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Responses of a Hodgkin-Huxley neuron to various types of spike-train inputs

Hideo Hasegawa
Department of Physics, Tokyo Gakugei University, Koganei, Tokyo 184, Japan

~Received 1 June 1999!

Numerical investigations have been made of responses of a Hodgkin-Huxley~HH! neuron to spike-train
inputs whose interspike interval~ISI! is modulated by deterministic, semi-deterministic~chaotic!, and stochas-
tic signals. As deterministic one, we adopt inputs with the time-independent ISI and with time-dependent ISI
modulated by sinusoidal signal. The Ro¨ssler and Lorentz models are adopted for chaotic modulations of ISI.
Stochastic ISI inputs with the gamma distribution are employed. It is shown that distribution of output ISI data
depends not only on the mean of ISIs of spike-train inputs but also on their fluctuations. The distinction of
responses to the three kinds of inputs can be made by return maps of input and output ISIs, but not by their
histograms. The relation between the variations of input and output ISIs is shown to be different from that of
the integrate and fire~IF! model because of the refractory period in the HH neuron.

PACS number~s!: 87.18.Sn, 84.35.1i
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I. INTRODUCTION

Neurons in our brain are known to be responsible
encoding the characteristics of stimuli into a form for furth
processing by other neurons. During the last decades,
tomical, physiological, and theoretical studies on neur
have been extensively made. Despite these efforts, the
used for encoding and decoding in neurons has not b
clarified at the moment@1#. It is commonly believed that the
firing rate reflects the strength of the inputs which trigger
action potentials of neurons. Indeed, the firing activities
motor and sensory neurons vary in response to the app
stimuli. It is not known, however, whether the information
carried through the mean firing rate~rate encoding! or
through the details of sequences of the temporarily enco
interspike interval~ISI! ~temporal encoding!, which is cur-
rently controversial@2–4#. In the last few years, experimen
tal evidences have accumulated, indicating that many
logical systems use the temporal coding. Human vis
systems, for example, have shown to classify patterns wi
150 msec in spite of the fact that at least ten synaptic sta
are involved from retina to the temporal brain@5#. The simi-
lar speed of visual processing has been reported for mac
monkeys@6#. Because the firing frequency of neurons i
volved is less than 100 Hz, each neuron can contribut
most one or two spikes to such computations; there is
sufficient time to sample firing rates.

In recent years, many studies on the encoding of the s
trains by neurons have been made by using the integrate
fire ~IF! model @7#, which is one of the simplest, dynamic
models of neurons@8#. The IF neutron is silent without the
external, input currentI i . When I i , exceeds the critica
value I ic , the IF neuron shows the self-excited oscillation
whose frequencyf o depends on the magnitudes ofI i . It is
shown thatf o continuously vanishes whenI i is decreased
and approaches toI ic . This behavior of the continuousf o
2I i dependence is different from the discontinuous one aI ic
in the more realistic Hodgkin-Huxley~HH! neurons@9#; the
IF and HH neurons are classified as the type I and type
respectively@10#. Furthermore, the IF neuron has the disa
vantages of the artificial reset of the action potential and
PRE 611063-651X/2000/61~1!/718~9!/$15.00
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lack of the refractory period. Although it has been wide
employed for the study of neural networks, the IF mode
too crude to discuss the activities of real neurons.

The HH model, which well describes the spiking behav
and refractory properties of real neurons, is expressed b
on non-linear conductances of Na and K ion channels@9#.
Since the HH model was proposed, its property has b
intensively investigated@11–17#. The behavior of self-
excited oscillations of the HH neuron with the applied cu
rent has much variety than that of the IF model. It is sho
that the oscillation of the HH neuron may become chao
when the sinusoidalI i is applied with proper choices of mag
nitude and frequency@16,17#. Such chaotic oscillations ar
experimentally observed in squid giant axons@14,15# and
Onchidium neurons@18#.

The HH model was originally proposed to account for t
property of squid giant axons@9# and it has been generalize
with modifications of ion conductances@19#. The HH-type
models have been widely adopted for a study on activities
transducer neuronssuch as motor and thalamus relay ne
rons, which transform the amplitude-modulated input
spike-train outputs. In this paper, we pay our attention
data-processing neuronswhich receive and emit the spike
train pulses. Assuming that the data-processing neuron
be essentially described by the ion-conductance mechan
of the HH model, we investigate its input-output response
order to get some insight into the following questions.

