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Responses of a Hodgkin-Huxley neuron to various types of spike-train inputs
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Numerical investigations have been made of responses of a Hodgkin-H{k¢yneuron to spike-train
inputs whose interspike intervélSl) is modulated by deterministic, semi-determinigtibaotio, and stochas-
tic signals. As deterministic one, we adopt inputs with the time-independent ISI and with time-dependent ISI
modulated by sinusoidal signal. The $&ter and Lorentz models are adopted for chaotic modulations of ISI.
Stochastic ISI inputs with the gamma distribution are employed. It is shown that distribution of output ISI data
depends not only on the mean of ISIs of spike-train inputs but also on their fluctuations. The distinction of
responses to the three kinds of inputs can be made by return maps of input and output ISIs, but not by their
histograms. The relation between the variations of input and output ISIs is shown to be different from that of
the integrate and firdF) model because of the refractory period in the HH neuron.

PACS numbd(s): 87.18.Sn, 84.35:i

I. INTRODUCTION lack of the refractory period. Although it has been widely
employed for the study of neural networks, the IF model is

Neurons in our brain are known to be responsible fortoo crude to discuss the activities of real neurons.
encoding the characteristics of stimuli into a form for further  The HH model, which well describes the spiking behavior
processing by other neurons. During the last decades, anand refractory properties of real neurons, is expressed based
tomical, physiological, and theoretical studies on neuronsn non-linear conductances of Na and K ion chanfp@ls
have been extensively made. Despite these efforts, the cod®nce the HH model was proposed, its property has been
used for encoding and decoding in neurons has not beentensively investigated11-17. The behavior of self-
clarified at the momeritl]. It is commonly believed that the excited oscillations of the HH neuron with the applied cur-
firing rate reflects the strength of the inputs which trigger therent has much variety than that of the IF model. It is shown
action potentials of neurons. Indeed, the firing activities ofthat the oscillation of the HH neuron may become chaotic
motor and sensory neurons vary in response to the appliegthen the sinusoiddl is applied with proper choices of mag-
stimuli. It is not known, however, whether the information is nitude and frequenc§16,17]. Such chaotic oscillations are
carried through the mean firing ratgate encoding or  experimentally observed in squid giant axdrs},15 and
through the details of sequences of the temporarily encode@nchidium neuron§18].
interspike interval(ISIl) (temporal encoding which is cur- The HH model was originally proposed to account for the
rently controversia[2—4]. In the last few years, experimen- property of squid giant axorf®] and it has been generalized
tal evidences have accumulated, indicating that many biowith modifications of ion conductancg49]. The HH-type
logical systems use the temporal coding. Human visuamodels have been widely adopted for a study on activities of
systems, for example, have shown to classify patterns withitransducer neuronsuch as motor and thalamus relay neu-
150 msec in spite of the fact that at least ten synaptic stagasns, which transform the amplitude-modulated input to
are involved from retina to the temporal brgB). The simi-  spike-train outputs. In this paper, we pay our attention to
lar speed of visual processing has been reported for macaqdeata-processing neuronghich receive and emit the spike-
monkeys[6]. Because the firing frequency of neurons in-train pulses. Assuming that the data-processing neuron may
volved is less than 100 Hz, each neuron can contribute die essentially described by the ion-conductance mechanism
most one or two spikes to such computations; there is nadf the HH model, we investigate its input-output response in
sufficient time to sample firing rates. order to get some insight into the following questions.

In recent years, many studies on the encoding of the spike (1) How the output ISIs depend on the input ISIs? Does
trains by neurons have been made by using the integrate anlde average rate of the output ISI depend only on the average
fire (IF) model[7], which is one of the simplest, dynamical of the input I1SIs?
models of neuron§8]. The IF neutron is silent without the (2) How do neurons distinguish the different types of de-
external, input current;. When |;, exceeds the critical terministic, chaotic, and stochastic inputs? How different is
valuel;., the IF neuron shows the self-excited oscillations,the response to different types of spike-train inputs?
whose frequency, depends on the magnitudes Ipf It is Our paper is organized as follows. In the next Sec. Il, we
shown thatf, continuously vanishes wheh is decreased mention a simple neuron model adopted for our numerical
and approaches th.. This behavior of the continuoug,  calculation. In Sec. lll, we investigate the response of our
—1; dependence is different from the discontinuous orlg.at system to deterministic inputs with time-independent ISl
in the more realistic Hodgkin-HuxlegHH) neurong9]; the  (Sec. Il A) and time-dependent ISIs modulated by sinusoidal
IF and HH neurons are classified as the type | and type lisignal(Sec. Il B). Input and output ISIs are studied by their
respectively{ 10]. Furthermore, the IF neuron has the disad-histograms and return maps; the former shows the distribu-
vantages of the artificial reset of the action potential and thé¢ions and the latter the time correlation of ISI data. In Sec.
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IV, chaotic inputs generated by Bsler(Sec. IV A) and Lor- tins1=tin+ Tin(tin), (13)
entz modelSec. IV B) are discussed. Stochastic inputs with
the gamma distribution are treated in Sec. V. The final Sec. ti;=0, (14)

