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Computational method for general multicenter electronic structure calculations
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Here a three-dimensional fully numerical~i.e., chemical basis-set free! method@P. F. Batcho, Phys. Rev. A
57, 6 ~1998!#, is formulated and applied to the calculation of the electronic structure of general multicenter
Hamiltonian systems. The numerical method is presented and applied to the solution of Schro¨dinger-type
operators, where a given number of nuclei point singularities is present in the potential field. The numerical
method combines the rapid ‘‘exponential’’ convergence rates of modern spectral methods with the multiresolu-
tion flexibility of finite element methods, and can be viewed as an extension of the spectral element method.
The approximation of cusps in the wave function and the formulation of multicenter nuclei singularities are
efficiently dealt with by the combination of a coordinate transformation and a piecewise variational spectral
approximation. The complete system can be efficiently inverted by established iterative methods for elliptical
partial differential equations; an application of the method is presented for atomic, diatomic, and triatomic
systems, and comparisons are made to the literature when possible. In particular, local density approximations
are studied within the context of Kohn-Sham density functional theory, and are presented for selected subsets
of atomic and diatomic molecules as well as the ozone molecule.

PACS number~s!: 02.70.2c, 31.10.1z
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I. INTRODUCTION

The study of quantum mechanical properties of mater
is central to a broad array of problems in chemistry a
materials science ranging from molecular mechanics fo
field development to detailed electronic structure proper
of molecules with several hundred nuclei and electrons. M
terial design challenges can benefit from reliable, robust,
accurate molecular simulations in fields ranging from
analysis of new pharmaceuticals and herbicides to biolog
systems such as amino acids, peptides, and complex cry
line structures for solid-state chemical application. As
gards modeling, the theoretical chemical statement is
dressed in two distinct steps; first a theoretical approxima
to the Schro¨dinger or Dirac equation, and then a compu
tional approximation for the numerical solution. The prima
computational approach forab initio quantum chemica
methods has been the linear combination of molecular or
als ~LCAO!, along with the dominant use of Gaussia
chemical basis sets@1#, and for solid-state calculations focu
has been given to plane waves and pseudopotentials@2#. The
nature of quantum mechanical operators and their solut
offer significant challenges ranging from large-scale sys
modeling requirements to rapidly varying wave functions
physical space and large gradients at nuclei locations.
merical approaches must overcome such obstacles, and
cient methods must deal with wave function cusps at
nuclei locations as well as multicenter operator singularit
In the context of theoretical approximations, advanced tre
ments of electronic correlation, such as the coupled clu
method, have severe computational scalings to large syst
and a 100-fold improvement in computational capability

*Electronic address: paul@biomath.nyu.edu
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expected to yield only a factor of two improvement in th
tractable system size@3#. Density functional theory provides
an alternative to the approximate, in principle exact, tre
ment of electron exchange and correlation, and reduces
scaling problem; however, new computational approac
that capitalize on molecular scaling advantages are crit
for the success of future electronic structure calculati
Here we apply a fully numerical high-precision comput
tional method to general multicenter electronic structure c
culations within the context of density functional theory@4#.

Computational approaches that utilize locally cente
global chemical basis sets, such as Gaussian functions,
demonstrated impressive chemical modeling capabilities
electronic structure calculations. In addition, systematic c
structions of such basis sets for general molecular struct
have achieved considerable success over the last few
cades. However computational scalings to larger syste
and the difficulty of overcoming numerical truncation erro
of finite expansions, are inevitable. Chemical accuracy
generally considered to be achieved at 1023 hartree, since
bonding interactions typically involve energy changes on
order of 1021 hartree; for more discussion on favorable a
pects of fully numerical approaches and the need for l
numerical errors, see Refs.@6–8#. A disadvantage of finite
global basis sets is the fact of low numerical errors, and
is a result of the slow~algebraic! and nonuniform conver-
gence of the numerical approximation to the theoreti
statement. For example, a systematic approximation
s-type hydrogenlike orbitals with an expansion of orthogon
Hermite polynomials, with their Gaussian weight functio
yields errors of ordern25/2 and errors ofn23/2 in expectation
values of the kinetic energy operator; heren is the size of the
basis set expansion@5#. The fundamental success of finit
chemical basis-set approximations lies in the ability
model, or approximate, the wave function’s features w
7169 ©2000 The American Physical Society
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7170 PRE 61P. F. BATCHO
systematic expansions. Linear combinations of Gauss
with floating exponents, designed to optimize the expecta
value of the Hamiltonian, have been shown to have subg
metric convergence; however, calculation of a new sys
requires a reoptimization of the exponents. High-precis
diatomic calculations have recently been demonstrated
even-tempered basis sets@9#, and required greater than 60
primitive basis elements for a N2 Xa calculation to achieve
1026-hartree errors in the total energy. The same basis
was then applied to similar diatomics to achieve
1023-hartree errors in total energies; calculations with su
basis sets beyond the diatomic level are not known to
author.

For LCAO calculations, care in systematically clusteri
basis-set information near the nuclei must be exercise
achieve chemical accuracy@5#; in addition, algebraic conver
gence rates in finite basis-set expansion errors can be
pected in locally centered global expansions. In the cas
solid-state calculations a resolution fine enough to prop
approximate core wave functions requires millions of pla
waves for the simplest silicon unit cell. The nonuniform co
vergence of global basis-set errors will generally foc
Gibbs-type oscillations near the nuclei cusp regions, and
algebraic convergence can cause misleading results
finite-dimensional sets@10,11#. Given the algebraic conver
gence rates of Gaussian basis sets, particularly when con
tion sets are used, a question can be posed as to the nu
cal error estimates involved with such methods. Does
extremely small chemical modeling improvement from
6-31111G(d,p) basis to a 6-311116~2df,2p! set repre-
sent a well converged solution, or is it an artifact of the r
of convergence for the approximation, irrespective of cor
lation treatment? Numerical challenges continue to rem
for heavy nuclei and transition metal calculations, as well
the direct material property prediction. It is desirable to ha
a systematic high-precision computational approach that
deal with the multiresolution and high-precision numeric
needs of quantum mechanical wave functions. A phys
space domain decomposition is used here, and system
generations of computational meshes are discussed fo
optimal approximation of the wave function and assessm
of numerical accuracy.

Here a fully numerical~chemical basis-set free! domain
decomposition method, the molecular spectral elem
~MSE! method@4#, is presented and applied to polyatom
systems. With the MSE method no assumptions beyond
stated Hamiltonian are used and the LCAO method, pla
wave basis, pseudopotentials, Gaussian basis, and Slater
orbitals have all been avoided. The MSE has its roots in
spectral element method described in Refs.@12–14#. The
MSE computational method combines rapid ‘‘exponentia
convergence rates of modern spectral methods with the m
tiresolution flexibility of finite element methods, and can
viewed as an extension of the spectral element method
variational formulation is applied to the operator, and t
nuclei singularities are efficiently captured by a local co
dinate transformation. The variational formulation preser
the symmetry of the operator, and allows an efficient inv
sion. In addition, the formulation of the variational stateme
and the coordinate transformation for the singularity p
duces a method that can effectively deal with operator
ns
n
o-
m
n
th

et

h
e

to

x-
of
ly
e
-
s
e

ith

ac-
eri-
n

e
-
in
r
e
an
l
al
tic
he
nt

nt

he
e-
ype
e

’
l-

A
e
-
s
-
t
-
-

gularities as high asr 2p, p,3, in three dimensions.
The computational approach discussed in this paper

be applied to the various quantum chemical theoretical
proximations, including Hartree, ~post!Hartree-Fock,
Hartree-Fock-Slater, and density functional theory~DFT!
methods; however, focus is given to the density functio
formulation. Within the context of the density functional fo
mulations Hohenberg-Kohn-Sham~KS! theory @15,16#, es-
tablished a firm theoretical foundation for minimizing an e
ergy functional over a space of single-particle orbitals
electronic structure systems. In recent years the quan
chemistry community has found a notable improvement fr
the results of DFT over those found from Hartree-Fock
sults, particularly if nonlocal approximations are used. Th
are comparable, if not better results, as compared
Gaussian-MP2 methods@17–20#. The fact that KS-DFT is
formulated as a single-particle Schro¨dinger equation makes i
particularly attractive within the context of modern nume
cal methods for solving elliptic partial differential equation
Here we present a state-of-the-art numerical method for s
ing the general single-particle Schro¨dinger equation, and of-
fer the unambiguous assessment of the various theore
approximations within the quantum chemical theoreti
statement. The single particle exchange-correlation poten
Vxc(x), is defined by a suitable DFT model that is only
function of the electron density functionr(x) in local ap-
proximations. In nonlocal approximations the potential c
have a strongly nonlinear dependence on the electron de
and its gradient,Vxc„x,r(x),u¹r(x)u, ¹2r(x), . . . …. The
Kohn-Sham equations are given in Eqs.~1!–~4!, stated in
atomic units~a.u.!, for general gradient approximations i
spin compensated form:

2 1
2 ¹2wp~x!1@J~x!2V~x!#wp~x!

