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Concepts in computation of preequilibrium neutron emission from heavy ion reactions
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Integral forms of the Boltzmann-like transport equations are derived to treat neutron emissions from heavy
ion collisions. The derivations are based on the probability of contribution~score! from nucleon occupied
phase space bins to the double differential emission spectra. Two-body interactions among the nucleons in
‘‘hot spot’’ and ‘‘cold spot’’ regions of the composite system resulting in creation, annihilation, or energy
redistribution of the colliding particles are considered. The resulting equations are solved numerically in
energy-angle bins to study thermal and kinematic equilibrium of the target1 projectile (165Ho120Ne) excited
system at different projectile energies~10 MeV/A to 30 MeV/A!.

PACS number~s!: 02.70.2c, 02.30.Rz, 02.50.2r
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I. INTRODUCTION

Calculation of the energy-angle distribution of ejectil
from heavy ion collisions~HIC’s! remains a subject of cur
rent interest. A number of phenomenological and theoret
proposals have been made@1–9# for this purpose in the las
few decades. The issue, however, is yet to be resolved s
factorily. Several attempts have been made to reveal the
derlying physical concepts in HIC’s. We try to understa
the computational concepts behind such theoretical est
tions. Among the different theoretical approaches describ
the dynamics of HIC’s, we will confine our attention to tho
based on some Boltzmann-like transport equations@5–8#.
These formalisms describe the reaction dynamics through
evolution of a one-body distribution function representi
the mean occupation in an element of phase space volu
They have been successful in describing global features
as the collective flow, inclusive cross sections, single part
spectra, etc., of intermediate energy HIC reactions. T
transport equations solved so far for this purpose are inte
differential in form.

In recent work@10# we solved the integral form of the
transport equation simulteneously in the ‘‘cold spot’’ and t
‘‘hot spot’’ parts of the composite system to predict the ne
tron emission spectra with good accuracy. In@10# we pro-
vided only intuitive but no formal derivation of the equ
tions. In the present work we attempt to derive the equati
from a computational viewpoint based on concepts of pr
ability. To do so we introduce the concept of ‘‘comput
score,’’ which is the expected contribution of a particle to
computational array set up to collect and sort partic
ejected from the HIC in specified energy-angle bins. I
tially, equations are derived for the evolution with the nu
ber of collisions, ignoring spatial transition. Consequen
time dependence, spatial transport, and mean field effect
taken into account. Thereafter, we address the issue of eq
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bration; that is, after how many binary collisions the comp
tations may be swiched over to statistical evaporative de
from the preequilibrium~PEQ! emissions. For that purpos
we study the thermal and kinematic equilibrium of the co
posite system evolving with the number of binary interacti
stages. The composite system considered for numerical s
tions of the integral equations formulated in energy-an
bins is 165Ho120Ne. The calculations are repeated for diffe
ent projectile (20Ne) energies in the range 10 MeV/A to 3
MeV/A.

II. DERIVATIONS

After the fusion of two nuclei we consider a compos
system subdivided into two distinct temperature zones
hot spot and a cold spot. In the hot spot the momentum of
particles is described by a finite temperature Fermi distri
tion while in the cold spot a zero temperature Fermi dis
bution is considered. For computational purposes the p
ticles are binned according to their energy and angle (E,V)
inside the nucleus. The corresponding energy-angle bin
side the nucleus is denoted by (e,v) where

e5E2EF2Sn .

HereEF is the Fermi energy andSn is the separation energ
of n type particles with respect to the composite~target1
projectile! nucleus. The directionv outside the nucleus is
related to the directionV inside it through the effects o
refraction at the nuclear surface. Each energy-angle
(E,V) is represented by a single particle, assigned an imp
tancew which is the average number of particles occupyi
that particular bin. That is, ifn be the total number of par
ticles andP(E,V) be the probability of a particle occupyin
the bin (E,V), thenw5nP(E,V). When a particle of im-
portancew escapes from the bin (E,V) to the outside, it
gives a scores5w in the corresponding bin (e,v) with
probability Pe(E). The probability of escape from the com
posite system,Pe(E), is given by
7161 ©2000 The American Physical Society
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7162 PRE 61P. K. SARKAR AND MAITREYEE NANDY
Pe~E!5
lC~E!

lC~E!1l t~E!
, ~1!

wherelC(E) is the rate of emission of a particle with energ
E andl t(E) is the rate of two-body interactions of the pa
ticle with other nucleons in the system. Here, the scores is
defined as the mean or expected contribution by the par
inside the composite system to the quantity of intere
which, in the present case, is the double differential emiss
multiplicity. A particle therefore contributes a score on
when it escapes~is emitted from! the system. The score is
variable having any value between 0 and` ~the situation of
a negative score does not arise here, otherwises could have
values ranging from2` to `).

