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Detailed characterization of log-periodic oscillations for an aperiodic Ising model

R. F. S. Andrade
Instituto de Fı´sica, Universidade Federal da Bahia, Campus da Federac¸ão 40210-340 Salvador, Brazil

~Received 19 November 1999!

This work analyzes the behavior of Ising spins on a hierarchical lattice subject to relevant fluctuations on the
coupling constants induced by a deterministic aperiodic sequence. The thermodynamical functions are evalu-
ated within the method of transfer matrices. It is shown that log-periodic oscillations in the reduced tempera-
ture are present for all thermodynamical functions close to the critical point and that the nature of oscillations
changes discontinuously atTc : for T.Tc they are almost pure sinusoidal, while, forT,Tc , a second har-
monic to the fundamental frequency is clearly observed.

PACS number~s!: 05.50.1q, 64.60.Ak, 61.44.Br
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Magnetic systems with lack of translational symme
mediated by deterministic aperiodic sequences have bee
tensively investigated in recent years@1#. Such sequences
generated by substitution or inflation rules, have many
their properties well characterized from the mathemat
point of view @2,3#. The presence of aperiodicity~either de-
terministic or random! may induce changes in the critica
behavior of the originally uniform model. This occurs whe
the fluctuations in the coupling constants and fields are
evant or marginal according to the Luck criterion@4#, that
has been adapted@5–7# to analyze models defined on hiera
chical lattices@8–12#. This extension is quite relevant, a
these exact scale invariant lattices have shown to be ap
priate for the analysis of the effect of deterministic aperio
icity: they lead to phase transitions at finite temperature; t
can be exactly investigated with the help of renormalizat
procedures; it has been possible to choose an approp
inflation rule for the aperiodicity which matches with th
same invariance dictated by the geometry of the lattice.

Changes produced by relevant fluctuations include a d
tic weakening of the criticality reflected in the new values
the critical exponents. Other important change is the em
gence of log-periodic oscillations in the thermodynami
properties as function of the reduced temperature@13,14#.
These oscillations are generally regarded as a consequen
a discrete scale invariance. However, it seems that they
only be observed if relevant fluctuations weakens the or
nal robust transition.

In this work we present a detailed characterization of lo
periodic oscillations for the Ising model on a hierarchic
lattice with relevant fluctuations@15#. Our very precise re-
sults are based on the numerical iteration of a set of e
maps, the derivation of which requires no approximation a
proceed within a transfer matrix~TM! formalism @16#. We
show that oscillations are present in all thermodynam
functions for bothT,Tc and T.Tc , and not only for the
specific heat (T.Tc) as shown before@15#. The oscillatory
behavior has been observed for values of the reduced
peraturet5uT2Tcu/Tc as small as 10211. Also we present
strong evidences that the periodic dependence change
Tc : For T.Tc , they can be fitted by one single sinusoid
function, while the presence of the second harmonic of
fundamental frequency is required for their description wh
T,Tc . We also show that the period of oscillations is w
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explained by a recently proposed Migdal-Kadanof renorm
ization group~MKRG! framework to account for a class o
aperiodic models@17#. Finally, estimates for the critical ex
ponents@15# have been improved.

We consider an aperiodics i561 Ising model on a hier-
archical lattice, where any bond of a given generation
substituted by a set ofq53 parallel branches, each one co
taining a series ofp53 bonds. The formal Hamiltonian fo
the system is

H52(
( i , j )

Ji j s is j2h(
i

s i , ~1!

where the first sum is performed over pairs (i , j ) of first
neighbor sites, andh is an uniform field acting on all sites o
the lattice. The bondsJi j are the same on all parallel path
linking the two root points. They assume only two distin
valuesJA andJB , according to the substitution rule for th
sequence formed by the symbolsA and B as (A,B)
→(AB2,A3).

MKRG analysis of the model shows that the usual sad
point related to the criticality of the uniform model becom
a full unstable node whenJAÞJB , and that the aperiodic

FIG. 1. Curve ford(log10 j)/d(log10 t) vs log10 t (T.Tc) show-
ing almost pure sinusoidal oscillations. For this and following fi
ures open circles are evaluated from the set of maps, while full
corresponds to the fitting function.
7196 ©2000 The American Physical Society
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system does not belong to the same universality class o
uniform counterpart@5,6#. This has been confirmed by th
numerical evaluation of the thermodynamical functio
within the TM scheme, where new values for the critic
exponents have been evaluated.

In a recent work, Haddadet al. @17# have shown that the
second iterate of the MKRG transformation admits a pair
fixed saddle points with largest~unstable! eigenvalueLcic .
Adapting the usual scaling MKRG arguments, they link
the phase transition of the aperiodic model to the perio
cycle by

a5222
ln bD

Lcic
. ~2!

