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Navier-Stokes simulation with constraint forces: Finite-difference method for particle-laden flows
and complex geometries
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Building on an idea of Fogelson and Peskih Comput. Phys79, 50 (1988] we describe the implemen-
tation and verification of a simulation technique for systems of non-Brownian particles in fluids at Reynolds
numbers up to about 20 on the particle scale. This direct simulation technique fills a gap between simulations
in the viscous regime and high-Reynolds-number modeling. It also combines sufficient computational accuracy
with numerical efficiency and allows studies of several thousand, in principle arbitrarily shaped, extended and
hydrodynamically interacting particles on regular work stations. We verify the algorithm in two and three
dimensions fori) single falling particles andii) a fluid flowing through a bed of fixed spheres. In the context
of sedimentation we compute the volume fraction dependence of the mean sedimentation velocity. The results
are compared with experimental and other numerical results both in the viscous and inertial regime and we find
very satisfactory agreement.

PACS numbds): 02.70—c, 47.55.Kf, 83.10.Lk

[. INTRODUCTION sociated with gravitational overturning. Recently, however,
in two dimensions successful simulations of rheological be-
Many applications in chemical engineerii@,2], fluid  havior[9,10] have been performed. The most time consum-
mechanicg3], geology[4], and biology involve systems of ing part of these algorithms is the recurrent necessity to gen-
particles immersed in a liquid or gas flow. Examples of sucterate new, geometry adapted grids because continuous
systems are sedimentation processes, gas-solid or liquidistortion of the initial grid will quickly result in very elon-
solid fluidized beds, blood, mixing processes when sedimeng@ated elements or even overlaps with parts of the internal
laden rivers enter lakes or the sea, powder transport by pneffoundary(a particle. , ,
matic conveying, the ticking of hour glasses, flocculation in _ Other techniques can deal with many particles, but use
suspensions, and many more. The long-ranged hydrod)phenomen_ologlcal exp_ressm[ﬂsl—_lzl] for the couplmg_be-
namic interactions mediated by the fluid in the interstitial eeN particles and fluid that are incapable of rendering cor-

voids of a particulate, granular system greatly change it%ectly single particle behavior and limit severely the predic-

hysical behavior as compared to the “dry” state without ve power of a method when new parameter ranges are
pny P y explored. These include also the averaged equation tech-

”?ed'“';“' V.Vh;Ch 'S cnaracterlﬁed by tf|1e shqrt-rangeq, m05ﬂ¥|iques and the Euler-Lagrangian formulations that are popu-
viscoelastic forces that act when single grains come Into Cong, i, yrhylent flow simulations, where direct simulation is

tact. _ _ prohibitively expensivé11,15,18.

Because of its great importance, the problem has been and ggyeral techniques are based on the assumption of low
is still attracting considerable attention on both the experipeynmdS numbers, which turns the Navier-Stokes equation
mental and theoretical level. As is known from the physics ofinto the linear Stokes equation. Then one exploits the funda-
liquids on the molecular scalé], long-time tails will arise  mental solution of the Stokes equation to eliminate the need
in the correlation functions of conserved currents as, e.9., thg& compute the solution everywhere in space, but rather uses
liquid’s velocity field, and the long-range character of thea boundary element formulatidi7] or a multipole expan-
hydrodynamic interaction necessitates very careful studies afion for the stress on the particle surfdd8—2Q possibly
the system size dependence of the results. Short of analyttogether with specific precautions for the divergent near-field
solutions of the problem, the challenge therefore is to findubrication forces[21]. Naive implementations of these
simulation techniques that are on the one hand accuratmethods require the storage and inversion of a full matrix.
enough to allow reliable predictions, but on the other hand oOnly rather complex clustering techniques that exploit the
sufficient numerical efficiency to permit studies on “large” decay of the influence of one particle on the other with in-
systems in terms of particle numbers and confining geometrgreasing distance between the two can reduce this effort to be
and “long” times with respect to the intrinsic velocities and proportional to the number of particl¢apart from logarith-
length scales. mic corrections However, no efficient boundary integral

Some techniques, notably finite element or finite volumetechnique is known to us for the nonlinear Navier-Stokes
technique$6—10], can reproduce very precisely the behaviorproblem.
of a small number of particles, but they are too computer The most powerful techniques in terms of the ability to
intensive to simulate in three dimensions inherently collec-deal with large systems of the described kind have proved to
tive, many-particle effects as, for example, the influence obe those that use fixed nonadaptive grid to represent the
the presence of a fluid phase on convection in granular agtuid flow. The particle boundaries can then be represented
semblies, the bubbling in fluidized beds, or instabilities as-only approximately as permitted by the regular discretiza-

1063-651X/2000/6()/714615)/$15.00 PRE 61 7146 ©2000 The American Physical Society



PRE 61 NAVIER-STOKES SIMULATION WITH CONSTRAINT . . . 7147

tion. Such techniques have been successfully used by Ladd We use a staggered marker and ¢BIAC) mesh as the
in conjunction with a lattice-Boltzmann flow solvg?22,23 base for a second order spatial finite-difference discretization
or in Ref.[24] with a more conventional finite difference of (1), which simplifies considerably the treatment of the
Navier-Stokes solver. pressure boundary conditiof81]. Details can be found,
The method that we propose here follows the immersee.g., in Ref[32], Chap. 6. The incompressibility constraint is
boundary technique proposed by Fogelson and Pd@&h  satisfied via an explicit operator-splitting, fractional-time-
Similar ideas are also employed in the fictitious domainstep method, described in detail in the same reference. In that
method developed by Glowinski and co-workg&6—-28  framework, one introduces an additional provisional “veloc-
and earlier domain embedding methd8] about which we ity” o»* without physical meaningn order to split the one
learned only after most of this work had been completedvelocity equation(1) into two,
The basic idea of these two approaches is to use the same

constantgrid for the resolution of the fluid flow at all times v —v"

and represent the particles not as boundary conditions to the P™At p(e"-V)o"+ 7V 1", @
flow, but by a volume force term or Lagrange multipliers in

the Navier-Stokes equation. The fluid equation can then still vt lop* i1

solved by very fast specialized Fourier or multigrid tech- Py VP )

nigues that exploit the regular grid structure.

After an introduction into the simulation method in Sec. Il Here, the Superscriphs andn+1, respective|y, denote the
we will discuss several test cases. First, we will considekalues at=nAt andt=(n+1)At. This system of two equa-
flow through static or rotating periodic arrays of cylinderstjons is mathematically equivalent to the single equation that
and disks, where literature results for the drag and the resisye started out with.
tance to rotation in the linear regime are availa8ec. V). An equation for the pressure variable is obtained from Eq.

In dynamical simulations for many sedimenting spheres wg3) py taking the divergence and using that the divergence of
reproduce the experimental findings in three dimensions fofhe updated velocity fielé"** must vanish,

the hindered settling functiofSec. \j.

veprti= Loy pr, (@)
Il. NUMERICAL METHOD At

We now describe the essentials of our technique to trealfhe steps above are often considered to be a projection of
large numbers of rigid particles moving in a fluid modeledEgs. (2),(3) onto a divergence-free subspace of the velocity
by the Navier-Stokes equations. The problem can be quiteector field—the pressure equation is used to remove the
cleanly separated into three parfg:the fluid equations(ii)  “perpendicular” velocity components containedadi —and
the motion of the suspended particles, &iiid their mutual  thus the term “projection method” is often employed in this
coupling. Most of the technical details of the first two sub-context. The exact distribution of terms to the split equations
problems can be found in the literature and we will here giveis not unique; in principle, some of the velocity terms on the
only the most important facts for completeness. The way ofight-hand side of2) could appear ir{3). Consequently, the
coupling these two phases is the heart of this paper and wilinphysical temporary fielé* would take different values,

be addressed in more detail. without affectingo™*?.
The fluid equations must be solved subject to the bound-
A. Liquid ary and initial conditions implied by the confining geometry,