~1! How the output ISIs depend on the input ISIs? Do
the average rate of the output ISI depend only on the ave
of the input ISIs?

~2! How do neurons distinguish the different types of d
terministic, chaotic, and stochastic inputs? How different
the response to different types of spike-train inputs?

Our paper is organized as follows. In the next Sec. II,
mention a simple neuron model adopted for our numer
calculation. In Sec. III, we investigate the response of o
system to deterministic inputs with time-independent
~Sec. III A! and time-dependent ISIs modulated by sinusoi
signal~Sec. III B!. Input and output ISIs are studied by the
histograms and return maps; the former shows the distr
tions and the latter the time correlation of ISI data. In S
718 ©2000 The American Physical Society
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PRE 61 719RESPONSES OF A HODGKIN-HUXLEY NEURON TO . . .
IV, chaotic inputs generated by Ro¨ssler~Sec. IV A! and Lor-
entz model~Sec. IV B! are discussed. Stochastic inputs w
the gamma distribution are treated in Sec. V. The final S
VI is devoted to conclusion and discussion.

II. ADOPTED MODEL

We adopt a simple system consisting of a neuron an
synapse. The neuron is assumed to be described by the
model and the synapse by the alpha function@Eq. ~16!#. We
will investigate the response of our neuron when spike-tr
inputs are applied through the synapse.

The HH model is described by the nonlinear coupled d
ferential equations for the four variables,V for the membrane
potential andm, h, andn for the gating variables of Na and K
channels, and it is given by@9#

CdV/dt52gNam
3h~V2VNa!2gKn4~V2VK!

2gL~V2VL!1I i , ~1!

dm/dt52~am1bm!m1am , ~2!

dh/dt52~ah1bh!h1ah , ~3!

dn/dt52~an1bn!n1an , ~4!

where

am50.1~V140!/@12e2(V140)/10#, ~5!

bm54e2(V165)/18, ~6!

ah50.07e2(V165)/20, ~7!

bh51/@11e2(V135)/10#, ~8!

an50.01~V155!/@12e2(V155)/10#, ~9!

bn50.125e2(V165)/80. ~10!

Here the reversal potentials of Na, K channels and leak
are VNa550 mV, VK5277 mV, andVL5254.5 mV; the
maximum values of corresponding conductivities aregNa
5120 mS/cm2, gK536 mS/cm2, and gL50.3 mS/cm2; the
capacity of the membrane isC51 mF/cm2. Details of the
HH model can be found in Refs.@9,20#.

The external, input current,I i , is taken to consist of two
terms:

I i5I s1I p ~11!

where I s expresses the static dc current andI p denotes the
pulse current induced by the spike-train input whose exp
form will be discussed shortly@Eq. ~15!#.

We consider the delta-function-type spike-train input e
pressed by

Ui~ t !5Va(
n

d~ t2t in!. ~12!

The firing timet in for arbitraryn is assumed to be recurrent
defined by
c.

a
H

n

-

ge

it

-

t in115t in1Tin~ t in!, ~13!

t i150, ~14!

where the ISI of input spikeTin is generally a function of a
given timet in . In this study, we takeTin to be constant ISI,
and time-dependent ISI modulated by sinusoidal, chao
and stochastic signals.

The spike train given by Eq.~12! is assumed to be in
jected through the synapse, yielding the currentI p given by

I p~ t !5gsyn(
n

a~ t2t in!~Va2Vsyn!. ~15!

Heregsyn andVsyn are the conductivity and reversal potenti
of synapse, and the alpha functiona(t) is defined by@20#

a~ t !5~ t/t!e2t/tQ~ t !, ~16!

wheret is the time constant relevant to the synapse cond
tion andQ(t) is the Heaviside step function. When the ISI
very large compared witht, Eqs.~15! and ~16! yield pulse
currents with the maximum value ofI p

max5e21gsyn(Va

2Vsyn) at t5t in1t and with the half-width of 2.45t. We
assumeVa530 mV ~the typical value of the maximum
membrane potential!, Vsyn5250 mV and t52 msec, and
treatgsyn as a parameter.

