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Concepts in computation of preequilibrium neutron emission from heavy ion reactions
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Integral forms of the Boltzmann-like transport equations are derived to treat neutron emissions from heavy
ion collisions. The derivations are based on the probability of contribugonre from nucleon occupied
phase space bins to the double differential emission spectra. Two-body interactions among the nucleons in
“hot spot” and ‘“cold spot” regions of the composite system resulting in creation, annihilation, or energy
redistribution of the colliding particles are considered. The resulting equations are solved numerically in
energy-angle bins to study thermal and kinematic equilibrium of the targetojectile (°*Ho+2Ne) excited
system at different projectile energi€d MeV/A to 30 MeV/A.

PACS numbd(s): 02.70—c, 02.30.Rz, 02.56:r

[. INTRODUCTION bration; that is, after how many binary collisions the compu-
tations may be swiched over to statistical evaporative decay
Calculation of the energy-angle distribution of ejectilesfrom the preequilibrium(PEQ emissions. For that purpose
from heavy ion collisiongHIC’s) remains a subject of cur- we study the thermal and kinematic equilibrium of the com-
rent interest. A number of phenomenological and theoreticaPosite system evolving with the number of binary interaction
proposals have been mafe-9] for this purpose in the last Stages. The composite system considered for numerical solu-
few decades. The issue, however, is yet to be resolved satifons of the integral equations formulated in energy-angle
factorily. Several attempts have been made to reveal the uins is ‘*Ho+2Ne. The calculations are repeated for differ-
derlying physical concepts in HIC's. We try to understandent projectile {°Ne) energies in the range 10 MeV/A to 30
the computational concepts behind such theoretical estimaddeV/A.
tions. Among the different theoretical approaches describing
the dynamics of HIC’s, we will confine our attention to those
based on some Boltzmann-like transport equatifhsg].
These formalisms describe the reaction dynamics through the After the fusion of two nuclei we consider a composite
evolution of a one-body distribution function representingsystem subdivided into two distinct temperature zones—a
the mean occupation in an element of phase space volumRot spot and a cold spot. In the hot spot the momentum of the
They have been successful in describing global features sugarticles is described by a finite temperature Fermi distribu-
as the collective flow, inclusive cross sections, single particleéion while in the cold spot a zero temperature Fermi distri-
spectra, etc., of intermediate energy HIC reactions. Théution is considered. For computational purposes the par-
transport equations solved so far for this purpose are integraicles are binned according to their energy and anglg))
differential in form. inside the nucleus. The corresponding energy-angle bin out-
In recent work[10] we solved the integral form of the side the nucleus is denoted by, &) where
transport equation simulteneously in the “cold spot” and the
“hot spot” parts of the composite system to predict the neu- e e
. . e=E EF SV
tron emission spectra with good accuracy.[189] we pro-
vided only intuitive but no formal derivation of the equa-
tions. In the present work we attempt to derive the equationtlere Eg is the Fermi energy an8, is the separation energy
from a computational viewpoint based on concepts of probof v type particles with respect to the compositarget +
ability. To do so we introduce the concept of “computer projectile nucleus. The directiormn outside the nucleus is
score,” which is the expected contribution of a particle to arelated to the directiod) inside it through the effects of
computational array set up to collect and sort particlegefraction at the nuclear surface. Each energy-angle bin
ejected from the HIC in specified energy-angle bins. Ini-(E,{2) is represented by a single particle, assigned an impor-
tially, equations are derived for the evolution with the num-tancew which is the average number of particles occupying
ber of collisions, ignoring spatial transition. Consequently,that particular bin. That is, i be the total number of par-
time dependence, spatial transport, and mean field effects atieles andP(E,(2) be the probability of a particle occupying
taken into account. Thereafter, we address the issue of equilihe bin E,(2), thenw=nP(E,). When a particle of im-
portancew escapes from the binE({)) to the outside, it
gives a scores=w in the corresponding bine(w) with
*Electronic address: pks@veccal.ernet.in probability P.(E). The probability of escape from the com-
Electronic address: mnandy@hp2.saha.ernet.in posite systemP(E), is given by