1Vxc„r~x!,u¹r~x!u,¹2r~x!…wp~x!5«pwp~x! in V3

~1!

~w i ,w j !5E
V

w i~x!w j~x!dx5d i j , ~2!

where

V~x!5(
p, j

Zj

r p j
, ~3!

J~x!5E
V

r~r 8!

ur 2r 8u
dr8, r~x!52(

a
uwa~x!u2, ~4!

where r i j
2 5(xi2xj )

21(yi2yj )
21(zi2zj )

2, Zj are the
atomic numbers of the individual nuclei, and«p andfp(x)
are the molecular orbital energy and its wave function
physical space. The MSE method eliminates the use of
bal basis sets, and approaches the solution of the quan
mechanical equations from a variational domain decomp
tion approach where high-order polynomial approximatio
are made within each subdomain. In addition to the ra
decay of the numerical error the collocation character of
MSE method computes the molecular orbitals directly
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PRE 61 7171COMPUTATIONAL METHOD FOR GENERAL . . .
physical space rather than the coefficients of a series ex
sion for a given orbital. Advantages are therefore found
the solution’s rapid evaluation and in the elimination of i
verse mappings for LCAO basis-set expansions that can
several million in size. In general, grid based methods o
many times more functions to minimize with respect to t
Hamiltonian. These functions are highly localized in spa
and thus advantages can be found with the multiresolu
aspects of the wave function. Similarly the structure of
resulting linear algebra statement offers computational t
tability with regards to operator evaluations for large s
tems.

The MSE method can be viewed as a spectral elem
method that is adapted to treat the operatorr 21 singularities
and cusps in the solutions that arise at the nuclei locatio
Attempts in the past to use finite element methods@21–24#
have either dealt only with diatomic molecules where
singularity can be removed through using spherical
prolate-spheriodal coordinates, or alternatively a use of
integral transform of r 21 was employed. A three
dimensional finite element approach was applied to H3

11

@25#, for algebraic converging formulations; the correct tre
ment of the singularity was bypassed, since a low-order
mulation tends to keep the remaining solution somewhat
lated from the errors near the core. Of special interest is
work on applyingp-type finite elements to H3

1 electronic
structure calculation@26,27#; this work will be discussed in
more detail in Sec. II A. However, the advantages of going
local methods versus global expansions have been re
nized in these previous studies. These include advantag
computational scalings to large molecules, improved ac
racy of spatial moments,̂r p&, and gradients which are
strongly dependent on wave function accuracy. In gen
the error in the total energy is an insensitive criterion
judging wave function accuracy@23#, which is critical for
reliable prediction of material properties.

Of particular interest in the context of finite element fo
mulations is the linear scalability of the computational a
proach with respect to molecular complexity. For the so
tion of the molecular orbitals global chemical basis-
expansions exhibit either cubic or quartic scaling with
spect to the dimension of these basis sets. The physical s
formulation of the MSE method combined with the doma
decomposition character offers the complete elimination
multicenter complexity for operator evaluations, e.g., a s
tematic application of the MSE method has a uniform n
merical approximation over a wide range of molecular str
tures, and the computational work scales linear with
number of subdomains, which scales linear with the num
of nuclei. Within the context of density functional theory th
LCAO method scales with the third power of the number
nuclei. Recently, efforts at anasymptoticlinear scaling of
DFT formulations have been studied within the context
density matrix truncation approximations in physical spa
@28–31#. A systematic application and study of these me
ods can in principle be combined with the efficient doma
decomposition method addressed in this paper; however
MSE is naturally linear with respect to the number of nuc
for the computation of the expectation values of the f
Hamiltonian. With the MSE domain decomposition metho
future algorithm developments with multilevel and Krylo
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space methods can lead to linear scaling in electrons as w
and therefore a total linear scalability is realizable for hi
level quantum mechanical simulation. The multiresoluti
flexibility of the domain decomposition method is also no
worthy in cases where heavy nuclei have large localized g
dients near the nuclei location, in combination with the v
lence orbitals which tend to have more diffuse solutio
throughout the molecule. The method presented here ha
geometric flexibility to deal with both types of solution
within a given optimal domain decomposition, and, in som
sense, is natural to the formulation. Noteworthy are rece
introduced wavelet approximations which are designed
capitalize on the multiresolution aspects of the wavelet ba
@32#, as well as recent finite difference formulations with
the context of a pseudopotential formulation@33#. The MSE
formulation offers a consistent and rapidly convergent
proximation of the full Hamiltonian, which accurately cap
tures the balance of the kinetic energy and divergent term
the near nuclei region. A more detailed discussion on
MSE numerical formulation can be found in Ref.@4#, where
various approaches were examined and exponential con
gence rates were demonstrated for suitable benchmark c

In the context of the LCAO method a pseudospect
method has been applied to electronic structure calculat
@34#. The use of collocation has shown to have advanta
with regards to the computational complexity of the mul
centered integrals via sum factorization techniques. Ho
ever, the pseudospectral method still suffers from the dr
backs of the algebraic convergence of the expansion and
optimal choice for chemical basis sets. Here we adop
somewhat universal basis set in a local region of phys
space, and rapid convergence is guaranteed in terms o
size of the expansion. A method that extends fully numeri
approaches to a multicenter system was formulated in R
@35#, where each nucleus is treated as a separate solu
with its own spherical coordinate system, and the individ
solutions are added together by a defined weighting funct
The individual treatment of nuclei in general mirrors glob
basis-set multicenter complexity, and the introduction of
additional nuclei requires the addition of a full atomic gri
Here we avoid these issues with a unified grid under the
context of a domain decomposition method which incorp
rates a systematic implementation of rapidly converg
polynomial basis-set approximations. With the MSE a
proach the addition of a nuclei requires less then one tent
an atomic grid, and highly efficient iterative methods wi
enhanced parallel processing advantages can be syste
cally employed for the wave function solution. Here a s
nificant departure is made from the above methods in m
ematical formulation and iterative methods used for solv
the various eigensystems. The domain decomposi
coupled with tensor~or warped! product forms of Lagrang-
ian interpolants and Gaussian quadratures make the pre
formulation superior to classical finite element and finite d
ference based methods. The computational method use
fers significant advantages where the total energy can
minimized via established Krylov space and multilevel me
ods, where no direct operator inversions are required.
MSE method offers an efficient treatment of the nuclei s
gularities with a seamless numerical matching to the rem
ing physical domain; and numerical errors are a direct c
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7172 PRE 61P. F. BATCHO
sequence of the degree of the polynomial used in
approximation as well as the physical size of the local
mains.

