model at the critical value of the am-
points represent the MC data and the continuous line is the best fiilitude of the transverse field. The points represent the MC data and
to the data points. the continuous line is the best fit to the data points.
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necessary. Different from the simulations of the two- z=1.883+0.007.
dimensional Ising model, the microscopic time in our model
is not very small. In fact, we can see in Figs. 1 and 2 the time The relative errors in the values of the static exponents are
evolution of the order parameter, represented by the pointdess than 5%, when compared with their exact values. The
for both models. Whereas for the Ising model the micro-value found for the dynamical critical exponent is close to
scopic time is smaller than 10 MCS, for the transverse Isindghe best valug5] accepted for the two-dimensional Ising
model it is about 7000 MCS. Therefore only after this valuemodel using the Metropolis prescription. We believe that this
of time the longitudinal magnetization exhibits a power-lawvalue is the first estimate of the dynamical critical exponent
scaling form. Then, the simulations were carried out forfor a quantum spin model.
times up to 10, and the plotted quantities were analyzed for
7X10°<t<1x10° MCS, at time intervals of 0 MCS. V. CONCLUSIONS

Now, we investigate the short-time behavior of the trans- ) ) )
verse Ising model in order to obtain the critical exponents. In We have used the short-time scaling law to determine
Fig. 2 we have plotted, on the log-log scale, the longitudinaSome c_rltlcal exponents of the transverse Ising model in one
magnetization vs time. The points represent the MC dataqlmensmn at zero temperat_ure. The Monte Carlo method em-
while the full line gives the best fit to the data points. ThePlOyed to obtain the relaxation of the order parameter already
slope of this line is#; = 0.0616+ 0.0004. The time evolution at th_e |n|t|al_$tages of the evolut!on towards thg thermod)_/—
of the dynamic Binder’s cumulant is exhibited in Fig. 3 on a"amical equilibrium was recently introduced and is appropri-
log-log scale. From the best fit to the data points we obtaifit€d to obtain the ground-state properties of quantum spin
6,=0.531=0.002. Finally, in Fig. 4 we present the log-log models_. To t_h_e best of our knowledge, an estimate of the
plot for the logarithmic derivative of the longitudinal mag- dynamical critical exponen for quantum models has not
netization as function of time. The slope of the full line is P&en obtained until now. On the other hand, the values found
0,=0.514+0.003. Therefore, with these values, and usingfor the static critical exponents are in agreement with the
Egs.(9), (10), and(12), it is possible to show that the expo- €Xact ones.
nentsB, v, andz are given by
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