) . ) . in our case a quadrilateral volume, which is eittig¢dimited
Our starting points are the Navier-Stokes equations depy fixed walls on which no-slip conditions hold i) peri-

scribing the motion of a Newtonian fluid with inertia, odically repeated in space. To obtain the boundary condi-
P tions for Eq.(4), we project expressiofB8) onto the bound-
_ . =_ 2 ary’s outward pointing normat,
P +p(v-V)v Vp+ Vv +f. (1)
i n+1_ xy_ _ . n+1
Herep and n denote the fluid density and viscosity,andp At (vy v1) (n-V)p*==. ®

its velocity and pressure, respectively, &na volume force
term. As usua[30], we will not consider the time indepen- Let us now consider the spatially discretized forms of @g).
dent gravity contribution té explicitly, but cancel it against and(5) in the vicinity of a boundary, as, e.g., displayed in
the hydrostatic pressure and omit both terms from @&y.  Fig- 1,
The corresponding buoyancy forces will be taken into ac-

- 3 X . n+1__ .n+1 n+1__ .n+1 n+l _ .n+1
count explicitly in the equations of motion of the suspended }( Pim ~Pom  Pom p—l,m) 1( Pom+1~Pom
particles. However, we will require a fluctuating component h h h h h
of f as an essential ingredient of our simulation technique nel nel
(see below, so that the volume force term must be left in Eq. ~ Pom — po,m—l)

(1). For the following, we will consider the liquid as incom- h

pressible, i.e.V-v=0, and choose the solution method for . N N N

the fluid equation accordingly. Incompressibility is not a nec- _ L( Ux;om™ Ux;T +Uy:0,m_vy;o,m1> ©)
essary condition for the coupling technique. At h h
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abstract spaces is necessary as, e.g., in Fourier techniques,

p(l,n:l+1} multigrid is memory efficient and also well suited for paral-
Q yiom lelization by domain composition, as described, e.g[38.
vp g b Upom One fluid time step hence consists of first computing the
® IO @ provisional velocityv* from Eq. (2), which provides the
Poim Pom vyomls P information for the source terms of the pressure @y.Next
S— the Poisson problem is solved with Neumann conditions
: n-Vp=0 on the boundary where applicable, i.e., for the
® O & O nonperiodic directions. For uniqueness, we demand that the
Pom—1 average pressure is zero. Finally, the pressure values are sub-

stituted in Eq.(3) to calculate the updated velocitie§* .

A local and linear Neumann stability analysis of the nu-
/ merical scheme neglecting the coupling of the velocity equa-
tions by the pressure term leads to the condition

FIG. 1. Staggered marker and céIAC) mesh in the vicinity 7 ([ ph? d 2
of a vertical boundary. The pressupg,, discretization is centered 1>ﬁ — +2At d—z cogk;h)
in cell (Om), the velocities are shifted by half the cell size to the p°h K =1
right v,.om and upward .o, respectively. The evaluation of the d 2
Laplace operator applied ﬁminvolves one leg on which the pres- ph ;
place operator app g pres- +| —At2, visin(kih) ©)
sure derivative across the boundary needs to be known. This deriva- n i=1

tive can be replaced by a term that involves both the unknown
velocityv} on the boundary and the updated veloeify ', , onthe  for linear stability of a standing wave perturbation with wave

boundary at the same locatignot shown). numberk; ; the v; are the local fluid velocity components.
The inequality(9) must be satisfied at all discretization nodes
and and for all wave numberk; . We obtain two simpleneces-

sary conditions from(9) by demanding that the inequality
}( n+l o+l :_i(vnﬂ_v* ) ) holds for the two squares separately. In the first, we set
h Pom = P1m) == 5 (W ~Uxr)- cos(kih)=—1 and find

Here,h is the lattice spacing of the grid used for the discreti- At<i p_hz

zation and the suffix™ refers to values on the boundary. 2d 7’
If we now substitute the expressiorp%l—prlﬁn)/h

from Eq.(7) in (6), we see that the the value of. cancels which is familiar from discretizations of the diffusion equa-

from both sides of the equation. In other words, the solutiorfion. Now we define the maximum value of all velocities

of the pressure equation does not depend on the specific valomponents over all spaceypa,=maXvi(x)|, and set

ues ofv}.;- on the boundary. For computational convenienceSinkh)=1 in the second square. Then it follows that

we can thus in particular demand that the left-hand side of

the equation specifying the boundary conditions shall vanish, At<

ie., vQ}1=v§;F, corresponding to vanishing normal deriva- dv max’

tives of the pressure across the boundary. Thus, we do not ) ) )

need to know these two values when we solve the pressufterm due to the presence of the convective nonlinearity of

(10

(11)

equation. the Navier-Stokes equations.
Also, the incompressibility guarantees that we satisfy the
integrability conditions for the pressure equation with Neu- B. Particle-fluid coupling

mann conditions: The most challenging part of the problem is the treatment

' p o of the no-slip boundary condition for the fluid on the particle
0= % dA-Vp= A_tf dxV-v* =35 fﬁ dAn-v* surfaces. We here build on an idea that has been applied by
Fogelson and Pesk|25] to the case of viscous flow. Instead
p nel of implementing the no-slip boundary conditions by modify-
~At é dAn-v™""=0. ® ing coefficients of the discretized systdBi7] or employing

grid adaptivity as in finite-volume or finite-element tech-
The actual solution of the pressure equation is effected byiques, we use the body-force term in the Navier-Stokes
a fast multigrid scheme that exploits the regularity of the gridequations to implement constraints acting on the fluid such
used for discretization. The general id&3] and details for as to mimic the presence of rigid particles at appropriate
two dimensiong2D) [13,34] are given in the literature; the regions in the flow. These regions will move as the physical

three-dimensional3D) implementation is described [185]. particles will and they will comprise sufficiently many grid
The hierarchical structure of a multigrid scheme ensures thagioints in order to represent the geometry of the physical
the time to solve the pressure equation is asymptotically proparticles. Since the lattice points are spatially fixed, but the
portional to the number of grid points, a highly desirableparticles move, the association of grid points to particle rep-
feature for large-scale simulations. Since no transform intaesenting regions will change in the course of the simulation.
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In more detail, the computation of the motion of a physi-there occurs a nonvanishing difference in positigp= X/}
cal particlei is decomposed into two contributions. A mov- _Xirj orin velocity'gij , we generate an additive contribution

ing liquid volume elemenV; of the same shape as the par-¢ ", 1o force density in the fluid that tends to drive the

. . . o i
ticle constitutes the first contribution. Let us for the mo_m_ent"quid and thus the tracer back to the reference position and
assume that we knew how to move this element rigidly,

within the rest of the fluid, just as if it were a solid particle of to diminish their refative velocity. One possible choice is
fllu_id delniitypf with r_ngssM:=Vipf and moment of ?nert_ia f;00=(—kg; —Zygj)ﬁ(x—xﬂ?), (14)
I;=cM;a“. For simplicity we assume that we deal with disks
or spheres so thdtis represented by a scalar,being the  wherek is a “spring” constant,y a damping constant, and
particle radius and=1/2 or 2/5 in two and three dimen- §(x) the Dirac distribution. In our explicit techniquke must
sions, respectively. As will become clear, our approach is nobe chosen large enough so th&g|<h holds at all times.
limited to these cases. Similarly, the dissipation introduced by the velocity-
The second contribution is a particle template that alsgroportional friction controlled byy must be small enough
has the shape of the rigid physical particle, but it carries theo be negligible against the external physical sources of en-
mass M!, and the moment of inertid!. These values ergy dissipation. The force densityn the fluid equatior(1)
complement those of the fluid contribution and sum to theis the sum over all particleisand reference poinfsof f;; . A
values of the physical particlg i.e., M{=M!+M! and I, slight modification is needed in the case of periodic bound-
=11+1!. The particle template is rigid by definition. We like ary conditions, which will be discussed separately in Sec.
to think of the template motion as representing the particlél D.
motion. We must regularize thé functions in the first part of the
To make the general idea work, we must now describéum (14) by, e.g., linearly or quadratically weighted, inter-
how to achieve a rigid coupling between the template and th@olation to the nearest grid points. For example, in 20
associated fluid element. To this end, we first introduce a-x') is “distributed” linearly to the four grid points closest
numbern; of reference positions;;, j=1,...n; distrib-  to X" with weights w,y s according to the perpendicular
uted over the volume of template Ther!; are vectors rela- distances of’=(x’,y’) from the discretization grid point
tive to the center of mass of templat&he associated spatial (Xki»Yki) just below to the left. The indicdsand| shall here
coordinatesq; change only due to the movement and rota-denote grid indices as used in Fig. 1

tion of the rigid template, / /
1 1 X" =Xl 1- ly" =yl
(12) Woo= 3 h h )