In Sec. II we briefly review the spectral element metho
and an adaptation to deal with the nuclei singularities. D
cussions on the coordinate transformation of the singula
and the resulting algebraic system are presented. Section
discusses various iterative methods for the solution of
molecular orbitals with the MSE approach, as well as
pected scalings with molecular complexity. In Sec. III, r
sults of atomic, diatomic, and triatomic systems are p
sented. The hydrogenlike solution of atomic nitrogen a
zinc are presented in Sec. III A; exponential convergenc
demonstrated with respect to the 1s and 2s orbitals. Section
III B presents a local density approximation~LDA ! Xa cal-
culation of diatomic nitrogen, and comparisons are made
highly accurate solutions presented in the literature for a
nite element solution using prolate-spheriodal coordinates
addition, the calculation of O, Ar, N2 , O2, and F2 are pre-
sented for the Vosko-Wilk-Nusair~VWN! LDA approxima-
tion. In Sec. III C, a study of the ozone molecule is made
the cyclic and ground state geometries under theXa,
Gunnarsson-Lundqvist~GL! empirical correlation correction
and VWN LDA approximations. Detailed total energies a
molecular orbital structures and energies are presented,
comparisons are made to the various calculations discu
in the literature. In particular, we find that all closed sh
LDA models predict the ground state to have a lower to
energy, and that theXa-VWN model in its paramagnetic
closed shell limit predicts the experimental ionization pote
tial to within a 2% error. In Sec. IV, we conclude with dis
cussions on the overall numerical approach when used
quantum chemical calculations, and suggest several po
bilities for future algorithm development and application
electronic structure calculations.

II. FORMULATION

A. Molecular spectral element method

The spectral element method is designed to solve elli
boundary value problems in general complex domains
partitioning the given domain into quadrilaterials; spect
elements. Within each element the solution is approxima
by Lagrangian interpolant polynomials, where tensor prod
forms are used. The first step in the procedure is to emplo
variational formulation of the problem,

1

2EVk

¹U~x!•¹f~x!dx1E
Vk

V̂~x!U~x!f~x!dx

52«E
Vk

U~x!f~x!dx, ~5!

whereU(x) is the chosen test function, andV̂(x) is the total
single particle potential,V̂(x)5V(r )12J(r )2Vxc(r ). Next
interpolation points are chosen to define the basis set via
Lagrangian interpolants; in the standard spectral element
mulation Gauss-Lobatto Legendre~GLL! points are chosen
The solution is expanded in terms of the higher-order po
nomial interpolantshi(j),
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f~h,j,z!5f i jkhi~h!hj~j!hk~z!, ~6!

where (h,j,z) are the coordinates in the cubic space defin
from an isoparameteric mapping. The test functions are a
chosen as the interpolants, as in the traditional Galerkin
mulation. In the case of deformed geometries the bounda
also expanded in GLL interpolants, and the GLL numeri
quadrature is chosen to coincide with the interpolat
points; therefore the interpolants are defined byhi(jJ)
5d i j ; this gives the method a collocation-type charact
This choice of quadrature points and basis sets forms a
crete system of algebraic equations with a large degree
sparseness, and the use of tensor product forms resu
efficient sum factorization techniques for operator eval
tions @12–14#. The exponential convergence property, as
ciated with polynomials from the singular Sturm-Liouvill
operators, gives the method a significant advantage over
ditional finite element and finite difference methods.
large-scale applications several orders of magnitude less
points are needed for the same accuracy when compare
traditional low-order methods; if needed, highly accurate
lutions can be obtained at relatively little cost. The spec
element method has been used in three-dimensional time
pendent solutions of fluid flow as well as large-scale so
tions of eigensystems of coupled partial differential equ
tions @36–39#.

There are a number of obstacles that must be overcom
order to apply such a method to Schro¨dinger-type operators
and electronic structure calculation. The molecular spec
element is formulated to deal with the numerical difficulti
of a finite number of arbitrary spaced cusps and point sin
larities. The combination of geometric flexibility and exp
nential convergence rates yields a well-suited technique
solving Schro¨dinger-type operators. The singularity wa
found to be effectively handled by a coordinate transform
tion @4#. Where the integration of nuclei singularities can
subdivided into the integration over six square based py
mids. The transformationx̂5x, y5xu, andz5xw reduces
the integration over a pyramid,

E
0

1

dxE
2x

x

dyE
2x

x

dzr21f~x,y,z! in V3, ~7!

to the evaluation of integrals of the form

E
0

1

dxE
21

1

duE
21

1

dw
xf~x,xu,xw!

A11u21w2
in V3. ~8!

Thus we partition the volume around the singularity with
cube and subdivide the cube into six pyramids; see Fig
The transformation removes the singularity and smooth in
grands remain which can be efficiently integrated with p
duce Gauss-Jacobi quadratures. This type of domain dec
position is somewhat optimal for solutions that a
approximately spherically symmetric around the singular
and tends to substantially reduce the number of elem
needed to fill the remaining domain.

The last aspect in the formulation is an efficient appro
mation scheme for the transformed functionf(x,xu,xw)
and the matching to adjacent quadrilaterials. The use o
Gauss-type quadrature over the cubic domain in the map
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FIG. 1. An illustration of the
pyramid decomposition of a cubic
region around the singularity. The
solution within the pyramids is
represented by tensor produ
forms of appropriately chosen
Gauss-Jacobi Lagrangian interpo
lants, and is routinely patched t
adjacent quadrilaterial spectral e
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space (x̂,u,w) leads to integration points which can be us
to form Lagrangian interpolants in a similar fashion as
done in a traditional spectral element scheme. The opti
approximation scheme was found to be the tensor prod
form of Lagrangian interpolants in the mapped spa
f(x,xu,xw)5f i jkhi( x̂)hj (u)hk(w). A choice of GLL
quadrature is used for theu andw components. This formu
lation allows a straightforwardC0 matching of the pyramid
based system to the adjacent quadrilaterial of the spe
element method. For an optimalx-component numerica
quadrature, thex weight was included in the choice of a
integration rule, which did not include the vertex as an in
gration point @40#; similar types of quadrature rules we
described in Ref.@41#. The discrete Laplacian mapping
formulated by using the mapped physical space gradien
the space (x̂,u,w). With application of the chain rule we
arrive at1

]

]x
5

]

] x̂
2

u

x

]

]u
2

w

x

]

]w
, ~9!

]

]y
5

1

x

]

]u
, ~10!

]

]z
5

1

x

]

]w
. ~11!

The gradients in the mapped space (]/] x̂,]/]u,]/]w) are
formulated within the context of a Gauss-Jacobi-Lagrang
interpolant derivative matrix in the (x̂,u,w) space, as in the
spectral element formulation. Here thex component of the
discrete Laplacian is given:

Almni jk
x f i jk5E E E ]

]x
@hl~ x̂!hm~u!hn~w!#

]

]x
@hi~ x̂!hj

3~u!hk~w!#f i jkx2dx̂ du dw in V3 ~12!

This leads to a variational formulation of the Laplacian w
condition numbers in agreement with the convergence e
mates of traditional spectral element methods for the varia
coefficient Helmholtz equation@42#. The algebraic system i
given in Eqs.~13! and ~14! for the discrete system for Eqs
~1! and ~2! respectively:

1Correctly stated here versus those described in Ref.@4#.
al
ct
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ti-
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@ 1
2 A1Bv#f i52« iBf i , ~13!

f iBf j5d i j , ~14!

whereA is the sparse discrete Laplacian,Bv is a diagonal
mass matrix weighted by the total single particle potentialB
is the diagonal mass matrix, andf i is the algebraic vector o
physical space mesh values of thei th computed orbital. The
total matrix is never actually constructed in the iterative
version methods suggested here, and parallel algorit
based on element partitioning can be efficiently imp
mented. The single particle potential is routinely evalua
on the spectral element mesh points, and evaluations of
tial derivatives pose no obstacles for implementing gene
ized gradient based DFT formulations. The complete sys
was efficiently inverted by the preconditioned conjugate g
dient method, and exponential convergence rates in num
cal approximations were demonstrated for suitable ben
mark problems in cubic domains@4#.

