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Navier-Stokes simulation with constraint forces: Finite-difference method for particle-laden flows
and complex geometries

Kai Höfler and Stefan Schwarzer
Institut für Computeranwendungen 1, Universita¨t Stuttgart, 70569 Stuttgart, Germany

~Received 13 September 1999!

Building on an idea of Fogelson and Peskin@J. Comput. Phys.79, 50 ~1988!# we describe the implemen-
tation and verification of a simulation technique for systems of non-Brownian particles in fluids at Reynolds
numbers up to about 20 on the particle scale. This direct simulation technique fills a gap between simulations
in the viscous regime and high-Reynolds-number modeling. It also combines sufficient computational accuracy
with numerical efficiency and allows studies of several thousand, in principle arbitrarily shaped, extended and
hydrodynamically interacting particles on regular work stations. We verify the algorithm in two and three
dimensions for~i! single falling particles and~ii ! a fluid flowing through a bed of fixed spheres. In the context
of sedimentation we compute the volume fraction dependence of the mean sedimentation velocity. The results
are compared with experimental and other numerical results both in the viscous and inertial regime and we find
very satisfactory agreement.

PACS number~s!: 02.70.2c, 47.55.Kf, 83.10.Lk
f
c
u

en
ne
in
d

ia
i

u
st
o

a
er
o

th
he
s
ly
n
ra
o

’’
et
d

m
io
te
ec

o
a

as

er,
be-
m-
en-
ous

rnal

use

or-
ic-
are

ech-
pu-
is

low
tion
da-
eed
ses

eld
e
rix.
the
in-
o be

l
es

to
d to
e
ted

za-
I. INTRODUCTION

Many applications in chemical engineering@1,2#, fluid
mechanics@3#, geology@4#, and biology involve systems o
particles immersed in a liquid or gas flow. Examples of su
systems are sedimentation processes, gas-solid or liq
solid fluidized beds, blood, mixing processes when sedim
laden rivers enter lakes or the sea, powder transport by p
matic conveying, the ticking of hour glasses, flocculation
suspensions, and many more. The long-ranged hydro
namic interactions mediated by the fluid in the interstit
voids of a particulate, granular system greatly change
physical behavior as compared to the ‘‘dry’’ state witho
medium, which is characterized by the short-ranged, mo
viscoelastic forces that act when single grains come into c
tact.

Because of its great importance, the problem has been
is still attracting considerable attention on both the exp
mental and theoretical level. As is known from the physics
liquids on the molecular scale@5#, long-time tails will arise
in the correlation functions of conserved currents as, e.g.,
liquid’s velocity field, and the long-range character of t
hydrodynamic interaction necessitates very careful studie
the system size dependence of the results. Short of ana
solutions of the problem, the challenge therefore is to fi
simulation techniques that are on the one hand accu
enough to allow reliable predictions, but on the other hand
sufficient numerical efficiency to permit studies on ‘‘large
systems in terms of particle numbers and confining geom
and ‘‘long’’ times with respect to the intrinsic velocities an
length scales.

Some techniques, notably finite element or finite volu
techniques@6–10#, can reproduce very precisely the behav
of a small number of particles, but they are too compu
intensive to simulate in three dimensions inherently coll
tive, many-particle effects as, for example, the influence
the presence of a fluid phase on convection in granular
semblies, the bubbling in fluidized beds, or instabilities
PRE 611063-651X/2000/61~6!/7146~15!/$15.00
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sociated with gravitational overturning. Recently, howev
in two dimensions successful simulations of rheological
havior @9,10# have been performed. The most time consu
ing part of these algorithms is the recurrent necessity to g
erate new, geometry adapted grids because continu
distortion of the initial grid will quickly result in very elon-
gated elements or even overlaps with parts of the inte
boundary~a particle!.

Other techniques can deal with many particles, but
phenomenological expressions@11–14# for the coupling be-
tween particles and fluid that are incapable of rendering c
rectly single particle behavior and limit severely the pred
tive power of a method when new parameter ranges
explored. These include also the averaged equation t
niques and the Euler-Lagrangian formulations that are po
lar in turbulent flow simulations, where direct simulation
prohibitively expensive@11,15,16#.

Several techniques are based on the assumption of
Reynolds numbers, which turns the Navier-Stokes equa
into the linear Stokes equation. Then one exploits the fun
mental solution of the Stokes equation to eliminate the n
to compute the solution everywhere in space, but rather u
a boundary element formulation@17# or a multipole expan-
sion for the stress on the particle surface@18–20# possibly
together with specific precautions for the divergent near-fi
lubrication forces @21#. Naive implementations of thes
methods require the storage and inversion of a full mat
Only rather complex clustering techniques that exploit
decay of the influence of one particle on the other with
creasing distance between the two can reduce this effort t
proportional to the number of particles~apart from logarith-
mic corrections!. However, no efficient boundary integra
technique is known to us for the nonlinear Navier-Stok
problem.

The most powerful techniques in terms of the ability
deal with large systems of the described kind have prove
be those that use afixed nonadaptive grid to represent th
fluid flow. The particle boundaries can then be represen
only approximately as permitted by the regular discreti
7146 ©2000 The American Physical Society
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tion. Such techniques have been successfully used by L
in conjunction with a lattice-Boltzmann flow solver@22,23#
or in Ref. @24# with a more conventional finite differenc
Navier-Stokes solver.

The method that we propose here follows the immer
boundary technique proposed by Fogelson and Peskin@25#.
Similar ideas are also employed in the fictitious dom
method developed by Glowinski and co-workers@26–28#
and earlier domain embedding methods@29# about which we
learned only after most of this work had been complet
The basic idea of these two approaches is to use the s
constantgrid for the resolution of the fluid flow at all time
and represent the particles not as boundary conditions to
flow, but by a volume force term or Lagrange multipliers
the Navier-Stokes equation. The fluid equation can then
solved by very fast specialized Fourier or multigrid tec
niques that exploit the regular grid structure.

After an introduction into the simulation method in Sec.
we will discuss several test cases. First, we will consi
flow through static or rotating periodic arrays of cylinde
and disks, where literature results for the drag and the re
tance to rotation in the linear regime are available~Sec. IV!.
In dynamical simulations for many sedimenting spheres
reproduce the experimental findings in three dimensions
the hindered settling function~Sec. V!.

II. NUMERICAL METHOD

We now describe the essentials of our technique to t
large numbers of rigid particles moving in a fluid model
by the Navier-Stokes equations. The problem can be q
cleanly separated into three parts:~i! the fluid equations,~ii !
the motion of the suspended particles, and~iii ! their mutual
coupling. Most of the technical details of the first two su
problems can be found in the literature and we will here g
only the most important facts for completeness. The way
coupling these two phases is the heart of this paper and
be addressed in more detail.

A. Liquid

Our starting points are the Navier-Stokes equations
scribing the motion of a Newtonian fluid with inertia,

r
]v
]t

1r~v•“ !v52“p1h¹2v1f. ~1!