X (D) =x;(t)+O;(t) - rj; ,

whereQ; describes the instantaneous orientationgnid the

position of the template. In the 2D case, we obt@inby Wlo=i X" = X 1— ly _yk'|),
forming the rotation matrix associated with the one angular hz h h
degree of freedom of the particle, in 3D we use quaternions
[38] to represent the particle orientation and to compute the 1 IX" =Xl VY = Vil
rotation matrixO; . WoFﬁ( 1I-— ) o

Associated with each reference position is a tracer
x{‘f j=1,...n; which tracks the motion of the fluid, , .

W _ L)Xl [yl
XT=0 (xM). (13) “h2 h h

Here and in the following we use dots to indicate the timePlease note that due to the use of a staggered grid, the

derivative along the trajectories. Please note that the trace(s;,y;) will in general be different for different components

are passively convected with the fluid and do not by them-of the force.

selves constitute new degrees of freedom. The prefactor H? present in the expression for the
The comparison of the location of the tracer to the posi-weights above ensures that the spatial integral over this rep-

tion of its reference point allows us to judge whether theresentation yields 114]. Generalization of this formula to

fluid volume V; has changed shape or taken another trajecquadratic onth order weights as well as general dimensions

tory as the associated template. The condition of rigid coud is straightforward,

pling translates into zero offset and zero difference velocity

of the tracer and the reference point position. The density 1.9 IX{ =X, gl
and location of the tracers should in general be chosen such W(A”,)l _____ Ald__d.H Soar| 1— -
that the number of degrees of freedom of the fluid that need hfi=1 h

to be controlled should equal the controlling number of trac-
ers (please note the pertinent comments at the end of this
section). That is to say that each tracer should control a fluid 2 hn
volume ofhY, d being the spatial dimension.

Now we obtain an explicit numerical scheme for the com-Here, the index refers to the vector component and the
putation of the force densitly constraining the fluid motion indicesl; the location of the closest grid point whose posi-
as follows. Whenever between tracer and reference positiotion components are all just smaller than those'ofLarger

(15
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n tend to concentrate the weight in the grid point closest towith static particle arrangements, we often need to decrease
x'. The application of such higher order weights has advanthe tracer density to be slightly below this limit to avoid
tages when the reference points are placed up to exactly thestabilities.
radius of the particle. Since the strongest gradients of the stress occur on the
Fogelson, Peskin25] and Stockie[39] use smoother, particle surface, computational efficiency suggests to reduce
longer ranged kernels, involving exponentials and trigonothe tracer density in the particle interior. Moreover, in the
metric functions thati) are numerically more expensive to viscous regime, the inertial effects due to the fluid in the
evaluate andii) do not seem to accelerate convergence ofnterior of each particle domain are negligible. Interior trac-
the pressure solution even if the source terms are smoothests are only necessary to resolve changes in the angular ve-
We consider as the advantage of these kernels their capabibcity accurately. These will be important if significant
ity to obtain a grid independent limit for the force density changes in the angular velocity occur on time scales shorter
and thus the emerging motion if the number of control pointsghan those for the diffusion of vorticity across the particle
is fixed andh—0. diameter, i.e., when we leave the regime of validity of the
In order to estimate the largest possiklat a given time quasistatic approximation. For particle Reynolds numbers of
stepAt we consider a system of coupled masses. The valuabout 1 and sufficiently small concentratichss 0.2, where

of k together with the reduced mass it follows from the work of Goldmaret al. [40] that effects
from the rotational motion in viscous suspensions are gener-
MIAM; ally weak, we consider the neglect of interior tracers justi-
M= ——— (16  fied.
M+ AM;
of the particle templateM! and the fluid elementAM; C. Particle motion
=p;h? at xi’j introduces a time scale of oscillation, The constraint force distribution that we have introduced
to guarantee quasirigid fluid motion must be cancelled by
1 M opposite equal terms acting on the particle templates so that
" 27 Vnk' (17) only external forces remain in the momentum balance of the

combined system. This cancellation is quite naturally
which must be resolved by the integration, i&t<T'. Only  achieved by applying Newton’s second law to the “spring”
for these sufficiently smalkt, we can guarantee stability and associated with each reference-point-tracer pair. That is to

numerical correctness of the particle integration. say that
For many computations we have adjustedo that the )
above inequality is satisfied wheXt is of the order of the Fij=k&;+2v§; (20)
diffusive stability limit (10) imposed by the fluid integration, ) ) ] )
ie. is the force acting on particle templaiteat the location of
reference poini. Similarly, the angular momentum balance
1 ph? will be satisfied when we take the torque to be

7= (X —Xi) X Fjj (21)
Thus,k can be determined from .
with respect to the template center of mass
As further contributions single particle forces, gravity and
(199  buoyancy need to be taken into account,

k=consix .
n;At?
N Fi=—Mge,+pVige,= (p—pp)Vige;, (22
In our tests that we have performed, stability was always
achieved ifAt<1/20/T". where we have usegl, for the particle density an¥; for its
In 2D simulations we have had good experiences with volume (or area in 2D.
values close to aperiodic damping of the particle We now need to address the question of direct particle-
template—in this case the assumption that the tracer posparticle interactions. In most non-Brownian suspensions
tions are fixed yieldsy=\kM,. This has often eliminated these are negligible compared to the hydrodynamic effects at
small, but unphysical oscillations of the particles, in particu-short distances between particles. For example, the approach
lar in the beginning of the simulations. These oscillations doof two particles is very strongly damped by the hydrody-
not indicate instabilities of the numerical scheme, but reflechamical lubrication forces between the two surfa¢sse,
the oscillatory time scale resulting from template mass ane.g.,[41]). Numerically these forces will be strongly under-
coupling constank. estimated when the distance between two particles becomes
In 3D simulations, probably due to the larger number ofof the order of the lattice spacing. It is clear that all fixed grid
control points,y=0 seems to suffice. Our empirical experi- techniques(including lattice Boltzmann show this short-
ences concerning the admissible maximum number of tracerming, but even off-lattice particle methods such as dissi-
are not conclusive. Whereas in dynamical simulations withpative particle dynamic§DPD) similarly underestimate the
moving particles it seems often possible to increase the numubrication forces because the model intrinsic mean free path
ber beyond that implied by the number of grid cells within sets a length scale below which viscous stresses cannot be
one particle volume, in low-Reynolds-number computationgproperly represented.
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We model surface contacts between particles—and solvpositions and associated velocities can be periodically ex-
at the same time the numerical problems arising from postended.
sible large particle overlaps—nby introducing a pairwise re- If we consider the case of a section of a vertically posi-
pulsive force that acts when the centers of two particles com#oned tube, then we can also demand the pressure to be a
closer than the sum of their radii;+a,. Let the overlap function periodic with period.,e,. Due to the periodicity of
between particles and k be defined a<,=(a;+ax—|x; f arising from the(periodig particle motion and the periodic
—x)ex, with g, denoting the unit vector pointing fro  velocity field, the source term of the pressure equation is also

toi. Then we take the force anto be periodic, the integrability conditions are satisfied and we ob-
tain a periodic solution for the pressure which is unique up to
Fli=—Kplik - (23 a constant, which we choose so that the average pressure

o ] o _vanishes. Physically, this system will evolve towards a sta-
In a similar manner, one may consider explicit interactionyjsically stationary state in which on average the viscous

terms to restore the correct forces on the particles at shofbces originating at the walls balance the gravitational driv-
distances~h [14,23. However, our results indicate that in jnq.