For a multicenter application the domain is decompos
into six pyramids around each nuclei, with quadrilaterials
the remaining domain. Within each pyramid the solution
decomposed into a tensor product form of Gauss-Jacobi
grangian interpolants. Typical meshes may consist of a
divided into quadrilaterials with elliptical shells place
around them, which are also divided into quadrilaterials~see
Figs. 3 and 7!; such meshes are routinely generated for m
lecular application. With the MSE method the dependence
the computational complexity on the number of nuclei
only felt through the number of elements needed to partit
the domain. For example, in some circumstances a molec
system with five nuclei may have the same, or nearly
same, number of elements as a ten nuclei system; in this
the computational work is the same, given the same num
of occupied orbitals. The operation count of the product
the DFT Hamiltonian with a given molecular orbital scal
;KN4, where K is the number of subdomains and N is t
number of quadrature~collocation! points in one spatial di-
rection, in a single subdomain. This operation is the prim
computational expense of a given iteration were N;5 –10
and K;100–1000 for moderate sized molecules.

Finally we comment on the work on applyingp-type finite
elements to electronic structure calculations for H3

1 @26,27#.
The work in Ref.@26# formulated a variant of the spectra
element technique for use in Hartree-Fock calculations,
correctly isolated a key aspect of the formulation, name
the tensor product forms and sum factorization technique
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operator evaluations. However, the use of GLL interpola
was not used with its associated GLL quadrature rule, a
this resulted in the loss of the highly favorable collocati
character of the formulation, which allows the solution to
computed directly in physical space. This mismatch lead
significantly increased computational work, as well as a
graded conditioning of the algebraic system with increas
N. The approach was then modified to deal with thre
dimensional point singularities via a variant of the Duf
transformation@27#, as independently used in Ref.@4#. How-
ever in Ref. @27# the singularity was formulated as to b
surrounded by cubes rather then pyramids, and again
collocation formulation was not used. The cubic domain
composition was actually an early formulation tried in R
@4#, and was discarded due to poor conditioning of the al
braic system with increasingN, as well as a less optima
domain decomposition for electronic structure calculatio
The mismatch in the interpolant and quadrature points le
to several unsatisfactory results in the computational meth
and is avoided by the MSE approach. The ability to e
ciently use high degree polynomials is a primary motivat
for the spectral element method. Here we demonstrate
p-type finite elements are a viable numerical approach
multicenter many electron systems with highly nonline
functionals and strongly nonspherically symmetric wa
functions in the near nuclei region.

B. Global energy minimization

The use of iterative methods for high-order finite elem
formulations is an established area in computational m
ematics and advances from various multidisciplinary fie
are expected to offer a rapid optimization of the iterat
solver through the direct exchange of computational al
rithms. Given a consistent and rapidly convergent spatial
cretization an efficient algorithm must be formulated to so
the nonlinear coupled system of partial differential-integ
equations of interest. The spectral element method has
implemented in connection to the inverse Lanczos met
for the calculation of the lowest eigenpairs of coupled par
differential equations@38,39#. In the context of electronic
structure calculation there has been a considerable amou
literature on the subject of iterative solvers that somew
bypass the direct inverse iteration method@43–45#. Krylov
methods, based on preconditioned conjugate gradient~PCG!
iteration, are growing in popularity@44#, and multilevel
methods have found application in electronic structure
scattering applications@46–48#. The use of a physical-spac
domain decomposition method separates the comple
scaling with respect to the number of nuclei and the num
of electrons. It is clearly linear in the number of nucle
which only effects the number of subdomains~spectral ele-
ments! used. The scaling in number electrons is a function
the iterative eigensolver, and at worse scales square
number of electrons. The square scaling comes from the
of the Krylov method and needed orthogonalization
enforcement; with a further algorithm developed, Krylo
methods can~in principle! be made linear with the number o
electrons; i.e., the DFT self-adjoint operator gives a tridia
nal Hermitian matrix, and a selective reorthogonalization c
be employed. Multilevel methods have been applied wit
the context of spectral element methods@14#, and recently on
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modeled quantum chemical systems of equations@46#. It has
been shown that a linear scaling relation with respect to
number of electrons can be expected. Typically multile
methods are more attractive for nonlinear systems, and o
high efficiency, particularly for low aspect ratio element
domains.

Here the iterative solver has not been optimized or ext
sively studied, and is therefore not discussed in signific
detail. However, a fairly straightforward PCG implement
tion worked robustly for the molecular structures studie
Future efforts are focused at optimal iterative solvers a
improvement of several orders of magnitude in both init
conditions and iterative efficiency can be expected; we
pect a linear scaling in the number of orbitals with the use
multilevel methods. The general procedure is to obtain a
lution of @H2« i #w i50, where the operator and energies a
updated at each global iteration, and previous iterations
used as an initial guess@Hn2« i

n#dw i
n1152@Hn2« i

n#w i
n . At

present a few hundred global iterations are necessary to
tain accurate total energies, and the overall iteration pro
dure is similar to that of Ref.@43#, where each global itera
tion was performed by a mode by mode minimization. Ea
global mode iteration utilizes a predetermined number of
ner PCG iterations before the operator is modified; here
preconditioner was taken as the diagonal of the discrete
placian. This choice of preconditioner was found to lead
scalings in the condition number of the overall system,
agreement with the traditional spectral element method.
computational complexity of the Hamiltonian matrix vect
multiply with the discrete orbital scales proportional toKN4

for the pyramid as well as the quadrilaterial decompositio
where K is the number of elements in the domain. At pres
each global iteration includes a complete reorthogonaliza
of the eigensystem. With the use of explicit updates@Eq.
~15!# of the electron density, there has been no indication
charge sloshing instabilities by this method:

rn11~x!5(
j 50

Je

b jr
n2 j~x!, (

j
b j51. ~15!

The number of inner iterations is typically 5–30, dependi
on the numerical resolution; a lower resolution implies
lower number of inner iterations for optimal convergenc
There are several different approaches to the use of P
and the optimal approach will remain under investigation.
particular, interest is given to recent work on nonlinear co
jugate gradient methods@49#, advances in large-scale implic
itly restarted Arnoldi methods@50#, and the very promising
use of multilevel methods@46#. In general, it has been foun
that the treatment of the nonlinear minimization as a qua
steady eigenproblem can allow the iterative solution to lo
into local solutions, particularly if the electronic wave fun
tion is nearly degenerative. Care must be taken in an ev
ation of the Coulomb potential during the iterative minim
zation and is discussed in Sec. II C.

C. Evaluation of the integral operators

The above formulation gives a numerical method that c
effectively deal with Schro¨dinger-type operators, and wil
give exponential convergence rates in the numerical appr
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PRE 61 7175COMPUTATIONAL METHOD FOR GENERAL . . .
mation. The Coulomb and exchange potentials must also
evaluated with exponential rates of convergence, and m
be computationally tractable for large systems. The use
the PCG method has proven to be an efficient itera
method for the solution of Poisson’s equation; diagonal p
conditioning is typically used. The Coulomb operatorJ(r ) is
formulated as

J~r !5E
V

r~r 8!

ur 2r 8u
dr8, ~16!

¹2J~x!524pr~x! in V3. ~17!

The integral operators are solved via Poisson’s equat
the operation count for a typical Poisson solve is;MKN4.
The operation count for a direct integration of the Coulom
operator is naively K2N6. Here M is the number of PCG
iterations, typically 100–300, and one can expect, for co
plex molecules, that K;103; this gives the Poisson solutio
method roughly a 102 advantage. For the Hartree-Fock e
change operator this also holds; however, there are Na

2 Pois-
son solves required for each operator evaluation, Na being
the number of occupied molecular orbitals. Thus a consid
able amount of work can be saved by efficient preconditi
ing of the discrete Laplacian, as well as the Helmholtz o
erator, in iterative solvers for the spectral eleme
formulation @51#. The use of iterative solutions of Poisson
equation offers the efficient use of the previous solution
an initial guess within the global iterative method, as well
adaptive control over iterative solution residual levels. H
the Coulomb operator is solved to an iterative residual le
of roughly one order of magnitude below the largest opera
residual level, maxiÞ j (f i

n ,Hnf j
n). This effectively caused

the computation work for the update of the Coulomb ope
tor to be less intensive than the update of a given orbital.
partial PCG iterative solution for the Coulomb potential
effectively the energy minimization discussed in Ref.@32#.