VI is devoted to conclusion and discussion.
where the ISI of input spikd;, is generally a function of a
Il. ADOPTED MODEL given timet;, . In this study, we takd;,, to be constant ISI,

and time-dependent ISI modulated by sinusoidal, chaotic,
We adopt a simple system consisting of a neuron and @and stochastic signals.

synapse. The neuron is assumed to be described by the HH The spike train given by Eq12) is assumed to be in-

model and the synapse by the alpha funcfig. (16)]. We jected through the synapse, yielding the curigngiven by
will investigate the response of our neuron when spike-train

inputs are applied through the synapse.

The HH model is described by the nonlinear coupled dif- 'p(t)zgsyn; a(t=tin)(Va= Vyn)- (15
ferential equations for the four variablésfor the membrane
potential andn, h, andn for the gating variables of Na and K Heregg,, andV,, are the conductivity and reversal potential

channels, and it is given k] of synapse, and the alpha functiest) is defined by[20]
CdV/dt=—gnm*h(V—Vya) — gxn*(V— Vi) a(t)=(t/m)e V0(t), (16)
—gu(V=Vp+Ii, (1)

wherer is the time constant relevant to the synapse conduc-
@) tion and® (t) is the Heaviside step function. When the ISl is

dmvdt=—(an+bm)m+an, very large compared with, Eqgs.(15) and (16) yield pulse

_ currents with the maximum value off®=e gV,
dhdt=—(an+bn)h+a, @ —Vg,) att=t;,+r and with the half-width of 2.45 We
dn/dt=—(a,+b,)n+a,, (4) assumeV,=30 mV (the typical value of the maximum

membrane potentigl Vg ,=—50 mV and 7=2 msec, and
where treatgsy, as a parameter.
When the membrane potenti®l oscillates, it yields the
am=0.1(V+40)/[1—e (V4010 (5)  spike-train output, which may be expressed by
— - (V+65)/18
o= ’ © Uo()=Va2, 3(t—tom), (17
a,=0.07e~ (V+69/20 @ m
in a way similar to Eq(12), and the output ISI is given b
bp=1/[1+e (V*39)/10], (8) ! a2 P ’ Y
Tom=tom+1—tom- (18)
a,=0.01(V+55)/[1—e (V5510 (9)
We will investigate howT ,,, depends on the various types of
b,=0.125% (V+65/80 1) T

in-

Differential equations given by Eq$1)—(10) including
Here the reversal potentials of Na, K channels and leakagihe external current given by Eg&l1)—(16) are solved by
are Vy,=50 mV, Vy=—-77 mV, andV,=—-54.5 mV; the the forth-order Runge-Kutta method for 20 sec with the in-
maximum values of corresponding conductivities agg,  tegration time step of 0.01 msec. We discard results of initial
=120 mS/cm, gx=36 mS/cm, andg, =0.3 mS/cm; the ten thousand steps to get asymptotic solutions. If ISI of
capacity of the membrane i8=1 uF/cn?. Details of the spike-train input or output is about 10 msec, the size of its