the studied concentration range the lubrication effects are “|; the case of sedimenting systems, it is however more

recovered to a sufficient degree by our numerics. At increasyatyral to imagine the simulation cell as a small part of a
ing concentrations, such corrections will be of crucial impor-|arger system. In this case, there are no walls that could
tance[42]. _ o provide balancing viscous forces to counteract the gravita-
The total forceF; on particle templatg is the_sumFi tion. The least constraining condition on the system that still
=F+2Fi+2F;; . Apart from the fluid reaction force guarantees evolution to a stationary state is to assume that
Fij, which also describes the “unphysical” constraint there is no net acceleration at any time on the components
forces, (cf. Sec. 11B, these terms are those that we expectwithin the considered cell. That is to say, that at any time, we

for a “physical” particle to be present. must make sure that the integral over the simulation volume
A Gear-predictor-corrector integrator of fourth ord@éd] of the right-hand side

serves to integrate the equations of motion for the translation

of the template, D
. —— e N
xi=F;/M;. (29 O dn

For the quaternion formulation of the rotation, we refer the ¢ 1o Navier-Stokes equatiofl) vanishes. Now, for the

reader to Ref[38]. term (II) we apply Gauss’s theorem and find that it depends

To briefly summarize the above, we would like to StressonIy on the values of the velocity gradient tensor integrated

?gai” thqt the modeling.of a rigiq, heavy pgrticle requires th%ver the surface of the cell. Since the velocity field is peri-
(i) “freezing” of the region of fluid occupying the space of odic, contributions from opposite faces cancel identically

the particle andii) the C(_)upling of this region o a particle d this term is always zero. If we decompose the pressure
template whose dynamical properties supplement those (?rﬂ,:o (i) a linearly varying part andi) a purely periodic con-

Fhe fluid in such a fash|pn that the coupled system behaveﬁibution, then for similar reasons, the volume integral over
just as the modeled particle would. The arguments above Cafle gradient of the periodic part vanishes

be put in a slightly more stringent mather_natical_context, for Thus we are left with contributions from the integrated
which we refer the reader to the Appendix of this paper. /.o density(Ill) and an average pressure gradight

which arises in addition to the well-known hydrostatic part.
D. Treatment of periodic systems and driving If we take these two time dependent terms to be equal—in
In order to minimize effects from rigid walls it is often formal analogy to the hydrostatic case—then they cancel
convenient to study periodically repeated cells. Periodicity inffom Eq.(25). The total acceleration of the fluid in the simu-
the following will always mean periodicityn spaceonly.  lation volume thus vanishes. _
One should be aware, however, that the long-range nature of FOr computational purposes, we simply subtract from the
the hydrodynamic interactions might cause some artifacts ifi€ld f its spatial average and thus obtain fluid and pressure
this casd43], mainly increasing autocorrelation times asso-€quations that allow spatially periodic solutions,
ciated with the vertical motion.
Gravity, or an imposed driving pressure gradient single 1 1
out one specific direction, say, the vertical. Whereas periodic ~ f(x)=_2>, f;;(x)— \—/J' dx, fij(x) =y > Fij. (20
boundary conditions pose no additional difficulties for the 4 v !
solution of the fluid and particle equatiopgrpendicularto
that direction, we need to specify more precisely what we Physically, we can think of the associated constant pres-
mean by periodicityarallel to it. We will here consider the sure gradien¥ p;,= (1/V) fdxf, which drops from Eq(25),
case of driving the system gravitationally via the densityas giving rise to a buoyancy force. This buoyancy force,

difference of particles and fluid. however, is already correctly included in the “tracer-spring”
For the fluid velocity field we require periodicity of the forces appearing in the particle equations of motici Sec.
solution across the horizontal system boundarydirection, 11 C), since we would reduce the tracer forces by their aver-

i.e.,v(x+NL,&)=v(x), whereN is an arbitrary integer and age and add the same term again, now in the form of a
L, the size of the system indirection. Similarly, the particle buoyancy contribution from the liquid.
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E. Summary of the numerical procedure tions, turn into the linear Stokes equations for-R@.

scribed above that are necessary to perform one time step fRéthod in many particle systentsrder of 10 000 beyond
our simulation. Reynolds numberson the particle scalelarger than Re

(1) We perform the predictor part of the Gear algorithm =paU/7n=10, ...,20, because the flow on and below the
for both the template and marker positions. No forces need tf§0lmogorov scale must be resolved. In this regime the grid
be known at this point, because the prediction is solely baset§finement for methods without turbulence modeling will
on Taylor coefficients of the trajectories that were previouslySCON render the computational effort unacceptable.
recorded. _It should also be noted ;hat moderr_l |mpI|C|t_ a_nd adaptive-

(2) Likewise, we update the quaternions and the angulaffid methods are more suitable for high precision computa-
velocity representing the degrees of freedom of rotation ofo" Of time dependent pure fluid flows static geometries.
each template. We then use their values to compute the rdd the context of model building for suspension flows with
tation matrixO;(t) to find the predicted location of the ref- MOVing particleshowever, fixed grid methods do not require
erence pointgcf. Eq. (12)]. remeshing. Moreover, an explicit technigue like the one pro-

(3) From the predicted particle template location the in-P0S€d above provides great flexibility to implement particle-
terparticle forces are computed according to E3). particle interactions, i.e., additional short-range attractive

(4) Now we are in a position to compare the predictedforces of van der Waals type to model aggregation phenom-

tracer positions to the predicted reference point locations an@"@ Of material properties of the particles.
infer the constraint forcef; necessary to impose rigid mo-

tion on the fluid[Eq. (14)]. The integration off;; over its IV. THE CASE OF ONE PARTICLE:
support and summation over all tracers associated to tem- CUBIC PERIODIC ARRAYS
platei yields the reaction force of the fluid onto the template.
L . . . A. Setup
Similarly, we determine the acting torque using E2fl). ] ) ) -
(5) Knowing the force distributiorfi; and the fluid veloc- As the first test case in which boundary conditions on the

ity field, we know know all terms on the right-hand side of particle surface have a nontrivial influence on the flow we
Eq. (2) and can perform a fluid update I6§) calculation of consider.a fluid passing through a cubic periodic arrange-
the provisional “velocity” fieldv*, from the current veloci- ment of fixed spheres at low Reynolds numbers. The arising
tiesv" and the constraint forcds , (b) determination of the flow has been analyzed in the point particle approximation
pressure from the Poisson equatidh by a multigrid proce- by Hasimotd 45] for small volume f.ractlon@.lAmong oth-
dure, (c) and finally by advancing the fluid velocity &'**  €rs, Ladd[19] as well as Sangani and Acrivdg6] have
from the knowledge of the pressure field and the “old” ve- considered larger volume fractions up to the limit &f
locities v" [Eq. (3)]. = 77/6 with numerical methods in the viscous regime. More
(6) From the predicted tracer positions and the new fluigrecently, Koch and Ladf#7] have published results for cyl-

velocity values we obtain the correction terms for the traceinder arrays at moderate Reynolds numbers using lattice-

trajectories necessary for the secofwbrrection part of  Boltzmann techniques. _ _ _
Gear's integrator for the tracef&q. (24)]. To this end, we impose at each point of the grid at first a

(7) Similarly, a correction step is performed for the trans-constant acceleratidr=e,AP/L corresponding to a constant
lational and the angular velocity of the templates using thg?ressure drog\P/L over the lengtiL of the cubic cell. Pe-
previously computed torques and forces. The corrected aﬁ_Lodlc bqundary_ conditions are used on the fluctuating, non-
gular velocity will then be used to correct the quaternionlinearly increasing part of the pressure and the flow veloci-
values that trace the orientation of the particsec. 11 0. ties. The particle positions and orientations are fixed to be