Boundary conditions for the potentials are also a key
sue. The application of homogeneous Dirichlet bound
conditions on a finite domain are not as well suited for
potentials, since linear decay is present versus expone
decay for the orbitals. The use of multipole expansions
the boundary has proven effective for application of far-fie
Dirichlet boundary conditions@23,52#. Here the electron den
sity is expanded around the computed center of charge
the molecule, and expansions up to quadrupole moments
considered. For application to molecular systems the ra
decay of the electron density and the smooth variation in
farfield make the multipole expansion a well suited meth
for potential boundary conditions. Chemical accuracy w
routinely achieved with a single centered quadrupole exp
sion; however, the potential boundary condition can be c
sidered to be the limiting factor in accuracy for the exa
~machine accurate! wave function solution. This formulation
has been implemented with negligible cost to the invers
of the Laplacian, and is discussed in Sec. III. Future ap
cation of more refined Green’s function methods@53# could
offer higher precision; alternatively, higher-order multipo
expansions would be employed. Recently efforts at formu
ing and applying a semi-infinite spectral element appro
for the far-field solution have shown promise, and will elim
be
st
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nate the needed for the multipole approximation, as wel
decrease the total number of spectral elements by roughl
order of magnitude. Periodic structures, of course, have
limitation on solution accuracy for the application of pote
tial boundary conditions.

III. RESULTS

There has been a large body of research on evaluation
LDA models for small molecular systems@35#, and predic-
tive capabilities continue to improve. Here we choose a s
set of the historically challenging systems, and focus on
advantages of the physical space domain decompos
method in both solution interpretation and robust numeri
properties. The results of three-dimensional LDA correlat
potentials and chosen benchmark solutions are presente
O, Ar, O2 , N2 , F2, and O3, as well as hydrogenlike orbital
of N and Zn. The LDA-KS potentials are defined from th
Xa method of Eq.~18!, the GL empirical correlation correc
tion given in Eq.~19!, @54#, and the VWN correlation mode
in Eq. ~20! taken from Refs.@19#, @55#. All LDA models are
taken in their paramagnetic closed shell limits, anda is taken
to be an adjustable constant:

Vx
LDA~x!52

3

2
aF 3

p
r~x!G1/3

, ~18!

Vxc
LDA-GL~x!5Vx

LDAb~r s!, ~19!

Vxc
LDA-VWN ~x!5Vx

LDA~x!1«c~r s,0!2
r s

1/2

6

]«c
p

]x
, x5r s

1/2,

~20!

whereb(r s)5110.054r s ln(1111.4/r s), r s5@3/4pr(x)#1/3,
for the details of Eq.~20!, see Refs.@19#, @55#. The total
energies reported for the MSE-LDA results were compu
by solving the electronic problem for the orbital energies a
adding the nuclear/nuclear contribution@Eq. ~21!#,

ET52(
i

« i2
1
2 E E r~r !r~r 8!dr dr 8

ur2r 8u
2E @r~r !Vxc~r !#dr

1Exc„r~r !…1 (
A

nuclei

(
B,A

ZAZB

RAB
, ~21!

whereExc„r(r )…5*r(r )«xc„r(r )…dr. In addition to the LDA
approximation a post-Langreth-Mehl gradient correcti
~LMGC! is applied to the LDA KS orbital solution. The pos
KS correction is presented here to parallel current work
LDA spin formulations@35#. However, the MSE computa
tional approach has no numerical limitations for the calcu
tion of fully self-consistent solutions with gradient corre
tions applied to the exchange-correlation potential; th
results will be reported in future publications. For accura
thermochemical predictions LDA spin formations are gen
ally needed. The LMGC correction to the total energy
given in Eq.~22! wherea50.004 28, f 5b(u¹ru/r7/6), and
b50.26:

Exc5aE ~¹r!2

r4/3 S e2F2
7

18Ddr . ~22!
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FIG. 2. The three near nuclei domain decompositions used for a calculation of the hydrogenlike orbital solutions forZ57 and 30. This
domain decomposition is typical of all calculations reported here. Typically a cube with an edge length of approximately 1.0 a.u. is
the frame for a spider web construction. The first mesh had elemental boundaries, on an axis through the center of the pyramid, of
0.2, and 0.4 a.u. For mesh 2 the boundaries are 0.08, 0.2, and 0.4 a.u., and for the third mesh 0.15 and 0.4 a.u. The pyramids w
in the inner cubic regions.
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The results are presented to demonstrate the flexib
and robustness of the MSE method. Several benchmark
culations were presented in Ref.@4# for cubic and infinite
domains to assess the resolution requirements and con
gence of the MSE approach. Here focus is given to a m
lecular application as well as a systematic use of the dom
decomposition method.

A. Hydrogenlike orbitals of nitrogen and zinc

The calculation of hydrogenlike orbitals of atomic nitr
gen and zinc,V̂(x)5Z/r , Z57 and 30 in Eq.~5!, are pre-
sented as a demonstration of the ability to systematic
invert Schro¨dinger-type operators. The benchmark soluti
also offers the opportunity to systematically evaluate vari
mesh resolutions and requirements for obtaining chem
accuracy. The mesh consisted of a spider web struc
within a cube of 0.8 a.u. in edge length, with the nuclei at
center. Three mesh refinements were examined, and a
lustrated in Fig. 2; for mesh 1 the elemental boundaries
an axis through the center of the pyramid, were 0.04, 0
0.2, and 0.4 a.u. For mesh 2 the elemental boundaries w
0.08, 0.2, and 0.4 a.u., and for the third mesh they were 0
and 0.4 a.u. The pyramids were located in the inner cu
regions. All three domains had the same mid- and far-fi
skeleton meshes. The order of the polynomial approxima
is varied to demonstrate exponential convergence for
meshes. Figure 3 illustrates the collocation mesh for
mesh 2 spider web on a two-dimensional plane through
center of the cubic region, as well as the entire domain s
eton mesh. The domain radius was 9 a.u., and this was t
ty
al-
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as the practical infinity where the homogeneous Dirich
boundary conditions were applied. The exact solution c
readily be obtained analytically, and the eigenvalues
given by «n5Z2/2n2; the solutions}e2Zr/n. The errors as-
sociated with the calculations of the first eigenvalues ver
increasing polynomial order are plotted in Figs. 4 and 5, a
exponential convergence rates were demonstrated; the 2s or-
bital gave slightly more accurate results, as reported in R
@4#. For theZ57 results all meshes gave roughly equivale
results indicating the error was not dominated by the spi
web region resolution, and higher resolution could be app
in the remaining domain. For theZ530 solution meshes 1
and 2 gave equivalent results, while mesh 3 indicated th
finer elemental resolution is warranted, i.e., meshes 1 an
for the lower degree polynomial approximation to efficien
approximate the larger gradients in thes orbitals. Figure 6
plots the quadrature~collocation! points in the radial direc-
tion through the center of the elements for the three sta
mesh refinements along with the normalized 1s orbitals.
Multiresolution flexibility is demonstrated with higher reso
lution ~smaller elements!, near the nuclei, and the lower res
lution ~larger elements! in far-field region; 207 elements
were used here.

Inversion of the global algebraic system was carried
by the preconditioned conjugate gradient method discus
above. Solutions were found to be fairly routine by the p
cedure discussed above, and 20 inner iterations were fo
to be an appropriate number. A few hundred global iteratio
were necessary to converge the orbitals to 10210 errors in the
residuals. Here the residual is defined as theL2 norm of the
s

er
s
-
s

FIG. 3. Here a center plane i
pictured with the collocation point
grid laid out for a mesh-2-type
spider web forN55. To the right
a complete spectral element spid
web is presented. Typical domain
will have rectangular regions de
composed in quadrilaterials, a
pictured, and elliptical shells~or
semi-infinite elements! placed
around them.
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vector (H2« i)f i , whereH is Hamiltonian operator unde
study.

