
Rapid
t may be
rticles is

PHYSICAL REVIEW E JUNE 2000VOLUME 61, NUMBER 6
BRIEF REPORTS

Brief Reports are accounts of completed research which do not warrant regular articles or the priority handling given to
Communications; however, the same standards of scientific quality apply. (Addenda are included in Brief Reports.) A Brief Repor
no longer than four printed pages and must be accompanied by an abstract. The same publication schedule as for regular a
followed, and page proofs are sent to authors.

Nonlinearly coupled flows

Martin Bier,1 Marcin Kostur,2,3 Imre Derényi,1 and R. Dean Astumian1
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We study energy flows that are coupled at a higher than linear order. A number of examples are presented
where a force brings about a flow in the perpendicular direction. In some cases the symmetry of the system is
such that coupling can only take place at even orders. We apply the theory to recently proposed two-
dimensional devices that separate colloidal particles by ratcheting the different particles in different directions.

PACS number~s!: 05.40.2a, 02.50.Ey, 82.202w
ith
ne
il
e
th

th
ox

-
d
ic
y

e

ing

of
ic
te

t

s
seg-
re

row
ec-

e
ed
ugh
d

o in
all

y

s

’s
It is possible to drive a process energetically uphill w
the energy coming from another process that is going e
getically downhill. One can, for instance, drive a car up a h
with a battery and an electrical engine. The fluxes of m
chanical and electrical energy are coupled. Going down
hill it is possible to recharge the battery again. When
coupling is linear at leading order the system can be appr
mated by@1#

S J1

J2
D5S L11 L12

L21 L22
D S X1

X2
D . ~1!

SoJ1 may be the electrical current andJ2 the speed at which
the car ascends or descends;X2 would be the electrical po
tential difference andX1 the force due to gravity. Couple
flows such as these are particularly important in biophys
An ion pump, for instance, is a protein that uses the energ
gets from the hydrolysis of adenosine triphosphate~ATP! to
pump ions, such as Na1 and K1, across the membran
against the electrochemical gradient.

In this paper we will focus on situations where the lead
order coupling is not linear, but quadratic. SoL215L1250
and

J15L11X1 , J25L̃21X1
2. ~2!

The quadratic term makes it possible to drive a dc flowJ2
with an ac force inX1 .

Below we show some examples involving the flow
matter brought about by force or pressure in the perpend
lar direction. The doubly periodic setup of Fig. 1 constitu
a macroscopic example. There are round vertical tubes
PRE 611063-651X/2000/61~6!/7184~4!/$15.00
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cross sectional area of which isA1 for the wide half of the
period andA2 for the narrow half of the period. The tube
are positioned such that narrow segments neighbor wide
ments to the left and right. Next little crosslinking tubes a
added that connect wide segments on the left with nar
segments on the right. Fluid is pumped in the vertical dir
tion. Continuity requiresJy5v1A15v2A2 , whereJy is the
vertical flow andv1 andv2 are the average velocities in th
wide and narrow parts respectively. When fluid is forc
through the narrower segment it moves faster and thro
Bernoulli’s principle underpressure, i.e., suction, is create

P12P25
1

2
r~v2

22v1
2!. ~3!

Herer represents the density of the fluid andP1 andP2 are
the pressures in the wide and narrow part respectively. S
the case of Fig. 1 the vertical flow will also lead to a sm
horizontal flow.

To drive the flow an extraDP must be applied over ever
period. For simplicity we take the case thatDP is negligible
in comparison toP1 andP2 . For sufficiently small pressure
we haveJy}DP, so v i}DP/Ai . If the crosslinking tube is
sufficiently narrow the flow will be governed by Poiseuille
formula for viscous flow@1#

j x5
pr 4

8lh
~P12P2!5

pr 4r

16lh
~v2

22v1
2!}~DP!2, ~4!

where l is the length of a crosslink,r is the radius andh
represents the coefficient of viscosity. Equation~4! shows
that j x is proportional to (DP)2.
7184 ©2000 The American Physical Society
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Algebraically there is a quadratic relation between the
plied vertical pressure and the horizontal flow because
Bernoulli equation is quadratic in the velocity. But there a
symmetry arguments by which we can easily intuit how a
why the system in Fig. 1 relates to Eq.~2!. There is a reflec-
tion symmetry in the vertical direction, so upward and dow
ward flow must induce identical horizontal flow. The ho
zontal flow must therefore be an even function of the verti
pressure. In the context of Eq.~1! this means that, withJ2
representing the horizontal flow, the termL21 must be zero.
Onsager reciprocity@1# implies that the other cross termL12
must then also be zero. Coupling thus occurs at secon
higher order. The necessary anisotropy in the horizontal
rection derives from the cross link always connecting to
wide part on the left and to a narrow part on the right. In t
system there is no longer anything like Onsager reciproc
a pressure in the horizontal direction can never lead t
vertical flow; upward and downward flow are equivalent
there is no way for the system to ‘‘decide.’’