Herer andh denote the fluid density and viscosity,v andp
its velocity and pressure, respectively, andf a volume force
term. As usual@30#, we will not consider the time indepen
dent gravity contribution tof explicitly, but cancel it agains
the hydrostatic pressure and omit both terms from Eq.~1!.
The corresponding buoyancy forces will be taken into
count explicitly in the equations of motion of the suspend
particles. However, we will require a fluctuating compone
of f as an essential ingredient of our simulation techniq
~see below!, so that the volume force term must be left in E
~1!. For the following, we will consider the liquid as incom
pressible, i.e.,“•v50, and choose the solution method f
the fluid equation accordingly. Incompressibility is not a ne
essary condition for the coupling technique.
dd
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We use a staggered marker and cell~MAC! mesh as the
base for a second order spatial finite-difference discretiza
of ~1!, which simplifies considerably the treatment of th
pressure boundary conditions@31#. Details can be found
e.g., in Ref.@32#, Chap. 6. The incompressibility constraint
satisfied via an explicit operator-splitting, fractional-tim
step method, described in detail in the same reference. In
framework, one introduces an additional provisional ‘‘velo
ity’’ v* without physical meaningin order to split the one
velocity equation~1! into two,

r
v* 2vn

Dt
52p~vn

•“ !vn1h¹2vn1fn, ~2!

r
vn112v*

Dt
52“pn11. ~3!

Here, the superscriptsn and n11, respectively, denote th
values att5nDt andt5(n11)Dt. This system of two equa
tions is mathematically equivalent to the single equation t
we started out with.

An equation for the pressure variable is obtained from E
~3! by taking the divergence and using that the divergence
the updated velocity fieldvn11 must vanish,

¹2pn115
r

Dt
“•v* . ~4!

The steps above are often considered to be a projectio
Eqs. ~2!,~3! onto a divergence-free subspace of the veloc
vector field—the pressure equation is used to remove
‘‘perpendicular’’ velocity components contained inv* —and
thus the term ‘‘projection method’’ is often employed in th
context. The exact distribution of terms to the split equatio
is not unique; in principle, some of the velocity terms on t
right-hand side of~2! could appear in~3!. Consequently, the
unphysical temporary fieldv* would take different values
without affectingvn11.

The fluid equations must be solved subject to the bou
ary and initial conditions implied by the confining geometr
in our case a quadrilateral volume, which is either~i! limited
by fixed walls on which no-slip conditions hold or~ii ! peri-
odically repeated in space. To obtain the boundary con
tions for Eq.~4!, we project expression~3! onto the bound-
ary’s outward pointing normaln,

r

Dt
~v'

n112v'
* !52~n•“ !pn11. ~5!

Let us now consider the spatially discretized forms of Eq.~4!
and ~5! in the vicinity of a boundary, as, e.g., displayed
Fig. 1,

1

h S p1,m
n112p0,m

n11

h
2

p0,m
n112p21,m

n11

h D 1
1

h S p0,m11
n11 2p0,m

n11

h

2
p0,m

n112p0,m21
n11

h D
5

r

Dt S vx;0,m* 2vx;G*

h
1

vy;0,m* 2vy;0,m21*

h D ~6!
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and

1

h
~p0,m

n112p21,m
n11 !52

r

Dt
~vx;G

n112vx;G* !. ~7!

Here,h is the lattice spacing of the grid used for the discre
zation and the suffixG refers to values on the boundary.

If we now substitute the expression (p0,m
n112p21,m

n11 )/h
from Eq. ~7! in ~6!, we see that the the value ofvx;G* cancels
from both sides of the equation. In other words, the solut
of the pressure equation does not depend on the specific
ues ofvx;G* on the boundary. For computational convenien
we can thus in particular demand that the left-hand side
the equation specifying the boundary conditions shall van
i.e., vx;G

n115vx;G* , corresponding to vanishing normal deriv
tives of the pressure across the boundary. Thus, we do
need to know these two values when we solve the pres
equation.

Also, the incompressibility guarantees that we satisfy
integrability conditions for the pressure equation with Ne
mann conditions:

05 R dA•“p5
! r

DtE dx“•v* 5
r
Dt R dAn•v*

5
r
Dt R dAn•vn1150. ~8!

The actual solution of the pressure equation is effected
a fast multigrid scheme that exploits the regularity of the g
used for discretization. The general idea@33# and details for
two dimensions~2D! @13,34# are given in the literature; the
three-dimensional~3D! implementation is described in@35#.
The hierarchical structure of a multigrid scheme ensures
the time to solve the pressure equation is asymptotically p
portional to the number of grid points, a highly desirab
feature for large-scale simulations. Since no transform i

FIG. 1. Staggered marker and cell~MAC! mesh in the vicinity
of a vertical boundary. The pressurep0,m discretization is centered
in cell (0,m), the velocities are shifted by half the cell size to t
right vx;0,m and upwardvy;0,m , respectively. The evaluation of th
Laplace operator applied top involves one leg on which the pres
sure derivative across the boundary needs to be known. This de
tive can be replaced by a term that involves both the unkno
velocity vG* on the boundary and the updated velocityvx;21,m

n11 on the
boundary at the same location~not shown!.
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abstract spaces is necessary as, e.g., in Fourier techni
multigrid is memory efficient and also well suited for para
lelization by domain composition, as described, e.g., in@36#.

One fluid time step hence consists of first computing
provisional velocityv* from Eq. ~2!, which provides the
information for the source terms of the pressure Eq.~4!. Next
the Poisson problem is solved with Neumann conditio
n•“p50 on the boundary where applicable, i.e., for t
nonperiodic directions. For uniqueness, we demand that
average pressure is zero. Finally, the pressure values are
stituted in Eq.~3! to calculate the updated velocitiesvn11.

A local and linear Neumann stability analysis of the n
merical scheme neglecting the coupling of the velocity eq
tions by the pressure term leads to the condition

1.
h2

r2h4 H Frh2

h
12DtS d2(

i 51

d

cos~kih!D G2

1S rh

h
Dt(

i 51

d

v i sin~kih!D 2J ~9!

for linear stability of a standing wave perturbation with wa
numberki ; the v i are the local fluid velocity components
The inequality~9! must be satisfied at all discretization nod
and for all wave numberski . We obtain two simplerneces-
sary conditions from~9! by demanding that the inequalit
holds for the two squares separately. In the first, we
cos(kih)521 and find

Dt,
1

2d

rh2

h
, ~10!

which is familiar from discretizations of the diffusion equ
tion. Now we define the maximum value of all velocitie
components over all space,vmax5maxuvi(x)u, and set
sin(kih)51 in the second square. Then it follows that

Dt,
h

dvmax
, ~11!

a term due to the presence of the convective nonlinearity
the Navier-Stokes equations.

B. Particle-fluid coupling

The most challenging part of the problem is the treatm
of the no-slip boundary condition for the fluid on the partic
surfaces. We here build on an idea that has been applie
Fogelson and Peskin@25# to the case of viscous flow. Instea
of implementing the no-slip boundary conditions by modif
ing coefficients of the discretized system@37# or employing
grid adaptivity as in finite-volume or finite-element tec
niques, we use the body-force term in the Navier-Sto
equations to implement constraints acting on the fluid s
as to mimic the presence of rigid particles at appropri
regions in the flow. These regions will move as the physi
particles will and they will comprise sufficiently many gri
points in order to represent the geometry of the phys
particles. Since the lattice points are spatially fixed, but
particles move, the association of grid points to particle r
resenting regions will change in the course of the simulati
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In more detail, the computation of the motion of a phy
cal particlei is decomposed into two contributions. A mo
ing liquid volume elementVi of the same shape as the pa
ticle constitutes the first contribution. Let us for the mome
assume that we knew how to move this element rigi
within the rest of the fluid, just as if it were a solid particle
fluid densityr f with massMi

l5Vir f and moment of inertia
I i

l5cMi
la2. For simplicity we assume that we deal with dis

or spheres so thatI is represented by a scalar,a being the
particle radius andc51/2 or 2/5 in two and three dimen
sions, respectively. As will become clear, our approach is
limited to these cases.