When the membrane potentialV oscillates, it yields the
spike-train output, which may be expressed by

Uo~ t !5Va(
m

d~ t2tom!, ~17!

in a way similar to Eq.~12!, and the output ISI is given by

Tom5tom112tom . ~18!

We will investigate howTom depends on the various types
Tin .

Differential equations given by Eqs.~1!–~10! including
the external current given by Eqs.~11!–~16! are solved by
the forth-order Runge-Kutta method for 20 sec with the
tegration time step of 0.01 msec. We discard results of ini
ten thousand steps to get asymptotic solutions. If ISI
spike-train input or output is about 10 msec, the size of
sample is about 2000. Although this figure is not sufficien
large for statistics of ISI data, we hope an essential ingre
ent will be clarified in our numerical investigation.

III. DETERMINISTIC INPUTS

A. Time-independent ISI

1. Pacemaker neurons

Let us first consider the HH neuron without the spik
train input (I p50). The HH neuron is reported to be sile
for I s50, and to show the self-excited oscillation whenI s
exceeds the critical value ofI ic56.3 mA/cm2, above which
Ton decreases gradually asI s is increased. The dashed curv
in Fig. 1~d! expresses an example of the self-excited osci
tion with the period of Ton510.75 msec for I s
525 mA/cm2 and I p50.
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720 PRE 61HIDEO HASEGAWA
Now we apply the spike-train input to this self-excite
neuron. The input is given by Eqs.~10!–~16! with the time-
independent ISI of Tin(t in)5Ti515 msec and gsyn
50.5 mS/cm2. This spike-train inputUi shown in Fig. 1~a!
yields the pulse currentI p shown in Fig. 1~c!, by which the
membrane potentialV oscillates as depicted by the sol
curve in Fig. 1~d!. We plot in Fig. 1~b! the time sequence o
the spike-train outputUo which should be compared with th
input Ui . The pulse currentI p has the maximum value o
I p

max514.8mA/cm2 at t5t in1t msec. We notice that the
oscillation in V is rather different from that shown by th
dashed curve forI p50. Figure 2 expresses the histogram
the output ISI, showing that$To% distributes continuously
between 8.36 to 11.62 msec. The mean and root-me
square~rms! values of the output ISI aremo510.43 andso
51.12 msec, respectively. This oscillation is chaotic as w
pointed out for the HH neuron receiving sinusoidal inpu
@16,17#; the pulse currentI p shown in Fig. 1~c! is not so
different from the sinusoidal one in a crude sense. The c
otic behavior is clearly seen in Fig. 3, which depicts retu
maps of input and output ISIs.

When the ISI value of spike-train inputTi (5m i) is
changed, we get an interesting behavior inmo as shown in

FIG. 1. Responses of the self-excited HH neuron to the tim
independent input ISI@ I p with Ti515 msec andI s525mA/cm2];
time sequences of~a! input Ui , ~b! outputUo , ~c! pulse currentI p ,
and ~d! membrane potentialV. Dashed curves in~b! and ~d! the
result with I p50.

FIG. 2. Histograms of~a! the time-independent input ISI (Ti

515 msec) and~b! output ISI of the self-excited neuron~see Fig.
1!.
f

n-

s

a-

Fig. 4, where the solid~dashed! curve expressesmo(so), and
filled circles express the distribution of$Ton% for a givenm i .
We note that form i59211 msec, the period of the oscilla
tion is forced to be the same;Tom5Ti , leading to the ratio
k[mo /m i51. Whenm i55 msec, we getmo510 msec and
thenk52. On the contrary, form i520 msec, we get the two
values of Ton59 and 11 msec, andmo510, the average
period of the output being a half of the input (k51/2). This
is also the case form i521 and 22 msec. In the other cas
noticed above, the ISI of output distributes between ab
8.5–11.5 msec. We should note that irrespective ofm i , out-
put ISI is always about 10 msec, which is nearly equal
To510.75 msec, ISI forI s525, andI p50mA/cm2.