The relaxation process or the energy sharing among
nucleons in the composite system takes place through a
ries of binary or two-body interactions. The importance, e
ergy, and direction of the particle keep changing in ea
interaction but each energy-angle bin is always represe
by a single particle. In any two-body interaction one of t
following can happen.

~i! A particle-hole pair can be created, which occurs w
probability P1. So, finally we have two particles and th
importance of the representative particle changes tow8
52w ~with probability P1).

~ii ! The particle can be annihilated and the correspond
probability isP2. Finally, we have zero particles in this ca
and the importance of the particle becomesw850 ~with
probability P2).

~iii ! Neither creation nor annihilation takes place, inste
only the energy and the direction of the particle change in
scattering. This occurs with probabilityP0. The importance
of the particle remains unchanged, i.e.,w85w ~with prob-
ability P0).

It may be noted thatP11P21P051. Therefore, for a
particle going into a collision with importancew, the average
value of its importance after the interaction iswav8
5 w(2P11P0) 5 w(P11P21P01P12P2) 5 w(11P1

2P2).

A. Score accumulation probability

Since the computation is aimed at determining the ene
angle distribution of emitted particles, we formulate t
score accumulation probabilities for each energy-angle
The concept of such score accumulation probabilities
been utilized earlier to analyze Monte Carlo transport pr
lems @11,12#. We definecN(E,V,w,s)ds as the probability
that a particle now existing with energyE, directionV, and
importancew will give a score ofds arounds in the corre-
sponding outside bin (eN ,vN) exactly after N collisions
when its energy-angle inside will become (EN ,VN).

We then have for particles escaping without any collis
inside ~i.e., N50)

c0~E0 ,V0 ,w0 ,s!ds5Pe~E0!d~s2w0!ds. ~2!

Here,Pe(E0) gives the probability that the particle with en
ergy E0 escapes the system andw0 denotes the importanc
of a particle occupying the bin (E0 ,V0). The d function
ensures that the score is unique and is equal tow0.
le
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A particle suffering only one collision within the system
can contribute to the score in the following manner. It r
mains within the system with probability@12Pe(E0)# ~non-
escape probability! and collides inside the system and th
emerges from the collision with energydE1 aroundE1 and
direction dV1 around V1 with probability K(E0 ,V0
→E1 ,V1)dE1dV1. Here K(E0 ,V0→E1 ,V1)dE1dV1 is
the scattering kernel~see Sec. II C! and conserves momen
tum as well as the Pauli exclusion principle during ea
nucleon-nucleon collision. The importance of the partic
changes tow15w0(11P1

12P1
2). Finally, the particle es-

capes with probabilityPe(E1) and gives a scorew1 in the
outside bin (e1 ,v1). We therefore have

c1~E0 ,V0 ,w0 ,s!ds

5@12Pe~E0!#E dE1E dV1

3K~E0 ,V0→E1 ,V1!Pe~E1!d~s2w1!ds.

~3!

Similarly, for a particle making exactlyN collisions, first
it makesN21 collisions and remains in the system witho
escaping, and then undergoes theNth collision, escapes from
the system, and gives a score equal to its final weightwN

5w0) i 51
N f i where f i5(11Pi

12Pi
2). We can now write

the equation as

cN~E0 ,V0 ,w0 ,s!ds

5@12Pe~E0!# )
i 51

N21 S E dEiE dV iKi 21,iTi D
3E dENE dVNK~EN21 ,VN21→EN ,VN!Pe~EN!