The second contribution is a particle template that a
has the shape of the rigid physical particle, but it carries
mass Mi

t , and the moment of inertiaI i
t . These values

complement those of the fluid contribution and sum to
values of the physical particlei, i.e., Mi5Mi

l1Mi
t and I i

5I i
l1I i

t . The particle template is rigid by definition. We lik
to think of the template motion as representing the part
motion.

To make the general idea work, we must now descr
how to achieve a rigid coupling between the template and
associated fluid element. To this end, we first introduc
numberni of reference positionsr i j

r , j 51, . . . ,ni distrib-
uted over the volume of templatei. The r i j

r are vectors rela-
tive to the center of mass of templatei. The associated spatia
coordinatesxi j

r change only due to the movement and ro
tion of the rigid template,

xi j
r ~ t !5xi~ t !1Oi~ t !•r i j

r , ~12!

whereOi describes the instantaneous orientation andxi is the
position of the template. In the 2D case, we obtainOi by
forming the rotation matrix associated with the one angu
degree of freedom of the particle, in 3D we use quaterni
@38# to represent the particle orientation and to compute
rotation matrixOi .

Associated with each reference position is a tra
xi j

m , j 51, . . . ,ni which tracks the motion of the fluid,

ẋi j
m5v~xi j

m!. ~13!

Here and in the following we use dots to indicate the tim
derivative along the trajectories. Please note that the tra
are passively convected with the fluid and do not by the
selves constitute new degrees of freedom.

The comparison of the location of the tracer to the po
tion of its reference point allows us to judge whether t
fluid volume Vi has changed shape or taken another tra
tory as the associated template. The condition of rigid c
pling translates into zero offset and zero difference veloc
of the tracer and the reference point position. The den
and location of the tracers should in general be chosen s
that the number of degrees of freedom of the fluid that n
to be controlled should equal the controlling number of tr
ers ~please note the pertinent comments at the end of
section!. That is to say that each tracer should control a fl
volume ofhd, d being the spatial dimension.

Now we obtain an explicit numerical scheme for the co
putation of the force densityf constraining the fluid motion
as follows. Whenever between tracer and reference pos
-
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there occurs a nonvanishing difference in positionji j 5xi j
m

2xi j
r or in velocity j̇i j , we generate an additive contributio

f i j to the force density in the fluid that tends to drive t
liquid and thus the tracer back to the reference position
to diminish their relative velocity. One possible choice is

f i j ~x!5~2kji j 22g j̇i j !d~x2xi j
m!, ~14!

wherek is a ‘‘spring’’ constant,g a damping constant, an
d(x) the Dirac distribution. In our explicit technique,k must
be chosen large enough so thatuj i j u!h holds at all times.
Similarly, the dissipation introduced by the velocity
proportional friction controlled byg must be small enough
to be negligible against the external physical sources of
ergy dissipation. The force densityf in the fluid equation~1!
is the sum over all particlesi and reference pointsj of f i j . A
slight modification is needed in the case of periodic bou
ary conditions, which will be discussed separately in S
II D.

We must regularize thed functions in the first part of the
sum ~14! by, e.g., linearly or quadratically weighted, inte
polation to the nearest grid points. For example, in 2D,d(x
2x8) is ‘‘distributed’’ linearly to the four grid points closes
to x8 with weights wDk,D l according to the perpendicula
distances ofx85(x8,y8) from the discretization grid poin
(xkl ,ykl) just below to the left. The indicesk andl shall here
denote grid indices as used in Fig. 1

w005
1

h2 S 12
ux82xklu

h D S 12
uy82yklu

h D ,

w105
1

h2

ux82xklu
h S 12

uy82yklu
h D ,

w015
1

h2 S 12
ux82xklu

h D uy82yklu
h

,

w115
1

h2

ux82xklu
h

uy82xklu
h

.

Please note that due to the use of a staggered grid,
(xi ,yi) will in general be different for different componen
of the force.

The prefactor 1/h2 present in the expression for th
weights above ensures that the spatial integral over this
resentation yields 1@14#. Generalization of this formula to
quadratic ornth order weights as well as general dimensio
d is straightforward,

wD l 1 , . . . ,D l d
(n) 5

1

hd)i 51

d F d0D l iS 12
uxi82xi ; l 1 , . . . ,l d

un

hn D
1d1D l i

uxi82xi ; l 1 , . . . ,l d
un

hn G . ~15!

Here, the indexi refers to the vector component and th
indices l i the location of the closest grid point whose po
tion components are all just smaller than those ofx8. Larger
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n tend to concentrate the weight in the grid point closes
x8. The application of such higher order weights has adv
tages when the reference points are placed up to exactly
radius of the particle.

Fogelson, Peskin@25# and Stockie@39# use smoother,
longer ranged kernels, involving exponentials and trigo
metric functions that~i! are numerically more expensive t
evaluate and~ii ! do not seem to accelerate convergence
the pressure solution even if the source terms are smoo
We consider as the advantage of these kernels their cap
ity to obtain a grid independent limit for the force dens
and thus the emerging motion if the number of control poi
is fixed andh→0.

In order to estimate the largest possiblek at a given time
stepDt we consider a system of coupled masses. The va
of k together with the reduced mass

M5
Mi

tDM f

Mi
t1DM f

~16!

of the particle templateMi
t and the fluid elementDM f

5r fh
d at xi j

r introduces a time scale of oscillation,

Tt5
1

2p
AM

nik
, ~17!

which must be resolved by the integration, i.e.,Dt!Tt. Only
for these sufficiently smallDt, we can guarantee stability an
numerical correctness of the particle integration.

For many computations we have adjustedk so that the
above inequality is satisfied whenDt is of the order of the
diffusive stability limit ~10! imposed by the fluid integration
i.e.,

Dt,
1

2d

rh2

h
. ~18!

Thus,k can be determined from

k5const3
M

niDt2
. ~19!

In our tests that we have performed, stability was alwa
achieved ifDt,1/20/Tt.

In 2D simulations we have had good experiences withg
values close to aperiodic damping of the partic
template—in this case the assumption that the tracer p
tions are fixed yieldsg5AkMt . This has often eliminated
small, but unphysical oscillations of the particles, in partic
lar in the beginning of the simulations. These oscillations
not indicate instabilities of the numerical scheme, but refl
the oscillatory time scale resulting from template mass
coupling constantk.

In 3D simulations, probably due to the larger number
control points,g50 seems to suffice. Our empirical expe
ences concerning the admissible maximum number of tra
are not conclusive. Whereas in dynamical simulations w
moving particles it seems often possible to increase the n
ber beyond that implied by the number of grid cells with
one particle volume, in low-Reynolds-number computatio
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with static particle arrangements, we often need to decre
the tracer density to be slightly below this limit to avo
instabilities.

Since the strongest gradients of the stress occur on
particle surface, computational efficiency suggests to red
the tracer density in the particle interior. Moreover, in t
viscous regime, the inertial effects due to the fluid in t
interior of each particle domain are negligible. Interior tra
ers are only necessary to resolve changes in the angula
locity accurately. These will be important if significan
changes in the angular velocity occur on time scales sho
than those for the diffusion of vorticity across the partic
diameter, i.e., when we leave the regime of validity of t
quasistatic approximation. For particle Reynolds numbers
about 1 and sufficiently small concentrationsF&0.2, where
it follows from the work of Goldmanet al. @40# that effects
from the rotational motion in viscous suspensions are ge
ally weak, we consider the neglect of interior tracers jus
fied.