In 1998 a number of papers appeared@2,3# in which meth-
ods were proposed to separate small particles. The setup
cussed in Ref.@3# has a symmetry similar to the system
Fig. 1 and follows the nonlinear coupling according to E
~2!. Below we will present a system similar to the one d
cussed in Ref.@3#. Colloidal particles are suspended in
fluid that forms a film on a surface with obstacles@Fig. 2~a!#.
The triangle shaped obstacles mark off an area that is i
cessible to the colloidal particles. The suspended parti
are pulled in a fixed direction with, for instance, an elect
field. Due to Brownian motion the particles deviate fro
their straight path and the smaller particles~higher diffusion
constants! will on the average deviate more. Take the syst
in Fig. 2. Every time after the particles are pulled up ve
cally through a funnel between two triangles they spread
again. The obstacles are shaped such that when reachin
next row of triangles it is more likely to have sufficient
deviated to the right to go into the next column on the rig

FIG. 1. A two-dimensional system of tubes. When fluid
pumped in the vertical direction a horizontal left to right flow is al
brought about because of Bernoulli’s principle@see Eq.~3!#. The
horizontal flow is proportional to the square of the vertical for
@see Eq.~2!#.
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than it is to have sufficiently deviated to the left to go in
the next column on the left. We thus get a net flux to t
right and that flux is larger for particles with larger diffusio
constants. This makes it possible to use the device for
separation of particles. Such separation has recently b
achieved experimentally@4#.

Figure 2~b! depicts a 6 state 2D doubly periodic grid t
simulate the dynamics of the setup of Fig. 2~a!. The motion
of a Brownian particle in the ‘‘obstacle course’’ can be mo
eled by Markovian transitions on this grid. We take all t
horizontal transition rates to be equal tok. For reasons of
symmetry we implement the effect of a vertical forceF with
equal apportionment over the upward and downward tra
tion. So transition rates in the downward direction a

k exp(12 F) and rates in the upward direction arek exp
(21

2 F). At stationarity each statei has a probabilityPi . This
probability remains unchanged and we thus get the tim
independent master equationS j (kji Pj2ki j Pi)50. Herekji
are the rates of the transitions coming into statei andki j are
the rates of the transitions going out of statei. The steady
state equations for five states together with the normaliza
condition (S i 51

6 Pi51, i.e., one particle per period! fully fix
the system. The net flux in the horizontal direction is mo
easily expressed ask(P22P5). After some algebra one find
for this flux J(F)5 1

7 k tanh2@F/4#. This is an even function
that is quadratic nearF50.

Next we will take a more fundamental approach and stu
the diffusion of particles on a potential surface@Fig. 3~a!#
with a structure that resembles the ‘‘obstacle course’’ in F
2. As with the obstacle course, the 2D potential is isotro
in the y direction and anisotropic in thex direction:

V~x,y!5U~x!$12d sin~2py!%2Fy. ~5!

For U(x) we take a piecewise linear potential as drawn
Fig. 3~b!. In Fig. 3~a! V(x,y) is drawn forF50. When we

FIG. 2. ~a! Obstacles are placed in a film of fluid in whic
Brownian particles are suspended. When the particles are move
the vertical direction by an external forceF the probability to devi-
ate sufficiently to be pulled into the next right trench is larger th
the probability to deviate sufficiently to be pulled into the next le
trench. The particles thus exhibit net flow to the right. The sup
imposed Markov model~b! mimics the behavior of Brownian par
ticles in this system.
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apply the net macroscopic forceF in they direction particles
are ‘‘pushed through the trench.’’ A particle that trave
through a trench ‘‘sees’’ oscillating barriers on the left a
right. This makes the situation very similar to that of a p
ticle subjected to an oscillating periodic potential@5#, but
instead of a time coordinate we now have they coordinate
along which the particle moves at approximately const
speed. Oscillating and fluctuating one dimensional an
tropic potentials as in Fig. 3~b! have been studied extensive
over the past half decade@5–9#. In an oscillating potential
such as Fig. 3~b! a Brownian particle dwelling around th
minimum will more easily move over the short oscillatin
slope on the right than over the long oscillating slope on
left. There is an optimum barrier height and an optimu
period for the oscillation for which the difference of th
rates, and thus the induced flow, is maximal.

The rigorous way to handle diffusive flow on the potent
given by Eq.~5! is to solve the associated Fokker Plan
equation for the overdamped case:

]P~x,y,t !

]t
52¹„f ~x,y!P~x,y,t !…1¹2P~x,y,t !. ~6!