3d~s2wN!ds, ~4!

whereTi512Pe(Ei) andKi 21,i5K(Ei 21 ,V i 21→Ei ,V i).
Now using Eq.~2! one can rewrite Eq.~3! as

c1~E0 ,V0 ,w0 ,s!ds

5@12Pe~E0!#E dE1E dV1

3K~E0 ,V0→E1 ,V1!c0~E1 ,V1 ,w1 ,s!ds. ~5!

Similarly, Eq. ~4! can be rewritten as

cN~E0 ,V0 ,w0 ,s!ds

5@12Pe~E0!#E dE1E dV1

3K~E0 ,V0→E1 ,V1!cN21~E1 ,V1 ,w1 ,s!ds.

~6!

Now we define the score accumulation probability as

c~E0 ,V0 ,w0 ,s!ds5 (
N50

`

cN~E0 ,V0 ,w0 ,s!ds. ~7!
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PRE 61 7163CONCEPTS IN COMPUTATION OF PREEQUILIBRIUM . . .
Here, c(E0 ,V0 ,w0 ,s)ds is the probability that a particle
emerging from a collision or introduced into the system w
energyE0, directionV0, and importancew0 will give a total
score ofds arounds in all its future events.

Summing both sides of Eq.~6! from N51 to ` we get

(
N51

`

cN~E0 ,V0 ,w0 ,s!ds

5@12Pe~E0!#E dE1E dV1K~E0 ,V0→E1 ,V1!

3 (
N51

`

cN21~E1 ,V1 ,w1 ,s!ds. ~8!

Adding c0(E0 ,V0 ,w0 ,s)ds on both sides of Eq.~8! and
using Eq.~7! we get,

c~E0 ,V0 ,w0 ,s!ds

5Pe~E0!d~s2w0!ds1@12Pe~E0!#E dE1E dV1

3K~E0 ,V0→E1 ,V1!c~E1 ,V1 ,w1 ,s!ds. ~9!

B. Expected emission multiplicity

The mean or expected score contributed by a particle w
(E0 ,V0 ,w0) can be obtained as

M ~E0 ,V0 ,w0!5E
0

`

c~E0 ,V0 ,w0 ,s!s ds. ~10!

Multiplying Eq. ~9! by s and integrating, we get

M ~E0 ,V0 ,w0!

5Pe~E0!w01@12Pe~E0!#E dE1E dV1

3K~E0 ,V0→E1 ,V1!M ~E1 ,V1 ,w1!. ~11!

Now we can writeM (E,V,mw)5mM(E,V,w), which
implies that the mean score contributed by a particle of
portancemw is m times the mean score contributed by
particle of importancew @11,12#. We havew15(11P1

1

2P1
2)w0. Therefore, we can write Eq.~11! as

M ~E0 ,V0 ,w0!5Pe~E0!w01@12Pe~E0!#

3E dE1E dV1~11P1
12P1

2!

3K~E0 ,V0→E1 ,V1!M ~E1 ,V1 ,w0!.

~12!

Equation~12! is an integral equation of the mean score co
tributed by a particle with energyE0, directionV0, and im-
portancew0. This integral equation can be solved for a
(E0 ,V0) if w0 is known. Now, ifn0 excited particles are in
the system with energy-angle distributionP0(E0 ,V0) then
w0 at (E0 ,V0) can be obtained asw05n0P0(E0 ,V0). Cal-
culation of the initial number of particlesn0 and their distri-
bution P0(E0 ,V0) is described in Sec. II D. Equation~12!
has been used in@10# as well as in the present work to obta
th

-

-

numerical results. However, we go further in our theoreti
analysis to include time dependence, spatial transport,
mean field effects to make the formulation of the integ
equation complete.

1. Inclusion of time dependence

It may be noted here that time evolution of the system
not explicitly considered in this formulation. Instead we ha
considered the evolution of the system with the number
collisions. Time dependence, however, can easily be inc
porated in the formulations. To do that we have to consi
time as an explicit variable and have to replace the esc
and collision probabilities with escape and collision rat
Equation~12! will then appear as

M ~E0 ,V0 ,w0 ,t0!5lC~E0!Dtw01l t~E0!DtE dE1E dV1

3~11P1
12P1

2!3K~E0 ,V0→E1 ,V1!

3M ~E1 ,V1 ,w0 ,t01Dt !. ~13!

Here,M (E0 ,V0 ,w0 ,t0) is the mean score contributed by
particle existing with energyE0, direction V0, and impor-
tancew0 during a time intervalDt after t0.