Moreover, they also show that, close to the fixed point,
specific free energy satisfies also the universal form

f ~x!5ux2xcu22aPS lnux2xcu
ln Lcic

D , ~3!

FIG. 2. Same as in Fig. 1 for the susceptibilityx and T,Tc .
The presence of a second harmonic to the fundamental frequen
easily recognizable.

FIG. 3. The magnetizationm also entails the presence of a se
ond harmonic, but its effect is less noticeable than that in Fig.
its

l
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e

wherexc indicates the coordinates of any of the two points
the cycle andP indicates an arbitrary period one functio
So, log-periodic oscillations fit well into the general solutio
for the free energy. In fact, expression~3! represents the
general solution within the MKRG scheme for the free e
ergy for any model whose criticality is described by an us
single saddle point@18#. In most of the situations where a
uniform model is considered, however, it is found that t
arbitrary functionP reduces to a constant. This is not th
case for a number of models with relevant aperiodic fluct
tions, where the evaluation of the thermodynamical functio
indicates the presence of oscillatory behavior. We show n
that oscillations for the present model fit well into the ge
eral properties of Eq.~3!.

The TM scheme used in our calculations has been
tailed elsewhere@15#, and we skip the derivation and the lis
of the maps used for the description of the thermodynam
properties of the model. They express the pertinent quant
of a given generationG11 of the model in terms of those o
the preceding generationG. The maps are written in terms o
the free energy per spinf G and the correlation lengthjG ,
defined as

is

FIG. 4. Curves ford@ log10uc(T)2c(Tc)u#/d(log10 t) vs log10 t
for both T,Tc ~a! andT.Tc ~b!. Note in ~a! the presence of two
harmonic contributions and a very small scaling region due to
presence of the maximum atTm . When T.Tc the curve shows
almost pure harmonic oscillations with slightly decreasing am
tude.
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TABLE I. Values for the parameters of the fitting functions@Eqs.~5! and ~7!# obtained forj, x, m, andc.

y T a v b1 b2 f1 f2 c d f x2

j .Tc 1.48432 9.77151 0.03181 20.34551 2.631026

60.00029 60.00757 60.00041 60.04579

j .Tc 1.48431 9.77480 0.03157 0.00187 20.33210 20.06751 6.6531027

60.00015 60.00401 60.00021 60.00021 60.02431 60.12825

x ,Tc 2.83366 9.77179 20.15147 20.07676 2.28748 1.15802 2.1731026

60.00027 60.00175 60.00038 60.00004 60.01229 60.0232

m ,Tc 0.06708 9.77508 23.1131024 27.4231025 20.99609 22.09413 8.92310211

61.7631026 60.00901 62.531026 62.531026 60.07275 60.13596

c ,Tc 20.96514 9.77426 20.01220 0.01787 0.45163 1.68248 2.21371 1.77508 1.23587 1.0931028

60.00053 60.01047 60.00240 60.00345 60.08322 60.14693 60.05137 60.01591 60.09609

c .Tc 20.99074 9.77317 20.13533 20.01704 0.16009 0.7440 0.26227 0.73738 0.64997 1.7331027

60.00221 60.00122 60.00155 60.00039 60.00757 60.02448 60.00234 60.02258 60.00661
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T

NG
ln hG ,

~4!
jG53G/ ln~hG /eG!.

hG and eG are the eigenvalues of the matrixTG that de-
scribes the interaction between the two root sites of the
tice, andNG5(51339G)/4 counts the number of sites o
the lattice in the generationG. These two variables are su
ficient for the complete description of the homogeneo
model whenh50. For the aperiodic case and whenhÞ0, a
larger number of variables, defined in a similar way as
~4!, is required. The maps are iterated until converge
~relative precision of 10216) is obtained. Temperature depe
dent initial conditions are required for the numeric process
well.

The criticality of the uniform model is characterized by
cusp singularity in the specific heatc, a vanishing spontane
ous magnetizationm and divergences in the correlatio
length j and susceptibilityx. The critical exponentsa
520.701, b50.168, g52.356, andn51.354 have been
evaluated within the TM method and satisfy the Rushbro
and hyperscale relations to a high precision, with errors
than 0.3%.

