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We study energy flows that are coupled at a higher than linear order. A number of examples are presented
where a force brings about a flow in the perpendicular direction. In some cases the symmetry of the system is
such that coupling can only take place at even orders. We apply the theory to recently proposed two-
dimensional devices that separate colloidal particles by ratcheting the different particles in different directions.

PACS numbs(s): 05.40—a, 02.50.Ey, 82.20w

It is possible to drive a process energetically uphill with cross sectional area of which #s; for the wide half of the
the energy coming from another process that is going eneperiod andA, for the narrow half of the period. The tubes
getically downhill. One can, for instance, drive a car up a hillare positioned such that narrow segments neighbor wide seg-
with a battery and an electrical engine. The fluxes of meiments to the left and right. Next little crosslinking tubes are
chanical and electrical energy are coupled. Going down thadded that connect wide segments on the left with narrow
hill it is possible to recharge the battery again. When thesegments on the right. Fluid is pumped in the vertical direc-
coupling is linear at leading order the system can be approxition. Continuity requiresly=v,A;=v,A,, whereJ, is the

mated by[1] vertical flow andv, andv, are the average velocities in the
wide and narrow parts respectively. When fluid is forced
J Ly Lo\ /X through _the narrower segment it moves fas_ter qnd through
. :( )( 1)_ (1) Bernoulli’s principle underpressure, i.e., suction, is created
‘JZ L21 L22 X2

SoJ; may be the electrical current add the speed at which PP o(p2—p? 3

the car ascends or descends; would be the electrical po- 1~ Pe=5p(05-0D). ®)

tential difference anc, the force due to gravity. Coupled

flows such as these are particularly important in biophysicsHere p represents the density of the fluid aRg andP, are

An ion pump, for instance, is a protein that uses the energy ithe pressures in the wide and narrow part respectively. So in

gets from the hydrolysis of adenosine triphosph&€P) to  the case of Fig. 1 the vertical flow will also lead to a small

pump ions, such as Naand K', across the membrane horizontal flow.

against the electrochemical gradient. To drive the flow an extra P must be applied over every
In this paper we will focus on situations where the leadingperiod. For simplicity we take the case thgP is negligible

order coupling is not linear, but quadratic. 8¢;=L.»=0  in comparison td®; andP,. For sufficiently small pressures

and we havel,*AP, sov;*AP/A;. If the crosslinking tube is

sufficiently narrow the flow will be governed by Poiseuille’s

formula for viscous flowf1]

J=LuXy, Jp=LaX:. (2)
The quadratic term makes it possible to drive a dc fl oot mrp
with gn ac force inX; . P o JXIW(Pl— Py)= m(vi_vi)“(AP)z, 4

Below we show some examples involving the flow of
matter brought about by force or pressure in the perpendicuwherel is the length of a crosslink; is the radius andy
lar direction. The doubly periodic setup of Fig. 1 constitutesrepresents the coefficient of viscosity. Equati@ shows
a macroscopic example. There are round vertical tubes thimat j, is proportional to AP)?.
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FIG. 2. (a) Obstacles are placed in a film of fluid in which
Brownian particles are suspended. When the particles are moved in

FIG. 1. A two-dimensional system of tubes. When fluid is the vertical direction by an external for€ethe probability to devi-
pumped in the vertical direction a horizontal left to right flow is also ate sufficiently to be pulled into the next right trench is larger than
brought about because of Bernoulli's princigkee Eq.(3)]. The  the probability to deviate sufficiently to be pulled into the next left
horizontal flow is proportional to the square of the vertical forcetrench. The particles thus exhibit net flow to the right. The super-
[see Eq(2)]. imposed Markov modelb) mimics the behavior of Brownian par-
ticles in this system.

'Algebrglcally there is a quadrat|c'relat|on between the aPihan it is to have sufficiently deviated to the left to go into
plied vertical pressure and the horizontal flow because th

Bernoulli equation is quadratic in the velocity. But there are’ﬁqe next column on the left. We thus get a net flux to the

symmetrv arauments by which we can easilv intuit how anoright and that flux is larger for particles with larger diffusion
y ry arguments by yr constants. This makes it possible to use the device for the
why the system in Fig. 1 relates to EQ). There is a reflec-

. . . N separation of particles. Such separation has recently been
tion symmetry in the vertical direction, so upward and dow.n'achieved experimentallj].

ol o et et o v ot o v O 0] pic 2.6 st 20 doutly peradc 1 (o
pressure. In the context of EqL) this means that, with, simulate the dynamics of the setup of Figa)2 The motion