Evolution with a number of interactions is not an obse
able, i.e.,MN for any N cannot be observed as it can at a
instant of time. However,MN summed over allN is physi-
cally observable and gives the double differential emiss
multiplicity. There is at least one advantage of using t
number of collisions in place of time—it results in less com
putational effort. Since no scattering happens between
collisions, we can evaluate the integrals in Eq.~12! only at
integer values ofN. Time evolution, on the other hand, re
quires a large amount of calculation as in this case the s
tering and emission have to be evaluated for a large num
of Dt time bins.

2. Inclusion of spatial transport

So far, we have not considered spatial transition of
particles as this is not required when one defines the em
sion probability as given by Eq.~1!. To consider spatial tran
sition we have to define a transport kernel asT(E,V,r
→r 8)dr8, the probability that a particle existing atr with
energy and direction (E,V) will make a collision atdr8
aroundr 8 before making any other collision. We also have
define a volumeV of the composite system such that ifr 8 is
not within V then we consider emission of the particle.
may be noted that we have explicitly assumed that the
ergy and direction of a particle do not change between
collisions. This assumption is not valid when we consid
mean field effects later.

We have

E
r 8PV

T~E,V,r→r 8!dr81E
r 8¹V

T~E,V,r→r 8!dr851,

~14!
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7164 PRE 61P. K. SARKAR AND MAITREYEE NANDY
where the first term in the left side of Eq.~14! is the prob-
ability that the particle remains within the composite syst
and the second term gives the probability of escape.
second term now replacesPe(E) as given in Eq.~1!.

If l is the distance betweenr and r 8 then the probability
that a particle travels the distance without having a collis
is given by

p~ l !5exp@2S~E!l #, ~15!

whereS(E) is the total macroscopic nucleon-nucleon inte
action cross section at energyE and is the reciprocal of the
nucleon mean free path inside nuclear matter. The ma
scopic cross section has the dimension of inverse of len
and can be calculated as the product of the nucleon-nuc
scattering cross section and the number of nucleons per
volume.

Using this transport kernel Eq.~12! can be rewritten as

M ~r ,E0 ,V0 ,w0!5E
r 8¹V

T~E0 ,V0 ,r→r 8!dr8w0

1E
r 8PV

T~E0 ,V0 ,r→r 8!dr8

3E dE1E dV13~11P1
12P1

2!

3K~E0 ,V0→E1 ,V1!M ~r 8,E1 ,V1 ,w0!.

~16!

Solution of this equation requires spatial coordinates to
included along with energy and angle, thus resulting
energy-angle-space bins.

A more generalized version of Eq.~15! can be written as

p~ l !5expS 2E
0

l

S~E,l 8!dl8D , ~17!

where the macroscopic cross section keeps changing a
the path length of the particle. This can happen when the
a variation in the number density of particles with coordin
position or there is an external force acting on the particle
change its energy and direction between collisions~e.g., the
mean field effect!.

3. Inclusion of mean field effects

If we wish to account for the mean field effect we have
modify the transport kernel in Eq.~16! to include change in
energy and direction during spatial transition. We obtain

M ~r ,E0 ,V0 ,w0!5E
r 8¹V

T1~E0 ,V0 ,r→E18 ,V18 ,r 8!dr8w0

1E
r 8PV

T* ~E0 ,V0 ,r→E18 ,V18 ,r 8!dr8

3E dE1E dV1~11P1
12P1

2!

3K~E18 ,V18→E1 ,V1!M ~r 8,E1 ,V1 ,w0!.

~18!
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Now if we consider that the mean field effect is confin
within the nuclear volume,

E
r 8¹V

T1~E0 ,V0 ,r→E18 ,V18 ,r 8!dr8

5T* ~E0 ,V0 ,r→E18 ,V18 ,r 9!

3E
r 8¹V

T~E18 ,V18 ,r 9→r 8!dr8. ~19!

wherer 9 is a point on the boundary of the volumeV.
In case the mean field effects extend beyond the nuc

volume then

E
r 8¹V

T1~E0 ,V0 ,r→E18 ,V18 ,r 8!dr8

5E
r 8¹V

T* ~E0 ,V0 ,r→E18 ,V18 ,r 8!dr8. ~20!