WhenJAÞJB the system evolves into a universality cla
with completely different features.~i! The cusp forc at Tc
disappears, replaced by a smooth maximum atTm slightly
smaller thanTc along with a critical behavior atTc . ~ii ! The
critical exponents assume universal values for allJAÞJB ,
even for JB,0. ~iii ! Presence of log-periodic behavior, a
will be detailed with the help of Figs. 1–4. There we dra
the derivatives of the decimal logarithm ofj, x, m and c
with respect to the decimal logarithm of the reduced te
peraturet vs log10 t. All curves were obtained forJA51 and
JB525 . If the functional dependence of these functio
with respect tot are similar to that in Eq.~3!, with the cor-
responding critical exponent replacing 22a, the derivatives
drawn in the figures decouple the periodic from the criti
t-
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behavior and quantify the critical parameters. For the fi
three functions it has been possible to evaluate both the c
cal exponent and the period of the oscillations assuming
dependence expressed by Eq.~3!. We explored the critical
region fromt;1023 down tot;1029. For all fittings, errors
are very small as indicated byx2;1026 or smaller.

j (T.Tc) offers the most simple situation shown in Fi
1. The function

y~ t !5a1 (
n51

N

bn cos~nvt1fn! ~5!

is used to fit the data. WhenN51, a5n51.48432
60.00029, andv59.7715160.00757. TakingN52, then
n51.4843160.00015, and v59.7748060.00401, with
b2 /b1;0.06, confirming that oscillations are nearly pu
sinusoidal.

The zero-field magnetic susceptibility of hierarchical la
tices is only well defined forT,Tc , as forT.Tc it diverges
with h→0 @19,20#. So, both spontaneous magnetization a
susceptibility shown in Figs. 2 and 3 are restricted toT
,Tc . It is clear from the figures, specially in the case ofx,
that a single harmonic is not sufficient to account for t
oscillatory behavior. Thus, takingN52 in Eq. ~5!, we have
estimated g52.8336660.00027, v59.7717960.00175,
and b2 /b1;0.49. For m we obtained b50.06708
6O(1026), v59.7750860.00901 andb2 /b1;0.22. These
ratiosb2 /b1 differ in the order of magnitude in compariso
to that forj, and this is an evidence that the periodic fun
tions Px (x5j,m,x) for T.Tc andT,Tc are distinct. The
Table I collects the values of all fitting parameters for t
three different functions.

Values in Table I forb andn are in great accordance wit
those of our former analysis, while the value forg has in-
creased by some 4%. This is due to the fact that we n
evaluate bothm andx at h[0, instead of in the~numerical!
limit h→0. Using these values together with Rushbroo
equality we obtain, forT,Tc , a520,968•••. This is ex-
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actly the same value obtained fora8 in the regionT.Tc ,
using the hyperscale relation and taking the fractal dim
sion of the latticedf52.

The equality betweena anda8 increases the confidenc
on the values for the other exponents. This becomes q
relevant in view of the curves shown in Figs. 4~a! and 4~b!
for uc(T)2c(Tc)u. If we assume

c~T!2c~Tc!5c1~Tc2T!aPc , T,Tc ,
~6!

c~Tc!2c~T!5c18~T2Tc!
a8Pc8 , T.Tc ,

where Pc and Pc8 indicate periodic functions, the curv
clearly do not fit into the form~5!, at least in the samet
interval used for the other three functions. ForT,Tc the
maximum atTm restricts the size of the scaling region, whil
for T.Tc , the presence of a second Schottky maximum m
cause a similar effect.

For T.Tc the oscillations have a somewhat clear sin
harmonic behavior, with decreasing amplitude, whilea8 has
not reached its constant value. ForT,Tc the value fora
decreases rapidly witht, while the superimposed oscillation
contain at least two harmonic contributions. To improve
results fora and a8 we have pushed the analysis down
t;10211, the smallest value where the results are reliab
For t smaller than this value, numerical fluctuations are r
evant and the results become meaningless. Even so co
gence has not been reached and it is imperative to inclu
richer form for the fitting function. The best results are o
tained with the function
e
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n51
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bn cos~nvt1fn!. ~7!

For T,Tc we have b2 /b1;1.5, while, for T.Tc ,
b2 /b1;0.12 . These results agree with our former indic
tions that the periodic functionP changes atTc and that at
least two relevant harmonic contributions are required for
oscillations in the regimeT,Tc . The values obtained for the
fitting parameters are listed on the Table I.

The best value fora agrees with the expected one, whi
a8 is still some 2% larger. However, the evaluation of t
exponents at smaller and smaller neighborhood ofTc indi-
cates that these values should converge to20.968••• if a
region still closer toTc is explored.

Using the estimated value forLcic.4.394••• @21#, we
observe that all values for the frequency of oscillations
ported above are bound to a small interval arou
9.7747••• predicted by Eq.~3!, so that our results are in bes
accordance to those in Ref.@17#. To conclude, we observe
that oscillations forx, whenT.Tc and 0Þh!1, are almost
pure sinusoidal withb2 /b1;0.1. This completes the charac
terization of log-periodic oscillations for all thermodynam
functions, which is consistent with the identification of
discontinuous change for the oscillations below and ab
Tc .
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