II. DERIVATIONS
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Ac(E) A particle suffering only one collision within the system

PE(E):W’ (1) can contribute to the score in the following manner. It re-
¢ ! mains within the system with probabilifyl — P.(Eg)] (non-

escape probabilifyand collides inside the system and then
emerges from the collision with energhE; aroundE; and
direction dQ; around Q4 with probability K(Eg,Qq

wherel (E) is the rate of emission of a particle with energy
E and\(E) is the rate of two-body interactions of the par-
ticle with other nucleons in the system. Here, the sci® .
defined as the mean or expected contribution by the particle” El'Ql)d.Eldgl' Here K(Eo,{o—E,,21)dEd(), is
inside the composite system to the quantity of interestN€ scattering kernelsee Sec. I (j:'and conserves momen-
which, in the present case, is the double differential emissiOttlum as well as the _P_aull exclu_5|on principle during egch
multiplicity. A particle therefore contributes a score only nucleon-nucleon CO"'S'Of' Th,e |m.portance of th_e particle
when it escapeés emitted from the system. The score is a changes. tONl:WO(_]:"' P;—P1). Flhally, the partlf:le es-
variable having any value between 0 andthe situation of ~C2P€S With probabilityP(E,) and gives a scorev; in the
a negative score does not arise here, othersisauld have ~ OUtSide bin €, ;). We therefore have
values ranging from-o to «).

The relaxation process or the energy sharing among the ¥1(Eo.{2o,Wo,S)ds

nucleons in the composite system takes place through a se-

ries of binary or two-body interactions. The importance, en- =[1- Pe(EO)]f dElf dQ,

ergy, and direction of the particle keep changing in each

interaction but each energy-angle bin is always represented XK(Eg,Qo—E1,Q1)P(Eq)6(s—wy)ds.
by a single particle. In any two-body interaction one of the &)

following can happen.

(i) A-partic+le-hole pair can be created, which occurs with  gimijlarly, for a particle making exactli collisions, first
probability P So, finally we have two particles and the it makesN— 1 collisions and remains in the system without
importance of the representative particle changeswto  escaping, and then undergoes Mt collision, escapes from

=2w (with probability P*). ~ the system, and gives a score equal to its final weigft
(if) The particle can be annihilated and the correspondlngz\,\,oHiN:lfi where f;=(1+P;' —P,"). We can now write

probability isP~. Finally, we have zero particles in this case e equation as
and the importance of the particle becomgs=0 (with
probability P™). UN(Eo,Qg,Wg,8)ds

(iif) Neither creation nor annihilation takes place, instead No1
only the energy and the direction of the particle change in the
scattering. This occurs with probabili§°. The importance =[1-Pe(Eo)] Bl (f dEif inKi—l,iTi)
of the particle remains unchanged, i.&/,=w (with prob-
ability PP).

It may be noted thaP™+P~+P°=1. Therefore, for a X j dENJ AONK(En-1,Qn-1—En Q) Pe(En)
particle going into a collision with importanee the average
value of its importance after the interaction is},
=wW(2P*+P%) =w(P*+P +P°+P" =P ) =w(1+P~
-P).

X 8(s—wy)ds, (4)

Whel’eTi =1- PE(EI) and Ki*l,i = K(Ei*lvﬂif1_> Ei ,Qi).
Now using Eq.(2) one can rewrite Eq(3) as

A. Score accumulation probability ¥1(Eq,Qq,Wq,s)ds

Since the computation is aimed at determining the energy-
angle distribution of emitted particles, we formulate the =[1—Pe(Eo)]f dElf dQ,
score accumulation probabilities for each energy-angle bin.
The concept of such score accumulation probabilities has XK(Eg,Qo—E1,Q1)ho(E1,Q4,Wq,S)ds. (5)
been utilized earlier to analyze Monte Carlo transport prob-
lems[11,12. We defineyy(E,Q,w,s)ds as the probability ~ Similarly, Eq.(4) can be rewritten as
that a particle now existing with enerdy; direction(2, and

importancew will give a score ofds arounds in the corre- In(Eo,Qo,Wg,s)ds

sponding outside bin «y,wy) exactly afterN collisions

when its energy-angle inside will becomiy(,(}y). =[1- Pe(EO)]f dElf dQ,

We then have for particles escaping without any collision

inside (i.e., N=0) XK(Eo, Q20— E1,Q1)¢n-1(E1,Qq,Wy,5)ds.
Yo(Eg,Q0,Wg,S)ds=P(Eq) 8(s—wg)ds. 2 (6)