HH model can be found in Ref§9,20]. sample is about 2000. Although this figure is not sufficiently
The external, input current;, is taken to consist of two large for statistics of ISI data, we hope an essential ingredi-
terms: ent will be clarified in our numerical investigation.
li=ls+lp 1D lIl. DETERMINISTIC INPUTS
wherels expresses the static dc current dnddenotes the A. Time-independent ISI
pulse current induced by the spike-train input whose explicit 1p K
form will be discussed shortljEq. (15)]. - racemaker neurons
We consider the delta-function-type spike-train input ex- Let us first consider the HH neuron without the spike-
pressed by train input (,=0). The HH neuron is reported to be silent
for 1,=0, and to show the self-excited oscillation whien
_ B exceeds the critical value of,=6.3 uA/cm?, above which
U,(t)—Va; ot tin). (12 T,on decreases gradually dsis increased. The dashed curve

in Fig. 1(d) expresses an example of the self-excited oscilla-
The firing timet;,, for arbitraryn is assumed to be recurrently tion with the period of T,,=10.75 msec for I
defined by =25 uAlem? andl,=0.
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independent input IS]I,, with T;=15 msec and ;=25 uAlcm?];
time sequences @#) inputU;, (b) outputU,, (c) pulse current,
and (d) membrane potentidV. Dashed curves irtb) and (d) the
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FIG. 3. Return maps ofa) time-independent input ISI witf;
=15 msec andb) output ISI of the self-excited neurdfrig. 1).

Fig. 4, where the soliddashed curve expressesg,(o,), and
filled circles express the distribution §T,,} for a giveny; .

We note that foru;=9—11 msec, the period of the oscilla-
FIG. 1. Responses of the self-excited HH neuron to the timedtion is forced to be the samé&,,=T;, leading to the ratio

k=pu,/pni=1. Whenu;=5 msec, we getr,=10 msec and
thenk=2. On the contrary, fop; =20 msec, we get the two
values of T,,=9 and 11 msec, ang,= 10, the average

period of the output being a half of the inp=1/2). This
_ o _ ~Is also the case fop;=21 and 22 msec. In the other cases
Now we apply the spike-train input to this self-excited noticed above, the ISI of output distributes between about

yields the pulse currert, shown in Fig. 1c), by which the
membrane potential/ oscillates as depicted by the solid
curve in Fig. 1d). We plot in Fig. 1b) the time sequence of

the spike-train output), which should be compared with the
input U;. The pulse current,
= 14.8 uAlcm? at t=t;,+ 7 msec. We notice that the

oscillation inV is rather different from that shown by the

dashed curve for,=0. Figure 2 expresses the histogram of
the output ISI, showing thafT,} distributes continuously ;
between 8.36 to 11.62 msec. The mean and root-meaf® Pulse current with the peaks
square(rms) values of the output ISI arg,=10.43 ando,

2. Silent neurons

8.5-11.5 msec. We should note that irrespectivggf out-
put ISI is always about 10 msec, which is nearly equal to
T,=10.75 msec, ISl fof =25, andlp=0,uA/cm2.

Next consider the silent neuron with=0, for which the
has the maximum value of Oscillation of the membrane potential is induced by applied
spike-train inputs. Figures(&—-5(d) show the calculated re-
sult in which the spike-train input is given by;,= u;
=10 msec andygy,= 0.5mS/cm without static currentsl(
=0). The applied spike-train inputs shown in Figacreate
of**=15.3uA/cm® as
shown in Fig. %c). The induced oscillation of the membrane

—1.12 msec, respectively. This oscillation is chaotic as wa®etentialV in Fig. Xd) is phase locked with the ratio &f.3,
pointed out for the HH neuron receiving sinusoidal inputsScillating with -a long cycle of 40.00 msee=(L1.25

[16,17]; the pulse current, shown in Fig. 1c) is not so

+12.36+16.39=4 u;, where 11.25, 12.36, and 16.39 are

different from the sinusoidal one in a crude sense. The chdhe values of output ISls. The return map of output ISls is
otic behavior is clearly seen in Fig. 3, which depicts returnPlotted in Fig. a).
maps of input and output ISIs.

When the ISI value of spike-train inpuf; (= ;) is

Figure 7 showg, ando, as a function ofw; . We notice

changed, we get an interesting behaviorin as shown in

FIG. 2. Histograms of@ the time-independent input ISIT(
=15 msec) andb) output ISI of the self-excited neurdisee Fig.

1).