C. Particle motion

The constraint force distribution that we have introduc
to guarantee quasirigid fluid motion must be cancelled
opposite equal terms acting on the particle templates so
only external forces remain in the momentum balance of
combined system. This cancellation is quite natura
achieved by applying Newton’s second law to the ‘‘spring
associated with each reference-point-tracer pair. That is
say that

F i j 5kji j 12g j̇i j ~20!

is the force acting on particle templatei at the location of
reference pointj. Similarly, the angular momentum balanc
will be satisfied when we take the torque to be

ti j 5~xi j
r 2xi !3F i j ~21!

with respect to the template center of massxi .
As further contributions single particle forces, gravity a

buoyancy need to be taken into account,

F i
s52Migez1rVigez5~r2rp!Vigez , ~22!

where we have usedrp for the particle density andVi for its
volume ~or area in 2D!.

We now need to address the question of direct partic
particle interactions. In most non-Brownian suspensio
these are negligible compared to the hydrodynamic effect
short distances between particles. For example, the appr
of two particles is very strongly damped by the hydrod
namical lubrication forces between the two surfaces~see,
e.g.,@41#!. Numerically these forces will be strongly unde
estimated when the distance between two particles beco
of the order of the lattice spacing. It is clear that all fixed g
techniques~including lattice Boltzmann! show this short-
coming, but even off-lattice particle methods such as dis
pative particle dynamics~DPD! similarly underestimate the
lubrication forces because the model intrinsic mean free p
sets a length scale below which viscous stresses canno
properly represented.
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We model surface contacts between particles—and s
at the same time the numerical problems arising from p
sible large particle overlaps—by introducing a pairwise
pulsive force that acts when the centers of two particles co
closer than the sum of their radiiai1ak . Let the overlap
between particlesi and k be defined aszik5(ai1ak2uxi
2xku)eik , with eik denoting the unit vector pointing fromk
to i. Then we take the force oni to be

F ik
p 52kpzik . ~23!

In a similar manner, one may consider explicit interacti
terms to restore the correct forces on the particles at s
distances'h @14,23#. However, our results indicate that i
the studied concentration range the lubrication effects
recovered to a sufficient degree by our numerics. At incre
ing concentrations, such corrections will be of crucial imp
tance@42#.

The total forceF i on particle templatei is the sumF i

5F i
s1(kF ik

p 1( jF i j . Apart from the fluid reaction force
F i j , which also describes the ‘‘unphysical’’ constrai
forces,~cf. Sec. II B!, these terms are those that we exp
for a ‘‘physical’’ particle to be present.

A Gear-predictor-corrector integrator of fourth order@34#
serves to integrate the equations of motion for the transla
of the template,

ẍi5F i /Mi . ~24!

For the quaternion formulation of the rotation, we refer t
reader to Ref.@38#.

To briefly summarize the above, we would like to stre
again that the modeling of a rigid, heavy particle requires
~i! ‘‘freezing’’ of the region of fluid occupying the space o
the particle and~ii ! the coupling of this region to a particl
template whose dynamical properties supplement thos
the fluid in such a fashion that the coupled system beha
just as the modeled particle would. The arguments above
be put in a slightly more stringent mathematical context,
which we refer the reader to the Appendix of this paper.

D. Treatment of periodic systems and driving

In order to minimize effects from rigid walls it is ofte
convenient to study periodically repeated cells. Periodicity
the following will always mean periodicityin spaceonly.
One should be aware, however, that the long-range natu
the hydrodynamic interactions might cause some artifact
this case@43#, mainly increasing autocorrelation times ass
ciated with the vertical motion.

Gravity, or an imposed driving pressure gradient sin
out one specific direction, say, the vertical. Whereas perio
boundary conditions pose no additional difficulties for t
solution of the fluid and particle equationsperpendicularto
that direction, we need to specify more precisely what
mean by periodicityparallel to it. We will here consider the
case of driving the system gravitationally via the dens
difference of particles and fluid.

For the fluid velocity field we require periodicity of th
solution across the horizontal system boundary inz direction,
i.e., v(x1NLzez)5v(x), whereN is an arbitrary integer and
Lz the size of the system inz direction. Similarly, the particle
ve
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positions and associated velocities can be periodically
tended.

If we consider the case of a section of a vertically po
tioned tube, then we can also demand the pressure to
function periodic with periodLzez . Due to the periodicity of
f arising from the~periodic! particle motion and the periodic
velocity field, the source term of the pressure equation is a
periodic, the integrability conditions are satisfied and we o
tain a periodic solution for the pressure which is unique up
a constant, which we choose so that the average pres
vanishes. Physically, this system will evolve towards a s
tistically stationary state in which on average the visco
forces originating at the walls balance the gravitational dr
ing.

In the case of sedimenting systems, it is however m
natural to imagine the simulation cell as a small part o
larger system. In this case, there are no walls that co
provide balancing viscous forces to counteract the grav
tion. The least constraining condition on the system that s
guarantees evolution to a stationary state is to assume
there is no net acceleration at any time on the compon
within the considered cell. That is to say, that at any time,
must make sure that the integral over the simulation volu
of the right-hand side

~25!

of the Navier-Stokes equation~1! vanishes. Now, for the
term ~II ! we apply Gauss’s theorem and find that it depen
only on the values of the velocity gradient tensor integra
over the surface of the cell. Since the velocity field is pe
odic, contributions from opposite faces cancel identica
and this term is always zero. If we decompose the press
into ~i! a linearly varying part and~ii ! a purely periodic con-
tribution, then for similar reasons, the volume integral ov
the gradient of the periodic part vanishes.

Thus we are left with contributions from the integrate
force density ~III ! and an average pressure gradient~I!,
which arises in addition to the well-known hydrostatic pa
If we take these two time dependent terms to be equal—
formal analogy to the hydrostatic case—then they can
from Eq.~25!. The total acceleration of the fluid in the simu
lation volume thus vanishes.

For computational purposes, we simply subtract from
field f its spatial average and thus obtain fluid and press
equations that allow spatially periodic solutions,

f~x!5(
i j

f i j ~x!2
1

VEV
dx(

i j
f i j ~x!5

1

V (
i j

F i j . ~26!

Physically, we can think of the associated constant pr
sure gradient¹plin5(1/V)*dxf, which drops from Eq.~25!,
as giving rise to a buoyancy force. This buoyancy for
however, is already correctly included in the ‘‘tracer-spring
forces appearing in the particle equations of motion~cf. Sec.
II C!, since we would reduce the tracer forces by their av
age and add the same term again, now in the form o
buoyancy contribution from the liquid.
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E. Summary of the numerical procedure

We now briefly summarize the sequence of steps
scribed above that are necessary to perform one time ste
our simulation.

~1! We perform the predictor part of the Gear algorith
for both the template and marker positions. No forces nee
be known at this point, because the prediction is solely ba
on Taylor coefficients of the trajectories that were previou
recorded.

~2! Likewise, we update the quaternions and the angu
velocity representing the degrees of freedom of rotation
each template. We then use their values to compute the
tation matrixOi(t) to find the predicted location of the re
erence points@cf. Eq. ~12!#.

~3! From the predicted particle template location the
terparticle forces are computed according to Eq.~23!.

~4! Now we are in a position to compare the predict
tracer positions to the predicted reference point locations
infer the constraint forcesf i j necessary to impose rigid mo
tion on the fluid@Eq. ~14!#. The integration off i j over its
support and summation over all tracers associated to t
platei yields the reaction force of the fluid onto the templa
Similarly, we determine the acting torque using Eq.~21!.