Here, Po(E,) gives the probability that the particle with en- Now we define the score accumulation probability as

ergy E, escapes the system ang denotes the importance o

of a particle occupying the binEy,Q,). The § function W(Eq,Q,W,s)ds= E In(Eo,Qo,Wo,8)ds.  (7)

ensures that the score is unique and is equaljo N=0
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Here, ¢(Eq,Qq,Wq,S)ds is the probability that a particle numerical results. However, we go further in our theoretical
emerging from a collision or introduced into the system withanalysis to include time dependence, spatial transport, and
energyE,, directionQ),, and importancev, will give a total mean field effects to make the formulation of the integral
score ofds arounds in all its future events. equation complete.

Summing both sides of E@6) from N=1 to « we get

1. Inclusion of time dependence

> n(Eo.Qo,Wo,S)ds It may be noted here that time evolution of the system is
N=1 T . . . . .
not explicitly considered in this formulation. Instead we have
considered the evolution of the system with the number of
:[1_Pe(E0)]f dElj dQK(Ep,Qo—E1,Q9) collisions. Time dependence, however, can easily be incor-
porated in the formulations. To do that we have to consider
: time as an explicit variable and have to replace the escape
><N2_1 Yn-1(E1,Q1,Wy,S)ds. tS) and collision probabilities with escape and collision rates.
Equation(12) will then appear as

[’

Adding ¢o(Egq,Qq,Wq,s)ds on both sides of Eq(8) and
using Eq.(7) we get,

W(Eg,Q0,Wg,5)dsS M(Eo,Qanoato):)\C(Eo)AtWo+)\t(Eo)Atj dElf d€,
P
=Po(Eq) 8(5—Wo)ds+[1— Pe(Eo)]f dElf 0, X (1P =P1)XK(Eo, 00— Ey, ()
XM(Ey,Q4,Wo,to+Ab). (13)
XK(E()lQO_)El!Ql)d/(Ellﬂllles)ds' (9)
B. Expected emission multiplicity Here, M (Eq,Qq,Wq,t,) is the mean score contributed by a
The mean or expected score contributed by a particle witfparticle existing with energg,, direction 1o, and impor-
(Eo,Q0,Wo) can be obtained as tancew, during a time intervalAt aftert,,.

Evolution with a number of interactions is not an observ-
o able, i.e.,My for any N cannot be observed as it can at any
M(Eo,Qo,Wo) = jo ¥(Eo,Qo,Wo,8)sds (100 jnstant of time. However, summed over alN is physi-
cally observable and gives the double differential emission
Multiplying Eq. (9) by s and integrating, we get multiplicity. There is at least one advantage of using the
number of collisions in place of time—it results in less com-
M(Eo, Lo, Wo) putational effort. Since no scattering happens between two
collisions, we can evaluate the integrals in EtR) only at
=Po(Eg)Wo+[1— Pe(Eo)]f dElf dQ, integer values ofN. Time evolution, on the other hand, re-
quires a large amount of calculation as in this case the scat-
XK(Eg,Qo—E1,Q1)M(E1,Q4,w;y). (11) tering and emission have to be evaluated for a large number

. ) of At time bins.
Now we can writeM (E,Q),mw)=mM(E,Q,w), which

implies that the mean score contributed by a particle of im-

portancemw is m times the mean score contributed by a 2. Inclusion of spatial transport

particle of importancew [11,12. We havew,;=(1+P; So far, we have not considered spatial transition of the
— P )wg. Therefore, we can write Eq11) as particles as this is not required when one defines the emis-
sion probability as given by E¢l). To consider spatial tran-
M(Eo,€o,Wo) =Pe(Eo)Wo+[1—Pe(Eo)] sition we have to define a transport kernel B&E,Q,r
—r')dr’, the probability that a particle existing atwith
X j dElf dQ.(1+P; —P;) energy and directionE,Q)) will make a collision atdr’
aroundr’ before making any other collision. We also have to
XK(Eg,Qo—E1,Q1)M(E1,Q1,W). define a volumeé/ of the composite system such that ifis