. . of a Brownian particle in the “obstacle course” can be mod-
representing the horizontal flow, the tetry; must be zero. P

) . N led by Markovian t iti this grid. We take all th
Onsager reciprocityl] implies that the other cross terim, cled by Markovian transrtions on tis gri ¢ fake all the

. horizontal transition rates to be equal ko For reasons of
must then also be zero. Coupling thus occurs at second %S/mmetry we implement the effect of a vertical fofgavith

higher orde_r. The necessary ani_sotropy in the horiz_ontal Oliéqual apportionment over the upward and downward transi-
rection derives from the cross link always connecting 10 &, 55 transition rates in the downward direction are
wide part on the left and to a narrow part on the right. In this . ) .
system there is no longer anything like Onsager reciprocityK ei(p(i F) and rates in the upward direction ateexp
a pressure in the horizontal direction can never lead to &z F). At stationarity each statehas a probability?; . This
vertical flow; upward and downward flow are equivalent soProbability remains unchanged and we thus get the time-
there is no way for the system to “decide.” independent master equatia(k; P; —k;;P;)=0. Herek;;

In 1998 a number of papers appeaf2¢] in which meth- ~ are the rates of the transitions coming into statedk;; are
ods were proposed to separate small particles. The setup diéle rates of the transitions going out of staterhe steady
cussed in Ref[3] has a symmetry similar to the system in State equations for five states together with the normalization
Fig. 1 and follows the nonlinear coupling according to Eq.condition €7_,P;=1, i.e., one particle per peripdully fix
(2). Below we will present a system similar to the one dis-the system. The net flux in the horizontal direction is most
cussed in Ref[3]. Colloidal particles are suspended in a easily expressed &P, — Ps). After some algebra one finds
fluid that forms a film on a surface with obstacl@g. 2a)].  for this flux J(F) = 7k tantf[F/4]. This is an even function
The triangle shaped obstacles mark off an area that is inad¢hat is quadratic nedf =0.
cessible to the colloidal particles. The suspended particles Next we will take a more fundamental approach and study
are pulled in a fixed direction with, for instance, an electricthe diffusion of particles on a potential surfafdeig. 3a)]
field. Due to Brownian motion the particles deviate from with a structure that resembles the “obstacle course” in Fig.
their straight path and the smaller particlegyher diffusion 2. As with the obstacle course, the 2D potential is isotropic
constantswill on the average deviate more. Take the systemin they direction and anisotropic in thedirection:
in Fig. 2. Every time after the particles are pulled up verti-
cally through a funnel between two triangles they sprea_d out V(x,y)=U(x){1— §sin(2my)} —Fy. (5)
again. The obstacles are shaped such that when reaching the
next row of triangles it is more likely to have sufficiently For U(x) we take a piecewise linear potential as drawn in
deviated to the right to go into the next column on the rightFig. 3(b). In Fig. &) V(Xx,y) is drawn forF=0. When we
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FIG. 3. (a) The 2D potentiaM(x,y) of Eq. (5) with F=0 and
(b) a cross section in the direction. Traveling “in the trench”
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FIG. 4. A 2D one state Markov model. A&&=0 the forceH
leads to flux in the horizontal direction.

HereP(x,y,t) is the probability distribution of diffusing par-
ticles andf(x,y)=—VV(x,y). We have taken the diffusion
constant and the coefficient of friction to be equal to 1. The
energy is in units okgT. Our interest is in stationary flow,
i.e., the case where the time derivative is zero. This leads to

along they direction a Brownian particle “sees” oscillating barri- & System of partial differential equations with independent
ers. A Brownian particle subjected to an oscillating anisotropic po-variablesx andy. We impose doubly periodic boundary con-

tential like this will pass easier over the short slope than over thdlitions on P(X,y),

long slope and exhibit net motion to the Igft) The flowJ in the x
direction as a function of the forcE in the y direction for the
potential of (a). The induced flow is an even function &f (see
insed and this flow is maximal for a finite, nonzero value Faf

apply the net macroscopic foréein they direction particles

ie., P(Oy)=P(ly) and P(x,0)
=P(x,1) and normalize the total probability on a unit square
to 1, i.e., [x_ofy-oP(x.y)dxdy=1. Given the solution
P(x,y) the total flux in thex direction in a strip of unit width

is evaluated asy,= —[_o{dx+[V(x,Y)]}P(x,y)dy. We
solved Eg.(6) numerically with DIFFPACK 1.4 (SINTEF,
Oslo, Norway. Figure 3c) shows the fluxl, as a function of