B. LDA results for atomic and diatomic systems

Here we present the results ofXa-VWN calculations for
O, Ar, O2 , N2, and F2 at their experimental ground sta
configurations. For diatomic nitrogen the calculated e
change onlyXa (a50.7) orbital energies are presente
along with a highly accurate calculation from a finite eleme
solution using prolate-spheriodal coordinates@21#. The cal-
culations of Ref.@21# imposed a practical infinity at 25 a.u
and utilized monopole potential boundary conditions. For
MSE approach a systematic mesh resolution around the
clei was evaluated in a similar fashion as performed for
atomic calculations above. Here mesh 1 has near nuclei
main boundaries at 0.04, 0.1, 0.2, 0.5, and 1.0 a.u., mesh
0.08, 0.2, 0.5, and 1.0 a.u., and mesh 3 at 0.15, 0.4, and
a.u. The numerical error drops one order of magnitude fr
N57 to 9, and represents an increase in total degree
freedom by a factor 2.1. This convergence rate is consis
with those found in benchmark calculations reported in S
III A above, and in Ref.@4# for similar skeleton meshes. Her
the exchange only LDA potentialVx

LDA(r ) was used for
comparison to the literature. Within each global iteration a
proximately ten inner iterations are performed for each
bital, and initial conditions were derived from one inver
iteration. All the orbitals were converged to residuals of
31028, and the electrostatic Coulomb potential was co
verged to 10210 in its residual. There were a total of 28
spectral elements for the diatomic nitrogen calculation a
the mesh had a radius of 20 a.u. With the mesh refinem
used the addition of a nuclei requires adding 30 elements

FIG. 4. The decay of the numerical error in the 1s orbital energy
of the first hydrogenlike orbital of nitrogen is plotted vs the numb
of collocation points for the MSE solution; the three spider w
mesh refinements considered are presented. The spherical-typ
main was decomposed into 206 spectral elements, with six p
mids around the nuclei, and the domain radius for practical infin
was chosen as 9 a.u. Exponential convergence is demonstrated
a cusp present at the singularity location.
-
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mesh 1, 24 elements for mesh 2, and 18 elements for me
to the remaining unmodified skeleton mesh.

Several calculations were carried out to assess the se
tivity to multi-pole boundary conditions for the 20-a.u. d
main. Calculations with mesh 1 andN57 indicated that the
monopole versus quadrupole boundary conditions cha
energies in the 1024 hartree level; higher-order approxima
tions resulted in lower total energy calculations. Table I p
sents the N2 Xa total and orbital energies for approximation
N55, 7, 9, and 11, for mesh 2, and those reported from R
@21#. TheN511 solution has the lowest total energy, and c
be considered to be the most accurately computed LDA
sult for diatomic nitrogen; the results of Ref.@21# are limited

r

do-
a-
y
ith

FIG. 5. The decay of the numerical error in the 1s orbital energy
vs the number of quadrature points for the solution of the fi
hydrogenlike orbital of zinc are plotted here. The spherical-ty
domain was identical to that used for the nitrogen calculations
ported above. Exponential convergence is demonstrated, wi
cusp present at the singularity location, and resolution requirem
are indicated for the increased gradients in the near nuclei reg

FIG. 6. A plot of the quadrature~collocation! points in the radial
direction through the center of the elements for the three sta
mesh refinements, along with the normalized 1s orbitals, for hydro-
genlike solutions of nitrogen and zinc.



solu-
ectral

sforma-

7178 PRE 61P. F. BATCHO
TABLE I. Computed Hartree-Fock-Slater orbitals of diatomic nitrogen by the MSE method for re
tions of five, seven, nine, and eleven collocation points in each spatial direction within the local sp
element. Comparison is given with accurate calculations using a prolate-spheriodal coordinate tran
tion, and a finite element method from Ref.@21#.

MO
MSE, N55

~hartree!
MSE,
N57

MSE,
N59

MSE,
N511 Ref.@21# Orbital type

Total 2108.3339 2108.3440 2108.3464 2108.346 68 2108.34662
energy

1 214.0089 213.9823 213.9811 213.981 11 213.981 11 1sg

2 214.0076 213.9809 213.9797 13.979 70 213.979 66 1su

3 21.0037 21.0069 21.0072 21.007 22 21.007 22 2sg

4 20.4635 20.4608 20.4607 20.460 73 20.460 73 2su

5 20.4085 20.4046 20.4042 20.404 24 20.404 24 1Pu

6 20.4085 20.4046 20.4042 20.404 24 20.404 24 1Pu

7 20.3385 20.3491 20.3500 20.350 06 20.350 06 3sg
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in solution accuracy due to the boundary conditions impos
The accuracy of the various spider web skeleton mes
were in agreement with those for the atomic results abo
changes in energies from mesh 1 to mesh 2 were in the 127

and 1024-hartree levels for mesh 1 to mesh 3. Addition
LDA Xa-VWN (a50.75) calculations were also carried o
for N2 and gave a computed total energy of2110.639 har-
tree and a highest occupied molecular orbital~HOMO! of
20.540 hartree, without change in orbitals’ symmetry typ
The experimental ionization potential~IP! is 0.573 hartree,
and the MSE-LDA results are in basic agreement with
predictive capability from single and doubly excited config
ration interaction~CI! calculation, which gave an IP of 0.58
hartree, and second order perturbation results which gav
IP of 0.534 hartree@1#.

Table II presents the post-LM gradient (a5 2
3 ) correction

total energy,Xa(a50.75)-VWN total energy and HOMO
energy, and the experimental ionization potential for the s
tem studied here. Under appropriate asymptotic behavio
the functional DFT states, that the HOMO energy valu
should correspond to the measured IP, and the total en
will correspond to the same value as the full CI limit. A
calculations were performed with anN59 approximation,
and a mesh-2-type refinement. In all the molecular calcu
tions the LDA single particle equation correctly predicted t

TABLE II. Computed total energy with post-LMGC correctio
(a5

2
3 ) and the total energy and HOMO for the LDA-XaVWN

(a50.75) closed shell model for O, Ar, N2 , O2, and F2. The ex-
perimental ionization potential is given as well as the percent
ference of the HOMO and experimental IP values. The calculati
were all computed with a mesh-2 type near nuclei mesh and
collocation point in each spatial direction per element (N59).

Total energy Total energy HOMO IP expt.
~hartree! post-LMGC ~eV! ~eV! % error

O 275.549 275.834 14.142 13.6 4.0
Ar 2528.736 2529.570 14.597 15.8 7.6
N2 2110.639 2110.982 14.697 15.6 5.8
O2 2151.553 2151.958 10.060 9.5 5.9
F2 2227.384 2201.446 14.467 15.6 7.3
d.
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ground state symmetry, which includes the degeneratepg
4 or

HOMO for F2; and in general all HOMO energies are with
a few percent of the experimental IP. The qualitative drop
the IP for O2 was also captured by the single particle LD
model. The dissociation energy of O2 is overpredicted by
approximately 7 eV, and is a common feature of LDA mo
els; the closed shell LM post gradient correction reduced
overprediction to 2.7 eV. A more detailed comparison
various LDA models is given in Sec. III C, with the calcula
tion of the ozone molecule.

C. Local density functional results for ozone

Ozone has many interesting characteristics with regard
its theoretical and computational study. There is an exten
amount of literature on the theoretical predictions of ozo
early LCAO efforts ~1968–1979! were discouraging, and
found 60° geometries with lowest energy. LCAO basis-
incompleteness has been a dominant issue in ozone’s his
of theoretical study. In fact, there has been nearly 30 year
research discussing the need to includedd polarization func-
tions in basis sets for a molecule as small as ozone, and t
basis sets still offer suspect results in various physical
servables and absolute energies. The MSE method elimin
this issue entirely, and allows the examination of vario
DFT models without the concern of basis-set incompleten
and its associated errors.