FIG. 3. ~a! The 2D potentialV(x,y) of Eq. ~5! with F50 and
~b! a cross section in thex direction. Traveling ‘‘in the trench’’
along they direction a Brownian particle ‘‘sees’’ oscillating barr
ers. A Brownian particle subjected to an oscillating anisotropic
tential like this will pass easier over the short slope than over
long slope and exhibit net motion to the left.~c! The flowJ in thex
direction as a function of the forceF in the y direction for the
potential of ~a!. The induced flow is an even function ofF ~see
inset! and this flow is maximal for a finite, nonzero value ofF.
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HereP(x,y,t) is the probability distribution of diffusing par
ticles andf (x,y)52“V(x,y). We have taken the diffusion
constant and the coefficient of friction to be equal to 1. T
energy is in units ofkBT. Our interest is in stationary flow
i.e., the case where the time derivative is zero. This lead
a system of partial differential equations with independ
variablesx andy. We impose doubly periodic boundary con
ditions on P(x,y), i.e., P(0,y)5P(1,y) and P(x,0)
5P(x,1) and normalize the total probability on a unit squa
to 1, i.e., *x50

1 *y50
1 P(x,y)dxdy51. Given the solution

P(x,y) the total flux in thex direction in a strip of unit width
is evaluated asJx52*y50

1 $]x1@]xV(x,y)#%P(x,y)dy. We
solved Eq. ~6! numerically with DIFFPACK 1.4 ~SINTEF,
Oslo, Norway!. Figure 3~c! shows the fluxJx as a function of
F for d50.1,a50.2 andV055.0 @see Eq.~5! and Fig. 3~a!#.
At lowest order inF the flowJx is expected to behave as E
~2! and near the origin of Fig. 3~c! we indeed see the ex
pected parabolic shape~see inset!.

We, furthermore, observe in Fig. 3~c! that the flow is
maximal for a finite value of the forceF and that the flow
asymptotically goes to zero asF→6`. For high values of
uFu the Brownian particle ‘‘sees’’ the slopes in thex direction
change very fast and it will never be able to adjust its pro
ability distribution in thex direction to either of the slopes
Instead it will form a Boltzmann distribution according to th
average slope. So for highF it is similar to having a station-
ary periodic potential in thex direction with no net force.
Hence no flow will occur. The time to relax to a Boltzman
distribution on a slope can be taken to be equal to the tim
slide down that slope deterministically@10,11#. Maximal
flow for the system in Fig. 3~a! occurs whenF is fast enough
such that no adjustment will occur on the long slope a
slow enough for the particle’s distribution to all the time b
adjusted on the short slope. The harmonic sin(2py) goes
from one extremum to the other in the course of half a
riod. For the particle that is traveling in they direction this
change takes place in a time 1/(2F). It is easily derived that

FIG. 4. A 2D one state Markov model. AtG50 the forceH
leads to flux in the horizontal direction.
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maximal flow should occur forV0 /(2a2),F,V0 /@2(1
2a)2#. For the parameter values in the system of Fig. 3
lower and upper bound come out to be 4 and 63 and
actual maximum occurs forF'25.

Finally we consider the doubly periodic 2D setup pr
sented in Fig. 4. This is a 2D one state model and from e
state four neighbors can be reached. The transition rates
indicated in the figure. By assigning nonzero values toG and
H one basically imposes forces in the horizontal and vert
direction, respectively. The distance between the rows
well as the columns is taken to be unity and each state h
population of 1. The energy difference between two states
the 45° line~solid arrows! is G1H. So for two neighboring
states along this line the ratio of the transition rates has to
exp(G1H) ~energy is taken in units ofkBT). The energy
difference between two states along the 135° line~dotted
arrows! is 2G1H. So for two neighboring states along th
line the ratio of the transition rates has to be exp(2G1H).
This leaves the prefactorsa(G,H) andb(G,H) as free pa-
rameters to vary the speed of the transitions. At steady s
we find for the net flows in the horizontal and vertical dire
tion, respectively,

Jx~G,H !52a~G,H !sinhF1

2
~G1H !G

12b~G,H !sinhF1

2
~G2H !G ,
e
e

-
h
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Jy~G,H !52a~G,H !sinhF1

2
~G1H !G

22b~G,H !sinhF1

2
~G2H !G . ~7!

If we take G50 andHÞ0, then we get for the horizonta
flow induced by the vertical force:Jx(0,H)52$a(0,H)
2b(0,H)%@sinh(H/2)#. It is obvious that no couping occur
for a5b. ExpandingJx(0,H) to the first two orders around
H50 we obtainJx(0,H)'$a(0,0)2b(0,0)%H1]H$a(0,0)
2b(0,0)%H2. An obvious choice that leads to the a ze
linear term and a nonzero quadratic term isa51 and b
5e(1/2)H. In that caseJx(0,H)'2 1

2 H2. This system does
not have the symmetry in the vertical direction of the fi
example and thereforeJx(0,H) is not an even function ofH.

A reflection symmetry~isotropy! in one direction and an
anisotropy in the perpendicular direction is a setup that
easily arise and the nonlinear coupling of Eq.~2! may thus
be encountered quite generally. But our last example sh
that such symmetry constitutes a sufficient and not a ne
sary condition for quadratic coupling. It is finally worth no
ticing that the transverse flow in the systems of Figs. 2 an
only comes about because of the presence of thermal no
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