Histogram (arb. units)
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that 1, agrees withu; (k=1) for u; greater than 12 msec,

FIG. 4. Mean fu,, solid curvg and rms ¢,, dashed curje
values of output ISI of self-excited neurons €25 uAlcm?)

curves denotink= o/ 1; -

against the mean valueu() of time-independent input ISI. Filled
circles denote the distribution of output ISlIs for a given, dotted
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FIG. 5. Response of the silent HH neuron to the time-Of OutputISis for a givery;, dotted curves denotink= o /u; .
independent input ISII{ with T;=10 msec and(=0); time se-
quences ofa) the inputU;, (b) outputU,, (c) pulse current ,, Ip= 1.6 uAlcm?, which is much smaller than the critical dc
and (d) membrane potentia. current of l;,,=6.3 uA/lcm? for the self-excited oscillation

with I ,=0. We note that we g&t=1 for the large ISIs with
where the HH neuron behaves as a simple transmitter with &irly strong synaptic couplings. When we decreasevith
delay of about 2.0 msec. This is in strong contrast with th&keepinggsy, fixed, values ok become larger since the HH
behavior of the self-excited neuron discussed in the precedieuron cannot respond to inputs with the small ISI because
ing subsectioriFig. 4). On the other hand, fqu; less than 11  of its refractory period. Figure 8 reminds us the result of
msec, the behavior of output IS is rather complicated. It isGuttman, Feldman, and Jakobsdrb] who reported in their
easy to see thdt=2 for u;=6, 7, and 8 msec, and thiat  Table 1, the calculatekias functions of the magnitudeand
=3 for u;=4 msec. Foru;=9, we getT,,=12.06 and the frequencyf; when the sinusoidal input given by
14.96 msec, leading to a longer period of;3-27.00 =Asin(2wf;)+1, is applied to squid giant axons with a bias
(= 12.06 + 14.96 msec. Foru;=5 msec, we gefl,, currentl,. Our result foru;<10 msec agrees fairly with
=10.94 and 14.06 msec, which leads to a long period othat of Ref.[15]. However, the agreement between the two
5 u;=25 msec, its return map being shown in Figh)g  results is not good for;>10 msec, where our input current
Surprisingly, @ much longer period of A3is realized for ~ With the pulse width of about 2.45-5 msec[Egs.(15) and
ni= 11 msec. The rms value @fo has an appreciab|e value (16)] is qUite different from the sinusoidal current adopted in
only aroundy;=10 msec. Ref. [15].

We have repeated our calculation by changing the value AS was shown in Fig. 4, the self-excited HH neuron emits
of geyn. The calculated ratick=u,/u;, is shown as func- f[he output ISI ofTo,_n~_ 10 msec irrespective of the value of
tions of gs,, and ; in Fig. 8, where only the integer values input ISI, and then_ itis con5|de_red to b_e madequa_te asa d_ata
of k are shown. Note that noninteger valueskogxist be- ~Processor. Then, in the following sections, we will investi-
tween the integer values; for example=4/3 for gy, 9ate only the silent HH neuron with a fixed value @,
—0.5 mS/cri and u; =10 msec(Fig. 7). We cannot obtain =0.5 m S/cr.
spike-train outputs for small synaptic couplings as expected.

When ;=10 msec, we get the critical value afgy, 1 1 T
=0.11mS/cr below which no outputs are available. This F HH
coupling yields the pulse current with the maximum value of 0.8 .
2 : . : 2 . : E) 0.6 =t .
(& T=10 (b) T=S g |
50.4 E
=)
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Tun+l (mscc)
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10 20 30
M; (msec)

0 20 — 10 20 _ _
Tyn (msec) T,, (msec) FIG. 8. The phase diagram of the calculated ratio kof
(= to/ pi) in the u;— gy, Space for the time-independent ISI input
FIG. 6. Return maps of output ISIs for the time-independentto silent neurons: only integds's are shown and crosses denote no
input with (a) T;=10 and(b) 5 msec(see Fig. 5. outputs(see text
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300 1 30 | et e[
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Eant 1 Eoa
3| 3 FIG. 11. Histograms ofa) input ISI with sinusoidal modulation
= 10 | e 10k | and (b) output ISI. Solid (dashedl curves are fordy,=2d;
=10 (20) msec.
0303040 020 3040 of this distortion is explained in Fig. 11, where solid histo-
T, (msec) T, (msec) grams express input and output ISIs fdg=2d,;=10 («

=8.68, 0=3.42) and dashed histograms those fog
FIG. 9. Time courses ofa) input U; and (b) outputU,, and ~ =2d;=20 (u;=17.54,01=6.94), withT ;=100 msec(ltis
return maps ofc) input and(d) output ISls for the sinusoidal modu- noted that we get;<<d, because the histogram of the input

lation for dy=2d; =20 msedEq. (19)]. ISI atT;,<dg has larger magnitudes than thaffa{>d,.) In
o _ _ the case ofdy=2d;=20 msec, the input and output ISIs
B. ISI with sinusoidal modulation distribute almost in the same region at<1T,,<30 msec.