Single determinant Hartree-Fock calculations have pro
to be insufficient due to the noted radical character of
ground state. The diffused character of the electron distri
tion combined with a rapidly varying wave function in th
near nuclei region, and the highly degenerate energy state
the molecular orbitals, have also proven to be a formida
challenge for numerical approximation. A timely review
the theoretical study of ozone can be found in Hay and D
ning @56#; there generalized valence bound~GVB! orbital
structures are presented, along with detailed studies of
excited states for minimal chemical basis-set calculatio
The authors of Ref.@57#, with a (9s/5p/1d) basis set and
the VWN LDA model, indicated that the open form gav
good geometry comparisons to experiment;Xa-SW calcula-
tions are in similar agreement. Jursic@58# performed an ex-
tensive study on various DFT models on ozone, and fou
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that geometry optimization was rather straightforward w
the GAUSSIAN92 implementation of density functional meth
ods. Jursic’s results indicated that the non-local Becke-L
Yang-Parr combinations of exchange and correlation cor
tions, and a6-31G(d,p) basis set, gave the best comparis
to experiment.

Here an extensive numerical study of ozone was car
out with the (60°,R51.44 Å! cyclic configuration and the
(116.8°, R51.278 Å! experimental ground state configur
tion for the LDA-KS exchange onlyXa potential (a
50.74), the empirical GL correlation correction in the Dir
exchange limit (a5 2

3 ), and the VWN model with Dirac-
Slater (a51.0) exchanges, and empirical exchangea
50.74 and 0.75!. The suggested optimala for atomic oxy-
gen is 0.744. Several domains and polynomial orders w
used here to measure the sensitivity of the solution on
resolution; in general all meshes used gave equivalent re
to stated accuracy. The final mesh consisted of a total of
spectral elements for the ground state geometry with an
fective domain radius of 20 a.u. and a near nuclei spider w
construction similar to a mesh 2 type~see above!, with ele-
ment edges at 0.08, 0.24, and 0.54 a.u. A resolution study
the two geometries is presented in Table III, where to
energies and selected orbital energies are reported forN55,
7, and 9 collocation points in each spatial direction in ea
element; in general the addition of 2 in polynomial ord
represents an order of magnitude decrease in numerical e
A representative spectral element mesh consisting of 306
ements is presented in Fig. 7, with color contours of
electronic density for a cyclic geometry. Extensive calcu
tions were carried out to test the computational accura
domains of 17–27 a.u. in radius were studied for applicat
of practical infinity; changes in the fourth decimal point we

TABLE III. Here several calculations of the LDA-Xa (a
50.74) are presented for cyclic and experimental ground state
ometries of ozone at different spectral element resolutions. The
culations are presented to demonstrate numerical and chemica
curacy of the calculation. AtN57 chemical accuracy is achieved
the sense that the correct energetic order of the geometries is
tured. A further increase in N shows the characteristics associ
with the variational formulation, i.e., convergence is from abo
The table presents total energies, the lowest energy (1s) orbital,
and the HOMO and its nearest occupied orbital.

MSE Xa N55
(a50.74) ~hartree! N57 N59

116.8°,R51.278 Å
Total energy,ET 2224.137 2224.674 2224.737
«1 219.172 219.057 219.048
«11 20.285 20.292 20.293
«12 ~HOMO! 20.281 20.288 20.290

60°,R51.44 Å
Total energy 2224.485 2224.635 2224.675
«1 218.976 218.925 218.921
«11 20.273 20.261 20.262
«12 ~HOMO! 20.267 20.261 20.262

ET,1162ET,60 0.34 20.04 20.06
e-
c-

d

re
id
lts
4
f-
b

or
l

h
r
or.
l-

e
-
y;
n

found in orbital energies for these cases. Multipole exp
sions used for the application of Coulomb potential far-fie
boundary conditions, from dipole to quadrupole momen
gave 1024 hartree effects; all results stated are with quad
pole boundary conditions. All calculations and all LDA mo
els, at all resolutions, gave the same qualitative orbital str
tures, and the correct energetic order of the two geomet
was reached atN57. The N57 versus N59 results
changed at the 1022 hartree level for the total energy an
lowest orbital energies, and at the 1023 hartree level in the
HOMO and its nearest orbitals’ energies;N59 can therefore
be expected to be approximately one order of magnit
lower than this error, and chemical accuracy is thus sta
The results of the orbital energies are given in Table IV
the Xa-VWN (a50.74) approximations for the cyclic form
N59, and the ground state geometry forN57 and 9.

The results of all LDA models for theN59 calculations
indicated that the ground state geometry is approxima
0.06 hartree lower than the cyclic form. Table V present
comparison of the total energies and calculated HOMO
ergies for the MSE-LDA models as well as the experimen
ionization potentials. Figure 8 plots the color contours of t
MSE-LDA molecular orbitals 10, 11, and 12 in the regio
local to the nuclei for the (116.8°,R51.278 Å! ground state
geometry. Finally, Fig. 9 presents illustrative orbital stru
tures for all MSE LDA orbitals and the six highest calculat
orbitals from the LCAO-VWN (9s/5p/1d), and Xa-SW
methods; for all high-precisiion MSE-LDA calculations th
qualitative structure of the orbitals was invariant with t
DFT model and computational resolution. The LCAO-VW
(9s/5p/1d) calculations have approximately a numerical e
ror in the total energy of 3.3 hartree~90 eV! as compared to
the accurate MSE results.

The lowest total energy found in the literature was from
large multiconfiguration self-consistent-field~MCSCF! cal-
culation @59#, and was 2224.65 hartree. TheXa (a
50.74) exchange approximation, combined with the VW
correlation model, gave a total energy of2227.387 hartree
and less then a 2% difference between the experimental
ization potential of 0.469 a.u.~12.75 eV! and the calculated
HOMO. The accuracy of the MSE-LDA prediction of the I

FIG. 7. The LDA-MSE computational mesh of ozone (60°, 1.
a.u.!, and the computed Coulomb potential, are plotted within
MSE skeleton mesh. The skeleton mesh structure is typical o
grids used for calculations reported in this paper.
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TABLE IV. Computed total and orbital energies for the LDAXa-VWN model for ozone are presented
here the Dirac theoeretical limita5

2
3 is reported for accurate MSE results. The MSE calculations repo

are for nine quadrature points in each spatial direction for each spectral element;N59 for the cyclic form,
andN57 and 9 for the ground state structutre. Comparisons are appropriate for equal values of N sin
factor represents roughly equivalent numerical errors for general skeleton mesh constructions.

Orbital energy ~hartree!
(60°,R51.44 Å! (116.8°,R51.278 Å! (116.8°,R512.78 Å!

MSE-VWN MSE-VWN MSE-VWN
Orbital (N59,a5

2
3 ) (N57,a5

2
3 ) (N59,a5

2
3 )

Total energy 2227.336 2227.333 2227.396
1 218.921 219.058 219.048
2 218.921 218.885 218.872
3 218.921 218.885 218.872
4 21.343 21.380 21.379
5 20.951 21.129 21.128
6 20.951 20.832 20.830
7 20.640 20.673 20.673
8 20.597 20.667 20.666
9 20.585 20.655 20.656

10 20.585 20.461 20.642
11 20.389 20.418 20.420
12 20.389 20.414 20.416
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is at the same level as the MCSCF-CI results stated in R
@60#. Several researchers have indicated that the largest
in the LDA approximation is with the exchange energy@19#.
The variousXa exchange adjustments with Dirac-Slater a
empiricala constants indicate that the high precision MS

TABLE V. Here various total energies and HOMO values a
report for the MSE-LDA-Xa, VWN, and GL models. Comparison
are made to those reported in the literature, and percent error
given with respect to the experimentally measured ionization po
tial ~IP!; for the MSE results the IP is taken to be approximated
the HOMO. Use of the suggested optimala for atomic oxygen
~0.744! gives an error in the IP of less then 2% for the closed sh
MSE-LDA calculation, and this is of the same level of error as
large LCAO-MCSCF calculation reported in Ref.@60#.

