PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Computational method for general multicenter electronic structure calculations

P. F. Batchd
Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, Room 1021, 31 Washington Place,
New York, New York 10003
and Howard Hughes Medical Research Institute, New York, New York 10003
(Received 16 November 1999

Here a three-dimensional fully numeridake., chemical basis-set fremethod[P. F. Batcho, Phys. Rev. A
57, 6 (1998, is formulated and applied to the calculation of the electronic structure of general multicenter
Hamiltonian systems. The numerical method is presented and applied to the solution ai®pdrtype
operators, where a given number of nuclei point singularities is present in the potential field. The numerical
method combines the rapid “exponential” convergence rates of modern spectral methods with the multiresolu-
tion flexibility of finite element methods, and can be viewed as an extension of the spectral element method.
The approximation of cusps in the wave function and the formulation of multicenter nuclei singularities are
efficiently dealt with by the combination of a coordinate transformation and a piecewise variational spectral
approximation. The complete system can be efficiently inverted by established iterative methods for elliptical
partial differential equations; an application of the method is presented for atomic, diatomic, and triatomic
systems, and comparisons are made to the literature when possible. In particular, local density approximations
are studied within the context of Kohn-Sham density functional theory, and are presented for selected subsets
of atomic and diatomic molecules as well as the ozone molecule.

PACS numbds): 02.70—c, 31.10+2z

[. INTRODUCTION expected to yield only a factor of two improvement in the
tractable system siZ&]. Density functional theory provides
The study of quantum mechanical properties of material@n alternative to the approximate, in principle exact, treat-
is central to a broad array of problems in chemistry andment of electron exchange and correlation, and reduces the
materials science ranging from molecular mechanics forcecaling problem; however, new computational approaches
field development to detailed electronic structure propertieshat capitalize on molecular scaling advantages are critical
of molecules with several hundred nuclei and electrons. Mafor the success of future electronic structure calculation.
terial design challenges can benefit from reliable, robust, antlere we apply a fully numerical high-precision computa-
accurate molecular simulations in fields ranging from thetional method to general multicenter electronic structure cal-
analysis of new pharmaceuticals and herbicides to biologicatulations within the context of density functional the ).
systems such as amino acids, peptides, and complex crystal- Computational approaches that utilize locally centered
line structures for solid-state chemical application. As re-global chemical basis sets, such as Gaussian functions, have
gards modeling, the theoretical chemical statement is addemonstrated impressive chemical modeling capabilities for
dressed in two distinct steps; first a theoretical approximatiomlectronic structure calculations. In addition, systematic con-
to the Schrdinger or Dirac equation, and then a computa-structions of such basis sets for general molecular structures
tional approximation for the numerical solution. The primary have achieved considerable success over the last few de-
computational approach foab initio quantum chemical cades. However computational scalings to larger systems,
methods has been the linear combination of molecular orbitand the difficulty of overcoming numerical truncation errors
als (LCAO), along with the dominant use of Gaussian of finite expansions, are inevitable. Chemical accuracy is
chemical basis sefd], and for solid-state calculations focus generally considered to be achieved at 1artree, since
has been given to plane waves and pseudopoteh®hl$he  bonding interactions typically involve energy changes on the
nature of quantum mechanical operators and their solutionsrder of 10! hartree; for more discussion on favorable as-
offer significant challenges ranging from large-scale systenpects of fully numerical approaches and the need for low
modeling requirements to rapidly varying wave functions innumerical errors, see Ref®6—8]. A disadvantage of finite
physical space and large gradients at nuclei locations. Nuglobal basis sets is the fact of low numerical errors, and this
merical approaches must overcome such obstacles, and efis- a result of the slow(algebrai¢ and nonuniform conver-
cient methods must deal with wave function cusps at theyence of the numerical approximation to the theoretical
nuclei locations as well as multicenter operator singularitiesstatement. For example, a systematic approximation of
In the context of theoretical approximations, advanced treats-type hydrogenlike orbitals with an expansion of orthogonal
ments of electronic correlation, such as the coupled clustedermite polynomials, with their Gaussian weight function,
method, have severe computational scalings to large systemgelds errors of orden~>? and errors oh~%?2in expectation
and a 100-fold improvement in computational capability isvalues of the kinetic energy operator; heris the size of the
basis set expansiofb]. The fundamental success of finite
chemical basis-set approximations lies in the ability to
*Electronic address: paul@biomath.nyu.edu model, or approximate, the wave function’s features with
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systematic expansions. Linear combinations of Gaussiangularities as high as™P, p<3, in three dimensions.

with floating exponents, designed to optimize the expectation The computational approach discussed in this paper can
value of the Hamiltonian, have been shown to have subgedse applied to the various quantum chemical theoretical ap-
metric convergence; however, calculation of a new systenproximations, including Hartree, (poshHartree-Fock,
requires a reoptimization of the exponents. High-precisiorHartree-Fock-Slater, and density functional the¢BFT)
diatomic calculations have recently been demonstrated witiethods; however, focus is given to the density functional
even-tempered basis sé8, and required greater than 600 formu.lation. Within the context of the density functional for-
primitive basis elements for a;\Xa calculation to achieve Mulations Hohenberg-Kohn-ShafKs) theory[15,16, es-

10 S-hartree errors in the total energy. The same basis sdpblished a firm theoretical foundation for minimizing an en-
was then applied to similar diatomics to achieve aeray functional over a space of single-particle orbitals for

10 3-hartree errors in total energies; calculations with sucheleCtrpn'C structure systems. In recent years the quantum
basis sets beyond the diatomic level are not known to th&nemistry community has found a notable improvement from
author. the results of DFT over those found from Hartree-Fock re-

For LCAO calculations, care in systematically cIusteringSUItS' particularly if nonlocal approximations are used. They

basis-set information near the nuclei must be exercised t8® ct_)mparable, ifh not_better hresfults, has compare_d to
achieve chemical accurag§]; in addition, algebraic conver- >aussian-MP2 methodd7-20. The fact that KS-DFT is

gence rates in finite basis-set expansion errors can be ef2rmulated as a single-particle Schinger equation makes it

pected in locally centered global expansions. In the case cRarticularly attractive within the context of modern numeri-
al methods for solving elliptic partial differential equations.

solid-state calculations a resolution fine enough to properg{ £h ical hod f |
approximate core wave functions requires millions of plan€ ere we present a state-of-the-art numerical method for solv-
Ing the general single-particle Schlinger equation, and of-

waves for the simplest silicon unit cell. The nonuniform con-]c th bi t of th . th tical
vergence of global basis-set errors will generally focus©' € unambiguous assessment of heé various theorelica

Gibbs-type oscillations near the nuclei cusp regions, and th8PProximations within the quantum chemical theoretical
algebraic convergence can cause misleading results Witﬁtateme_nt. Th_e single partl_cle exchange-correlatlo_n potential
finite-dimensional setg10,11). Given the algebraic conver- Yx(X). is defined by a suitable DFT model that is only a

gence rates of Gaussian basis sets, particularly when contragtnction of the electron density function(x) in local ap-

tion sets are used, a question can be posed as to the numdyoximations. In nor_1|0ca| approximations the potential can
cal error estimates involved with such methods. Does af@ve @ strongly nonlinear dependence on the electron density
extremely small chemical modeling improvement from a@nd its gradientVy(x,p(x),[Vp(X)[, V°p(x), ...). The
6-311+ + G(d,p) basis to a 6-31 +6(2df 2p) set repre- Kohn-Sham equations are given in Eq$)—(4), stated in

sent a well converged solution, or is it an artifact of the rate?lOMic units(a.u), for general gradient approximations in

of convergence for the approximation, irrespective of correSPIN compensated form:

lation treatment? Numerical challenges continue to remain | _,
for heavy nuclei and transition metal calculations, as well for~ 2V~ #p(X) T [J(X) = V(X)]¢p(X)
the direct material property prediction. It is desirable to have 2 _ ; 3
a systematic high-precision computational approach that can FVaelp (), Vo],V () @p(X) = 2ppp) i Q
deal with the multiresolution and high-precision numerical (1)
needs of quantum mechanical wave functions. A physical
space domain decomposition is used here, and systematic
generations of computational meshes are discussed for the (¢i,¢))= fQ‘Pi(X)‘PJ(X)dXZ Sij » @)
optimal approximation of the wave function and assessment
of numerical accuracy.