~5! Knowing the force distributionf i j and the fluid veloc-
ity field, we know know all terms on the right-hand side
Eq. ~2! and can perform a fluid update by~a! calculation of
the provisional ‘‘velocity’’ fieldv* , from the current veloci-
tiesvn and the constraint forcesf i j , ~b! determination of the
pressure from the Poisson equation~4! by a multigrid proce-
dure,~c! and finally by advancing the fluid velocity tovn11

from the knowledge of the pressure field and the ‘‘old’’ v
locities vn @Eq. ~3!#.

~6! From the predicted tracer positions and the new fl
velocity values we obtain the correction terms for the tra
trajectories necessary for the second~correction! part of
Gear’s integrator for the tracers@Eq. ~24!#.

~7! Similarly, a correction step is performed for the tran
lational and the angular velocity of the templates using
previously computed torques and forces. The corrected
gular velocity will then be used to correct the quaterni
values that trace the orientation of the particle~Sec. II C!.

At this point we have completed the time stepping a
can perform measurements on a consistent set of dynam
quantities.

III. VALIDATION OF THE NAVIER-STOKES SOLVER

The Navier-Stokes solver outlined in Sec. II A has be
tested on the limiting stationary flow pattern in the drive
cavity problem@44# for Reynolds numbers on the box sca
of Re5ULr/h,100, whereU denotes the scale of the im
posed velocities. As time dependent flows we have tes
sinusoidal velocity profiles between parallel plates and v
fied the exactly exponential approach to rest and the ass
ated decay constant.

Due to the explicit method and the inherent ‘‘diffusive
stability constraint, Dt,rh2/2dh, very low-Reynolds-
number calculations (h→`) require increasingly shorte
time steps and will become prohibitively expensive. Ho
ever, this limitation can be overcome by an implicit tim
stepping, possibly exploiting that the Navier-Stokes eq
-
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tions, turn into the linear Stokes equations for Re→0.
We do not think that it is practical to use the propos

method in many particle systems~order of 10 000! beyond
Reynolds numberson the particle scalelarger than Re
5raU/h510, . . .,20, because the flow on and below th
Kolmogorov scale must be resolved. In this regime the g
refinement for methods without turbulence modeling w
soon render the computational effort unacceptable.

It should also be noted that modern implicit and adapti
grid methods are more suitable for high precision compu
tion of time dependent pure fluid flows instatic geometries.
In the context of model building for suspension flows wi
moving particleshowever, fixed grid methods do not requi
remeshing. Moreover, an explicit technique like the one p
posed above provides great flexibility to implement partic
particle interactions, i.e., additional short-range attract
forces of van der Waals type to model aggregation phen
ena, or material properties of the particles.

IV. THE CASE OF ONE PARTICLE:
CUBIC PERIODIC ARRAYS

A. Setup

As the first test case in which boundary conditions on
particle surface have a nontrivial influence on the flow
consider a fluid passing through a cubic periodic arran
ment of fixed spheres at low Reynolds numbers. The aris
flow has been analyzed in the point particle approximat
by Hasimoto@45# for small volume fractionsF. Among oth-
ers, Ladd@19# as well as Sangani and Acrivos@46# have
considered larger volume fractions up to the limit ofF
5p/6 with numerical methods in the viscous regime. Mo
recently, Koch and Ladd@47# have published results for cyl
inder arrays at moderate Reynolds numbers using latt
Boltzmann techniques.

To this end, we impose at each point of the grid at firs
constant accelerationf5ezDP/L corresponding to a constan
pressure dropDP/L over the lengthL of the cubic cell. Pe-
riodic boundary conditions are used on the fluctuating, n
linearly increasing part of the pressure and the flow velo
ties. The particle positions and orientations are fixed to
the initial ones.

The simulations are performed in 2D and 3D as dyna
cal calculations starting from a fluid field at rest until
steady flow state results. The approach to stationarity
slower at lower solid volume/area fractions. In 3D, we st
when an exponential approximation indicates that the
pected additional changes to the flow rate are less tha
fraction of 0.02. In 2D, we have adjusted the pressure d
during the simulation to obtain constant volumetric flo
rates and thus constant Reynolds numbers.

The drag forceFD on one particle is determined by sum
ming the contributions from all the corresponding referen
point-tracer pairs according to Eq.~20!. If we divide the
modulusFD5uFDu of the drag force by the volumetric flow
rateU,

U5
1

VE dxvz~x! ~27!

obtained by averaging the flow velocity over the cell volum
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V, and refer the value to that of an isolated sphere, then
dimensionless drag coefficient

xD5
FD

6phaU
~28!

results.
In 2D, FD is the drag force per unit length of the cylinde

We refer it tohU, which has the required units of force p
unit length,

xD5
FD

hU
. ~29!

Both these drag coefficients are known to have correcti
O(Re2) in arrays that have reflection symmetry with resp
to the axis of the flow@47,48#.

Similarly, the rotational drag coefficients can be co
puted by imposing constant angular velocities on the p
ticles and letting the flow adjust. In the viscous regime, b
in 2D and 3D, the torque is proportional to the angular v
locity. In 3D, we refer the resulting torque on the sphere
the theoretical value of an isolated sphere

xR5
tR

8pha3v
. ~30!

In 2D, the theoretical value of the torque per unit length
an isolated cylinder in an infinite medium is 4pa2hv, so
that a dimensionless drag coefficient

xR5
tR

4pa2hv
~31!

can be defined.

B. Mesh size dependence

Due to the lack of adaptivity at the particle surface, w
expect the effective hydrodynamic radius of the particles
be slightly larger than the geometrical radius of the refere
point arrangement, because each point controls a fluid
ume of extenthd reaching beyond its geometric location b
h/2 in each direction. In fact, if the confining radius of th
reference point placement is taken to be the geometric t
plate radius, then we measure as a function of mesh size
drag coefficients shown in Fig. 2, hereF50.0335. We see
that indeed the values extrapolate to asymptotic valuesh
→0 with leading error proportional toh.

We can thus improve the accuracy of the simulation
taking this effect explicitly into account@23# by modifying
the placement of the reference points. Let us write for
effective hydrodynamic radiusaeff , assuming thatDa is lin-
ear inh,

aeff~h!5a1Da~h!5a1mh. ~32!

The dependence of the friction coefficient on the volu
fraction can be Taylor expanded around the volume frac
corresponding to a particle with radiusa,
e
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x@F~aeff!#5x@F~a!#1x8@F~a!#F8~a!Da~h!5x@F~a!#

1x8@F~a!#F8~a!mh. ~33!

Comparing the slope in Fig. 2 to the prefactor ofh, and using
the derivativex8@F(a)# from the literature@19#, we find m
'0.3. This value holds for 3D and quadraticn52 interpo-
lation scheme for thed functions in the force density@cf. Eq.
~15!#. For the dynamical simulations in the next section,
therefore retract the tracers by an amount of 0.3h from the
geometric surface; in 2D we usem50.5h with n51 inter-
polation.

C. Translational drag and rotational friction coefficients

In Fig. 3 we show the results of the extrapolation toh
50 of the translational drag for 2D and 3D. In 3D we com
pare with Ladd’s@19# numerical solutions of the Stoke
equation with the same boundary conditions. In 2D, we co
pare to the results of Sangani@46#.

In the 3D simulations the pressure drop is adjusted dur
the simulation to achieve the same volumetric flow rate~and
thus Reynolds number! independent of volume or area frac
tion of the obstacles. In 2D, the Reynolds number based
the flow rate and the radius of the obstacle does not exc
0.1.