In this subsection we discuss an application of the spike©n the contrary, in the case df=2d,=10 msec, the out-
train input whose 1SI is modulated by the sinusoidal signalPut ISIs distribute at 11.04T,,,<19.48 msec while input
given by ISIs are at 5.08.T;,<14.96 msec; no output ISIs &t,,,

<11 msec. This is due to the refractory period of the HH
Tin(t)=do+d;sin(2wt/Ty), (199  neuron and it is the origin of the distortion in the return map
shown in Fig. 10b). Defining the dimensionless coefficients
whereT, is the period andl, andd, are coefficients adjust- of variations for input and output ISIs by
ing u; ando; . .

Figures 9a) and 9b) show the time course of inpud, cha=on/py, (A=i and o) (20)
and outputU, for do=2d,=20 msec withT,=100 msec. e getc,,=0.17 and 0.38 ford,=2d;=10 and 20 msec,
Because of the introduced sinusoidal modulation, ISIs afespectively; note that,;=0.40 for both inputs.
100<t<150 msec are, for example, larger than those at Figyre 12 showsu, and oy, calculated by changing;
150<t<200 msec. Figure(®) depicts the return map of in- jth the fixed value ofc,;=0.40. Solid and dashed curves
put ISIs, which has the egg-shape circle expected for thgenoteu, ando,, respectively, and filled circles the distri-
sinusoidal signal. On the other hand, the return map of outpytion of {T,,} for a givenu;. We notice that there is no
put ISIs shown in Fig. @) reveals the chaotic behavior. ooyt ISIs withT,, less than about 10 msec, which shows

Results fordo=2d;=10 are plotted in Figs. 18-10d),  characteristic of the low-pass filter of the silent HH neuron.
which show that although the return map of input ISI has the

egg-shape circle, that of output ISIs is distorted. The reason IV. CHAOTIC INPUTS
. : — A. Rossler model
'|(a)L|Ji R In this section, we study the spike-train input whose ISl is
1 ®) U, modulated by chaotic signals. First we adopt thes®er
I RN model, which is given by
0 ‘ 200 300
t (msec) A .

| cyi=0.4

: : 3

T T T

(c) Input

(d) Output ~ 30- 8
F J é |
5 320 i o0 i
2 & o)
Eqd 1 E | J 5
T 3 =10 .
= =10 g
0
' . | w; {msec)
0 20 10 20 30 )
T, (msec) T, (msec) FIG. 12. Mean f,, solid curve and rms ¢, dashed cunje

values of output ISI against the mean valye)(of input ISI with
FIG. 10. Time courses af) input U; and (b) outputU,, and  sinusoidal modulationd;;=0.40). Filled circles denote the distri-
return maps ofc) input and(d) output ISIs for the sinusoidal modu- bution of output ISIs for a givenu;, dotted curves denote
lation for dy=2d,=10 msed Eq. (19)]. k=po/ui=1.0.
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FIG. 13. Time courses af) input U; and (b) outputU,, and
return maps ofc) input and(d) output ISIs for chaotic inputs gen-
erated by the Resler modelcaseR1).

dx/dt=—-y—z,

dy/dt=x+ay,

dz/dt=bx—cz+xz,

(21)
(22)

(23

with a=0.36, b=0.4, andc=4.5[21]. Since ISI has to be
positive and the characteristic time scale in thes&er

model is different from that of the HH model, we adopt the < 16.56 msec 4, =9.53¢;=2.69 msec).
variablex(t) which yields

Tin(tin) =do+ (d1/10)X(ptin),

with the following two choices of parameters:

dp=d;=10 msec andp=1/10 (case R1),

dp=d;=20 msec andp=1/20 (case R2).