At this point we have completed the time stepping andthe initial ones. _ _
can perform measurements on a consistent set of dynamical The simulations are performed in 2D and 3D as dynami-

quantities. cal calculations starting from a fluid field at rest until a
steady flow state results. The approach to stationarity is
1. VALIDATION OF THE NAVIER-STOKES SOLVER slower at lower solid volume/area fractions. In 3D, we stop

when an exponential approximation indicates that the ex-
The Navier-Stokes solver outlined in Sec. Il A has beenpected additional changes to the flow rate are less than a
tested on the limiting stationary flow pattern in the driven-fraction of 0.02. In 2D, we have adjusted the pressure drop
cavity problem[44] for Reynolds numbers on the box scale during the simulation to obtain constant volumetric flow
of Re=ULp/%<100, whereU denotes the scale of the im- rates and thus constant Reynolds numbers.
posed velocities. As time dependent flows we have tested The drag force=p on one particle is determined by sum-
sinusoidal velocity profiles between parallel plates and veriming the contributions from all the corresponding reference-
fied the exactly exponential approach to rest and the assogpoint-tracer pairs according to EqR0). If we divide the
ated decay constant. modulusFp=|Fp| of the drag force by the volumetric flow
Due to the explicit method and the inherent “diffusive” rate U,
stability constraint, At<ph?/2dz, very low-Reynolds-
number calculations /f— ) require increasingly shorter Uzif dxv,(X) 27)
time steps and will become prohibitively expensive. How- V z
ever, this limitation can be overcome by an implicit time
stepping, possibly exploiting that the Navier-Stokes equaebtained by averaging the flow velocity over the cell volume



PRE 61 NAVIER-STOKES SIMULATION WITH CONSTRAINT . . . 7153

V, and refer the value to that of an isolated sphere, then the 3 Transiation " -
X . . ranslation  +
dimensionless drag coefficient Rotation O
Fp 25}
2 -
results.
In 2D, Fy, is the drag force per unit length of the cylinder.
We refer it tonU, which has the required units of force per = 451
unit length, /
_o (29 1 ' ' '
Xp= 27U 0 0.1 0.2 0.3 0.4

h

Both these drag coefficients are known to have corrections giG, 2. Dependence on mesh sizef the dimensionless trans-
O(R¢) in arrays that have reflection symmetry with respectiational y,/677a and rotational friction coefficientg/87 a2 in
to the axis of the flow47,48|. three dimensions, denoted by symbelsand [, respectively. The

Similarly, the rotational drag coefficients can be com-values are for a volume fraction df=0.0335 at Re-0. It can be
puted by imposing constant angular velocities on the parseen that the necessary correction to the drag coefficient is linear in
ticles and letting the flow adjust. In the viscous regime, bothh.
in 2D and 3D, the torque is proportional to the angular ve-
locity. In 3D, we refer the resulting torque on the sphere t0, [ d(ay)]=x[®(a)]+ x'[P(a)]P’(a)Aa(h)=y[D(a)]
the theoretical value of an isolated sphere

+x'[®P(a)]P’(a)ymh. (33

,
s (300 Comparing the slope in Fig. 2 to the prefactohpfind using

the derivativey’'[ ®(a)] from the literaturg19], we findm
~0.3. This value holds for 3D and quadratie=2 interpo-
lation scheme for thé functions in the force densifycf. Eq.
(15)]. For the dynamical simulations in the next section, we
therefore retract the tracers by an amount ohOii@m the
geometric surface; in 2D we use=0.5h with n=1 inter-

___ "™ (31) polation.

4malpw

XRT- 5 -
8mrpaw

In 2D, the theoretical value of the torque per unit length on
an isolated cylinder in an infinite medium isr4®7w, so
that a dimensionless drag coefficient

XR

C. Translational drag and rotational friction coefficients

can be defined. In Fig. 3 we show the results of the extrapolationtto

_ =0 of the translational drag for 2D and 3D. In 3D we com-
B. Mesh size dependence pare with Ladd’s[19] numerical solutions of the Stokes
Due to the lack of adaptivity at the particle surface, weequation with the same boundary conditions. In 2D, we com-
expect the effective hydrodynamic radius of the particles tdoare to the results of Sangdi].
be slightly larger than the geometrical radius of the reference In the 3D simulations the pressure drop is adjusted during
point arrangement, because each point controls a fluid vokthe simulation to achieve the same volumetric flow (ated
ume of extenh reaching beyond its geometric location by thus Reynolds numbgindependent of volume or area frac-
h/2 in each direction. In fact, if the confining radius of the tion of the obstacles. In 2D, the Reynolds number based on
reference point placement is taken to be the geometric tenthe flow rate and the radius of the obstacle does not exceed
plate radius, then we measure as a function of mesh size tiel.
drag coefficients shown in Fig. 2, hefle=0.0335. We see In Fig. 4 the corresponding results for the rotational fric-
that indeed the values extrapolate to asymptotic valuds as tion coefficientsyg are shown as functions of volume and
—0 with leading error proportional th. area fraction. In two dimensions different symbols denote
We can thus improve the accuracy of the simulation bydifferent arrangements of the cylinders with respect to the
taking this effect explicitly into accour23] by modifying  discretization. In one case the particle is located at position
the placement of the reference points. Let us write for the0,0) in the cell of sizeL XL, in the other the unit cell was

effective hydrodynamic radius.s, assuming thata is lin-  chosen to include two particles, one @0), the other at
ear inh, (L/2L/2). The symmetries of the array imply that in both

cases the same scalar friction coefficient must result.
asf(h)=a+Aa(h)=a+mh. (32 In both 2D and 3D, we have computed the drag coeffi-
cients by linear interpolation tb=0 of theh-dependent re-
The dependence of the friction coefficient on the volumesults. For the densest packings in 2D, the gap between the
fraction can be Taylor expanded around the volume fractiomparticles is about 13 grid cells wide for the finest grid used.
corresponding to a particle with radias The relative difference of the friction coefficients computed
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o0 | 9t FIG. 3. (a) Drag coefficientyp in a periodic,
8t 3D simple cubic arrangement of spherdb)
S s 2 7t Natural logarithm Inyp of the drag coefficient in
= 6 F 1 an array of cylinders for two different unit cells
10 51 ] that are expected to yield the same resistance to
5t 4 M ] flow. The solid line(b) is a cubic spline through
3l J the logarithm of the semianalytical results for the
6 o4 02 03 o4 o= . friction coefficients given in Refl46].
® 0 010203 04 0506 07 0.8
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(a) (b)

for the two finest grid€13 grid cells and 6 grid cells across ~ The mean sedimentation velocity, is measured in ex-
the gap is about 0.04. Table | summarizes the numericalperiments either as the velocity with which the upper front of
results for the rotational drag in the cylinder array for whichthe particle rich phase settles or, when single particle veloci-

we did not find values in the literature available to us. ties can be measured, as the mean velocity of the particle
phase. We will here adopt the latter method because we can-
V. SEDIMENTATION VELOCITY AS A FUNCTION not observe concentration fronts in a periodic simulation cell,

OF VOLUME FRACTION

N
The measurement of the sedimentation velocity of an en- V= 2 v-€,. (35
semble of many spheres as a function of the volume fraction =
constitutes a more realistic test than the two above. As in the
case of the fixed sphere arrangement in the two precedin@o obtain a dimensionless quantity, we refer the value of
tests we choose periodic boundary conditions on our samplg the velocityv, of a single falling particle in the same cell.
cell that now, however, contains many spheres whose posiFhis procedure takes some corrections due to finite cell size
tion and orientation can evolve dynamically without artificial and Reynolds number into account.
kinematic constraints. Gravitation acts as the driving force Figure 5 shows the results for the sedimentation velocity
via the density difference of particles and fluid. It was choseras a function of volume fraction for 2D and 3D. In 3D we

such that the Reynolds number on the particle scale of @ompare to the empirical law of Richardson and Zz14]
single sedimenting particle, in 3D,

velvg=(1—®)", (36)
a3
Re=3 —rlpp=p)9 (34  with n=5.0. We see good agreement to the experimental
97 findings in the viscous regime, which finds values rof

