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Detailed characterization of log-periodic oscillations for an aperiodic Ising model
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This work analyzes the behavior of Ising spins on a hierarchical lattice subject to relevant fluctuations on the
coupling constants induced by a deterministic aperiodic sequence. The thermodynamical functions are evalu-
ated within the method of transfer matrices. It is shown that log-periodic oscillations in the reduced tempera-
ture are present for all thermodynamical functions close to the critical point and that the nature of oscillations
changes discontinuously at: for T>T, they are almost pure sinusoidal, while, f6xT., a second har-
monic to the fundamental frequency is clearly observed.

PACS numbses): 05.50-+q, 64.60.Ak, 61.44.Br

Magnetic systems with lack of translational symmetryexplained by a recently proposed Migdal-Kadanof renormal-
mediated by deterministic aperiodic sequences have been iization group(MKRG) framework to account for a class of
tensively investigated in recent yedrs|. Such sequences, aperiodic model$17]. Finally, estimates for the critical ex-
generated by substitution or inflation rules, have many ofonent§15] have been improved.
their properties well characterized from the mathematical We consider an aperiodie;= =1 Ising model on a hier-
point of view[2,3]. The presence of aperiodicitgither de- archical lattice, where any bond of a given generation is
terministic or random may induce changes in the critical substituted by a set af=3 parallel branches, each one con-
behavior of the originally uniform model. This occurs when taining a series op=3 bonds. The formal Hamiltonian for
the fluctuations in the coupling constants and fields are relthe system is
evant or marginal according to the Luck criterip#)], that
has been adaptd8—7] to analyze models defined on hierar- He 2
chical lattices[8—12. This extension is quite relevant, as o &
these exact scale invariant lattices have shown to be appro-
priate for the analysis of the effect of deterministic aperiod-yhere the first sum is performed over paisj) of first
icity: they lead to phase transitions at finite temperature; theyeighbor sites, antl is an uniform field acting on all sites of
can be exactly investigated with the help of renormalizationhe Jattice. The bondg;; are the same on all parallel paths
procedures; it has been possible to choose an appropriaffiking the two root points. They assume only two distinct
inflation rule for the aperiodicity which matches with the yajuesJ, andJg, according to the substitution rule for the
same invariance dictated by the geometry of the lattice. sequence formed by the symbok and B as (A,B)

Changes produced by relevant fluctuations include a dras;(AleAa)_
tic wez_‘;\kening of the criticality reﬂected in the new values for VKRG analysis of the model shows that the usual saddle
the critical exponents. Other important change is the emeryint related to the criticality of the uniform model becomes

gence of log-periodic oscillations in the thermodynamicaly il unstable node whed,#Jg, and that the aperiodic
properties as function of the reduced temperaf{r&14].

JijUin_hZ agj, (1)

These oscillations are generally regarded as a consequence of . . . . . . .

a discrete scale invariance. However, it seems that they can 1528 o 8 o . & e s
only be observed if relevant fluctuations weakens the origi- 1511 & o R oR #on ]
nal robust transition. —_

In this work we present a detailed characterization of log- < 1.50F 4 T
periodic oscillations for the Ising model on a hierarchical 8‘;‘ 149l 4 )
lattice with relevant fluctuationfl5]. Our very precise re- = ' q
sults are based on the numerical iteration of a set of exact = 1.48} .
maps, the derivation of which requires no approximation and %
proceed within a transfer matrigfM) formalism[16]. We 5 T |
show that oscillations are present in all thermodynamical = 146} J
functions for bothT<T. and T>T., and not only for the © ¢ ¥ ¥ ¥ ¢
specific heat T>T,) as shown befor§l5]. The oscillatory 1450 o L N
behavior has been observed for values of the reduced tem- 9 8 -7 6 -5 -4 3
peraturet=|T—T|/T, as small as 10'%. Also we present log (1), T>T,

strong evidences that the periodic dependence changes at

Tc: For T>T,, they can be fitted by one single sinusoidal  FIG. 1. Curve ford(log,o£)/d(log;ot) vs loget (T>T,) show-
function, while the presence of the second harmonic of theng almost pure sinusoidal oscillations. For this and following fig-
fundamental frequency is required for their description wherures open circles are evaluated from the set of maps, while full line
T<T.. We also show that the period of oscillations is well corresponds to the fitting function.
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dllog, o(x))/d[log;o(1)]

FIG. 2. Same as in Fig. 1 for the susceptibilfpyand T<T..
The presence of a second harmonic to the fundamental frequency is

BRIEF REPORTS

3.1 T T
3.0 %
=2
29t 0 o0 &
%0 oo
% 0o L
(e} le) OO
: 22 80
2.8 589 og 5
A §O o
2.7 -
2.6 1 1 1 1 1 1 1
9 8 7 6 5 -4 3

log,(t), T<T,

easily recognizable.

system does not belong to the same universality class of its
uniform counterparf5,6]. This has been confirmed by the
numerical evaluation of the thermodynamical functions
within the TM scheme, where new values for the critical

exponents have been evaluated.