(24

723
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FIG. 15. Return maps dB) input I1SI and(b) output ISI for the
chaotic input generated by the §ber modelcaseR2); (c) and(d)
are corresponding return maps of its surrogate data.

as shown by solid histograms in Figs.(d&dand 14b); output
ISIs distribute at 11.1&T,,,<25.15 msec f,m=13.43,
0,=2.44 msec) whereas input ISIs distribute at 508,

Return maps for the cade2 are shown in Fig. 15, in
which both return maps are almost the same. This is because
input and output ISIs locate almost in the same region of
10<Ti,, Tom<30 msec, as shown by dashed histograms in
Figs. 14a) and 14b).

Next we investigate the nature of the correlation in the ISI
sequences. This is made by employing the surrogate data
method applied to ISI date23]. We adopt the shuffled sur-
rogate as a simple method to get surrogate data. The distri-

Figures 18a) and 13b) show the time course of input and butions of ISIs of shuffled surrogate inputs are exactly the
output spike trains for the ca$®l. The return map of input
ISI depicted in Fig. 1&) shows a shape characteristic for have no time correlation between successive ISI values.
chaotic signals. On the other hand, the return map of output The time course of the membrane potentials for the sur-
ISIs is rather strange with no tracesTa}<10 msec. This is
due to the low-pass filter behavior of the silent HH neuron,chaotic input(not shown. The solid (dashedl histogram in

151

—
=3

Histogram (arb. units)

w

N T T T T
{(a) Input
R1
o case
case R2
- _—\‘H—ﬁ/g Oy
{b) Output
(original)
E T e e
(c) Output
(surrogate) |
] [ e
10 20 30 40

ISI (msec)

FIG. 14. Histograms ofa) input I1SI and(b) output ISI for the
chaotic input generated by the §er model, andc) output ISI for
its surrogate, soliddashegl curves being for casB1 (R2).

same as those of original ISI data although surrogate data

rogate data is ostensibly quite similar to that for the original

Fig. 14(c) shows the distribution of output ISIs of surrogate
data generated from the Bsler model for the casel (R2).

The results of the surrogate data are similar to those for the
corresponding original data. Return maps of the input and
output ISI of the surrogate data, depicted in Figs.cLand
15(d), show the characteristics of random signals.

B. Lorentz model

The similar calculation is made with the use of the Lor-
entz model, which is given by

dx/dt=d(y—x), (29
dy/dt=ex—y—xz, (26)
dz/dt=—fz+xy, (27)
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spike-train inputs with the gamma distribution; solidashed
curves for input ISIs ofu;=10(20) msec wittc,;=0.40.

The spike-train input created by the gamma-distribution
generator is applied to our neural system. Calculations are
performed by changing; by keeping the value df,; fixed.

Tyon (msco)
Tpey (msco)
[y}

T

- (d) Output Note that because the size of our sample of input ISl is not
i sufficiently large, the obtained,; fluctuates around the in-
T, (msec) T, (msec) tended values. Solid histograms in Figs.(@7and 17b)

show the result foc,;=0.40, ;=10 msec,c,,=0.25, and
FIG. 16. Return maps df) input ISI and(b) output ISI for the  u,=14.84 msec while dashed histograms for the result for
chaotic input generated by the Lorentz modej; and(d) are cor-  c,;=0.40, u; =20 msec,c,,=0.36, andu,=21.11 msec.
responding return maps of its surrogate data. Solid and dashed curves in Fig.(aBdenoteu, and o,
respectively, forc,;=0.4. We note that as increasipg, u,
with d=10, e= 28, andf =8/3[22]. We employ the variable increases and approaches the dotted line expressing

z(t), with which the input ISl is given by = ;. This is similar to the case af,;=0 shown in Fig. 7,
where u,= u; at u;=10 msec. On the contrary, the depen-
Tin(th) =do+(dy/25) [z(ptin) — 28], (28 dence ofu, on u; for the case of,;=1.0 shown in Fig.

18(b), is rather different from the cases of;=0 and 0.4.

We getu,~ (wi+10) msec aj,<100 msec and it deviates

from the dotted line showingt,= w;. These calculations
epicted in Figs. 1& and 18b) clearly show thatu, de-

wheredy=d; =20 andp=1/100.

Figures 16a)—16(d) show return maps of ISI data of
original chaotic data and its surrogate. Return maps of outp
ISIs for the chaotic and surrogate data shown in Figgh)16
and 16d) have no traces af,,,>10 msec because of the
low-pass filter character of the HH neuron.