Here a fully numericalchemical basis-set freelomain
decomposition method, the molecular spectral element v
(MSE) method[4], is presented and applied to polyatomic V(x)=>, —, 3
systems. With the MSE method no assumptions beyond the pi Tpj
stated Hamiltonian are used and the LCAO method, plane-
wave basis, pseudopotentials, Gaussian basis, and Slater-type

where

orbitals have all been avoided. The MSE has its roots in the
spectral element method described in R¢k2—-14. The |

MSE computational method combines rapid “exponential”

convergence rates of modern spectral methods with the muwhere rizj =(xi—xj)2+(yi—yj)2+(zi—zj)2, Z; are the
tiresolution flexibility of finite element methods, and can beatomic numbers of the individual nuclei, asg and ¢(x)
viewed as an extension of the spectral element method. Are the molecular orbital energy and its wave function in
variational formulation is applied to the operator, and thephysical space. The MSE method eliminates the use of glo-
nuclei singularities are efficiently captured by a local coor-bal basis sets, and approaches the solution of the quantum
dinate transformation. The variational formulation preservesnechanical equations from a variational domain decomposi-
the symmetry of the operator, and allows an efficient invertion approach where high-order polynomial approximations
sion. In addition, the formulation of the variational statementare made within each subdomain. In addition to the rapid
and the coordinate transformation for the singularity pro-decay of the numerical error the collocation character of the
duces a method that can effectively deal with operator sinMSE method computes the molecular orbitals directly in
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physical space rather than the coefficients of a series expaspace methods can lead to linear scaling in electrons as well,
sion for a given orbital. Advantages are therefore found inand therefore a total linear scalability is realizable for high
the solution’s rapid evaluation and in the elimination of in- level quantum mechanical simulation. The multiresolution
verse mappings for LCAO basis-set expansions that can bigexibility of the domain decomposition method is also note-
several million in size. In general, grid based methods offeworthy in cases where heavy nuclei have large localized gra-
many times more functions to minimize with respect to thedients near the nuclei location, in combination with the va-
Hamiltonian. These functions are highly localized in spacelence orbitals which tend to have more diffuse solutions
and thus advantages can be found with the multiresolutiothroughout the molecule. The method presented here has the
aspects of the wave function. Similarly the structure of thegeometric flexibility to deal with both types of solutions
resulting linear algebra statement offers computational tracwithin a given optimal domain decomposition, and, in some
tability with regards to operator evaluations for large sys-sense, is natural to the formulation. Noteworthy are recently
tems. introduced wavelet approximations which are designed to
The MSE method can be viewed as a spectral elemengapitalize on the multiresolution aspects of the wavelet basis
method that is adapted to treat the operafof singularities  [32], as well as recent finite difference formulations within
and cusps in the solutions that arise at the nuclei locationshe context of a pseudopotential formulati@8]. The MSE
Attempts in the past to use finite element methf@l5-24  formulation offers a consistent and rapidly convergent ap-
have either dealt only with diatomic molecules where theproximation of the full Hamiltonian, which accurately cap-
singularity can be removed through using spherical ottures the balance of the kinetic energy and divergent terms in
prolate-spheriodal coordinates, or alternatively a use of théhe near nuclei region. A more detailed discussion on the
integral transform of r~! was employed. A three- MSE numerical formulation can be found in Rgd], where
dimensional finite element approach was applied td H  various approaches were examined and exponential conver-
[25], for algebraic converging formulations; the correct treat-gence rates were demonstrated for suitable benchmark cases.
ment of the singularity was bypassed, since a low-order for- In the context of the LCAO method a pseudospectral
mulation tends to keep the remaining solution somewhat isomethod has been applied to electronic structure calculations
lated from the errors near the core. Of special interest is thg34]. The use of collocation has shown to have advantages
work on applyingp-type finite elements to £ electronic  with regards to the computational complexity of the multi-
structure calculatio26,27); this work will be discussed in centered integrals via sum factorization techniques. How-
more detail in Sec. Il A. However, the advantages of going teever, the pseudospectral method still suffers from the draw-
local methods versus global expansions have been reco@acks of the algebraic convergence of the expansion and the
nized in these previous studies. These include advantages aptimal choice for chemical basis sets. Here we adopt a
computational scalings to large molecules, improved accusomewhat universal basis set in a local region of physical
racy of spatial moments(r ?), and gradients which are space, and rapid convergence is guaranteed in terms of the
strongly dependent on wave function accuracy. In generadize of the expansion. A method that extends fully numerical
the error in the total energy is an insensitive criterion forapproaches to a multicenter system was formulated in Ref.
judging wave function accurach23], which is critical for  [35], where each nucleus is treated as a separate solution
reliable prediction of material properties. with its own spherical coordinate system, and the individual
Of particular interest in the context of finite element for- solutions are added together by a defined weighting function.
mulations is the linear scalability of the computational ap-The individual treatment of nuclei in general mirrors global
proach with respect to molecular complexity. For the solu-basis-set multicenter complexity, and the introduction of an
tion of the molecular orbitals global chemical basis-setadditional nuclei requires the addition of a full atomic grid.
expansions exhibit either cubic or quartic scaling with re-Here we avoid these issues with a unified grid under the the
spect to the dimension of these basis sets. The physical spacentext of a domain decomposition method which incorpo-
formulation of the MSE method combined with the domainrates a systematic implementation of rapidly converging
decomposition character offers the complete elimination opolynomial basis-set approximations. With the MSE ap-
multicenter complexity for operator evaluations, e.g., a sysproach the addition of a nuclei requires less then one tenth of
tematic application of the MSE method has a uniform nu-an atomic grid, and highly efficient iterative methods with
merical approximation over a wide range of molecular strucenhanced parallel processing advantages can be systemati-
tures, and the computational work scales linear with thecally employed for the wave function solution. Here a sig-
number of subdomains, which scales linear with the numbenificant departure is made from the above methods in math-
of nuclei. Within the context of density functional theory the ematical formulation and iterative methods used for solving
LCAO method scales with the third power of the number ofthe various eigensystems. The domain decomposition
nuclei. Recently, efforts at aasymptoticlinear scaling of coupled with tensofor warped product forms of Lagrang-
DFT formulations have been studied within the context ofian interpolants and Gaussian quadratures make the present
density matrix truncation approximations in physical spacgormulation superior to classical finite element and finite dif-
[28-31]. A systematic application and study of these meth-ference based methods. The computational method used of-
ods can in principle be combined with the efficient domainfers significant advantages where the total energy can be
decomposition method addressed in this paper; however, thainimized via established Krylov space and multilevel meth-
MSE is naturally linear with respect to the number of nucleiods, where no direct operator inversions are required. The
for the computation of the expectation values of the fullMSE method offers an efficient treatment of the nuclei sin-
Hamiltonian. With the MSE domain decomposition method,gularities with a seamless numerical matching to the remain-
future algorithm developments with multilevel and Krylov ing physical domain; and numerical errors are a direct con-
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sequence of the degree of the polynomial used in the (9.0 =dihi(mh(E)h(0), (6)
approximation as well as the physical size of the local do-
mains. where (n,&,{) are the coordinates in the cubic space defined