not within V then we consider emission of the particle. It

(12) may be noted that we have explicitly assumed that the en-
Equation(12) is an integral equation of the mean score con-€rgy and direction of a particle do not change between two
tributed by a particle with energl,, directionQ,, and im-  collisions. This assumption is not valid when we consider
portancew,. This integral equation can be solved for any mean field effects later.
(Eq,Qp) if wy is known. Now, ifng excited particles are in We have
the system with energy-angle distributiéty(Eg,g) then
wq at (Eq,{;) can be obtained asy=nyPy(Eq,(,). Cal-
culation of the initial number of particlas, and their distri- N4y
bution Po(Eq, Q) is described in Sec. Il D. Equatio?) frrevT(E’Q'r_’r ydr +L¢
has been used {i10] as well as in the present work to obtain (14

T(E,Q,r—r")dr’' =1,
\%
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where the first term in the left side of E(L4) is the prob- Now if we consider that the mean field effect is confined
ability that the particle remains within the composite systemwithin the nuclear volume,
and the second term gives the probability of escape. The
second term now replacék,(E) as given in Eq(1).

If 1 is the distance betweanandr’ then the probability f
that a particle travels the distance without having a collision r

is given by =T*(Eg,Qq,r —E1,Q1,r")
p(h=exd —X(B)I], (19

whereX (E) is the total macroscopic nucleon-nucleon inter-
action cross section at ener@yand is the reciprocal of the
nucleon mean free path inside nuclear matter. The macrovherer” is a point on the boundary of the volurive
scopic cross section has the dimension of inverse of length In case the mean field effects extend beyond the nuclear
and can be calculated as the product of the nucleon-nucledfplume then
scattering cross section and the number of nucleons per unit
volume.

Using this transport kernel Eg12) can be rewritten as fr

!

T (Eg,Qq,r—E7,Q1,r")dr’
eV

Xf T(E1,Q7,r"—r")dr’. (19
r' ¢V

T (Ep,Qp,r—E1,Q7,r")dr’
"¢V

&

M(r,Eo,Qo,woFfr,WT(Eo,Qo'Hr’)df’WO :J T*(Eo,Qo,r —E,Q5,r)dr’. (20
r'¢V
+fr,EVT(E0,QO,r—>r’)dr’ Here, T* (Eq,Qq,r —E;,Q},r')dr’ is defined as the prob-
ability that a particle at with energy and directionEy,(Q)
+ _ p- will have a collision withindr’ aroundr’ before having any
xf dElf A, X(1+Py —Py) other collision while during its transition from to r’ its

. , energy and direction change frork{,Q) to (E;,Q;).
XK(Bo,Qo—E1,01)M(r, By, (2, Wo). Now, if | is the distance betwearandr’ andU[p(r")] is
(16)  the external force acting on the particle at any poihtthen

Solution of this equation requires spatial coordinates to be

included along with energy and angle, thus resulting in El=Egt frru[p(f")]dr": EO+UI, (22)
energy-angle-space bins. r
A more generalized version of E(L5) can be written as

(17 external force the particle experiences during its transition
fromr tor’. U depends on the nucleon density surrounding

the path length of the particle. This can happen when there {§1€ particle.
a variation in the number density of particles with coordinate

[ wherep(r) is the nucleon density atandU is the average
p(|)=exp(—f E(E,I’)dl’),
0

position or there is an external force acting on the particle to C. Description of the scattering kernel
change its energy and direction between collisi@mg., the ) ) ] ) o
mean field effeot As mentioned earlier the composite system is subdivided
into two systems—a hot spot and a cold spot. Partial equi-
3. Inclusion of mean field effects librium in each subsystem is assumed to describe them by

two different sets of thermodynamic parameters. The effect
of nuclear excitation is included in the hot spot, which con-

tains all the excited particles and holes and is responsible for
emission of particles. Nucleon motion inside the hot spot is

described by a finite temperature Fermi distribution, while

TH(E,Qo,r —E;, Q1,1 )dr'wg that in the cold spot is described by a zero temperature Fermi
v distribution.