Sauer[24], and Racicot and Longtif25] studied the re-
sponse of the IF model to the input whose amplitudes are
modulated by chaotic signals. It was shown that when the
mean firing rate is high, the relationship between input and
output is high, which leads to the high nonlinear predicabil-
ity. Our calculations, on the other hand, have shown that
when the mean firing rate is too highe., input ISls are too
short such ag;,<10 msec), the information is lost because
the HH neuron behaves as the low-pass filter due to its re- Wi (msec)
fractory period, which is not included in the IF model.

y | " T v 1.0
L (a) cyi=0.4

besto
100+ 1.0
V. STOCHASTIC INPUTS 2 1
The ISIs of spike-train inpuT;, in Eq. (13) are assumed g; I | &
to be independent random variables with the gamma prob- "850- 0.5
ability density function given by = 7 ]
P(T)=s"T""1e STI'(r) (29) Y
2040 60 80 100

for which we getu;=r/s, o;=\/r/s, andc,;=1/r, T'(r) i (msec)

being the gamma function. It is noted that in the limitrof FIG. 18. Mean f,, solid curvey, rms (o,, dashed curvés
=1, Eq. (29 reduces to the exponential distribution,{  andc,, (thin solid curves of output ISIs against the mean value
=1) and that in the limits of —c ands—o with keeping  (;) of input ISI for gamma distribution witlia) c,;=0.4 and(b)
wni=rls fixed, Eq. (29 reduces toP(T)=46(T— ), the ¢,=1.0. The dotted curves denoting,= u; are plotted as guides
constant ISI withu;=T andc,;=0. for the eye.



PRE 61 RESPONSES OF A HODGKIN-HUXLEY NEURON TO ... 725

pends not only om; but also ono; (c,;). Although bothu, I

and o, increase as the value of; is increased, the increase 08'_ s ]

in the latter is more significant than that in the former, which 1 o j ]

yields an increase in,,, as shown by the thin-solid curves 0.6+ P '; .

in Figs. 18a and 18b). We note thatc,, approaches the S :AAAA *

values ofc,; as increasing.;, the related discussion being o . . °§ % ]

given in Sec. VI. 02 § g “ 3 ]

We have performed the calculation also using input ISI |

with random, uniform distribution. Obtained results are simi- — o5 1

lar to those for the gamma distribution, as far as the adopted &

values ofc,; are the saménot shown. FIG. 19. ¢c,, againstc,; for inputs with time-independent ISI

(inverted trianglesg,;=0), with sinusoidal modulatiofopen dia-

VI. CONCLUSION AND DISCUSSION monds, squares, and triangles &r=0.22, 0.40, and 0.82, respec-

tively), and with random gamma distributidiclosed squares, tri-

We have investigated the responses of the HH neurons, byngles, and circles far,;=0.40, 0.75, and 1.03, respectivelffhe
applying the various types of spike-train inputs whose ISI isdotted curve expressing,,=c,; is plotted as a guide for the eye.
modulated by deterministic, chaotic, and stochastic signals.
The obtained results are summarized as follows. angles, and squares results of the stochastic modulé&ien

(1) Output ISIs of the self-excited HH neuron against theV). Our calculations show the following.) The constant ISI
time-independent input ISI are alwayg,,,~10 msec irre- with a vanishingc,; yields the finitec,(<0.2), i.e.,Cy,
spective of the value of the input I19Fig. 4). =c,;, (ii) the finite-width distribution of I1SIs with the sinu-

(2) Output ISIs of the silent HH neurons for the constantsoidal modulation leads to,,<c,;, and(iii) the exponen-
ISI with T;,>10 msec yield output ISI withT,,=T;, tial, gamma distribution of input ISIs yield the result which
whereas for ISI withTl;,<<10 msec, the HH neuron generally is ostensibly similar to that in the itefii). Although the item
emits multiple kinds of output ISI§=ig. 7). (ii) is in agreement with the result for the abovementioned

(3) For the input I1SI modulated by sinusoidal, chaotic, case(a), the items(i) and(iii) disagree with the results of the
and stochastic signals, the silent HH neuron behaves ascases ofa) and(b), respectively, discussed in Ref82] and
low-pass filter because of its refractory period, yielding out-[33] for IF neurons. This difference is expected to arise from
put ISI with T,,,>10 msec. the fact that the response of the type-Il HH neuron with the