Here,T* (E0 ,V0 ,r→E18 ,V18 ,r 8)dr8 is defined as the prob
ability that a particle atr with energy and direction (E0 ,V0)
will have a collision withindr8 aroundr 8 before having any
other collision while during its transition fromr to r 8 its
energy and direction change from (E0 ,V0) to (E18 ,V18).

Now, if l is the distance betweenr andr 8 andU@r(r 9)# is
the external force acting on the particle at any pointr 9, then

E185E01E
r

r 8
U@r~r 9!#dr95E01Ūl , ~21!

wherer(r ) is the nucleon density atr andŪ is the average
external force the particle experiences during its transit
from r to r 8. Ū depends on the nucleon density surround
the flight path of the particle as well as on the importance
the particle.

C. Description of the scattering kernel

As mentioned earlier the composite system is subdivid
into two systems—a hot spot and a cold spot. Partial eq
librium in each subsystem is assumed to describe them
two different sets of thermodynamic parameters. The eff
of nuclear excitation is included in the hot spot, which co
tains all the excited particles and holes and is responsible
emission of particles. Nucleon motion inside the hot spo
described by a finite temperature Fermi distribution, wh
that in the cold spot is described by a zero temperature Fe
distribution.

In the composite system, two-body scattering may ta
place either between two nucleons in the hot spot or betw
one nucleon in the hot spot and another in the cold sp
Accordingly, the scattering kernel that includes the Pa
blocking effects is divided into two parts,

K~E,V→E8,V8!5jKb
H~E,V→E8,V8!

1~12j!KC~E,V→E8,V8!, ~22!
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wherej is the probability of an interaction taking place in
side the hot spot and is equal to the ratio of the numbe
nucleons in the hot spot to the total number of nucleons
the composite system.

The scattering kernel in the hot spot,Kb
H , which depends

on the temperature (51/b) of the hot spot, is further subdi
vided into three parts corresponding to creation~with prob-
ability Pb

1), annihilation~with probability Pb
2), and redistri-

bution ~with probability Pb
0). A complete description of

these kernels can be found in@13#.
On the other hand,KC, the scattering kernel between on

nucleon in the hot spot and another in the cold spot, can
described by the standard Kikuchi-Kawai@14# scattering.
This scattering results only in the creation of a particle-h
pair since all levels below the Fermi energy in the cold s
are filled up.

D. Number and distribution of initial excited particles

The number of excited particles just at the time of fusi
of two nuclei is calculated by considering the overlap
three momentum spheres~target, projectile, and composit
system! @15,16#. The radius of each of the three spher
equals the Fermi momentum. The momentum sphere of
composite system is centered at the center of mass of
system. The centers of the momentum spheres of the ta
and the projectile are separated from that of the compo
system by their respective c.m. momenta per nucleon. F
the overlap of the three spheres the initial number of exc
particles is determined as the number of nucleons in the
pic
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get or the projectile spheres that remain outside the mom
tum sphere of the composite system. The momentum volu
remaining outside the Fermi sphere of the composite nuc
represents the momentum volume of the excited partic
Then the initial number of excited particles from the proje
tile or target is given by

n0i5n̄iE dp ~23!

with the integration carried out over appropriate limits of t
momentum vectorp. From the Fermi gas model the densi
of the momentum states (n̄i) is given by

n̄i5
Vi

2p3h3
5

2r 0
3Ai

3p2h3
, ~24!

where i stands for projectile or target andVi is the relevant
volume. Thusn0T is the number of initial excited particle
contributed by the target andn0P is that from the projectile.

Evaluation ofP0(E,V)dE dV requires the energy-angl
distribution of the initial excited particles. This is obtaine
by coupling the incident velocity of the projectile with th
Fermi velocities of the constituent nucleons for the init
excited particles contributed by the projectile. When t
target-projectile fusion takes place, an excited system
formed and the constituent nucleons move about with a fi
temperature (T051/b0) Fermi distribution. After coupling
the projectile velocity to this distribution we get@10#,
P0P~E0 ,V0!dE dV05
3

8pEF
3/2

AE0

AE01Einc22AE0Einc
cosh

dE0dV0

11exp@b0~E01Einc22AE0Einccosh2m0!#
, ~25!
-

les
-

wherem0 is the corresponding chemical potential.
Since the target is at rest in the laboratory system,P0T is

given by a zero temperature Fermi distribution with isotro
angular distribution. It may be noted at this point that
energies and angles in the present calculations are defin
the laboratory frame.