F for §5=0.1,#=0.2 andV,=5.0[see Eq(5) and Fig. 3a)].

are “pushed through the trench.” A particle that travels At lowest order inF the flowJ, is expected to behave as Eq.
through a trench “sees” oscillating barriers on the left and(2) and near the origin of Fig.(8) we indeed see the ex-
right. This makes the situation very similar to that of a par-pected parabolic shagsee inseét

ticle subjected to an oscillating periodic potentjal, but
instead of a time coordinate we now have theoordinate

We, furthermore, observe in Fig.(@ that the flow is
maximal for a finite value of the forcé and that the flow

along which the particle moves at approximately constanksymptotically goes to zero &— *+ . For high values of
speed. Oscillating and fluctuating one dimensional anisoff| the Brownian particle “sees” the slopes in thelirection
tropic potentials as in Fig.(B) have been studied extensively change very fast and it will never be able to adjust its prob-

over the past half decad®—9]. In an oscillating potential

ability distribution in thex direction to either of the slopes.

such as Fig. @) a Brownian particle dwelling around the |nstead it will form a Boltzmann distribution according to the
minimum will more easily move over the short oscillating average slope. So for highit is similar to having a station-
slope on the right than over the long oscillating slope on theary periodic potential in thex direction with no net force.
left. There is an optimum barrier height and an optimumHence no flow will occur. The time to relax to a Boltzmann
period for the oscillation for which the difference of the distribution on a slope can be taken to be equal to the time to

rates, and thus the induced flow, is maximal.

slide down that slope deterministicaljj0,11]. Maximal

. The rigorous Way to handle diffusive_flow on the potential flow for the system in Fig. @) occurs wherF is fast enough
given by Eq.(5) is to solve the associated Fokker Plancksuch that no adjustment will occur on the long slope and

equation for the overdamped case:

JP(x,y,t)

o =V (x,y)P(xY,1)+VZP(X,y,t).  (6)

slow enough for the particle’s distribution to all the time be
adjusted on the short slope. The harmonic siyj2goes
from one extremum to the other in the course of half a pe-
riod. For the particle that is traveling in thedirection this
change takes place in a time 1K It is easily derived that
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maximal flow should occur foVy/(2a?)<F<Vy/[2(1 1
— a)?]. For the parameter values in the system of Fig. 3 the Jy(G,H)=2a(G,H)Sin”{§(G+ H)
lower and upper bound come out to be 4 and 63 and the
actual maximum occurs fdf~25. 1

Finally we consider the doubly periodic 2D setup pre- —2ﬁ(G,H)Sin’{§(G—H)}- (7)
sented in Fig. 4. This is a 2D one state model and from each
state four neighbors can be reached. The transition rates are
indicated in the figure. By assigning nonzero value&tand  If we take G=0 andH#0, then we get for the horizontal
H one basically imposes forces in the horizontal and verticaflow induced by the vertical forced,(0H)=2{a(0H)
direction, respectively. The distance between the rows as B(0,H)}[sinh(H/2)]. It is obvious that no couping occurs
well as the columns is taken to be unity and each state hasfar «= 3. ExpandingJ,(0,H) to the first two orders around
population of 1. The energy difference between two states ofl =0 we obtainJ,(0,H)~{«(0,0)— B(0,0)}H + dy{«(0,0)
the 45° line(solid arrows is G+H. So for two neighboring — 8(0,0)}H2. An obvious choice that leads to the a zero
states along this line the ratio of the transition rates has to bknear term and a nonzero quadratic termds-1 and 8
expG+H) (energy is taken in units okgT). The energy =e(MH |n that casel,(OH)~ —2H?2. This system does
difference between two states along the 135° lidetted not have the symmetry in the vertical direction of the first
arrowg is —G+H. So for two neighboring states along this example and thereford (0,H) is not an even function dfl.
line the ratio of the transition rates has to be ex@+H). A reflection symmetryisotropy in one direction and an
This leaves the prefactors(G,H) and 8(G,H) as free pa- anisotropy in the perpendicular direction is a setup that can
rameters to vary the speed of the transitions. At steady stateasily arise and the nonlinear coupling of E&) may thus
we find for the net flows in the horizontal and vertical direc- be encountered quite generally. But our last example shows
tion, respectively, that such symmetry constitutes a sufficient and not a neces-
sary condition for quadratic coupling. It is finally worth no-
ticing that the transverse flow in the systems of Figs. 2 and 3
only comes about because of the presence of thermal noise.

Jx(G,H)=2a(G,H)sim—{%(G+ H)
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