In Sec. Il we briefly review the spectral element method,from an isoparameteric mapping. The test functions are also
and an adaptation to deal with the nuclei singularities. Dischosen as the interpolants, as in the traditional Galerkin for-
cussions on the coordinate transformation of the singularitynulation. In the case of deformed geometries the boundary is
and the resulting algebraic system are presented. Section Il@so expanded in GLL interpolants, and the GLL numerical
discusses various iterative methods for the solution of theuadrature is chosen to coincide with the interpolation
molecular orbitals with the MSE approach, as well as exoints; therefore the interpolants are defined nyé¢;)
pected scalings with molecular complexity. In Sec. Ill, re-=§j;; this gives the method a collocation-type character.
sults of atomic, diatomic, and triatomic systems are preThis choice of quadrature points and basis sets forms a dis-
sented. The hydrogenlike solution of atomic nitrogen anccrete system of algebraic equations with a large degree of
zinc are presented in Sec. Il A; exponential convergence isparseness, and the use of tensor product forms result in
demonstrated with respect to the dnd X orbitals. Section efficient sum factorization techniques for operator evalua-
[11B presents a local density approximatighDA) X« cal-  tions[12—14. The exponential convergence property, asso-
culation of diatomic nitrogen, and comparisons are made teiated with polynomials from the singular Sturm-Liouville
highly accurate solutions presented in the literature for a fioperators, gives the method a significant advantage over tra-
nite element solution using prolate-spheriodal coordinates. Iditional finite element and finite difference methods. In
addition, the calculation of O, Ar, N O,, and  are pre- large-scale applications several orders of magnitude less grid
sented for the Vosko-Wilk-NusaivWN) LDA approxima-  points are needed for the same accuracy when compared to
tion. In Sec. Ill C, a study of the ozone molecule is made fortraditional low-order methods; if needed, highly accurate so-
the cyclic and ground state geometries under dhe, Ilutions can be obtained at relatively little cost. The spectral
Gunnarsson-Lundqvig$GL) empirical correlation correction, element method has been used in three-dimensional time de-
and VWN LDA approximations. Detailed total energies andpendent solutions of fluid flow as well as large-scale solu-
molecular orbital structures and energies are presented, aigns of eigensystems of coupled partial differential equa-
comparisons are made to the various calculations discusséi@ns[36—39.
in the literature. In particular, we find that all closed shell There are a number of obstacles that must be overcome in
LDA models predict the ground state to have a lower totalorder to apply such a method to Sctimger-type operators
energy, and that th&a-VWN model in its paramagnetic and electronic structure calculation. The molecular spectral
closed shell limit predicts the experimental ionization poten-element is formulated to deal with the numerical difficulties
tial to within a 2% error. In Sec. 1V, we conclude with dis- of a finite number of arbitrary spaced cusps and point singu-
cussions on the overall numerical approach when used fdarities. The combination of geometric flexibility and expo-
quantum chemical calculations, and suggest several posgiential convergence rates yields a well-suited technique for
bilities for future algorithm development and application tosolving Schrdinger-type operators. The singularity was
electronic structure calculations. found to be effectively handled by a coordinate transforma-

tion [4]. Where the integration of nuclei singularities can be
subdivided into the integration over six square based pyra-

II. FORMULATION mids. The transformation=x, y=xu, andz=xw reduces
A. Molecular spectral element method the integration over a pyramid,
The spectral element method is designed to solve elliptic 1 X X L _
boundary value problems in general complex domains by Jo de dyf dzrte(x,y,z) in Q3 (7
—X —X

partitioning the given domain into quadrilaterials; spectral
elements. Within each element the solution is approximateg0 the evaluation of integrals of the form
by Lagrangian interpolant polynomials, where tensor product

forms are used. The first step in the procedure is to employ a 1 1 1 X (X, XU, XW)
f dxf duf dw —
0 -1 -1

\/1+uz+w2

Thus we partition the volume around the singularity with a
cube and subdivide the cube into six pyramids; see Fig. 1.
— _sf U(x) d(x)dx, (5) The transformatior) removes the_s!ngula_rity and smogth inte-
K grands remain which can be efficiently integrated with pro-
duce Gauss-Jacobi quadratures. This type of domain decom-
. position is somewhat optimal for solutions that are
whereU(x) is the chosen test function, a{x) is the total  approximately spherically symmetric around the singularity,
single particle potentialy/(x) =V(r)+2J(r) —V,(r). Next and tends to substantially reduce the number of elements
interpolation points are chosen to define the basis set via theeeded to fill the remaining domain.
Lagrangian interpolants; in the standard spectral element for- The last aspect in the formulation is an efficient approxi-
mulation Gauss-Lobatto Legendf€LL) points are chosen. mation scheme for the transformed functi@fx,xu,xw)
The solution is expanded in terms of the higher-order poly-and the matching to adjacent quadrilaterials. The use of a
nomial interpolant$;(¢), Gauss-type quadrature over the cubic domain in the mapped

variational formulation of the problem, in Q3. (8

EJ VU(x)-V¢(x)dx+f V(X)U(X) $(x)dx
2J)a, 0y
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FIG. 1. An illustration of the
pyramid decomposition of a cubic
x - % region around the singularity. The

solution within the pyramids is

represented by tensor product
forms of appropriately chosen
Gauss-Jacobi Lagrangian interpo-
lants, and is routinely patched to
adjacent quadrilaterial spectral el-
ements.

space f(,u,w) leads to integration points which can be used [$A+B,]¢i=—¢Bo;, (13

to form Lagrangian interpolants in a similar fashion as is

done in a traditional spectral element scheme. The optimal bBb =5, (14
approximation scheme was found to be the tensor product R N

form of Lagrangian interpolants in the mapped space ) ) ) ) )
d)(x,xu,xw):¢ijkhi(§<)hj(u)hk(w). A choice of GLL where A is the sparse discrete Laplauaﬂ, is a diagonal
quadrature is used for theandw components. This formu- mass ”?at”x weighted by t_he tota_l single partlcl_e potenBal,
lation allows a straightforwar@® matching of the pyramid IS thg diagonal mass matrix, ardq Is the algebraic \(ector of
based system to the adjacent quadrilaterial of the spectrQIhySICaI space mesh values of irtk compqted orbltal. T he.
element method. For an optimatcomponent numerical total_matnx is never actually constructed in the |terat|ve_ in-
guadrature, thex weight was included in the choice of an version methods sugge_s?ed_ here, and par_al_lel alg_orlthms
integration rule, which did not include the vertex as an inte-based on e'ef.“e”t part_ltlomng can .be eff|C|entIy imple-
gration point[40]; similar types of quadrature rules were mented. The single particle pote_ntlal is routmely.evaluated
described in Ref[41]. The discrete Laplacian mapping is O" the 'spe.ctral element mesh points, and evalua_ttlons of spa-
formulated by using the mapped physical space gradients iHaI derivatives pose no obstacles for implementing general-

h 5 ith licati ¢ the chai | ized gradient based DFT formulations. The complete system
;r(raivzp:fe X,u,w). With application of the chain rule we .5 efficiently inverted by the preconditioned conjugate gra-

dient method, and exponential convergence rates in numeri-
Jd 0 uUd W o cal approximations were demonstrated for suitable bench-
== (9  mark problems in cubic domairig].
For a multicenter application the domain is decomposed
g 19 into six pyramids around each nuclei, with quadrilaterials in
== — (100  the remaining domain. Within each pyramid the solution is

du X decomposed into a tensor product form of Gauss-Jacobi La-
g 1 9 grangian interpolants. Typical meshes may consist of a box
2 X oW (1) divided into quadrilaterials with elliptical shells placed

around them, which are also divided into quadrilateriake
. . c Figs. 3 and Y, such meshes are routinely generated for mo-
The gradlent§ n the mapped spaoﬂd&,&/au,a/'&w) e ecular application. With the MSE method the dependence of
formulated within the context of a Gauss-Jacobi-Lagrangian . . .
) o o R - the computational complexity on the number of nuclei is
interpolant derivative matrix in thex(u,w) space, as in the = opy felt through the number of elements needed to partition
spectral element formulation. Here thecomponent of the  he gomain. For example, in some circumstances a molecular

discrete Laplacian is given: system with five nuclei may have the same, or nearly the
p P same, number of elements as a ten nuclei system; in this case
AS :J j f_ h O h—(W (W) T—Th: (X)h: the computational work is the same, given the same number
imii ik ax LM OO (U ha(W) Jo i GOy of occupied orbitals. The operation count of the product of

9 4n ) 3 the DFT Hamiltonian with a given molecular orbital scales
X(Wh(w)]ipxdxdudw in Q° (12)  _KN* where K is the number of subdomains and N is the

. . . . . number of quadraturécollocation points in one spatial di-
This leads to a variational formulation of the Laplacian with \action in a single subdomain. This operation is the primary

condition numbers in agreement with the convergence es”éomputational expense of a given iteration were H-10

mates of traditional spectral element methods for the variablgnd K~100-1000 for moderate sized molecules.

cpeﬁic_ient Helmholtz equatiof#2]. T_he algebraic system is Finally we comment on the work on applyimetype finite

given in Egs.(13) and(14) for the discrete system for EGS. glements to electronic structure calculations faf Hi26,27.