(4) Output ISIs generally depend not only on the mean ofrefractory period is different from that of the type-I IF neu-
the input ISI but also on their fluctuations: the HH neuron isron without it. This is consistent with the recent calculations
not a simple integrator. of Brown, Feng, and Feericl34] for the variability of the

(5) The analysis on the histograms of input and outputHH and IF neurons.
ISIs cannot distinguish the responses to the deterministic, Finally we want to discuss the transient response of the
chaotic, and stochastic signals. HH neuron to the cluster of spike-train inputs. Figure&a20

(6) The distinction can be made by an analysis of the time20(b), and 2@c) show the results foil;,=5, 10, and 20
correlation of the ISI data, for example, by plotting their msec, respectively. In Fig. 26), for example, the upper
return maps. (lower) panel of C1, C2, C3, and C4 express the time courses

Softky and KocHh 26] have reported a large coefficient of of input (outpud spike trains for inputs of two, three, four
variability (c,,=0.5~1.0) for spike trains of non-bursting and five impulses, respectively, withi,=20 msec. In this
cortical neurons in visuaV1l and MT of monkeys in strong case the ISI of output pulses is the same as that of input
contrast with a smalkc,,(=0.05~0.1) in motor neurons

[27]. In order to explain the large,,, several hypotheses T

have been proposed; a balance between excitatory and in- 1-A1 LAz Mg A

hibitory inputs[28], the high physiological gain in thé, N | U ] ]

—1; plot [29], correlation fluctuations in recurrent networks 100 200 300 400 500

[30], and the active dendrite conductari@d]. By using the t (msec)

IF model, Feng and Browfi32] have shown that there are (b)) T=10

three kinds of behaviors @, depending on the distribution (81, B2 1. B3 1 B4 i1

of input ISls: (a) c,, tends to decrease for the Gaussian, ) U L L Ll 1

uniform or truncated distribution of ISIgp) c,, remains L B

constant for the exponentially distributed ISls, awi c,, t (msec)

diverges to infinity when ISls follow the Pareto distribution () T:=20

which has a slow-decreasing tail ®f “ («>0) at largeT. TS - e e Iy

Case(a) was previously discussed by Marsalek, Koch, and —L [ W EE N

Maunsell[33]. || LU L L]
TO0 200 300 ~ 400 500

Figure 19 shows the dependencecgf on c,; for various
types of our input ISIs having been reported in previous
sections. Inverted triangles denote the results for the constant FIG. 20. Time courses of spike-train inputs and outputs; input
ISIs (Sec. Il A2), open marks the results for input ISIs with |SIs are(a) T;=5, (b) 10, and(c) 20 msec, and uppdlower) panel
sinusoidal modulationSec. IlIB), and filled circles, tri- of each figure shows inputsutputs.

t (msec)
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pulses,T,=T;,, because the HH neuron behaves as a linin Figs. 2@a)—20(c) that the first output pulse is rather
ear transmitter for inputs with 1SI of;,=10 msec. On the quickly emitted with a delay of 2.1 msec after the first input
contrary, its behaviors of output ISI data for inputs with pulse of clusters is applied to the HH neuron. This fast tran-
Tin=5 and 10 msec are much complicated. FiguréaR0 sient response may be relevant to a quick passage of infor-
shows that output ISIs fof;,=5 msec are 11.39 and 11.87 mation reported by Thorpe, Eize, and Marld&] and by
msec, which should be compared with,,=10.94 and 14.06 Rolls and Toveg6].

msec for the sequence of the spike trains with constant ISI of Note added Recently we noticed the calculation of the

5 msec discussed in Sec. IIA2. For the case Tof  Variability of the HH and IF neurons in Ref34], whose
=10 msec shown in Fig. 2b), we getT,,=11.44, 11.80, result is consistent with ours.

and 17.11 msec whereas the sequence of the constant ISI of
10 msec leads td,,=11.25, 12.36, and 16.39 ms¢Eig.

5). It is noted that both inputs with thrdé2) and four im-
pulses(A3) yield the same output of two impulses. Similarly,  This work was partly supported by a Grant-in-Aid for
inputs with thregB2) and four impulse$B3) lead to outputs  Scientific Research from the Japanese Ministry of Education,
with three impulses. We should note in all the cases showscience and Culture.
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