2. Silent neurons

Next consider the silent neuron withI s50, for which the
oscillation of the membrane potential is induced by appl
spike-train inputs. Figures 5~a!–5~d! show the calculated re
sult in which the spike-train input is given byTin5m i
510 msec andgsyn50.5mS/cm2 without static currents (I s
50). The applied spike-train inputs shown in Fig. 5~a! create
the pulse current with the peaks ofI p

max515.3mA/cm2 as
shown in Fig. 5~c!. The induced oscillation of the membran
potentialV in Fig. 5~d! is phase locked with the ratio of4:3,
oscillating with a long cycle of 40.00 msec (511.25
112.36116.39)54 m i , where 11.25, 12.36, and 16.39 a
the values of output ISIs. The return map of output ISIs
plotted in Fig. 6~a!.

Figure 7 showsmo andso as a function ofm i . We notice
that mo agrees withm i (k51) for m i greater than 12 msec

-

FIG. 3. Return maps of~a! time-independent input ISI withTi

515 msec and~b! output ISI of the self-excited neuron~Fig. 1!.

FIG. 4. Mean (mo , solid curve! and rms (so , dashed curve!
values of output ISI of self-excited neurons (I s525 mA/cm2)
against the mean value (m i) of time-independent input ISI. Filled
circles denote the distribution of output ISIs for a givenm i , dotted
curves denotingk[mo /m i .
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where the HH neuron behaves as a simple transmitter wi
delay of about 2.0 msec. This is in strong contrast with
behavior of the self-excited neuron discussed in the prec
ing subsection~Fig. 4!. On the other hand, form i less than 11
msec, the behavior of output ISI is rather complicated. I
easy to see thatk52 for m i56, 7, and 8 msec, and thatk
53 for m i54 msec. Form i59, we get Tom512.06 and
14.96 msec, leading to a longer period of 3m i527.00
~5 12.06 1 14.96! msec. Form i55 msec, we getTom
510.94 and 14.06 msec, which leads to a long period
5 m i525 msec, its return map being shown in Fig. 6~b!.
Surprisingly, a much longer period of 13m i is realized for
m i511 msec. The rms value ofso has an appreciable valu
only aroundm i510 msec.

We have repeated our calculation by changing the va
of gsyn. The calculated ratio,k5mo /m i , is shown as func-
tions of gsyn andm i in Fig. 8, where only the integer value
of k are shown. Note that noninteger values ofk exist be-
tween the integer values; for example,k54/3 for gsyn
50.5 mS/cm2 and m i510 msec~Fig. 7!. We cannot obtain
spike-train outputs for small synaptic couplings as expec
When m i510 msec, we get the critical value ofgsyn
50.11mS/cm2 below which no outputs are available. Th
coupling yields the pulse current with the maximum value

FIG. 5. Response of the silent HH neuron to the tim
independent input ISI (I p with Ti510 msec andI s50); time se-
quences of~a! the inputUi , ~b! output Uo , ~c! pulse currentI p ,
and ~d! membrane potentialV.

FIG. 6. Return maps of output ISIs for the time-independ
input with ~a! Ti510 and~b! 5 msec~see Fig. 5!.
a
e
d-

s

f

e

d.

f

I p
max51.6mA/cm2, which is much smaller than the critical d

current of I ic56.3mA/cm2 for the self-excited oscillation
with I p50. We note that we getk51 for the large ISIs with
fairly strong synaptic couplings. When we decreasem i with
keepinggsyn fixed, values ofk become larger since the HH
neuron cannot respond to inputs with the small ISI beca
of its refractory period. Figure 8 reminds us the result
Guttman, Feldman, and Jakobson@15# who reported in their
Table 1, the calculatedk as functions of the magnitudeA and
the frequencyf i when the sinusoidal input given byI i
5Asin(2p f i)1I b is applied to squid giant axons with a bia
current I b . Our result form i,10 msec agrees fairly with
that of Ref.@15#. However, the agreement between the tw
results is not good form i@10 msec, where our input curren
with the pulse width of about 2.45t;5 msec@Eqs.~15! and
~16!# is quite different from the sinusoidal current adopted
Ref. @15#.

As was shown in Fig. 4, the self-excited HH neuron em
the output ISI ofTom;10 msec irrespective of the value o
input ISI, and then it is considered to be inadequate as a
processor. Then, in the following sections, we will inves
gate only the silent HH neuron with a fixed value ofgsyn
50.5 m S/cm2.

-

t

FIG. 7. Mean (mo , solid curve! and rms (so , dashed curve!
values of output ISI of silent neurons against the mean value (m i)
of time-independent input ISI. Filled circles denote the distributi
of output ISIs for a givenm i , dotted curves denotingk[mo /m i .