(1) and (2) respectively: The work in Ref.[26] formulated a variant of the spectral
element technique for use in Hartree-Fock calculations, and
correctly isolated a key aspect of the formulation, namely,

ICorrectly stated here versus those described in [R&f. the tensor product forms and sum factorization technique for
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operator evaluations. However, the use of GLL interpolantsnodeled quantum chemical systems of equatjdés It has
was not used with its associated GLL quadrature rule, andbeen shown that a linear scaling relation with respect to the
this resulted in the loss of the highly favorable collocationnumber of electrons can be expected. Typically multilevel
character of the formulation, which allows the solution to bemethods are more attractive for nonlinear systems, and offer
computed directly in physical space. This mismatch leads thigh efficiency, particularly for low aspect ratio elemental
significantly increased computational work, as well as a dedomains.

graded conditioning of the algebraic system with increasing Here the iterative solver has not been optimized or exten-
N. The approach was then modified to deal with threesively studied, and is therefore not discussed in significant
dimensional point singularities via a variant of the Duffy detail. However, a fairly straightforward PCG implementa-
transformatiorf 27], as independently used in Rg4]. How-  tion worked robustly for the molecular structures studied.
ever in Ref.[27] the singularity was formulated as to be Future efforts are focused at optimal iterative solvers and
surrounded by cubes rather then pyramids, and again thenprovement of several orders of magnitude in both initial
collocation formulation was not used. The cubic domain deconditions and iterative efficiency can be expected; we ex-
composition was actually an early formulation tried in Ref. pect a linear scaling in the number of orbitals with the use of
[4], and was discarded due to poor conditioning of the algemultilevel methods. The general procedure is to obtain a so-
braic system with increasindyl, as well as a less optimal lution of [H—¢&;]¢;=0, where the operator and energies are
domain decomposition for electronic structure calculationsupdated at each global iteration, and previous iterations are
The mismatch in the interpolant and quadrature points leadssed as an initial gueg$i”— &' 6! 1= —[H"— Mol . At

to several unsatisfactory results in the computational methoghresent a few hundred global iterations are necessary to ob-
and is avoided by the MSE approach. The ability to effi-tain accurate total energies, and the overall iteration proce-
ciently use high degree polynomials is a primary motivationdure is similar to that of Ref.43], where each global itera-
for the spectral element method. Here we demonstrate thabn was performed by a mode by mode minimization. Each
p-type finite elements are a viable numerical approach tglobal mode iteration utilizes a predetermined number of in-
multicenter many electron systems with highly nonlinearner PCG iterations before the operator is modified; here the
functionals and strongly nonspherically symmetric wavepreconditioner was taken as the diagonal of the discrete La-

functions in the near nuclei region. placian. This choice of preconditioner was found to lead to
scalings in the condition number of the overall system, in
B. Global energy minimization agreement with the traditional spectral element method. The

The use of iterative methods for high-order finite elementcOMputational complexity of the Hamiltonian matrix ve40tor
formulations is an established area in computational mathMultiply with the discrete orbital scales proportionalK

ematics and advances from various multidisciplinary fieldd0r the pyramid as well as the quadrilaterial decompositions,
are expected to offer a rapid optimization of the iterativeNere K is the number of elements in the domain. At present
solver through the direct exchange of computational a|go_each glopal iteration mc_ludes a complete rgorthogonallzatlon
rithms. Given a consistent and rapidly convergent spatial dis9f the eigensystem. With the use of explicit updafes.
cretization an efficient algorithm must be formulated to solve(19)] of the electron density, there has been no indication of
the nonlinear coupled system of partial differential-integralCharge sloshing instabilities by this method:

equations of interest. The spectral element method has been Je
implemented in connection to th_e inverse Lanczos meth_od pn+1(x):2 Bip" (%), 2 Bi=1. (15)
for the calculation of the lowest eigenpairs of coupled partial j=o ]

differential equationd38,39. In the context of electronic

structure calculation there has been a considerable amount Pfe number of inner iterations is typically 5-30, depending
literature on the subject of iterative solvers that somewhapn the numerical resolution; a lower resolution implies a
bypass the direct inverse iteration methd@—43. Krylov  |ower number of inner iterations for optimal convergence.
methods, based on preconditioned conjugate gradR®G  There are several different approaches to the use of PCG,
iteration, are growing in popularity44], and multilevel  and the optimal approach will remain under investigation. In
methods have found application in electronic structure angarticular, interest is given to recent work on nonlinear con-
scattering applicationg6—-48. The use of a physical-space jugate gradient methodd49], advances in large-scale implic-
domain decomposition method separates the complexitytly restarted Arnoldi methodE50], and the very promising
scaling with respect to the number of nuclei and the numbejise of multilevel methodg46]. In general, it has been found

of electrons. It is clearly linear in the number of nuclei, that the treatment of the nonlinear minimization as a quasi-
which only effects the number of subdomaiispectral ele- steady eigenproblem can allow the iterative solution to lock
mentg used. The scaling in number electrons is a function ofinto local solutions, particularly if the electronic wave func-
the iterative eigensolver, and at worse scales square witlion is nearly degenerative. Care must be taken in an evalu-
number of electrons. The square scaling comes from the usgion of the Coulomb potential during the iterative minimi-
of the Krylov method and needed orthogonalization re-zation and is discussed in Sec. Il C.

enforcement; with a further algorithm developed, Krylov
methods carin principle) be made linear with the number of
electrons; i.e., the DFT self-adjoint operator gives a tridiago-
nal Hermitian matrix, and a selective reorthogonalization can The above formulation gives a numerical method that can
be employed. Multilevel methods have been applied withireffectively deal with Schidinger-type operators, and will
the context of spectral element meth¢ii4], and recently on  give exponential convergence rates in the numerical approxi-

C. Evaluation of the integral operators
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mation. The Coulomb and exchange potentials must also beate the needed for the multipole approximation, as well as
evaluated with exponential rates of convergence, and mustecrease the total number of spectral elements by roughly an
be computationally tractable for large systems. The use oérder of magnitude. Periodic structures, of course, have no
the PCG method has proven to be an efficient iterativdimitation on solution accuracy for the application of poten-
method for the solution of Poisson’s equation; diagonal pretial boundary conditions.

conditioning is typically used. The Coulomb operali¢r) is

formulated as Ill. RESULTS
p(r") There has been a large body of research on evaluations of
J(r)= Qﬁ r, (16)  LDA models for small molecular systeni85], and predic-
r—r

tive capabilities continue to improve. Here we choose a sub-
set of the historically challenging systems, and focus on the
advantages of the physical space domain decomposition
r{nethod in both solution interpretation and robust numerical
Properties. The results of three-dimensional LDA correlation
bpotentials and chosen benchmark solutions are presented for
O, Ar, O,, N,, F,, and Q, as well as hydrogenlike orbitals

of N and Zn. The LDA-KS potentials are defined from the
Xa method of Eq(18), the GL empirical correlation correc-
tion given in Eq.(19), [54], and the VWN correlation model

V2I(x)=—4mp(x) in Q3. (17)