In Fig. 4 the corresponding results for the rotational fr
tion coefficientsxR are shown as functions of volume an
area fraction. In two dimensions different symbols den
different arrangements of the cylinders with respect to
discretization. In one case the particle is located at posi
~0,0! in the cell of sizeL3L, in the other the unit cell was
chosen to include two particles, one at~0,0!, the other at
(L/2,L/2). The symmetries of the array imply that in bo
cases the same scalar friction coefficient must result.

In both 2D and 3D, we have computed the drag coe
cients by linear interpolation toh50 of theh-dependent re-
sults. For the densest packings in 2D, the gap between
particles is about 13 grid cells wide for the finest grid use
The relative difference of the friction coefficients comput

FIG. 2. Dependence on mesh sizeh of the dimensionless trans
lational xD/6pha and rotational friction coefficientxR/8pha2 in
three dimensions, denoted by symbols1 and), respectively. The
values are for a volume fraction ofF50.0335 at Re→0. It can be
seen that the necessary correction to the drag coefficient is line
h.
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FIG. 3. ~a! Drag coefficientxD in a periodic,
3D simple cubic arrangement of spheres.~b!
Natural logarithm lnxD of the drag coefficient in
an array of cylinders for two different unit cell
that are expected to yield the same resistance
flow. The solid line~b! is a cubic spline through
the logarithm of the semianalytical results for th
friction coefficients given in Ref.@46#.
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for the two finest grids~13 grid cells and 6 grid cells acros
the gap! is about 0.04. Table I summarizes the numeri
results for the rotational drag in the cylinder array for whi
we did not find values in the literature available to us.

V. SEDIMENTATION VELOCITY AS A FUNCTION
OF VOLUME FRACTION

The measurement of the sedimentation velocity of an
semble of many spheres as a function of the volume frac
constitutes a more realistic test than the two above. As in
case of the fixed sphere arrangement in the two prece
tests we choose periodic boundary conditions on our sam
cell that now, however, contains many spheres whose p
tion and orientation can evolve dynamically without artific
kinematic constraints. Gravitation acts as the driving fo
via the density difference of particles and fluid. It was chos
such that the Reynolds number on the particle scale o
single sedimenting particle, in 3D,

Re5
2

9

a3

h2
r~rp2r!g ~34!

is about 0.1. In 2D, we assured by test simulations on sin
falling discs that we are in the same range of Reynolds n
bers.

As motivated in Sec. II B, we use only one shell of trace
such that their hydrodynamic radius equals the geome
radius of the template. Their number is taken to be 4pa2/h2,
i.e., approximately equal to the number of fluid volume e
ments on the surface of each particle.
l
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The mean sedimentation velocityvs is measured in ex-
periments either as the velocity with which the upper front
the particle rich phase settles or, when single particle velo
ties can be measured, as the mean velocity of the par
phase. We will here adopt the latter method because we
not observe concentration fronts in a periodic simulation c

vs5
1

N (
i 51

N

v i•ez . ~35!

To obtain a dimensionless quantity, we refer the value ofvs
to the velocityv0 of a single falling particle in the same cel
This procedure takes some corrections due to finite cell
and Reynolds number into account.

Figure 5 shows the results for the sedimentation veloc
as a function of volume fraction for 2D and 3D. In 3D w
compare to the empirical law of Richardson and Zaki@49#

vs /v05~12F!n, ~36!

with n55.0. We see good agreement to the experime
findings in the viscous regime, which finds values ofn
55, . . . ,6 @50#.

In 2D, the computation of a hindered settling function is
somewhat academic exercise, which we have done to ju
pose the results to the 3D ones. We have fixed the Reyn
number for the single cylinder experiment to 0.1 on the p
ticle scale. We vary the area fraction, keeping all other
rameters constant. The mean settling velocity as a func
of area fraction is then computed and normalized by
single particle value.
e

FIG. 4. Rotational friction coefficientxR in a
periodic arrangement of~a! 3D spheres,~b! 2D
cylinders. In 3D, the solid line is a cubic splin
through the numerical results of Ladd@19#.
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In 2D, the best fit of a Richardson-Zaki-like law yields a
exponent ofn'3.8, substantially smaller than in 3D. Th
effect of a lowern in 2D has been seen before using poi
force approximations for the suspended particles@51#. How-
ever, the fit to such a power law is only motivated by t
analogy to 3D and is in fact not convincing. Most of th
difference at larger volume fractions might be related to
area fraction of the random loose disk packing in 2D
('0.7) as compared to the smaller value of the random lo
sphere packing in 3D ('0.6), where we expect the sedime
tation velocity to drop to 0@52#.

VI. SOME NUMERICAL QUESTIONS

A. Performance Data

As described in Sec. II our method requires the time st
ping of the Navier-Stokes equation, the computation of
tracer movement with two interpolation steps for the flu
velocity and force density, and the integration of the ordin
differential equations that describe the particle motion. F
this latter part, we use a linked-cell technique to reduce
determination of the particle contact forces to anO(N) prob-
lem in the number of particles. The time spent in this part
the algorithm is only a few percent of the total computati
time and is negligible.

TABLE I. Dimensionless resistance to rotation in an array
cylinders at Re5a2vr/h50.1.

F xR5tR /4pa2hv

0.0314 1.07
0.049 1.08
0.0872 1.11
0.125 1.15
0.155 1.2
0.196 1.27
0.256 1.36
0.297 1.45
0.349 1.58
0.415 1.78
0.502 2.12
0.62 3.08
0.649 3.38
0.679 3.83
0.712 5.05
0.747 7.9
-
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-
e
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Because the exact ratio of time spent in the fluid sol
and in the coupling between the fluid and the particles
pends on various parameters, as, e.g., the mesh sizeh, the
volume fractionF, and the number of tracers per particl
we just want to give an example for the computational c
of a typical simulation done to calculate the sedimentat
velocity of a suspension. In this particular case we us
653'2.73105 fluid grid points andh50.375. Thus the cell
was of a cube with edges of approximately 24 particle ra
length. A volume fraction ofF50.1 corresponds therefor
to 331 particles with 93 tracers each, representing a tota
30 783 tracers.

One timestep of this system takes on average 2.6 s o
Digital Personal Workstation 433au. The fluid solver nee
about 54% and the coupling code 35% of the time. The r
was spent in miscellaneous statistical calculations, file
put/output, etc. The computation of particle interactions a
the trajectory integration requires less than 1% of the to
CPU time.

In other words, per timestep we spent about 5.131026 s
on each grid point, about 2931026 s on each tracer and
about 5031026 s on each suspended particle. The mem
requirements sum up to 80 bytes per tracer and 120 bytes
fluid grid point, including the data structures necessary
the implicit pressure update.

B. Comparison to other techniques

1. Particle methods

As we have seen, the major challenge of direct suspen
simulation is the proper representation of moving bounda
in conjunction with numerical efficiency. Since particles a
naturally described in a Lagrangian picture by co-movi
dynamical variables, one could justifiably ask why not go t
whole way and also use Lagrangian techniques for the fl
This is even more true as the Navier-Stokes equations re
as the continuum limit of the average motion of particle s
tems under quite general circumstances@53#. The following
issues should be considered.