In a recent work, Haddadt al.[17] have shown that the
second iterate of the MKRG transformation admits a pair of
fixed saddle points with largegtinstable eigenvalueA . .
Adapting the usual scaling MKRG arguments, they linked
the phase transition of the aperiodic model to the period-2

cycle by

Inb®

a=2—-2 .
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FIG. 4. Curves ford[log;gc(T)—c(T¢)|1/d(logiot) vs logot
for both T<T, () andT>T, (b). Note in(a) the presence of two
harmonic contributions and a very small scaling region due to the
presence of the maximum &t,,. When T>T, the curve shows
almost pure harmonic oscillations with slightly decreasing ampli-

tude
Moreover, they also show that, close to the fixed point, the

specific free energy satisfies also the universal form

dlog,(m)l/d[log, ()]

In|x—xc|)

f(X):|XXC|2_aP( InA .
ciC

0.0680

0.0676

0.0672 -

0.0668

wherex, indicates the coordinates of any of the two points of
the cycle andP indicates an arbitrary period one function.
So, log-periodic oscillations fit well into the general solution
for the free energy. In fact, expressid8) represents the
general solution within the MKRG scheme for the free en-
ergy for any model whose criticality is described by an usual
single saddle poinfl8]. In most of the situations where an
uniform model is considered, however, it is found that the
arbitrary functionP reduces to a constant. This is not the
case for a number of models with relevant aperiodic fluctua-
tions, where the evaluation of the thermodynamical functions
indicates the presence of oscillatory behavior. We show now
that oscillations for the present model fit well into the gen-
eral properties of Eq3).

The TM scheme used in our calculations has been de-
tailed elsewher¢l5], and we skip the derivation and the list
of the maps used for the description of the thermodynamical
properties of the model. They express the pertinent quantities
of a given generatio® + 1 of the model in terms of those of
the preceding generatidb. The maps are written in terms of

FIG. 3. The magnetizatiom also entails the presence of a sec- the free energy per spifi; and the correlation lengtfg ,
ond harmonic, but its effect is less noticeable than that in Fig. 2. defined as
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TABLE |. Values for the parameters of the fitting functioii&gs. (5) and(7)] obtained foré, y, m, andc.

y T a w b]_ b2 (}’)1 (}’)2 C d f X2

& >T, 148432 9.77151 0.03181 —0.34551 2.&10 ©
+0.00029 +0.00757 =+0.00041 +0.04579

& >T, 1.48431 9.77480 0.03157 0.00187 —0.33210 —0.06751 6.6%10°7
+0.00015 =+0.00401 =*=0.00021  +0.00021 =+0.02431 +0.12825

x <T. 2.83366 9.77179 —0.15147 —0.07676  2.28748 1.15802 24008
+0.00027 =£0.00175 =0.00038 *=0.00004 =+0.01229 *+0.0232

m <T. 0.06708 9.77508 —3.11x10° % —7.42<10 ° —0.99609 —2.09413 8.9x10 11

+1.76x10°% £0.00901 +2.5x10°% *25x10°® +0.07275 =0.13596

c <T, —0.96514 9.77426 —0.01220 0.01787 0.45163 1.68248 2.21371 1.77508 1.23587 x109
+0.00053 +0.01047 =*=0.00240 *+0.00345 =+0.08322 +0.14693 +0.05137 +0.01591 +0.09609

¢ >T, -—0.99074 9.77317 -—0.13533 —0.01704 0.16009 0.7440 0.26227 0.73738 0.64997 XI(B’
+0.00221 =*0.00122 =*=0.00155 *0.00039 =*0.00757 £0.02448 +0.00234 +0.02258 +=0.00661

behavior and quantify the critical parameters. For the first

three functions it has been possible to evaluate both the criti-

@) cal exponent and the period of the oscillations assur_n_ing the
£a=3%/n(7g/eq). dependence expressed by E8).. We explored the critical
¢ GG region fromt~ 102 down tot~ 10 °. For all fittings, errors

ne and e are the eigenvalues of the matri that de-  are very small as indicated hy*~10"° or smaller.

scribes the interaction between the two root sites of the lat- & (T>T¢) offers the most simple situation shown in Fig.

tice, andNg=(5+3x9°%)/4 counts the number of sites of 1. The function

the lattice in the generatio®. These two variables are suf- N

ficient for the complete description of the homogeneous _

model whenh=0. For the aperiodic case and whie# 0, a y(t)—a+n§1 by COSN@t+ ) ®

larger number of variables, defined in a similar way as Eq.