E. Calculation of nuclear temperature

Along with evaluation of the initialb0 ~reciprocal of the
temperature!, bN at each stage of interaction,N, needs to be
calculated, as part of the scattering kernelK depends on this
parameter. Estimation ofbN is done from the entropy of the
system,SN , as

bN5
dSN

dEC
5

d

dEC
@ ln rN~EC!#, ~26!

whererN(EC) is the average density of states at excitat
EC after N binary interactions.rN(EC) is obtained as the
statistically weighted average of the partial level densit
rn(EC) of all possiblen exciton~particle1 hole! states that
l
in

s

may be formed afterN two-body interactions. Now, we de
fine the average number of excitons afterN collisions, n̄N ,
such that

rN~EC!5r n̄N
~EC!. ~27!

For N50, n̄N5n0. ForN.0 we definen̄N by the following
recursion relation:

n̄N5n̄N21~11PN
12PN

2!. ~28!

We use the expression forrn(EC) given by Ericson@17#,

rn~EC!5
gnEC

n21

p!h! ~n21!!
, ~29!

wherep andh are the number of excited particles and ho
in the n-exciton state andg is the single particle level den
sity. Using Eqs.~26!, ~27!, and~29!, bN can be obtained as

bN5
n̄N21

EC
. ~30!
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7166 PRE 61P. K. SARKAR AND MAITREYEE NANDY
The chemical potentialmN is determined using the metho
outlined by Kittel @18#.

III. EQUILIBRATION OF THE COMPOSITE SYSTEM

We now try to find out at what stage of the interacti
process the composite system reaches thermal and kinem
equilibrium. We first attempt to evaluate this from the em
sion of the particles and accordingly compare experiment
observed total PEQ neutron multiplicities with those o
tained from our calculations using Eq.~12!. We have used in
our calculations the emission ratelC(E) as given by@19#

lC~E!5
~2S11!mEs inv~E!

p2h̄3g
, ~31!

whereS andm are the spin and mass of the ejectile,g is the
single particle level density, andh̄5h/2p. s inv(E) is the
cross section for the reverse reaction, which is calculated
the method of Chatterjeeet al. @20#. In estimating the two-
body interaction ratel t(E), we have used the empirical re
lation of Blann@21#,

l t~E!5@~1.431021!~E1B!2~6.031018!~E1B!2#/k,
~32!

where B is the binding energy of the ejectile andk is an
adjustable parameter for introducing the Pauli blocking
fect. We have chosenk51.0 in our calculations.

Figure 1 gives a plot of total PEQ neutron multiplici
against energy per nucleon of the projectile for the165Ho
120Ne reaction. The solid circles with error bars are expe
mental observations@22,23# and the solid lines give calcu

FIG. 1. Plot of PEQ neutron multiplicity against projectile e
ergy ~in MeV/nucleon! for the reaction20Ne1165Ho. Solid points
with error bars are experimental data@22,23#; the present calcula
tions for contributions up to different interaction stages~indicated
beside each curve! are shown as solid lines.
tic
-
ly
-

y

-

i-

lated results with contributions up to different stages of
teractionN ~as noted beside each curve!. It can be observed
that with increasing projectile energy more interaction sta
need to be considered to account for the total PEQ multip
ity. Apparently, this conclusion is not counterintuitive a
with increasing projectile energy the temperature of the
tial hot spot becomes higher and it is likely that more int
actions may be needed to dissipate this larger amoun
energy among other nucleons to attain thermal equilibriu

To investigate this point further we plot in Fig. 2 th
variation in nuclear temperatureT of the hot spot with dif-
ferent interaction stagesN. This is done for different projec-
tile energies of the same reaction as mentioned above.
observed that the temperature of the hot spot drops sharp
the first interaction stage and stabilizes more or less ther
ter. The temperatures at which such thermal equilibrium
reached is higher for higher projectile energies. There is
indication that at higher projectile energies more interactio
are needed to attain thermal equilibrium. In fact, the cool
rates (DT/DN) with N also behave in a similar fashion~see
Fig. 3!. In this case, the initial cooling rate, though differe
for different projectile energies, stabilizes to almost the sa
value after the first interaction stage.