The integral operators are solved via Poisson’s equatio
the operation count for a typical Poisson solve-is1 K N*.
The operation count for a direct integration of the Coulom
operator is naively RN®. Here M is the number of PCG
iterations, typically 100—300, and one can expect, for com
plex molecules, that K 10°; this gives the Poisson solution

method roughly a Tadvantage. For the Hartree-Fock ex- in Eq. (20) taken from Refs[19], [55]. All LDA models are

ggingsvzzeﬁto&fgf filrszggl]dz; 2?;:5:’%2;& 2;0%&?1:' taken in their paramagnetic closed shell limits, anig taken
d P 0, 9  tobean adjustable constant:

the number of occupied molecular orbitals. Thus a consider-
13

able amount of work can be saved by efficient precondition- 3 [3
ing of the discrete Laplacian, as well as the Helmholtz op- VIPA(X) = — >4 —p(X)| , (18)
erator, in iterative solvers for the spectral element 7
formulation[51]. The use of iterative solutions of Poisson’s VLDAGL () \LDA g ) (19)
equation offers the efficient use of the previous solution as xe x s
an initial guess within the global iterative method, as well as P12 5op

c _ 12

adaptive control over iterative solution residual levels. Here VLEA'VWN(X):V}(DA(X)+sc(rS,0)—i —= . x=r¥?
the Coulomb operator is solved to an iterative residual level 6 ox
of roughly one order of magnitude below the largest operator (20)

residual level, max (¢, H"¢]). This effectively caused where(r o) = 1+0.054  In(1+11.4k ), ro=[3/4mp(x)]"3
the computation work for the update of the Coulomb operazq, the details of Eq(20), see Refs[19], [55]. The total

tor tp be Iess.inten.sive thar_l the update of a given orbita_ll. Th%nergies reported for the MSE-LDA results were computed
partial PCG iterative solution for the Coulomb potential sy solving the electronic problem for the orbital energies and

effectively the energy minimization discussed in R&2]. adding the nuclear/nuclear contributifaq. (21)],
Boundary conditions for the potentials are also a key is-

sue. The application of homogeneous Dirichlet boundary p(r)p(r')drdr’

conditions on a finite domain are not as well suited for theET=22 &g— %J’ J—,—f [p(r)V,(r)]dr

potentials, since linear decay is present versus exponential ! [r=r'|

decay for the orbitals. The use of multipole expansions on nuclei 7

the boundary has proven effective for application of far-field +E N+ > > 28 (22)

Dirichlet boundary conditiong23,52. Here the electron den- A B<a Rap

sity is expanded around the computed center of charge for .
the molecule, and expansions up to quadrupole moments ald1€r€Exc(p(r))=/p(r)ex(p(r))dr. In addition to the LDA
considered. For application to molecular systems the rapi@PProximation a post-Langreth-Mehl gradient correction
decay of the electron density and the smooth variation in thé-MGC) is applied to the LDA KS orbital solution. The post
farfield make the multipole expansion a well suited method<S correction is presented here to parallel current work in
for potential boundary conditions. Chemical accuracy wad-PA spin formulations[35]. However, the MSE computa-
routinely achieved with a single centered quadrupole exparfional approach has no numerical limitations for the calcula-
sion; however, the potential boundary condition can be contion of fully self-consistent solutions with gradient correc-
sidered to be the limiting factor in accuracy for the exactlions applied to the exchange-correlation potential; these
(machine accurajavave function solution. This formulation results will b_e reportgd_ln future pu_bllcatlons. For accurate
has been implemented with negligible cost to the inversiorihermochemical predictions LDA spin formations are gener-
of the Laplacian, and is discussed in Sec. Ill. Future applidlly neéeded. The LMGC correction to the totaTI/Genergy IS
cation of more refined Green’s function methd&8] could  9diven in Eq.(22) wherea=0.004 28,f=b(|Vp|/p"), and
offer higher precision; alternatively, higher-order multipoleb:0-26:

expansions would be employed. Recently efforts at formulat- (V)2
ing and applying a semi-infinite spectral element approach Exc:aj P
for the far-field solution have shown promise, and will elimi- p

(e‘F—1>dr (22)
18/
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FIG. 2. The three near nuclei domain decompositions used for a calculation of the hydrogenlike orbital soluong fand 30. This
domain decomposition is typical of all calculations reported here. Typically a cube with an edge length of approximately 1.0 a.u. is used as
the frame for a spider web construction. The first mesh had elemental boundaries, on an axis through the center of the pyramid, of 0.04, 0.1,
0.2, and 0.4 a.u. For mesh 2 the boundaries are 0.08, 0.2, and 0.4 a.u., and for the third mesh 0.15 and 0.4 a.u. The pyramids were locatec

in the inner cubic regions.

The results are presented to demonstrate the flexibilityas the practical infinity where the homogeneous Dirichlet
and robustness of the MSE method. Several benchmark cdboundary conditions were applied. The exact solution can
culations were presented in R¢#] for cubic and infinite  readily be obtained analytically, and the eigenvalues are
domains to assess the resolution requirements and convejiven by e,,=Z?/2n?; the solutionsxe™?"". The errors as-
gence of the MSE approach. Here focus is given to a mosociated with the calculations of the first eigenvalues versus
lecular application as well as a systematic use of the domaifhcreasing polynomial order are plotted in Figs. 4 and 5, and

decomposition method. exponential convergence rates were demonstrated;sioe-2
_ _ _ _ bital gave slightly more accurate results, as reported in Ref.
A. Hydrogenlike orbitals of nitrogen and zinc [4]. For theZ=7 results all meshes gave roughly equivalent

The calculation of hydrogenlike orbitals of atomic nitro- results indicating the error was not dominated by the spider
gen and zinc¥(x)=2/r, Z=7 and 30 in Eq(5), are pre- web region resolution, and higher resolution could be applied

sented as a demonstration of the ability to systematically? the remaining domain. For the=30 solution meshes 1
invert Schiginger-type operators. The benchmark solutionand 2 gave equivalent results, while mesh 3 indicated that a
also offers the opportunity to systematically evaluate varioudiner elemental resolution is warranted, i.e., meshes 1 and 2,
mesh resolutions and requirements for obtaining chemicdpr the lower degree polynomial approximation to efficiently
accuracy. The mesh consisted of a spider web structur@pproximate the larger gradients in therbitals. Figure 6
within a cube of 0.8 a.u. in edge length, with the nuclei at itsplots the quadraturécollocation points in the radial direc-
center. Three mesh refinements were examined, and are tion through the center of the elements for the three stated
lustrated in Fig. 2; for mesh 1 the elemental boundaries, omesh refinements along with the normalized drbitals.

an axis through the center of the pyramid, were 0.04, 0.1Multiresolution flexibility is demonstrated with higher reso-
0.2, and 0.4 a.u. For mesh 2 the elemental boundaries weheation (smaller elemenisnear the nuclei, and the lower reso-
0.08, 0.2, and 0.4 a.u., and for the third mesh they were 0.1Bition (larger elemenisin far-field region; 207 elements
and 0.4 a.u. The pyramids were located in the inner cubigvere used here.

regions. All three domains had the same mid- and far-field Inversion of the global algebraic system was carried out
skeleton meshes. The order of the polynomial approximatioty the preconditioned conjugate gradient method discussed
is varied to demonstrate exponential convergence for alibove. Solutions were found to be fairly routine by the pro-
meshes. Figure 3 illustrates the collocation mesh for theedure discussed above, and 20 inner iterations were found
mesh 2 spider web on a two-dimensional plane through th#& be an appropriate number. A few hundred global iterations
center of the cubic region, as well as the entire domain skewere necessary to converge the orbitals to®@rrors in the
eton mesh. The domain radius was 9 a.u., and this was takeasiduals. Here the residual is defined asltfheorm of the

FIG. 3. Here a center plane is
~ | pictured with the collocation point

™ grid laid out for a mesh-2-type
spider web foN=5. To the right
a complete spectral element spider
web is presented. Typical domains
will have rectangular regions de-
| ™ composed in quadrilaterials, as
pictured, and elliptical shellgor
semi-infinite  elemenis placed
around them.