If we wish to account for the mean field effect we have to
modify the transport kernel in E16) to include change in
energy and direction during spatial transition. We obtain

M(r,Eo,Qo,Wo):f’

N«
In the composite system, two-body scattering may take

+ f T*(Ep,Qp,r—E1,Q7,r")dr’ place either between two nucleons in the hot spot or between
rev one nucleon in the hot spot and another in the cold spot.

L Accordingly, the scattering kernel that includes the Pauli
XJ dElf dQy(1+Py —Py) blocking effects is divided into two parts,
XK(E], Q) —Eq,Q)M(r',Eq,Q;,Wp). K(E,Q—E',Q)=¢K§(E,.Q—E" Q)

(18) +(1-6KE(E,Q—E",Q"), (22
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where¢ is the probability of an interaction taking place in- get or the projectile spheres that remain outside the momen-

side the hot spot and is equal to the ratio of the number ofum sphere of the composite system. The momentum volume

nucleons in the hot spot to the total number of nucleons irremaining outside the Fermi sphere of the composite nucleus

the composite system. represents the momentum volume of the excited particles.
The scattering kernel in the hot spétl , which depends Then the initial number of excited particles from the projec-

on the temperature={1/B3) of the hot spot, is further subdi- tile or target is given by

vided into three parts corresponding to creatfaith prob-

abi!ity Pg?, annihilat?c.)n(wi(t)h probability P;), and _reQistri— nOi:Hij dp (23)

bution (with probability P;z). A complete description of

these kernels can be found [ih3]. . . . . : -
On the other handkC, the scattering kernel between one with the integration carried out over appropriate limits of the

nucleon in the hot spot and another in the cold spot, can pEromentum vectop. Frorﬂthe Eermi gas model the density
described by the standard Kikuchi-Kawgi4] scattering.  Of the momentum states\() is given by
This scattering results only in the creation of a particle-hole

pair since all levels below the Fermi energy in the cold spot _ Vi ZrSAi (24
q n =— T ——
are filled up. o8 34203
D. Number and distribution of initial excited particles wherei stands for projectile or target ang is the relevant

The number of excited particles just at the time of fusionvolume. Thusngr is the number of initial excited particles
of two nuclei is calculated by considering the overlap ofcontributed by the target antp is that from the projectile.
three momentum spherdtarget, projectile, and composite  Evaluation ofPy(E,Q)dE d() requires the energy-angle
system [15,16]. The radius of each of the three spheresdistribution of the initial excited particles. This is obtained
equals the Fermi momentum. The momentum sphere of thiy coupling the incident velocity of the projectile with the
composite system is centered at the center of mass of tHeermi velocities of the constituent nucleons for the initial
system. The centers of the momentum spheres of the targekcited particles contributed by the projectile. When the
and the projectile are separated from that of the composittarget-projectile fusion takes place, an excited system is
system by their respective c.m. momenta per nucleon. Frorformed and the constituent nucleons move about with a finite
the overlap of the three spheres the initial number of excitedemperature To=1/8,) Fermi distribution. After coupling
particles is determined as the number of nucleons in the tathe projectile velocity to this distribution we gEt0],

VEo dEgdQ
Pop(Eg,Qo)dE dQp= , (29
87ER” o+ Eine— 2 EyE, 057 1+ €XH Bo(Eo+ Eine— 2VEoEincC0S7~ 20)]
|
where uq is the corresponding chemical potential. may be formed afteN two-body interactions. Now, we de-

~ Since the target is at rest in the laboratory syst®gt,is  fine the average number of excitons aftércollisions, ny,
given by a zero temperature Fermi distribution with isotropicsych that

angular distribution. It may be noted at this point that all
energies and angles in the present calculations are defined in pN(EC)=p;N(EC). (27
the laboratory frame.