=5,...,6[50].

is about 0.1. In 2D, we assured by test simulations on single In 2D, the computation of a hindered settling function is a
falling discs that we are in the same range of Reynolds numsomewhat academic exercise, which we have done to juxta-
bers. pose the results to the 3D ones. We have fixed the Reynolds

As motivated in Sec. Il B, we use only one shell of tracersnumber for the single cylinder experiment to 0.1 on the par-
such that their hydrodynamic radius equals the geometriticle scale. We vary the area fraction, keeping all other pa-
radius of the template. Their number is taken to bea#/ h?, rameters constant. The mean settling velocity as a function
i.e., approximately equal to the number of fluid volume ele-of area fraction is then computed and normalized by the

ments on the surface of each patrticle. single particle value.
. . . . . 8 ———
3.5 Chod ——— ¥
7 L
3 L
6 L
25t 5 N
= N FIG. 4. Rotational friction coefficienty in a
2r 1 4r + 7 periodic arrangement afa) 3D spheres(b) 2D
’ a i cylinders. In 3D, the solid line is a cubic spline
1571 o through the numerical results of Lagiti9].
T 2t . 0¥ J
14 1 L . . 58 EE\ B E
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o 00102030405060708

0]
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TABLE I. Dimensionless resistance to rotation in an array of  Because the exact ratio of time spent in the fluid solver

cylinders at Re-a’wp/ 7=0.1. and in the coupling between the fluid and the particles de-
pends on various parameters, as, e.g., the meshhsittee

e Xr=Tr/4ma" N0 volume fraction®, and the number of tracers per particle,
0.0314 1.07 we just want to give an example for the computational cost
0.049 1.08 of a typical simulation done to calculate the sedimentation
0.0872 1.11 velocity of a suspension. In this particular case we used
0.125 1.15 65°~2.7x 10° fluid grid points anch=0.375. Thus the cell
0.155 1.2 was of a cube with edges of approximately 24 particle radii
0.196 1.27 length. A volume fraction ofb=0.1 corresponds therefore
0.256 1.36 to 331 particles with 93 tracers each, representing a total of
0.297 1.45 30 783 tracers.
0.349 1.58 One timestep of this system takes on average 2.6 s on a
0.415 1.78 Digital Personal Workstation 433au. The fluid solver needs
0.502 212 about 54% and the coupling code 35% of the time. The rest
0.62 3.08 was spent in miscellaneous statistical calculations, file in-
0.649 338 put/output, etc. The computation of particle interactions and
0.679 3.83 the trajectory integration requires less than 1% of the total
0.712 5.05 CPU time.

In other words, per timestep we spent about&1D 6 s
on each grid point, about 2010 ® s on each tracer and
about 50 10" ® s on each suspended particle. The memory
In 2D, the best fit of a Richardson-Zaki-like law yields an requirements sum up to 80 bytes per tracer and 120 bytes per
exponent ofn~3.8, substantially smaller than in 3D. The fluid grid point, including the data structures necessary for
effect of a lowern in 2D has been seen before using point-the implicit pressure update.
force approximations for the suspended parti¢&. How-
ever, the fit to such a power law is only motivated by the B. Comparison to other techniques
analogy to 3D and is in fact not convincing. Most of the
difference at larger volume fractions might be related to the
area fraction of the random loose disk packing in 2D As we have seen, the major challenge of direct suspension
(=~0.7) as compared to the smaller value of the random loossimulation is the proper representation of moving boundaries
sphere packing in 3D~ 0.6), where we expect the sedimen- in conjunction with numerical efficiency. Since particles are

0.747 7.9

1. Particle methods

tation velocity to drop to 052]. naturally described in a Lagrangian picture by co-moving
dynamical variables, one could justifiably ask why not go the
VI. SOME NUMERICAL QUESTIONS whole way and also use Lagrangian techniques for the fluid.

This is even more true as the Navier-Stokes equations result

as the continuum limit of the average motion of particle sys-
As described in Sec. Il our method requires the time steptems under quite general circumstanf&3]. The following

ping of the Navier-Stokes equation, the computation of thassues should be considered.

tracer movement with two interpolation steps for the fluid (1) The implementation of a pure Lagrangian technique is

velocity and force density, and the integration of the ordinarycleaner and more straightforward from a technical point. At

differential equations that describe the particle motion. Fothe same time, even very simple interparticle potenfedsin

this latter part, we use a linked-cell technique to reduce thé¢he dissipative particle dynamics meth@PD) or in direct

determination of the particle contact forces to@fN) prob-  simulations of, e.g., Lennard-Jones systems, require a lot

lem in the number of particles. The time spent in this part ofmore computational effort than the treatment of a grid node

the algorithm is only a few percent of the total computationin a Navier-Stokes solver. Our experience points to factors of

A. Performance Data

time and is negligible. 3—5 for structureless particles with linear spring interactions
1 Sim'ulation_ T4
Richardson Zakd W FIG. 5. Sedimentation velocity in a periodi-
08 | 08 | * . cally repeated cellfa) 3D, (b) 2D. The action of
gravity is counteracted by a constant pressure
E 06} 1 s o06f Ty ] gradient in the opposite direction, such that at all
= S + times the volume flux across a horizontal cut
0.4 1 1 04 + N 1 through the cell vanishes. The size of the 3D cell
+ is 12axX12aXx12a, that of the 2D cell
02r T 027 + 64ax 64a (h=0.25). Both simulations are per-
' . formed at a Reynolds number of approximately
0 0.1 0; 03 04 0 0 0:1 0:2 0:3 0.4 0.1 on the particle scaldor single particles fall-

o ing).
(a) (b)
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as compared to one Navier-Stokes node in 3D. 2. Fixed lattice based methods

(2) In general, it is not simple to predict the average ma- ¢ jnstead of using a particle technique one attempts to
terial properties of the particle phase from the properties o ye 5 continuum equation for the fluid phase, then one has
the interaction. One strong point of DPD with respect to¢qnsigerable freedom in the choice of solution methodology
other computational methods is the theoretical knowledggnd in the choice of the phenomenological parameters enter-
that has been collected in the recent past about how the ming the equation. Every numerical solution of a continuum
croscopic simulation parameters control the macroscopigquation requires a discretization of the computational do-
properties of the DPD liquid. However, as the discussionmain. If a high precision of the solution is required, the dis-
about modeling heat conduction within the DPD frameworkcretization is often taken on an unstructured grid and locally
has shown, such extensions require quite considerable corefined in the course of the solution process. The computa-
trivances and yet often material parameters of the pure susional drawbacks are the complex data structures required
pending phase have to be determireegosteriorifrom the  and the entrained computational cost.
simulation before the properties of the multiphase system In addition, since particle-fluid systems are characterized
can be determined. by moving boundary conditions, a remeshing of the compu-

(3) In particle codes, one often takes the route to modefational grid must occur when it is distorted to such an extent
larger or different particles by gluing together seveain- that the requ?rements of the, e.g., finite-element or finite-
stitueny particles of the type constituting the solvent phasevolume technique cannot longer be met. . o
[54]. Such an approach is convenient and efficient because jt AS We have outlined in the introduction of this paper, it is
normally does not require special measures to track the orfUS advantageous for the simulation of many-particle sys-

entation or the translation of the composite patrticle, becausE™S ano! if the d_emands on the_ precision of t_he sol_utlon_are
these can be reconstructed from the position of the glue ottoo h_|gh, to p|(_:k a non_adaptlve, regular g_rld to discretize
particles. Also, the interactions between the solvent and th er?r]orll(telnuljjsme ﬂttrj]'g (Tgtlii(’:l:t:gbltoz rr]nzl;?]h ?elcit::iceu;/ve ;a;i]ﬁi]'ccgt
constituents of the composite complex particles are often og Pie. que,