~1! The implementation of a pure Lagrangian technique
cleaner and more straightforward from a technical point.
the same time, even very simple interparticle potentials~as in
the dissipative particle dynamics method~DPD! or in direct
simulations of, e.g., Lennard-Jones systems, require a
more computational effort than the treatment of a grid no
in a Navier-Stokes solver. Our experience points to factor
325 for structureless particles with linear spring interactio

f

i-

re
all
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-
ly
FIG. 5. Sedimentation velocity in a period
cally repeated cell:~a! 3D, ~b! 2D. The action of
gravity is counteracted by a constant pressu
gradient in the opposite direction, such that at
times the volume flux across a horizontal c
through the cell vanishes. The size of the 3D c
is 12a312a312a, that of the 2D cell
64a364a (h50.25). Both simulations are per
formed at a Reynolds number of approximate
0.1 on the particle scale~for single particles fall-
ing!.
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7156 PRE 61KAI HÖFLER AND STEFAN SCHWARZER
as compared to one Navier-Stokes node in 3D.
~2! In general, it is not simple to predict the average m

terial properties of the particle phase from the properties
the interaction. One strong point of DPD with respect
other computational methods is the theoretical knowle
that has been collected in the recent past about how the
croscopic simulation parameters control the macrosco
properties of the DPD liquid. However, as the discuss
about modeling heat conduction within the DPD framewo
has shown, such extensions require quite considerable
trivances and yet often material parameters of the pure
pending phase have to be determineda posteriori from the
simulation before the properties of the multiphase sys
can be determined.

~3! In particle codes, one often takes the route to mo
larger or different particles by gluing together several~con-
stituent! particles of the type constituting the solvent pha
@54#. Such an approach is convenient and efficient becau
normally does not require special measures to track the
entation or the translation of the composite particle, beca
these can be reconstructed from the position of the gl
particles. Also, the interactions between the solvent and
constituents of the composite complex particles are often
the same nature as those between the solvent particles
can thus be computed in the same fashion without chan
the structure of the simulation program.

However, this convenience comes at the price of comp
ing pair interactions between the constituents to fix the sh
of the composite particles. In contrast, the marker-temp
coupling is asingleparticle interaction.

Of course, it is also quite possible to connect the const
ents of a solute particle to a shape preserving~possibly mass-
less! rigid template as has been suggested here for the fl
particle coupling. This approach seems to have been take
the DPD framework by a technique used in Ref.@55#.

~4! In general one must be aware of proper scale sep
tion. For example, the discrete nature of the particle ph
introduces a ‘‘noise’’ term, which causes fluctuating moti
of the suspended particles. This noise can be consider
feature if simulations at low Pecle`t numbers shall be per
formed~as the Lennard-Jones simulations by Rapaport@56#!
but must be eliminated in one way or the other in the limit
large Pecle`t numbers. Similarly, the discrete nature of t
solvent particles will cause breakdown of lubrication forc
when the solute particles approach surface-surface dista
closer than the mean free path~Knudsen length! of the sol-
vent, as we have discussed in the context of lubrication fo
modeling in Sec. II C for fixed grid methods.

~5! Particle codes with short-ranged interactions, sim
to explicit lattice-Boltzmann techniques, display a built-
compressibility of the solvent phase. The speed of soun
these simulations is often very small because the par
interactions are taken to be rather soft in order to allow~ap-
parently! large time steps. In contrast, in continuum tec
niques one has efficient methods to impose incompressib
~solving a Laplace equation for the pressure equation in
case! or to resort to penalty techniques@32# that effectively
replace the long-range Laplace solver by introducing an
tificially compressible material law.
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2. Fixed lattice based methods

If instead of using a particle technique one attempts
solve a continuum equation for the fluid phase, then one
considerable freedom in the choice of solution methodolo
and in the choice of the phenomenological parameters en
ing the equation. Every numerical solution of a continuu
equation requires a discretization of the computational
main. If a high precision of the solution is required, the d
cretization is often taken on an unstructured grid and loca
refined in the course of the solution process. The comp
tional drawbacks are the complex data structures requ
and the entrained computational cost.

In addition, since particle-fluid systems are characteriz
by moving boundary conditions, a remeshing of the com
tational grid must occur when it is distorted to such an ext
that the requirements of the, e.g., finite-element or fin
volume technique cannot longer be met.

As we have outlined in the introduction of this paper, it
thus advantageous for the simulation of many-particle s
tems and if the demands on the precision of the solution
not too high, to pick a nonadaptive, regular grid to discret
the continuum fluid equation. On such a lattice we can,
example, use the lattice-Boltzmann technique, a fin
difference compressible or incompressible Navier-Stokes
Stokes solver, certain lattice gas automata, etc.

As in particle methods, certain issues should be kep
mind.

~1! Perhaps the most problematic point is the implem
tation of the no-slip conditions on the particle surfaces a
the computation of the stresses. Concerning the matchin
the particles to the grid, considerable freedom exists and
cludes~a! ~first order! discretization of the particle surface o
appropriate grid nodes or links of the respective techniq
@22,36,57# ~first order!; ~b! smoothly varying ‘‘interpola-
tion’’ coefficients to obtain a better, possibly second ord
accurate estimate of the local influence of the boundary;
lattice Boltzmann, cf. Ref.@58#, for finite differences Ref.
@37#.

Similarly, boundary stresses must be evaluated. For lat
Boltzmann, typically the knowledge of the change of t
velocity population associated with a boundary link or no
is required, whereas the stress evaluation for finite diff
ences involves direct evaluation of the stress tensor u
local pressure and velocity. Please note that in our met
none of the above steps is necessary, as the penalty forc
the fluid include the stresses that are determined alread
the course of the fluid time step.

~2! Depending on the type of discretization used, stab
zation measures need to be taken. The explicit lattice Bo
mann described in@22# requires time averaging~over two
time steps! of the torque to avoid instabilities. Nonstagger
finite difference grids may show grid decoupling instabi
ties. Also the general stability constraints from linear ana
sis of all explicit methods have to be considered, most no
bly the Neumann diffusive criterion linking time step an
square of the grid size.

~3! In most modern~explicit or implicit! methods the
computational effort to perform one time step is proportion
to the number of discretization ‘‘cells’’ that represent often
set of variables describing the local configuration of the c
tinuum. For example, in our method, the explicit part of t
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Navier-Stokes time step and the implicit solution of the pr
sure equation both have this property. Likewise, latti
Boltzmann methods require only a reweighting of loca
available information to update the local velocity histogra
So, the computational effort differs due to the constant
proportionality. An explicit lattice-Boltzmann technique ca
most directly be compared to a penalty technique for inco
pressible flows@32#, which are of similar computationa
complexity.

~4! The inclusion of energy conservation into a lattic
Boltzmann scheme, which is necessary to compute heat fl
is to our knowledge still an open question@59,60#. There is
no comparable difficulty when using directly discretiz
flux-conservation equations as, e.g., the Navier-Stokes e
tion for the momentum flux.

To summarize the above, in suspension physics ther
not one single simulation method that addresses the e
spectrum of possible conditions, with or without fluid inert
with or without particle inertia, low or high Pecle`t numbers,
constitutive properties of the suspending fluid, constitut
properties of the suspended phase~surface tension, elasticity
additional interactions!, particle geometry, etc. with flexibil-
ity and efficiency. As we have stated in the Introduction,
niche for the fixed grid method presented here is comp
tion at moderate or zero Reynolds number with likew
good to moderate accuracy depending on the price in
cessing time that one is willing to pay. In that respect it
very similar to the lattice-Boltzmann methods@19,22,23#.

3. Brownian motion

The Navier-Stokes describes the evolution of average
locity and pressure and is thus naturally suitable for syste
at high Pecle`t numbers where no information about the d
crete nature of the fluid and the associated fluctuation
required.