FIG. 8. The phase diagram of the calculated ratio ofk
(5mo /m i) in them i2gsyn space for the time-independent ISI inp
to silent neurons: only integerk’s are shown and crosses denote
outputs~see text!.
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B. ISI with sinusoidal modulation

In this subsection we discuss an application of the sp
train input whose ISI is modulated by the sinusoidal sig
given by

Tin~ t !5d01d1sin~2pt/Tp!, ~19!

whereTp is the period andd0 andd1 are coefficients adjust
ing m i ands i .

Figures 9~a! and 9~b! show the time course of inputUi
and outputUo for d052d1520 msec withTp5100 msec.
Because of the introduced sinusoidal modulation, ISIs
100,t,150 msec are, for example, larger than those
150,t,200 msec. Figure 9~c! depicts the return map of in
put ISIs, which has the egg-shape circle expected for
sinusoidal signal. On the other hand, the return map of o
put ISIs shown in Fig. 9~d! reveals the chaotic behavio
Results ford052d1510 are plotted in Figs. 10~a!–10~d!,
which show that although the return map of input ISI has
egg-shape circle, that of output ISIs is distorted. The rea

FIG. 9. Time courses of~a! input Ui and ~b! output Uo , and
return maps of~c! input and~d! output ISIs for the sinusoidal modu
lation for d052d1520 msec@Eq. ~19!#.

FIG. 10. Time courses of~a! input Ui and ~b! outputUo , and
return maps of~c! input and~d! output ISIs for the sinusoidal modu
lation for d052d1510 msec@Eq. ~19!#.
-
l

t
t

e
t-

e
n

of this distortion is explained in Fig. 11, where solid hist
grams express input and output ISIs ford052d1510 (m
58.68, s53.42) and dashed histograms those ford0
52d1520 (m i517.54,s i56.94), withTp5100 msec.~It is
noted that we getm i,d0 because the histogram of the inp
ISI at Tin,d0 has larger magnitudes than that atTin.d0.! In
the case ofd052d1520 msec, the input and output ISI
distribute almost in the same region at 11,Tom,30 msec.
On the contrary, in the case ofd052d1510 msec, the out-
put ISIs distribute at 11.01,Tom,19.48 msec while input
ISIs are at 5.00,Tin,14.96 msec; no output ISIs atTom
,11 msec. This is due to the refractory period of the H
neuron and it is the origin of the distortion in the return m
shown in Fig. 10~b!. Defining the dimensionless coefficien
of variations for input and output ISIs by

cv l5sl /ml , ~l5 i and o! ~20!

we getcvo50.17 and 0.38 ford052d1510 and 20 msec,
respectively; note thatcv i50.40 for both inputs.

Figure 12 showsmo and s0 calculated by changingm i
with the fixed value ofcv i50.40. Solid and dashed curve
denotemo andso , respectively, and filled circles the distr
bution of $Tom% for a givenm i . We notice that there is no
output ISIs withTom less than about 10 msec, which show
characteristic of the low-pass filter of the silent HH neuro

IV. CHAOTIC INPUTS

A. Rössler model

In this section, we study the spike-train input whose ISI
modulated by chaotic signals. First we adopt the Ro¨ssler
model, which is given by

FIG. 11. Histograms of~a! input ISI with sinusoidal modulation
and ~b! output ISI. Solid ~dashed! curves are for d052d1

510 (20) msec.

FIG. 12. Mean (mo , solid curve! and rms (so , dashed curve!
values of output ISI against the mean value (m i) of input ISI with
sinusoidal modulation (cv i50.40). Filled circles denote the distri
bution of output ISIs for a givenm i , dotted curves denote
k[mo /m i51.0 .
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PRE 61 723RESPONSES OF A HODGKIN-HUXLEY NEURON TO . . .
dx/dt52y2z, ~21!

dy/dt5x1ay, ~22!

dz/dt5bx2cz1xz, ~23!

with a50.36, b50.4, andc54.5 @21#. Since ISI has to be
positive and the characteristic time scale in the Ro¨ssler
model is different from that of the HH model, we adopt t
variablex(t) which yields

Tin~ t in!5d01~d1/10!x~ptin!, ~24!

with the following two choices of parameters:

d05d1510 msec andp51/10 ~case R1!,

d05d1520 msec andp51/20 ~case R2!.