< 0.8 a.u. > < 18.0 a.u. >
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FIG. 4. The decay of the numerical error in thedrbital energy
of the first hydrogenlike orbital of nitrogen is plotted vs the number  F|G. 5. The decay of the numerical error in thedrbital energy
of collocation points for the MSE solution; the three spider webys the number of quadrature points for the solution of the first
mesh refinements considered are presented. The spherical-type d@drogenlike orbital of zinc are plotted here. The spherical-type
main was decomposed into 206 spectral elements, with six pyradomain was identical to that used for the nitrogen calculations re-
mids around the nuclei, and the domain radius for practical infinityported above. Exponential convergence is demonstrated, with a

was chosen as 9 a.u. Exponential convergence is demonstrated wiglisp present at the singularity location, and resolution requirements
a cusp present at the singularity location. are indicated for the increased gradients in the near nuclei region.

10 11 12

s
1]
o]
0

vector H—e¢;)¢;, whereH is Hamiltonian operator under mesh 1, 24 elements for mesh 2, and 18 elements for mesh 3
study. to the remaining unmodified skeleton mesh.
Several calculations were carried out to assess the sensi-
B. LDA results for atomic and diatomic systems tivity to multi-pole boundary conditions for the 20-a.u. do-
. main. Calculations with mesh 1 af=7 indicated that the
Here we present the results ¥ft-VWN calculations for e
monopole versus quadrupole boundary conditions change

O, Ar, 02.’ N,, and F2. at th_elr gxperlmental ground state energies in the 10* hartree level; higher-order approxima-
configurations. For diatomic nitrogen the calculated ex-

B . ; tions resulted in lower total energy calculations. Table | pre-
change onlyXa (a=0.7) orbital energies are presented . : S
. : . - sents the B X« total and orbital energies for approximations
along with a highly accurate calculation from a finite element_ ™~
solution using prolate-spheriodal coordinai@4]. The cal N=5, 7,9, and 11, for mesh 2, and those reported from Ref.
gp P ‘ [21]. TheN= 11 solution has the lowest total energy, and can

culations of Ref[21] imposed a practical infinity at 25 a.u., ;
and utilized monopole potential boundary conditions. For thebe considered to be the most accurately computed LDA re-

MSE approach a systematic mesh resolution around the nL§_ult for diatomic nitrogen; the results of Rg21] are limited
clei was evaluated in a similar fashion as performed for the
atomic calculations above. Here mesh 1 has near nuclei do-
main boundaries at 0.04, 0.1, 0.2, 0.5, and 1.0 a.u., mesh 2 at
0.08, 0.2, 0.5, and 1.0 a.u., and mesh 3 at 0.15, 0.4, and 1.0 8]
a.u. The numerical error drops one order of magnitude from 0.7
N=7 to 9, and represents an increase in total degrees of 06]
freedom by a factor 2.1. This convergence rate is consistent ¢.5]
with those found in benchmark calculations reported in Sec. 4]
[l A above, and in Ref[4] for similar skeleton meshes. Here
the exchange only LDA potentiaV:°*(r) was used for
comparison to the literature. Within each global iteration ap-
proximately ten inner iterations are performed for each or- 0.1]
bital, and initial conditions were derived from one inverse 0 r . ; r T . .
iteration. All the orbitals were converged to residuals of 1 0 01 02 03 r(gﬁ) 05 06 07 08
X108, and the electrostatic Coulomb potential was con- -

verged to 10" in its residual. There were a total of 282  FIG. 6. A plot of the quadraturéollocation points in the radial
spectral elements for the diatomic nitrogen calculation andiirection through the center of the elements for the three stated
the mesh had a radius of 20 a.u. With the mesh refinememesh refinements, along with the normalizedatbitals, for hydro-
used the addition of a nuclei requires adding 30 elements fagenlike solutions of nitrogen and zinc.

09
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TABLE I. Computed Hartree-Fock-Slater orbitals of diatomic nitrogen by the MSE method for resolu-
tions of five, seven, nine, and eleven collocation points in each spatial direction within the local spectral
element. Comparison is given with accurate calculations using a prolate-spheriodal coordinate transforma-
tion, and a finite element method from RE2L].

MSE, N=5 MSE, MSE, MSE,
MO (hartree N=7 N=9 N=11 Ref.[21] Orbital type

Total —108.3339 —108.3440 —108.3464 —108.34668 —108.34662

energy
1 —14.0089 —13.9823 —13.9811 —13.98111 —13.98111 by
2 —14.0076 —13.9809 —13.9797 13.97970 —13.97966 b,
3 —1.0037 —1.0069 —1.0072 —1.007 22 —1.007 22 2
4 —0.4635 —0.4608 —0.4607 —0.46073 —0.46073 ¥,
5 —0.4085 —0.4046 —0.4042 —0.404 24 —0.404 24 11,
6 —0.4085 —0.4046 —0.4042 —0.404 24 —0.404 24 11,
7 —0.3385 —0.3491 —0.3500 —0.35006 —0.35006 3

«

in solution accuracy due to the boundary conditions imposedyround state symmetry, which includes the degeneréter

The accuracy of the various spider web skeleton meshegOMO for F,; and in general all HOMO energies are within
were in agreement with those for the atomic results abovea few percent of the experimental IP. The qualitative drop in
changes in energies from mesh 1 to mesh 2 were in thé 10 the IP for Q was also captured by the single particle LDA
and 10 “-hartree levels for mesh 1 to mesh 3. Additional model. The dissociation energy of,@s overpredicted by
LDA Xa-VWN (a=0.75) calculations were also carried out approximately 7 eV, and is a common feature of LDA mod-
for N, and gave a computed total energy-610.639 har- els; the closed shell LM post gradient correction reduced this
tree and a highest occupied molecular orb{tdOMO) of overprediction to 2.7 eV. A more detailed comparison of
—0.540 hartree, without change in orbitals’ symmetry type.various LDA models is given in Sec. Il C, with the calcula-
The experimental ionization potentidP) is 0.573 hartree, tion of the ozone molecule.

and the MSE-LDA results are in basic agreement with the

predictive capability from single and doubly excited configu- C. Local density functional results for ozone

ration interactior(Cl) calculation, which gave an IP of 0.580

hartree, and second order perturbation results which gave an ©Z0ne has many interesting characteristics with regards to
IP of 0.534 hartreé1] Its theoretical and computational study. There is an extensive

Table Il presents the post-LM gradient £ 2) correction amount of literature on the theoretical predictions of ozone;
3

total energy,Xa(a=0.75)-VWN total energy and HOMO early LCAO efforts (1968—1979 were discouraging, and

energy, and the experimental ionization potential for the sysfound 60° geometries with lowest energy. LCAQ basis-set

tem studied here. Under appropriate asymptotic behavior dpcomplet_eness has been a dominant issue in ozone’s history
the functional DFT states, that the HOMO energy valuesOf theoretical study. In fact, there has been nearly 30 years of

should correspond to the measured IP, and the total energ{_ sea_rch di_scussing the need to includggblarization func-
will correspond to the same value as the full CI limit. Al ons in basis sets for a molecule as small as ozone, and these

calculations were performed with @4=9 approximation, basis sets still offer suspect _results in various physi_ca! ob-
and a mesh-2-type refinement. In all the molecular calcula-se.rv"?Ibles and.absolute energies. The MSI.E m(_athod el|m!nates
tions the LDA single particle equation correctly predicted thethIS ISsue enUrer, and allows the exa}mlnat'lon of various
DFT models without the concern of basis-set incompleteness
and its associated errors.
) Single determinant Hartree-Fock calculations have proven
(@=3) and the total energy and HOMO for the LDRaeVWN 1o jnsyfficient due to the noted radical character of the
(“50'75) Cflos.ed .She” mOd.el fpr O, Ar, N O, and f. The ex- .. ground state. The diffused character of the electron distribu-
perimental ionization potential is given as well as the percent dlf-tion combined with a rapidly varying wave function in the
ference of the HOMO and experimental IP values. The calculations . . .
were all computed with a mesh-2 type near nuclei mesh and nin ear nuclei region, and the highly degenerate energy S'Fates of
collocation point in each spatial direction per elemédt(9). the molecular Orbltal.s' have als_o prpven to. he a formldable
challenge for numerical approximation. A timely review of
the theoretical study of ozone can be found in Hay and Dun-
ning [56]; there generalized valence bou(@VB) orbital

structures are presented, along with detailed studies of the

TABLE Il. Computed total energy with post-LMGC correction

Total energy Total energy HOMO IP expt.
(hartree post-LMGC  (eV) (eV) % error

(¢} —75.549 —75.834  14.142 13.6 4.0 excited states for minimal chemical basis-set calculations.
Ar  —528.736  —529.570  14.597 15.8 7.6 The authors of Ref[57], with a (9s/5p/1d) basis set and
N, —110.639 —110.982  14.697 15.6 5.8 the VWN LDA model, indicated that the open form gave
O, —151.553 —151.958  10.060 9.5 5.9 good geometry comparisons to experimef-SW calcula-