Computational
method

Total energy
~hartree!

IP ~HOMO!
~eV!

% error
in IP

MSE Xa (a5.74) 2224.737 7.891 38.2
116.8°,R51.278 Å
MSE Xa-GL (a5

2
3 ) 2227.420 8.490 33.5

MSE Xa-VWN (a5
2
3 ) 227.396 11.320 11.3

MSE Xa-VWN (a5
2
3 ) 2228.243

post-LMGC correction
MSE Xa-VWN (a50.74) 2227.387 12.463 2.3
MSE Xa-VWN (a50.75) 2227.384 12.599 1.2
MSE Xa-VWN (a51.0) 2227.205 16.925 32.6
Open form, Ref.@57#

LCAO/VWN,9s/5p/1d 2223.946 6.1 52.2
117.5°,R51.27 Å
Xa-SW, Ref.@57# 8.1 36.5
Xa-SW, Ref.@60# 12.79 0.2
GVB-CI, Ref. @60# 12.91 1.2
MCSCF1CI, Ref. @50# 12.53 1.8
f.
ror

-

Xa-VWN LDA results agree with the correct experiment
ground state structure as well as the experimental IP, with
optimal a consistent with that suggested from literatur
However, the ground state dissociation energy is overe
mated by approximately the same amount as the O2 disso-
ciation energy. Generalized gradient corrections to the D
exchange limit are expected to offer an accurate multip
pose model and are under consideration.

Several advantages are indicated from the accurate cl
shell MSE computation. The degenerate HOMO for the 6
structure is retained to the third decimal point for the 116
case; this is nearly captured by theXa-SW simulation, but
not by the LCAO. The general agreement in IP predicti
was previously found only in higher level correlation trea
ments; here highly accurate calculations indicate that
LDA is adequate to a few percent accuracy. Accurate M
results indicate that the (116.8°,R51.278 Å! structure is
lower in energy then the (60°,R51.44 Å! structure by an
amount of 0.06 hartree~1.6 eV! for all LDA models exam-
ined; this is comparable to the open shell predictions
LCAO-VWN calculations with a 0.07-hartree differenc
The difference in total energies of the ground state and cy
geometries was found to be insensitive to the skeleton m
construction and LDA model, for a given number of coll
cation points (N). The high-precision MSE calculations offe
a numerically accurate prediction of the modeled band str
ture of the orbital energies for the highest orbitals; consid
able disagreement exists with the various LCAO methods
fact, Fig. 9 indicates a qualitative disagreement of the LCA
highest six orbital wave functions and their symmetries wh
compared to the highly accurate Kohn-Sham MSE-LDA
bitals; the experimental ground state is1A1. The LDA-MSE
orbitals indicate that there are two occupiedp orbitals per-
pendicular to the molecular plane. LCAO-LDA calculation
do not predict this type of symmetry; GVB orbitals hav

are
n-
y

ll



ry
ite
ie
t

a
ec
gh
th
av
c

del-
n,

ires
th-
e in

ns,
-

on-
ric
he
ure
ate
int-

the
tial
ra-
is

di-
xi-
m-
nd
a

cu-
ex-
as

ne

ita
al-
s

n-
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planarp orbitals, though with different structural symmet
@55#. Detailed electronic structure properties such as exc
states, ionization potentials, adiabatic excitation energ
etc., can all be considered to be strongly dependent on
accuracy of the computation and the DFT model in this p
of the spectrum; the numerical accuracy capability is eff
tively provided with modern spectral methods. Althou
qualitative study of molecular orbitals has lost favor over
last decade, the ability to calculate robust and reliable w
functions is expected to offer new directions for wave fun
tion analysis@3#.

FIG. 8. MSE-LDA molecular orbitals 10, 11, and 12 of ozo
(116.8°,R51.278 Å! are plotted above. One of the two occupiedp
orbitals perpendicular to the molecular plane is pictured in orb
10 ~bottom!. The computational solution was taken from a GL c
culation, with a spider web construction representative of a me
1-type decomposition; see Sec. III A.
d
s,
he
rt
-

e
e
-

IV. SUMMARY

The increasing need for advanced computational mo
ing capabilities for material design and property predictio
in both material science and molecular chemistry, requ
the development of new theoretical and computational me
ods. Here we presented a computational approach for us
high-precision multicenter electronic structure calculatio
and demonstrate thatp-type finite elements are a viable nu
merical approach to many electron systems with highly n
linear functionals and strongly nonspherically symmet
wave functions in the near nuclei region. In particular, t
local interpolant formulation and a higher-order quadrat
allows the physical space formulation to routinely evalu
advanced gradient corrections, both variational and po
wise constraints@61#, to the LDA in a fully self-consistent
manner. The method can be viewed as an extension of
spectral element method developed to solve elliptical par
differential equations. Evaluations of the Hamiltonian ope
tion scale to be linear in the number of elements, which
proportional to number nuclei, and proportional toN4, where
N is the local polynomial expansion order in one spatial
rection for a given element. Successful numerical appro
mations of operators with point singularities was acco
plished with the use of a local coordinate transformation, a
allow general multicenter systems to be calculated with
higher-order finite element method that give spectrally ac
rate numerical solutions. Optimal iterative solvers can be
pected to offer linear scalability in the number of electrons

l

h-

FIG. 9. Highly accurate Kohn-Sham MSE-LDA~left! molecular
orbitals for ozone (116.8°,R51.278 Å! are compared to the
LCAO-LDA results with a (9s/5p/1d) basis-set~middle! @57#, and
the Xa-SW results~right! @60#; the brackets indicate nearly dege
erate orbital energies. In the LCAO-Xa results thej* (b1) orbital is
unoccupied in the ground state.
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well. Thus the potential for a total linear scalable numeri
algorithm for a high-level quantum chemical calculation
realistically possible within the state of the art in mode
iterative solutions. The numerical approximation consisten
deals with a full theoretical statement, and accurately c
tures the correct balance of the kinetic energy and diverg
terms.

The computational method offers the unambiguous
sessment of various theoretical approximatiions to mu
center systems in a computationally tractable fashion.
vantages can be found for problems currently intractable
to multicenter complexity; large basis set expansions, rap
varying wave functions, and computationally intensive ma
electron applications. The combination of multiresoluti
flexibility and exponential convergence rates yields a co
putationally efficient technique for solving Schro¨dinger-type
operators, and advances in algorithms and iterative sol
for partial differential equations will transfer seamlessly b
tween the various multidisciplinary areas of computatio
physics.

Here computations of a subset of atomic, diatomic, a
triatomic systems were studied to validate and apply
method to electronic structure calculations. The studies in
cated a general ability of the VWN model to give a HOM
energy to within a few percent of the experimental ionizat
energy. The highly accurate and robust calculations of
MSE method proved to offer a significantly different pictu
of LDA molecular orbitals than that provided by LCAO
methods for ozone. The accuracy of the MSE-LDA pred
tion of the IP is at the same level as MCSCF-CI resu
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reported in the literature, and gave less than a 2% differe
between the experimental ionization potential. In general
LDA models, at all resolutions, gave the same qualitat
orbital structures. For ozone the correct energetic order of
ground state versus the cyclic geometries was also predi
with all closed shell LDA models studied here. Applicatio
are currently being studied for large-scale molecular str
tures and optimal iterative solvers for several hundred ato
and electrons in the context of density functional theory.
addition to the molecular orbital studies presented he
highly accurate numerical solutions can be expected in c
nection with the work on the density equation@62–65#. Like-
wise, the ability to deal with approximations of wave fun
tions for heavy nuclei, in an all electron calculation, a
incorporation of relativistic effects, such as Dirac’s equati
@66,2#, are apparent. Although Dirac’s equation was not f
mally addressed in this paper, the MSE approach is expe
to have a meaningful application direction here. LCA
methods are known to have limited merits over fully nume
cal solutions of Dirac’s equation at the atomic level@67#. The
application of modern spectral methods is expected to ben
calculations in nuclear physics as well as scattering.
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