Figures 13~a! and 13~b! show the time course of input an
output spike trains for the caseR1. The return map of inpu
ISI depicted in Fig. 13~c! shows a shape characteristic f
chaotic signals. On the other hand, the return map of ou
ISIs is rather strange with no traces atTo,10 msec. This is
due to the low-pass filter behavior of the silent HH neuro

FIG. 13. Time courses of~a! input Ui and ~b! outputUo , and
return maps of~c! input and~d! output ISIs for chaotic inputs gen
erated by the Ro¨ssler model~caseR1!.

FIG. 14. Histograms of~a! input ISI and~b! output ISI for the
chaotic input generated by the Ro¨ssler model, and~c! output ISI for
its surrogate, solid~dashed! curves being for caseR1 (R2).
ut

,

as shown by solid histograms in Figs. 14~a! and 14~b!; output
ISIs distribute at 11.11,Tom,25.15 msec (mom513.43,
so52.44 msec) whereas input ISIs distribute at 5.06,Tin
,16.56 msec (m i59.53,s i52.69 msec).

Return maps for the caseR2 are shown in Fig. 15, in
which both return maps are almost the same. This is beca
input and output ISIs locate almost in the same region
10,Tin , Tom,30 msec, as shown by dashed histograms
Figs. 14~a! and 14~b!.

Next we investigate the nature of the correlation in the
sequences. This is made by employing the surrogate
method applied to ISI data@23#. We adopt the shuffled sur
rogate as a simple method to get surrogate data. The d
butions of ISIs of shuffled surrogate inputs are exactly
same as those of original ISI data although surrogate d
have no time correlation between successive ISI values.

The time course of the membrane potentials for the s
rogate data is ostensibly quite similar to that for the origin
chaotic input~not shown!. The solid~dashed! histogram in
Fig. 14~c! shows the distribution of output ISIs of surroga
data generated from the Ro¨ssler model for the caseR1 (R2).
The results of the surrogate data are similar to those for
corresponding original data. Return maps of the input a
output ISI of the surrogate data, depicted in Figs. 15~c! and
15~d!, show the characteristics of random signals.

B. Lorentz model

The similar calculation is made with the use of the Lo
entz model, which is given by

dx/dt5d~y2x!, ~25!

dy/dt5ex2y2xz, ~26!

dz/dt52 f z1xy, ~27!

FIG. 15. Return maps of~a! input ISI and~b! output ISI for the
chaotic input generated by the Ro¨ssler model~caseR2); ~c! and~d!
are corresponding return maps of its surrogate data.
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724 PRE 61HIDEO HASEGAWA
with d510, e528, andf 58/3 @22#. We employ the variable
z(t), with which the input ISI is given by

Tin~ tn!5d01~d1/25! @z~ptin!225#, ~28!

whered05d1520 andp51/100.
Figures 16~a!–16~d! show return maps of ISI data o

original chaotic data and its surrogate. Return maps of ou
ISIs for the chaotic and surrogate data shown in Figs. 16~b!
and 16~d! have no traces atTom.10 msec because of th
low-pass filter character of the HH neuron.

Sauer@24#, and Racicot and Longtin@25# studied the re-
sponse of the IF model to the input whose amplitudes
modulated by chaotic signals. It was shown that when
mean firing rate is high, the relationship between input a
output is high, which leads to the high nonlinear predicab
ity. Our calculations, on the other hand, have shown t
when the mean firing rate is too high~i.e., input ISIs are too
short such asTin,10 msec), the information is lost becau
the HH neuron behaves as the low-pass filter due to its
fractory period, which is not included in the IF model.

V. STOCHASTIC INPUTS

The ISIs of spike-train inputTin in Eq. ~13! are assumed
to be independent random variables with the gamma p
ability density function given by

P~T!5srTr 21e2sT/G~r ! ~29!

for which we getm i5r /s, s i5Ar /s, and cv i51/Ar , G(r )
being the gamma function. It is noted that in the limit ofr
51, Eq. ~29! reduces to the exponential distribution (cv i
51) and that in the limits ofr→` ands→` with keeping
m i5r /s fixed, Eq. ~29! reduces toP(T)5d(T2m i), the
constant ISI withm i5T andcv i50.