F, —227.384 —201.446 14.467 15.6 7.3 tions are in similar agreement. Jur$i3] performed an ex-

tensive study on various DFT models on ozone, and found



PRE 61 COMPUTATIONAL METHOD FOR GENERA . .. 7179

TABLE IIl. Here several calculations of the LDX« («a _ - S
=0.74) are presented for cyclic and experimental ground state ge- : |
ometries of ozone at different spectral element resolutions. The cal-
culations are presented to demonstrate numerical and chemical ac-
curacy of the calculation. Atl=7 chemical accuracy is achieved in
the sense that the correct energetic order of the geometries is cap-
tured. A further increase in N shows the characteristics associated
with the variational formulation, i.e., convergence is from above.
The table presents total energies, the lowest energy 6tbital,
and the HOMO and its nearest occupied orbital.

MSE Xa N=5
(«=0.74) (hartree N=7 N=9
116.8°R=1.278 A
Total energy E+ —224.137 —224.674 —224.737
1 —19.172- —19.057  —19.048 FIG. 7. The LDA-MSE computational mesh of ozone (60°, 1.44
1 ~0.285 ~0.292 ~0.293

a.u), and the computed Coulomb potential, are plotted within the
&1, (HOMO) —0.281 —0.288 —0.290 MSE skeleton mesh. The skeleton mesh structure is typical of all
grids used for calculations reported in this paper.

60°,R=1.44 A

Total energy _224.485 —224.635 —224.675 found in orbital energies for these cases. Multipole expan-

&1 —18.976 —18.925 ~18.921 sions used for the application of Coulomb potential far-field

€11 —0.273 —0.261 —0.262 boundary conditions, from dipole to quadrupole moments,

&1, (HOMO) —0.267 —0.261 —0.262 gave 10 hartree effects; all results stated are with quadru-
pole boundary conditions. All calculations and all LDA mod-

Er116—Er 60 0.34 —0.04 ~0.06 els, at all resolutions, gave the same qualitative orbital struc-

tures, and the correct energetic order of the two geometries
was reached atN=7. The N=7 versus N=9 results
that geometry optimization was rather straightforward withchanged at the 1I¢ hartree level for the total energy and
the GAUsSIAN92 implementation of density functional meth- lowest orbital energies, and at the fohartree level in the
ods. Jursic’s results indicated that the non-local Becke-LeeHOMO and its nearest orbitals’ energi®s=9 can therefore
Yang-Parr combinations of exchange and correlation corredse expected to be approximately one order of magnitude
tions, and &-31G(d,p) basis set, gave the best comparisonlower than this error, and chemical accuracy is thus stated.
to experiment. The results of the orbital energies are given in Table IV for
Here an extensive numerical study of ozone was carriethe Xa-VWN (a=0.74) approximations for the cyclic form
out with the (60°,R=1.44 A) cyclic configuration and the N=9, and the ground state geometry fé=7 and 9.
(116.8°,R=1.278 A experimental ground state configura- The results of all LDA models for thil=9 calculations
tion for the LDA-KS exchange onlyXa potential (@ indicated that the ground state geometry is approximately
=0.74), the empirical GL correlation correction in the Dirac 0.06 hartree lower than the cyclic form. Table V presents a
exchange limit ¢=2), and the VWN model with Dirac- comparison of the total energies and calculated HOMO en-
Slater (@=1.0) exchanges, and empirical exchange ( ergies for the MSE-LDA models as well as the experimental
=0.74 and 0.75 The suggested optimal for atomic oxy-  ionization potentials. Figure 8 plots the color contours of the
gen is 0.744. Several domains and polynomial orders wer®ISE-LDA molecular orbitals 10, 11, and 12 in the region
used here to measure the sensitivity of the solution on gridocal to the nuclei for the (116.8R=1.278 A ground state
resolution; in general all meshes used gave equivalent resulggometry. Finally, Fig. 9 presents illustrative orbital struc-
to stated accuracy. The final mesh consisted of a total of 23tures for all MSE LDA orbitals and the six highest calculated
spectral elements for the ground state geometry with an efrbitals from the LCAO-VWN ($/5p/1d), and Xa-SW
fective domain radius of 20 a.u. and a near nuclei spider welmethods; for all high-precisiion MSE-LDA calculations the
construction similar to a mesh 2 tyjisee above with ele-  qualitative structure of the orbitals was invariant with the
ment edges at 0.08, 0.24, and 0.54 a.u. A resolution study fdPFT model and computational resolution. The LCAO-VWN
the two geometries is presented in Table Ill, where tota9s/5p/1d) calculations have approximately a numerical er-
energies and selected orbital energies are reporte 06, ror in the total energy of 3.3 hartré®0 e\) as compared to
7, and 9 collocation points in each spatial direction in eachthe accurate MSE results.
element; in general the addition of 2 in polynomial order The lowest total energy found in the literature was from a
represents an order of magnitude decrease in numerical errdarge multiconfiguration self-consistent-fielMCSCH cal-
A representative spectral element mesh consisting of 306 etulation [59], and was —224.65 hartree. TheXa («
ements is presented in Fig. 7, with color contours of the=0.74) exchange approximation, combined with the VWN
electronic density for a cyclic geometry. Extensive calcula-correlation model, gave a total energy ©2227.387 hartree
tions were carried out to test the computational accuracyand less then a 2% difference between the experimental ion-
domains of 17—-27 a.u. in radius were studied for applicatiorization potential of 0.469 a.12.75 eV} and the calculated
of practical infinity; changes in the fourth decimal point were HOMO. The accuracy of the MSE-LDA prediction of the IP
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TABLE IV. Computed total and orbital energies for the LD&-VWN model for ozone are presented,;
here the Dirac theoeretical Iima'i=§ is reported for accurate MSE results. The MSE calculations reported
are for nine quadrature points in each spatial direction for each spectral elé¥regtfor the cyclic form,
andN=7 and 9 for the ground state structutre. Comparisons are appropriate for equal values of N since this
factor represents roughly equivalent numerical errors for general skeleton mesh constructions.

Orbital energy (hartree
(60° R=1.44 A (116.8°R=1.278 A (116.8°R=12.78 A
MSE-VWN MSE-VWN MSE-VWN
Orbital (N=9,a=3 (N=7,a=3%) (N=9,a=3%)
Total energy —227.336 —227.333 —227.396
1 —18.921 —19.058 —19.048
2 —-18.921 —18.885 —18.872
3 —18.921 —18.885 —18.872
4 —1.343 —1.380 —1.379
5 —0.951 —1.129 —1.128
6 —-0.951 -0.832 —0.830
7 —0.640 —-0.673 —0.673
8 —-0.597 —-0.667 —0.666
9 —0.585 —0.655 —0.656
10 —0.585 —0.461 —0.642
11 —0.389 —-0.418 —0.420
12 —0.389 —-0.414 —0.416

is at the same level as the MCSCF-CI results stated in ReXa-VWN LDA results agree with the correct experimental

[60]. Several researchers have indicated that the largest errground state structure as well as the experimental IP, with an

in the LDA approximation is with the exchange enefd9].  optimal o consistent with that suggested from literature.