(4), is required. The maps are iterated until convergencés used to fit the data. WhemN=1, a=v=1.48432

(relative precision of 10'9) is obtained. Temperature depen- *0.00029, andw=29.77151-0.00757. TakingN=2, then

dent initial conditions are required for the numeric process ag=1.48431-0.00015, and »=9.77480t0.00401, with

well. b,/b;~0.06, confirming that oscillations are nearly pure
The criticality of the uniform model is characterized by a sinusoidal.

cusp singularity in the specific hegta vanishing spontane- The zero-field magnetic susceptibility of hierarchical lat-

ous magnetizatioom and divergences in the correlation tices is only well defined fof <T., as forT>T, it diverges

length ¢ and susceptibilityy. The critical exponentse  with h—0 [19,20. So, both spontaneous magnetization and

=-0.701, B=0.168, y=2.356, andv=1.354 have been susceptibility shown in Figs. 2 and 3 are restrictedTto

evaluated within the TM method and satisfy the Rushbrook<T,. It is clear from the figures, specially in the caseyof

and hyperscale relations to a high precision, with errors lesthat a single harmonic is not sufficient to account for the

fG: - N_Gln NG

than 0.3%.

oscillatory behavior. Thus, taking=2 in Eqg. (5), we have

WhenJ,# Jg the system evolves into a universality classestimated y=2.83366-0.00027, w=9.77179-0.00175,

with completely different featuresi) The cusp forc at T,
disappears, replaced by a smooth maximunT atslightly
smaller thanT along with a critical behavior &k... (ii) The
critical exponents assume universal values forJak Jg ,

and b,/b;~0.49. For m we obtained S=0.06708
+0(10°%), ©=9.77508-0.00901 anc,/b;~0.22. These
ratiosb, /b, differ in the order of magnitude in comparison
to that for &, and this is an evidence that the periodic func-

even forJz<<0. (iii) Presence of log-periodic behavior, astionsP, (x=¢,m,y) for T>T. andT<T, are distinct. The
will be detailed with the help of Figs. 1-4. There we draw Table | collects the values of all fitting parameters for the

the derivatives of the decimal logarithm &f x, mandc

with respect to the decimal logarithm of the reduced tem-

peraturet vs log;gt. All curves were obtained fa¥,=1 and

three different functions.
Values in Table | for3 andv are in great accordance with
those of our former analysis, while the value ferhas in-

Jg=—5 . If the functional dependence of these functionscreased by some 4%. This is due to the fact that we now

with respect ta are similar to that in Eq(3), with the cor-

responding critical exponent replacing-2, the derivatives

evaluate bothm andy ath=0, instead of in thénumerica)
limit h—0. Using these values together with Rushbrook’s

drawn in the figures decouple the periodic from the criticalequality we obtain, foTf<T., «=—0,968 - -. This is ex-
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actly the same value obtained fer in the regionT>T,, c 1 N
using the hyperscale relation and taking the fractal dimen- y()=a+ -+~ > b,cognowt+ ¢,). 7
sion of the latticed;=2. tt tin=1

The equality betweema and a’ increases the confidence
on the values for the other exponents. This becomes quite For T<T. we have b,/b;~1.5, while, for T>T,,
relevant in view of the curves shown in Figgagand 4b) b,/b;~0.12 . These results agree with our former indica-

for |c(T)—c(T.)|. If we assume tions that the periodic functioR changes aff; and that at
least two relevant harmonic contributions are required for the
c(T)—c(Te)=cy(Tc—T)*Pe, T<T, oscillations in the regim&<T,. The values obtained for the
, (6)  fitting parameters are listed on the Table I.
C(T)—c(T)=cy(T-To)* P, T>T, The best value for agrees with the expected one, while

!

o o . a' is still some 2% larger. However, the evaluation of the
where P, and P indicate periodic functions, the curve exponents at smaller and smaller neighborhood ofndi-
clearly do not fit into the form(5), at least in the samé  .tes that these values should converge-@968 - - if a
interval used for the other three functions. FoK T, the region still closer toT, is explored.
maximum afT ,, restricts the size of the scaling region, while, Using the estimated value fok..~4.394 - - [21], we
for T>Tc, the presence of a second Schottky maximum mayhserve that all values for the frequency of oscillations re-
cause a similar effect. _ ported above are bound to a small interval around
For T>T, the oscillations have a somewhat clear singleg 7747 . . predicted by Eq(3), so that our results are in best
harmonic behavior, with decreasing amplitude, whilehas  5ccordance to those in RdfL7]. To conclude, we observe
not reached its constant value. FBK T, the value forae  hat oscillations fory, whenT>T, and 0+ h<1, are almost
decreases rapidly with while the superimposed oscillations pyre sinusoidal wittb,/b;~0.1. This completes the charac-
contain at least two harmonic contributions. To improve theerization of log-periodic oscillations for all thermodynamic
results fora anda’ we have pushed the analysis down 1o fynctions, which is consistent with the identification of a

—11 : ; . 0y
t~10"", the smallest value where the results are reliablegiscontinuous change for the oscillations below and above
For t smaller than this value, numerical fluctuations are rel-

evant and the results become meaningless. Even so conver:

gence has not been reached and it is imperative to include a The author is much indebted to Professor S. R. Salinas, S.
richer form for the fitting function. The best results are ob-T. R. Pinho, and T. A. S. Haddad for helpful discussions.
tained with the function The work was partially supported by CNPq.
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