ForN=0, ny=ng. ForN>0 we defineny by the following

E. Calculation of nuclear temperature recursion relation:

Along with evaluation of the initia]3, (reciprocal of the Ny=nyn_1(1+ Py —Py). (28)
temperaturg By at each stage of interactioN, needs to be
calculated, as part of the scattering kerKellepends on this  We use the expression far,(Ec) given by Ericsor{17],
parameter. Estimation ¢8y is done from the entropy of the
system,Sy, as 9"Ec

pn(EC): |h|(n_1)| '
ds, p!h! !
Ec

d
ﬂN:d_:d_EC[InpN(EC)]’ (26)

1
(29)

wherep andh are the number of excited particles and holes
in the n-exciton state ang) is the single particle level den-

where py(Ec) is the average density of states at excitationSity' Using Eqs(26), (27), and(29), By can be obtained as

E. after N binary interactionspy(Ec) is obtained as the —
statistically weighted average of the partial level densities Bn= _ (30)
pn(Ec) of all possiblen exciton(particle + hole) states that Ec
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FIG. 1. Plot of PEQ neutron multiplicity against projectile en-
ergy (in MeV/nucleon for the reaction®Ne+ *%*Ho. Solid points
with error bars are experimental dd2,23; the present calcula-
tions for contributions up to different interaction stageslicated
beside each curyare shown as solid lines.

The chemical potentigly is determined using the method
outlined by Kittel[18].

Ill. EQUILIBRATION OF THE COMPOSITE SYSTEM

We now try to find out at what stage of the interaction
process the composite system reaches thermal and kinem
equilibrium. We first attempt to evaluate this from the emis-

sion of the particles and accordingly compare experimentall)</a

observed total PEQ neutron multiplicities with those ob-
tained from our calculations using Ed.2). We have used in
our calculations the emission rate(E) as given by[19]

(2S+1)mEo;,,(E)

Ac(E)= —
o(E) s

, 31

whereS andm are the spin and mass of the ejectids the
single particle level density, and=h/27. o;,,(E) is the
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25
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FIG. 2. Plot of the hot spot temperatufeagainst interaction

stage N at different projectile energies for the reacticfiNe

+ 1630,

lated results with contributions up to different stages of in-

teractionN (as noted beside each cuyvé can be observed
that with increasing projectile energy more interaction stages

need to be considered to account for the total PEQ multiplic-
ity. Apparently, this conclusion is not counterintuitive as

with increasing projectile energy the temperature of the ini-

tial hot spot becomes higher and it is likely that more inter-
ﬁgtions may be needed to dissipate this larger amount of
energy among other nucleons to attain thermal equilibrium.
To investigate this point further we plot in Fig. 2 the
riation in nuclear temperatufk of the hot spot with dif-
ferent interaction stagds. This is done for different projec-
tile energies of the same reaction as mentioned above. It is
observed that the temperature of the hot spot drops sharply at
the first interaction stage and stabilizes more or less thereaf-
ter. The temperatures at which such thermal equilibrium is
reached is higher for higher projectile energies. There is no
indication that at higher projectile energies more interactions
are needed to attain thermal equilibrium. In fact, the cooling
rates AT/AN) with N also behave in a similar fashideee

cross section for the reverse reaction, which is calculated bfig. 3). In this case, the initial cooling rate, though different

the method of Chatterjeet al. [20]. In estimating the two-
body interaction rate..(E), we have used the empirical re-
lation of Blann[21],

M (E)=[(1.4x 10?Y(E+B)— (6.0 10'®)(E+B)?]/k,
(32

where B is the binding energy of the ejectile arkdis an

for different projectile energies, stabilizes to almost the same
value after the first interaction stage.