FIG. 16. Return maps of~a! input ISI and~b! output ISI for the
chaotic input generated by the Lorentz model;~c! and ~d! are cor-
responding return maps of its surrogate data.
ut

re
e
d
-
t

e-

b-

The spike-train input created by the gamma-distribut
generator is applied to our neural system. Calculations
performed by changingm i by keeping the value ofcv i fixed.
Note that because the size of our sample of input ISI is
sufficiently large, the obtainedcv i fluctuates around the in
tended values. Solid histograms in Figs. 17~a! and 17~b!
show the result forcv i50.40,m i510 msec,cvo50.25, and
mo514.84 msec while dashed histograms for the result
cv i50.40, m i520 msec,cvo50.36, andmo521.11 msec.

Solid and dashed curves in Fig. 18~a! denotemo andso ,
respectively, forcv i50.4. We note that as increasingm i , mo
increases and approaches the dotted line expressingmo
5m i . This is similar to the case ofcv i50 shown in Fig. 7,
wheremo5m i at m i*10 msec. On the contrary, the depe
dence ofmo on m i for the case ofcv i51.0 shown in Fig.
18~b!, is rather different from the cases ofcv i50 and 0.4.
We getmo;(m i110) msec atmo,100 msec and it deviate
from the dotted line showingmo5m i . These calculations
depicted in Figs. 18~a! and 18~b! clearly show thatmo de-

FIG. 17. Histograms of~a! input ISI and ~b! output ISI for
spike-train inputs with the gamma distribution; solid~dashed!
curves for input ISIs ofm i510(20) msec withcv i50.40.

FIG. 18. Mean (mo , solid curves!, rms (so , dashed curves!,
and cvo ~thin solid curves! of output ISIs against the mean valu
(m i) of input ISI for gamma distribution with~a! cv i50.4 and~b!
cv i51.0. The dotted curves denotingmo5m i are plotted as guides
for the eye.
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pends not only onm i but also ons i (cv i). Although bothmo
andso increase as the value ofm i is increased, the increas
in the latter is more significant than that in the former, whi
yields an increase incvo , as shown by the thin-solid curve
in Figs. 18~a! and 18~b!. We note thatcvo approaches the
values ofcv i as increasingm i , the related discussion bein
given in Sec. VI.

We have performed the calculation also using input
with random, uniform distribution. Obtained results are sim
lar to those for the gamma distribution, as far as the adop
values ofcv i are the same~not shown!.

VI. CONCLUSION AND DISCUSSION

We have investigated the responses of the HH neurons
applying the various types of spike-train inputs whose IS
modulated by deterministic, chaotic, and stochastic sign
The obtained results are summarized as follows.

~1! Output ISIs of the self-excited HH neuron against t
time-independent input ISI are alwaysTom;10 msec irre-
spective of the value of the input ISI~Fig. 4!.

~2! Output ISIs of the silent HH neurons for the consta
ISI with Tin.10 msec yield output ISI withTom5Tin
whereas for ISI withTin,10 msec, the HH neuron general
emits multiple kinds of output ISIs~Fig. 7!.

~3! For the input ISI modulated by sinusoidal, chaot
and stochastic signals, the silent HH neuron behaves
low-pass filter because of its refractory period, yielding o
put ISI with Tom.10 msec.

~4! Output ISIs generally depend not only on the mean
the input ISI but also on their fluctuations: the HH neuron
not a simple integrator.

~5! The analysis on the histograms of input and out
ISIs cannot distinguish the responses to the determini
chaotic, and stochastic signals.

~6! The distinction can be made by an analysis of the ti
correlation of the ISI data, for example, by plotting the
return maps.

Softky and Koch@26# have reported a large coefficient o
variability (cvo50.5;1.0) for spike trains of non-bursting
cortical neurons in visualV1 and MT of monkeys in strong
contrast with a smallcvo(50.05;0.1) in motor neurons
@27#. In order to explain the largecvo , several hypothese
have been proposed; a balance between excitatory an
hibitory inputs @28#, the high physiological gain in thef o
2I i plot @29#, correlation fluctuations in recurrent network
@30#, and the active dendrite conductance@31#. By using the
IF model, Feng and Brown@32# have shown that there ar
three kinds of behaviors ofcvo depending on the distribution
of input ISIs: ~a! cvo tends to decrease for the Gaussia
uniform or truncated distribution of ISIs,~b! cvo remains
constant for the exponentially distributed ISIs, and~c! cvo
diverges to infinity when ISIs follow the Pareto distributio
which has a slow-decreasing tail ofT2a (a.0) at largeT.
Case~a! was previously discussed by Marsalek, Koch, a
Maunsell@33#.