The variousXa exchange adjustments with Dirac-Slater andHowever, the ground state dissociation energy is overesti-

empiricala constants indicate that the hlgh preCiSion MSE-mated by approxima’[e|y the same amount as tbaj@so_
TABLE V. Here various total energies and HOMO values areciation energy. Generalized gradient corrections to the Dirac

report for the MSE-LDAXa, VWN, and GL models. Comparisons exchange limit are expected to_offer an accurate multipur-

ose model and are under consideration.

are made to those reported in the literature, and percent errors abs .

given with respect to the experimentally measured ionization poten- Several advantaggs are indicated from the accurate closed
tial (IP); for the MSE results the IP is taken to be approximated byShell MSE computation. The degenerate HOMO for the 60°
the HOMO. Use of the suggested optimalfor atomic oxygen Structure is retained to the third decimal point for the 116.8°
(0.744 gives an error in the IP of less then 2% for the closed shellcase; this is nearly captured by tiex-SW simulation, but

MSE-LDA calculation, and this is of the same level of error as anot by the LCAO. The general agreement in IP prediction

large LCAO-MCSCF calculation reported in RE80]. was previously found only in higher level correlation treat-
ments; here highly accurate calculations indicate that the
Computational Total energy IP (HOMO) % error DA is adequate to a few percent accuracy. Accurate MSE
method (hartreg (eV) inIP results indicate that the (116.8R=1.278 A structure is
MSE Xa (a=.74) 294737 7891 38.2 lower in energy then the (60°R=1.44 A structure by an
116.8°R=1.278 A gmount .of .0.06 hartre€l.6 eV) for all LDA models exam-
MSE Xa-GL (a=2) —227.420 8.490 335 ined; this is compargble to the open shell preQ|ct|ons of
3, ' ' ' LCAO-VWN calculations with a 0.07-hartree difference.
MSE Xa-VWN (o= g) 221.396 11.320 13 The difference in total energies of the ground state and cyclic
MSE Xa-VWN (a=3) —228.243 geometries was found to be insensitive to the skeleton mesh
post-LMGC correction construction and LDA model, for a given number of collo-
MSE Xa-VWN (a=0.74)  —227.387 12.463 2.3 cation points N). The high-precision MSE calculations offer
MSE Xa-VWN (a=0.75)  —227.384 12.599 12 anumerically accurate prediction of the modeled band struc-
MSE Xa-VWN (a=1.0)  —227.205 16.925 32.6  ture of the orbital energies for the highest orbitals; consider-
Open form, Ref[57] able disagreement exists with the various LCAO methods. In
LCAO/VWN,9s/5p/1d —223.946 6.1 52.2 fact, Fig. 9 indicates a qualitative disagreement of the LCAO
117.5°R=1.27 A highest six orbital wave functions and their symmetries when
Xa-SW, Ref.[57] 8.1 36.5 compared to the highly accurate Kohn-Sham MSE-LDA or-
Xa-SW, Ref.[60] 12.79 0.2 bitals; the experimental ground state'i;. The LDA-MSE
GVB-ClI, Ref.[60] 12.91 1.2 orbitals indicate that there are two occupiedorbitals per-
MCSCF+CI, Ref.[50] 12.53 1.8 pendicular to the molecular plane. LCAO-LDA calculations

do not predict this type of symmetry; GVB orbitals have
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FIG. 9. Highly accurate Kohn-Sham MSE-LD@#eft) molecular
orbitals for ozone (116.8R=1.278 A are compared to the
LCAO-LDA results with a (%/5p/1d) basis-sefmiddle) [57], and
the Xa-SW results(right) [60]; the brackets indicate nearly degen-
erate orbital energies. In the LCARe results thet* (b1) orbital is
unoccupied in the ground state.

IV. SUMMARY

The increasing need for advanced computational model-
ing capabilities for material design and property prediction,
in both material science and molecular chemistry, requires
the development of new theoretical and computational meth-
ods. Here we presented a computational approach for use in
high-precision multicenter electronic structure calculations,
and demonstrate thaktype finite elements are a viable nu-
merical approach to many electron systems with highly non-

FIG. 8. MSE-LDA molecular orbitals 10, 11, and 12 of ozone I€ar functionals and strongly nonspherically symmetric
(116.8°R=1.278 A are plotted above. One of the two occupied  Wave functions in the near nuclei region. In particular, the
orbitals perpendicular to the molecular plane is pictured in orbitaloc@l interpolant formulation and a higher-order quadrature
10 (bottom). The computational solution was taken from a GL cal- allows the physical space formulation to routinely evaluate
culation, with a spider web construction representative of a meshadvanced gradient corrections, both variational and point-
1-type decomposition; see Sec. Ill A. wise constraint$61], to the LDA in a fully self-consistent
manner. The method can be viewed as an extension of the

lanar orbitals. thouah with different structural symmetr spectral element method developed to solve elliptical partial
P 7o ’ 9 . y Y differential equations. Evaluations of the Hamiltonian opera-
[55]. Detailed electronic structure properties such as excite

S . . : o ~~tlon scale to be linear in the number of elements, which is
states, ionization potentials, adiabatic excitation energie

: ﬁ)roportional to number nuclei, and proportionaN$, where
etc., can all be considered to be strongly dependent on thq js the local polynomial expansion order in one spatial di-
accuracy of the computation and the DFT model in this parfection for a given element. Successful numerical approxi-

of the spectrum; the numerical accuracy capability is effecmations of operators with point singularities was accom-

tively provided with modern spectral methods. Although plished with the use of a local coordinate transformation, and
qualitative study of molecular orbitals has lost favor over theallow general multicenter systems to be calculated with a

last decade, the ability to calculate robust and reliable waveigher-order finite element method that give spectrally accu-
functions is expected to offer new directions for wave func-rate numerical solutions. Optimal iterative solvers can be ex-

tion analysig3]. pected to offer linear scalability in the number of electrons as
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well. Thus the potential for a total linear scalable numericalreported in the literature, and gave less than a 2% difference
algorithm for a high-level quantum chemical calculation isbetween the experimental ionization potential. In general all
realistically possible within the state of the art in modernLDA models, at all resolutions, gave the same qualitative
iterative solutions. The numerical approximation consistentlyorbital structures. For ozone the correct energetic order of the
deals with a full theoretical statement, and accurately capground state versus the cyclic geometries was also predicted
tures the correct balance of the kinetic energy and divergenwith all closed shell LDA models studied here. Applications
terms. are currently being studied for large-scale molecular struc-

The computational method offers the unambiguous astures and optimal iterative solvers for several hundred atoms
sessment of various theoretical approximatiions to multi-and electrons in the context of density functional theory. In
center systems in a computationally tractable fashion. Adaddition to the molecular orbital studies presented here,
vantages can be found for problems currently intractable dukighly accurate numerical solutions can be expected in con-
to multicenter complexity; large basis set expansions, rapidiyection with the work on the density equati@2—65. Like-
varying wave functions, and computationally intensive manywise, the ability to deal with approximations of wave func-
electron applications. The combination of multiresolutiontions for heavy nuclei, in an all electron calculation, and
flexibility and exponential convergence rates yields a comincorporation of relativistic effects, such as Dirac’s equation
putationally efficient technique for solving Schilinger-type  [66,2], are apparent. Although Dirac’s equation was not for-
operators, and advances in algorithms and iterative solversally addressed in this paper, the MSE approach is expected
for partial differential equations will transfer seamlessly be-to have a meaningful application direction here. LCAO
tween the various multidisciplinary areas of computationalmethods are known to have limited merits over fully numeri-
physics. cal solutions of Dirac’s equation at the atomic leM&T]. The

Here computations of a subset of atomic, diatomic, andapplication of modern spectral methods is expected to benefit
triatomic systems were studied to validate and apply thealculations in nuclear physics as well as scattering.
method to electronic structure calculations. The studies indi-
cated a general ability of the VWN model to give a HOMO
energy to within a few percent of the experimental ionization
energy. The highly accurate and robust calculations of the The author would like to thank Professor Leland C. Allen
MSE method proved to offer a significantly different picture and Dr. Brett I. Dunlap for several informative discussions.
of LDA molecular orbitals than that provided by LCAO Also appreciation is noted for the encouragement the author
methods for ozone. The accuracy of the MSE-LDA predic-received from Professor loannis G. Kevrekidis at the early
tion of the IP is at the same level as MCSCF-CI resultsstages of the work
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