. ifference compressible or incompressible Navier-Stokes or
the same nature as those between the solvent particles a8l es solver. certain lattice gas automata, etc

can thus be compute.d in the same fashion without changing ¢ i, particle methods, certain issues should be kept in
the structure of the simulation program. mind.
~ However, this convenience comes at the price of comput- (1) perhaps the most problematic point is the implemen-
ing pair interactions be_tween the constituents to fix the shapeation of the no-slip conditions on the particle surfaces and
of the composite particles. In contrast, the marker-templatgne computation of the stresses. Concerning the matching of
coupling is asingle particle interaction. the particles to the grid, considerable freedom exists and in-
Of course, it is also quite possible to connect the constitucludes(a) (first ordey discretization of the particle surface on
ents of a solute particle to a shape preservpassibly mass- appropriate grid nodes or links of the respective technique
les9 rigid template as has been suggested here for the fluid22,36,57 (first ordep; (b) smoothly varying “interpola-
particle coupling. This approach seems to have been taken tion” coefficients to obtain a better, possibly second order
the DPD framework by a technique used in H&b)]. accurate estimate of the local influence of the boundary; for
(4) In general one must be aware of proper scale separaattice Boltzmann, cf. Ref[58], for finite differences Ref.
tion. For example, the discrete nature of the particle phasg37]-
introduces a “noise” term, which causes fluctuating motion ~ Similarly, boundary stresses must be evaluated. For lattice
of the suspended particles. This noise can be consideredBpltzmann, typically the knowledge of the change of the
feature if simulations at low Petleumbers shall be per- Velocity population associated with a boundary link or node
formed (as the Lennard-Jones simulations by Rapaf&s) is requ_|red, Wher_eas the stre_ss evaluation for finite d|ffe_r-
but must be eliminated in one way or the other in the limit ofénces involves direct evgluatlon of the stress_ tensor using
large Pecle numbers. Similarly, the discrete nature of thelocal pressure and velocity. Please note that in our method

solvent particles will cause breakdown of lubrication forcesON€ of the above steps is necessary, as the penalty forces on

when the solute particles approach surface-surface distanc%%e fluid include the stresses that are determined already in

closer than the mean free patknudsen lengthof the sol- € course of the fluid time step.

vent, as we have discussed in the context of lubrication forcg at(i?n ?T?gae;?rlgg r? Q e;hfot{)get:geﬂs%f gzea)?rgir:;i? f;géstgglllt;_
modeling in Sec. Il C for fixed grid methods. :

) i , i _ . mann described if22] requires time averagin¢pver two

(5) Particle codes with short-ranged interactions, similafjme steps of the torque to avoid instabilities. Nonstaggered
to explicit lattice-Boltzmann techniques, display a built-in finite gifference grids may show grid decoupling instabili-
compressibility of the solvent phase. The speed of sound ifjes. Also the general stability constraints from linear analy-
these simulations is often very small because the particlgjs of all explicit methods have to be considered, most nota-
interactions are taken to be rather soft in order to allap*  ply the Neumann diffusive criterion linking time step and
parently large time steps. In contrast, in continuum tech-square of the grid size.
nigues one has efficient methods to impose incompressibility (3) In most modern(explicit or implicity methods the
(solving a Laplace equation for the pressure equation in outomputational effort to perform one time step is proportional
case or to resort to penalty techniqugd2] that effectively  to the number of discretization “cells” that represent often a
replace the long-range Laplace solver by introducing an arset of variables describing the local configuration of the con-
tificially compressible material law. tinuum. For example, in our method, the explicit part of the
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Navier-Stokes time step and the implicit solution of the pres- C. Scope for improving the numerical scheme
sure equation both have this property. Likewise, lattice-
BoIt.zmann metho'ds require only a rewelghtllng C.)f Iocallywould like to address before we conclude.
available information to update the local velocity histogram.

. . In order to eliminate the purely numerical constaktnd
So, the computational effort differs due to the constant of we have tested an imolicit scheme that does not require
proportionality. An explicit lattice-Boltzmann technique can v P q

most directly be compared to a penalty technique for incomlracers, but instead associates in a quite similar fashion a

pressible flows[32], which are of similar computational forpe dir(_ec'gly with (_aach referen.ce point. Then we make ten-
complexity. tative fluid integration steps using these forces and compare

(4) The inclusion of energy conservation into a lattice- the resulting difference velocities of fluid and template at the

Boltzmann scheme, which is necessary to compute heat ﬂov{;,eference po_ints. The forces are now modified by_an additive
is to our knowledge still an open questifBo,60. There is term proportional to the velocity difference, but with the op-

no comparable difficulty when using directly discretized posite direction. We thus arrive at successively “better”

flux-conservation equations as, e.g., the Navier-Stokes equggrce distributions resulting in decreasing difference veloci-

tion for the momentum flux. ties. We have observed such a procedure to converge in
To summarize the above, in suspension physics there imulations with Re=1, but did not use it extensively due to

not one single simulation method that addresses the entife® additionhal comﬁut?tionﬁu effort. icit “venalty”
spectrum of possible conditions, with or without fluid inertia, DU€ to the small slip allowed in our explicit “penalty”
with or without particle inertia, low or high Pedleumbers, ~COUPling technique there occurs a small residual fluid motion
constitutive properties of the suspending fluid, constitutive"SIde the particle regions. As a result, a certain amount of
properties of the suspended phéserface tension, elasticity, energy is (_jlss_lpated even if the coupling of flu.|d and tracers
additional interactions particle geometry, etc. with flexibil- 1S ot dissipative. In 3D, we find that the fraction of energy
ity and efficiency. As we have stated in the Introduction, thediSSipated inside particle regions ranges from about 0.01 in

niche for the fixed grid method presented here is computaSUSPensions withib=0.05 up to about 0.1 in fo>=0.3.
tion at moderate or zero Reynolds number with likewiseCorrespondingly, one can observe changes in the sedimenta-

good to moderate accuracy depending on the price in prot-'on speed, which, due to these additional dissipation chan-
cessing time that one is willing to pay. In that respect it isnels, turn out to be smaller than expected. For more precise

very similar to the lattice-Boltzmann methofE9,22,23. measurements, this p_urely numerical dissi.pation must bg re-
duced by stiffer couplings and correspondingly smaller time

steps. More elaborate implicit techniques will also improve

the situation, because the relative motion inside particle do-
The Navier-Stokes describes the evolution of average vemains can be suppressed entirely.

locity and pressure and is thus naturally suitable for systems

There are some unresolved numerical questions that we

3. Brownian motion

at high Peclenumbers yvhere no informa_tion about thg dis—_ VII. CONCLUSION
crete nature of the fluid and the associated fluctuations is
required. We have presented a comparatively simple and physically

On the other extreme, molecular simulation captures alpppealing method to simulate particle suspensions. The ca-
fluctuating quantities as well as their spatial and temporaPabilities of the resulting algorithm have been assessed in 2D
correlations. In between these two extremes we find Brownand 3D by comparisons to single particle behavior and the
ian dynamics idea$18,38—incorporating thermal fluctua- collective motion in suspensions. Two major approximations
tions into the particle equations of motions—and fluctuatinghave been made that influence the precision of the algorithm:
hydrodynamicgcf. [30], Ch. XVII); both neglect spatial and (i) the Navier-Stokes equation has been solved on a regular
temporal correlations of the thermal driving forces. grid, thus trading computational speed for the possibility to

In fluctuating hydrodynamics stress fluctuations (x) accurately model geomet_rlca! detal'ls; lubrication forces will
are built into the fluid equations and their statistical proper10t be resolved by the fluid simulation, when particles come

ties are found by considering ideas from nonequilibriumcloser than the mesh spacir(@) the no-slip boundary con-
thermodynamic$30], ditions on the particle surfaces are realized by constraint

forces that control the fluid motion at the positions of the
particles. This representation implies that the particle sur-
(Ti(X1,t1) o{m(X2,t2)) = 2Kg T 7( iy Skm T Sim kr) faces acquire a certain degree of “fuzziness,” but allows a
straightforward computation of stresses and a continuous
XX =xp) (i =t2),  (37) reprgsentation of thepparticle motion.