Next, we give in Fig. 4 a plot of the variation of th
chemical potential withN. This chemical potential was cal
culated from the nuclear temperature@18# to describe the
finite temperature Fermi distribution of the nucleon mome
in the hot spot. Here also we see that the initial values of
chemical potential differ greatly for different projectile ene
gies but after the first interaction stage they stabilize to v
ues that are close to each other. Thus it may be conclu
that for these projectile energies~10 Mev/A to 30 MeV/A!
thermal equilibrium is reached after the first interacti
stage.

Now we look into the status of kinematic equilibrium o

FIG. 2. Plot of the hot spot temperatureT against interaction
stage N at different projectile energies for the reaction20Ne
1165Ho.
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the nucleons in the hot spot. To do so we first observe
number of excited particles at each stage of the interac
for different projectile energies. In Fig. 5 we give a plot
the number of excited neutrons againstN. For all projectile
energies the numbers of excited neutrons increase sha
and reach maxima atN51. Thereafter a slow decrease
observed and a stability is apparent aroundN54. It can be
seen that the differences in the number of excited neutr
for different projectile energies are much greater atN51

FIG. 3. Plot of the hot spot cooling rateDT/DN against inter-
action stageN at different projectile energies for the reactio
20Ne1165Ho.

FIG. 4. Variation of the hot spot chemical potentialm with
interaction stageN at different projectile energies for the reactio
20Ne1165Ho.
e
n

ply

ns

compared to those atN50. For higher projectile energies
much larger number of particles share the excitation ener
at N51. This explains why the temperature of the hot sp
remains almost unchanged afterN51.

Next, as a further probe, we examine the angular distri
tion of particles emitted from different interaction stage

FIG. 5. Number of excited neutrons at each interaction stagN
for different projectile energies of the reaction20Ne1165Ho.

FIG. 6. Energy integrated angular distribution of neutron mu
plicity for 20Ne1165Ho reaction at different projectile energies plo
ted against cosine of the emission angleu from different interaction
stagesN.
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PEQ emissions are predominantly peaked in the forward
rection since such particles retain the memory of the incid
projectile direction. With progressive number of interactio
the angular distributions of the emitted particles get m
and more smeared and eventually become isotropic as e
librium sets in. In Fig. 6 we plot forN50 –4 the energy
integrated PEQ neutron multiplicity against the cosine of
angle of emission with respect to the projectile directio
Different projectile energies are considered in each plot
the reaction 165Ho120Ne. For N50, the sharply forward
peaked direction results from the coupling of the projec
motion with the Fermi motion of its constituent nucleons f
those neutrons that are contributed by the projectile. Con
butions from the target, on the other hand, have isotro
distributions. As the number of interactions increases the
tributions tend to become flatter and atN54 appear to be
almost isotropic. The slight anisotropy favoring forwa
emissions atN54 may be due to the motion of the compo
ite system along the projectile direction in the laborato
frame of reference. It may thus be concluded that kinem
equilibrium sets in aroundN54 for the energy range con
sidered in the present work.
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IV. SUMMARY AND CONCLUSIONS

We have derived, based on the concepts of probab
theory, the integral form of the transport equation to calc
late double differential particle emission spectra from hea
ion collisions. The basic equation gives the evolution of t
emission spectra with the number of interaction stages. C
culations using this formulation result in much less co
putaional effort. Several variants of the integral equation
consider time evolution of the composite system and to
troduce spatial transport of the nucleons along with me
field effects have also been derived. The present deduc
gives an insight into the computational procedures involv
in HIC’s from a different viewpoint and thus helps in unde
standing the processes involved more clearly.

Calculations performed with the present formulation
study equilibration of the target1 projectile composite sys
tem result in the following conclusions for HIC’s in the en
ergy range 10 MeV/A to 30 MeV/A.~1! The number of
interactions required to reach thermal and kinematic equi
rium is independent of the projectile energy.~2! Thermal
equilibrium sets in much earlier than kinematic equilibriu
in terms of the number of interactions.
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