Next, we give in Fig. 4 a plot of the variation of the
chemical potential witiN. This chemical potential was cal-
culated from the nuclear temperatyre8| to describe the
finite temperature Fermi distribution of the nucleon momenta
in the hot spot. Here also we see that the initial values of the
chemical potential differ greatly for different projectile ener-

adjustable parameter for introducing the Pauli blocking efgies but after the first interaction stage they stabilize to val-

fect. We have chosek=1.0 in our calculations.
Figure 1 gives a plot of total PEQ neutron multiplicity
against energy per nucleon of the projectile for tiféHo

ues that are close to each other. Thus it may be concluded
that for these projectile energi€s0 Mev/A to 30 MeV/A
thermal equilibrium is reached after the first interaction

+2%Ne reaction. The solid circles with error bars are experi-stage.

mental observationf22,23 and the solid lines give calcu-

Now we look into the status of kinematic equilibrium of
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FIG. 3. Plot of the hot spot cooling rateT/AN against inter-
action stageN at different projectile energies for the reaction

2ONe+16Ho.

the number of excited neutrons agaihstFor all projectile

and reach maxima dtl=1. Thereafter a slow decrease is
observed and a stability is apparent arole 4. It can be
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FIG. 5. Number of excited neutrons at each interaction shkhge
for different projectile energies of the reactiéfNe+ *%*Ho.

compared to those &l=0. For higher projectile energies a
the nucleons in the hot spot. To do so we first observe th@uch larger number of particles share the excitation energies
number of excited particles at each stage of the interactiodt N=1. This explains why the temperature of the hot spot
for different projectile energies. In Fig. 5 we give a plot of remains almost unchanged affer1.

Next, as a further probe, we examine the angular distribu-
energies the numbers of excited neutrons increase sharplign of particles emitted from different interaction stages.

1

seen that the differences in the number of excited neutrons N=

for different projectile energies are much greate\at 1

34
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FIG. 4. Variation of the hot spot chemical potentjal with

20N e+ 1630,

10

Neutron multiplicity (n/sr)

N=1 N=:

N=3

0.1 4

Neutron multiplicity (n/Sr)

N=4

—— 10 MeV/A
------- 15 MeV/A
——- 20 MeV/A
------- 25 MeV/A
—--- 30 MeV/A

FIG. 6. Energy integrated angular distribution of neutron multi-
plicity for 2°Ne+ 1%*Ho reaction at different projectile energies plot-
interaction stageN at different projectile energies for the reaction ted against cosine of the emission anglffom different interaction

stages\.
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PEQ emissions are predominantly peaked in the forward di- IV. SUMMARY AND CONCLUSIONS

rec;ion_sinc_e suph par.ticles retain_the memory Of. the inc_ident We have derived, based on the concepts of probability
projectile d|re9t|op. W'th progressive number .Of Inter""Ctlonstheory, the integral form of the transport equation to calcu-
the angular distributions of the emitted par'tlcles get MOr9ate double differential particle emission spectra from heavy
and more smeared and eventually become isotropic as equpy coljisions. The basic equation gives the evolution of the
librium sets in. In Fig. 6 we plot foN=0-4 the energy emjssion spectra with the number of interaction stages. Cal-
integrated PEQ neutron multiplicity against the cosine of thesyjations using this formulation result in much less com-
angle of emission with respect to the projectile direction.pytaional effort. Several variants of the integral equation to
Different projectile energies are considered in each plot fokonsider time evolution of the composite system and to in-
the reaction®*Ho+2?%Ne. For N=0, the sharply forward troduce spatial transport of the nucleons along with mean
peaked direction results from the coupling of the projectilefield effects have also been derived. The present deduction
motion with the Fermi motion of its constituent nucleons for gives an insight into the computational procedures involved
those neutrons that are contributed by the projectile. Contriin HIC’s from a different viewpoint and thus helps in under-
butions from the target, on the other hand, have isotropigtanding the processes involved more clearly.

distributions. As the number of interactions increases the dis- Calculations performed with the present formulation to
tributions tend to become flatter and =4 appear to be study equilibration of the target projectile composite sys-
almost isotropic. The slight anisotropy favoring forward tem result in the following conclusions for HIC'’s in the en-
emissions aN=4 may be due to the motion of the compos- ergy range 10 MeV/A to 30 MeV/A(1) The number of

ite system along the projectile direction in the laboratoryinteractions required to reach thermal and kinematic equilib-
frame of reference. It may thus be concluded that kinematicium is independent of the projectile energ®) Thermal
equilibrium sets in arountN=4 for the energy range con- equilibrium sets in much earlier than kinematic equilibrium
sidered in the present work. in terms of the number of interactions.
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