The method is sufficiently accurate to reproduce transla-
where kg is Boltzmann’s constant and the temperature. tional and rotational drag in cylinder and sphere arrays with
From this expression, we can find for any given discretizaerrors below 1% and to makgquantitative predictions of
tion a finite stress vector to be included on the right-handsuspension behavior in a wide range of volume fractions for
side of the Navier-Stokes equati¢h). We thus see that the relevant system sizes. In general, the limitations, strengths,
description of fluid thermal fluctuations can quite naturallyand performance datavhere known are very similar to
be included in our numerical framework and might be thethose of other fixed grid methods, as, e.g., the lattice-
subject of a future study. It should be mentioned here that ilBoltzmann simulations of suspensidi2®,23. Our approach
the context of lattice-Boltzmann methods similar ideas haveherefore presents another independent way to test analytical
been used to include thermal fluctuatid@®,61,623. results for viscous suspension behavior and to extend these
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results into the regime where both particle and liquid inertiawhere the time derivative must take the time dependence of
become important. It is possible to incorporate more comx{j into account. If the external stresses remain bounded, this
plex particle shapes, thermal fluctuations or to use the maorm guarantees that and the rate of change afon 9€;(t)
chinery of implicit numerical techniques to overcome someremain bounded and approach zerokaand y increase. By

of the apparent limitations, in particular the need for veryconstruction;(t) is the union ofx+ u;(x) with x being one
short time steps as Re approaches 0. As we work with dissf the points constituting the template at tinélhe incom-
cretized continuum equations, the method easily accommgsressibility of the flow guarantees that the volumeft) is
dates different descriptions of the fluid phase, e.g., by théime invariant and equal¥;, the volume of the template.
Stokes equatiof63] or more exotic rheological fluid prop-

erties(e.g.,[64]). 2. Conserved quantities

The last argument shows that the sum of the mass of fluid
ACKNOWLEDGMENTS in Q;(t) and the template masd! is constant and equal to
We thank Georg Barthelmes, George Bossis, Willi Brand-the mass of the physical particle. .
The total change of momentum of the coupled system is

stadter, Hans W. Buggisch, Fraois Feuillebois, Roland : ) . . .
Glowinski, EIizabethg%uazzelli%m Hans Herrmann, JohnObt"’llnecj by integratingAl) over {;(t), which results in

Hinch, Esa Kuusela, Stefan Luding, Matthias IMt, Chris- _

tian Manwart, Gerald Ristow, Bernd Wachmann, and Chris- Pl= Sg T-dA+F!, (A4)

tian Wrobel for several motivating and enlightening discus- 9 (1)

sions and for contributions to the simulation code. K.H.\\here we have used Gauss's theorem to convert the integral
thanks the Deutsche Forschungsgemeinschaft, SFB 404, fg(er the divergence of the stress tensor into a surface inte-
financial support. We have profited from generous allotmentg 5 The vectors andF! denote the total fluid momentum

of computer time and access to the computer centers-in Ju Q,(t) and the sum of the constraint forces, respectively.

lich and Stuttgart. By construction,F!+FIP=0. Up to a degree of accuracy
determined by~ 1/k and~ 1/y the center of mass velocity of

APPENDIX: SOME FURTHER REMARKS the fluid in Q;(t) coincides with the template centexs.
1. On a continuum picture Thus, for the sum of EqsiA4) and (A2) we recover the

i _equation of motion for the center of mass of a rigid partkele
The arguments in Sec. IIB can be made more precise ify massM, =M+ pV; in the flow,

we try to understand the procedure described above as the

discretized version of a continuum problem. Let us state the .

momentum equation of the fluid) in the form Mix;= fﬁHPT‘dA—(Mi—PVt)Qez- (AS5)
va:V'T+f, (A1) To see what happens for the angula_r momentum b_alance,
Dt we form the vector products of E¢A1) with a vector point-

ing from the template center of massto x before we per-
whereT denotes the stress tensor of the fluid. Its divergencéorm the integration ovef);(t), i.e.,
is the expression-Vp+ V2 for Newtonian fluids used D
above. For the rigid particle template, we have f dX(X—Xi)X—pv=f dx(x—x)XV-T
(1) Dt 2i(0)
Miv;=FPP+FP—(M;—pV)ge,, A2
iUi i r—(Mj—pVi)ge, (A2) . fﬂ dx(x—x) Xf. (A6)
i
with FIP as the force acting from the fluid on the template o ©
(determined by summation of the constraint fojcé® the ~ The left-hand side is the total change of angular momentum
force due to the presence of other particles and the terraf the fluidL] and we can employ the symmetry of the stress
proportional tog represents weight and buoyancy. tensor to convert the first term on the right-hand side to a
Let the region of fluid covered by templateat timet  surface integral,

=0 be denoted b¥),;(0). Continuous time evolution accord-
ing to Eq. (A1) will deform this region into();(t). The po- |'_=: jE (X—Xi)XdA'T+7Ji . (A7)
sitions of the tracers track this deformation and thus the aQ4(1)
maximum |&;| measures the deviation d@;(t) from the
original particle shape. It might be intuitive to think of the
marker elongations;; as representative of discrete ampli-
tudes of a continuous displacement fieldx) defined on
templatei, related to the position] by xj'=xi; +u;(xi;).
The constraint fluid force densify for particlei is related to
u; as implied by Eq(14), i.e.,

As in the case of linear momentum, we also consider the
corresponding equation for the template. The contribution to

the torque of the gravitational forces vanishes, and the con-
tribution of the constraint forces cancedsby construction

up to an accuracy determined by the maximum deviation of

a tracer from a reference point. To the same accuracy, the
change of angular momentum of the fluid can be written as
m ; ; the moment of inertia times the change of angular velocity,

fi(xi)) = —kui(xj;) — 2y(d/dt)ui(x;;), (A3)  which equals that of the template, again to the degree per-
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mitted by the tracer force law. We thus recover approxi- V2p=V.-f-V.-G. (A11)
mately the equation of angular motion of a rigid partielen . o S

its rate of changeonly determined up to the gradien¥ ¢
: of a scalar. In general, such contributions influence the pres-
liw= é (X—x)) X dA-T. (A8)  sure distribution(A11) and thus the motion. If, howeves
® fulfills additional conditions, i.e.¢po=0 on dQ;, it will not
have consequences for the motion or in the exterid2 af If
3. Uniqueness we extend¢ over the whole domain such th&t¢ exists
The distribution of the constraint forces in the particle/ €verywhere andy=0 in the exterior of all};, thenp+ ¢
template region is not uniquely determined by demandin olves(All) for f—f+V ¢. The scala_kﬁ.does not co_ntrlbute
that the fluid motion should match the rigid body motion of 1© theé momentum flux through();, if its surface integral
the particle. Also, the motion of the system as a whole doe§#0,dA® vanishes. Likewise, the contribution to the torque,
not uniquely fixf. The prescription given in the text selects Nere with respect to the origin, but similarly for any refer-
one of the possible distributions, but leaves some “gaug&nce Point, Is
freedom,” which is very similar to the indeterminate of
forces in static networks of rigid elements. Also here, the j dxxx(ngS):J dx¢V><x—f dxV X (x¢)
rigid template can “absorb” inner stress consequences on @ Qi Qi
the motion.
If we write the Navier-Stokes equations in the form, =— jEQ dAX (x¢) (A12)
Y

=Vp=Glo), (A9) and vanishes if the surface integral vanishes. This is the case

whereG collects the terms depending on spatial and tempoln particular, if =0 on d(}; as stated above.

ral derivatives ofv, then from taking curl and divergence, ~ Since thef acting on the fluid has a reaction force of
we find opposite sign on the particle template, these conditions guar-

antee also vanishing force and torque contributions on the
VXf=VXG, (A10) template as a whole.
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