Figure 19 shows the dependence ofcvo on cv i for various
types of our input ISIs having been reported in previo
sections. Inverted triangles denote the results for the cons
ISIs ~Sec. III A 2!, open marks the results for input ISIs wit
sinusoidal modulation~Sec. III B!, and filled circles, tri-
I
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angles, and squares results of the stochastic modulation~Sec.
V!. Our calculations show the following.~i! The constant ISI
with a vanishingcv i yields the finitecvo(,0.2), i.e., cvo
*cv i , ~ii ! the finite-width distribution of ISIs with the sinu
soidal modulation leads tocvo&cv i , and ~iii ! the exponen-
tial, gamma distribution of input ISIs yield the result whic
is ostensibly similar to that in the item~ii !. Although the item
~ii ! is in agreement with the result for the abovemention
case~a!, the items~i! and~iii ! disagree with the results of th
cases of~a! and~b!, respectively, discussed in Refs.@32# and
@33# for IF neurons. This difference is expected to arise fro
the fact that the response of the type-II HH neuron with
refractory period is different from that of the type-I IF ne
ron without it. This is consistent with the recent calculatio
of Brown, Feng, and Feerick@34# for the variability of the
HH and IF neurons.

Finally we want to discuss the transient response of
HH neuron to the cluster of spike-train inputs. Figures 20~a!,
20~b!, and 20~c! show the results forTin55, 10, and 20
msec, respectively. In Fig. 20~c!, for example, the uppe
~lower! panel of C1, C2, C3, and C4 express the time cour
of input ~output! spike trains for inputs of two, three, fou
and five impulses, respectively, withTin520 msec. In this
case the ISI of output pulses is the same as that of in

FIG. 19. cvo againstcv i for inputs with time-independent IS
~inverted triangles,cv i50), with sinusoidal modulation~open dia-
monds, squares, and triangles forcv i50.22, 0.40, and 0.82, respec
tively!, and with random gamma distribution~closed squares, tri-
angles, and circles forcv i50.40, 0.75, and 1.03, respectively!. The
dotted curve expressingcvo5cv i is plotted as a guide for the eye

FIG. 20. Time courses of spike-train inputs and outputs; in
ISIs are~a! Ti55, ~b! 10, and~c! 20 msec, and upper~lower! panel
of each figure shows inputs~outputs!.
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pulses,Tom5Tin , because the HH neuron behaves as a
ear transmitter for inputs with ISI ofTin*10 msec. On the
contrary, its behaviors of output ISI data for inputs wi
Tin55 and 10 msec are much complicated. Figure 20~a!
shows that output ISIs forTin55 msec are 11.39 and 11.8
msec, which should be compared withTom510.94 and 14.06
msec for the sequence of the spike trains with constant IS
5 msec discussed in Sec. III A 2. For the case ofTin
510 msec shown in Fig. 20~b!, we getTom511.44, 11.80,
and 17.11 msec whereas the sequence of the constant I
10 msec leads toTom511.25, 12.36, and 16.39 msec~Fig.
5!. It is noted that both inputs with three~A2! and four im-
pulses~A3! yield the same output of two impulses. Similarl
inputs with three~B2! and four impulses~B3! lead to outputs
with three impulses. We should note in all the cases sho
v.

o-

y

o

io
-

of

I of

n

in Figs. 20~a!–20~c! that the first output pulse is rathe
quickly emitted with a delay of 2.1 msec after the first inp
pulse of clusters is applied to the HH neuron. This fast tr
sient response may be relevant to a quick passage of in
mation reported by Thorpe, Eize, and Marlot@5# and by
Rolls and Tovee@6#.

Note added. Recently we noticed the calculation of th
variability of the HH and IF neurons in Ref.@34#, whose
result is consistent with ours.
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