On the other extreme, molecular simulation captures
fluctuating quantities as well as their spatial and tempo
correlations. In between these two extremes we find Bro
ian dynamics ideas@18,38#—incorporating thermal fluctua
tions into the particle equations of motions—and fluctuat
hydrodynamics~cf. @30#, Ch. XVII!; both neglect spatial and
temporal correlations of the thermal driving forces.

In fluctuating hydrodynamics stress fluctuationss i j8 (x)
are built into the fluid equations and their statistical prop
ties are found by considering ideas from nonequilibriu
thermodynamics@30#,

^s ik8 ~x1 ,t1!s lm8 ~x2 ,t2!&52kBTh~d i l dkm1d imdkl!

3d~x12x2!d~ t12t2!, ~37!

where kB is Boltzmann’s constant andT the temperature
From this expression, we can find for any given discreti
tion a finite stress vector to be included on the right-ha
side of the Navier-Stokes equation~1!. We thus see that the
description of fluid thermal fluctuations can quite natura
be included in our numerical framework and might be t
subject of a future study. It should be mentioned here tha
the context of lattice-Boltzmann methods similar ideas h
been used to include thermal fluctuations@22,61,62#.
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C. Scope for improving the numerical scheme

There are some unresolved numerical questions that
would like to address before we conclude.

In order to eliminate the purely numerical constantsk and
g, we have tested an implicit scheme that does not req
tracers, but instead associates in a quite similar fashio
force directly with each reference point. Then we make t
tative fluid integration steps using these forces and comp
the resulting difference velocities of fluid and template at
reference points. The forces are now modified by an addi
term proportional to the velocity difference, but with the o
posite direction. We thus arrive at successively ‘‘bette
force distributions resulting in decreasing difference velo
ties. We have observed such a procedure to converg
simulations with Re'1, but did not use it extensively due t
the additional computational effort.

Due to the small slip allowed in our explicit ‘‘penalty’
coupling technique there occurs a small residual fluid mot
inside the particle regions. As a result, a certain amount
energy is dissipated even if the coupling of fluid and trac
is not dissipative. In 3D, we find that the fraction of ener
dissipated inside particle regions ranges from about 0.0
suspensions withF50.05 up to about 0.1 in forF50.3.
Correspondingly, one can observe changes in the sedime
tion speed, which, due to these additional dissipation ch
nels, turn out to be smaller than expected. For more pre
measurements, this purely numerical dissipation must be
duced by stiffer couplings and correspondingly smaller ti
steps. More elaborate implicit techniques will also impro
the situation, because the relative motion inside particle
mains can be suppressed entirely.

VII. CONCLUSION

We have presented a comparatively simple and physic
appealing method to simulate particle suspensions. The
pabilities of the resulting algorithm have been assessed in
and 3D by comparisons to single particle behavior and
collective motion in suspensions. Two major approximatio
have been made that influence the precision of the algorit
~i! the Navier-Stokes equation has been solved on a reg
grid, thus trading computational speed for the possibility
accurately model geometrical details; lubrication forces w
not be resolved by the fluid simulation, when particles co
closer than the mesh spacing;~ii ! the no-slip boundary con
ditions on the particle surfaces are realized by constr
forces that control the fluid motion at the positions of t
particles. This representation implies that the particle s
faces acquire a certain degree of ‘‘fuzziness,’’ but allows
straightforward computation of stresses and a continu
representation of the particle motion.

The method is sufficiently accurate to reproduce trans
tional and rotational drag in cylinder and sphere arrays w
errors below 1% and to makequantitative predictions of
suspension behavior in a wide range of volume fractions
relevant system sizes. In general, the limitations, streng
and performance data~where known! are very similar to
those of other fixed grid methods, as, e.g., the latti
Boltzmann simulations of suspensions@22,23#. Our approach
therefore presents another independent way to test analy
results for viscous suspension behavior and to extend th
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results into the regime where both particle and liquid ine
become important. It is possible to incorporate more co
plex particle shapes, thermal fluctuations or to use the
chinery of implicit numerical techniques to overcome so
of the apparent limitations, in particular the need for ve
short time steps as Re approaches 0. As we work with
cretized continuum equations, the method easily accom
dates different descriptions of the fluid phase, e.g., by
Stokes equation@63# or more exotic rheological fluid prop
erties~e.g.,@64#!.
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APPENDIX: SOME FURTHER REMARKS

1. On a continuum picture

The arguments in Sec. II B can be made more precis
we try to understand the procedure described above as
discretized version of a continuum problem. Let us state
momentum equation of the fluid~1! in the form

D

Dt
rv5“•T1f, ~A1!

whereT denotes the stress tensor of the fluid. Its diverge
is the expression2“p1h¹2v for Newtonian fluids used
above. For the rigid particle template, we have

Mi
tv̇ i5F i

lp1F i
p2~Mi2rVi !gez , ~A2!

with F i
lp as the force acting from the fluid on the templa

~determined by summation of the constraint forces!, F i
p the

force due to the presence of other particles and the t
proportional tog represents weight and buoyancy.

Let the region of fluid covered by templatei at time t
50 be denoted byV i(0). Continuous time evolution accord
ing to Eq.~A1! will deform this region intoV i(t). The po-
sitions of the tracers track this deformation and thus
maximum uji j u measures the deviation ofV i(t) from the
original particle shape. It might be intuitive to think of th
marker elongationsji j as representative of discrete amp
tudes of a continuous displacement fieldui(x) defined on
template i, related to the positionxi j

m by xi j
m5xi j

r 1ui(xi j
r ).

The constraint fluid force densityf i for particlei is related to
ui as implied by Eq.~14!, i.e.,

f i~xi j
m!52kui~xi j

r !22g~d/dt!ui~xi j
r !, ~A3!
a
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where the time derivative must take the time dependenc
xi j

r into account. If the external stresses remain bounded,
form guarantees thatu and the rate of change ofu on ]V i(t)
remain bounded and approach zero ask andg increase. By
construction,V i(t) is the union ofx1ui(x) with x being one
of the points constituting the template at timet. The incom-
pressibility of the flow guarantees that the volume ofV i(t) is
time invariant and equalsVi , the volume of the template.

2. Conserved quantities

The last argument shows that the sum of the mass of fl
in V i(t) and the template massMi

t is constant and equal to
the mass of the physical particle.

The total change of momentum of the coupled system
obtained by integrating~A1! over V i(t), which results in

Ṗi
l5 R

]V i (t)
T•dA1F i

l , ~A4!

where we have used Gauss’s theorem to convert the inte
over the divergence of the stress tensor into a surface i
gral. The vectorsPi

l andF i
l denote the total fluid momentum

in V i(t) and the sum of the constraint forces, respective
By construction,F i

l1F i
lp50. Up to a degree of accurac

determined by;1/k and;1/g the center of mass velocity o
the fluid in V i(t) coincides with the template centersẋi .
Thus, for the sum of Eqs.~A4! and ~A2! we recover the
equation of motion for the center of mass of a rigid particleP
of massMi5Mi

t1rVi in the flow,

Mi ẍi5 R
]P

T•dA2~Mi2rVt!gez . ~A5!

To see what happens for the angular momentum bala
we form the vector products of Eq.~A1! with a vector point-
ing from the template center of massxi to x before we per-
form the integration overV i(t), i.e.,

E
V i (t)

dx~x2xi !3
D

Dt
rv5E

V i (t)
dx~x2xi !3“•T

1E
V i (t)

dx~x2xi !3f. ~A6!

The left-hand side is the total change of angular momen
of the fluid L̇ i

l and we can employ the symmetry of the stre
tensor to convert the first term on the right-hand side to
surface integral,

L̇ i
l5 R

]V i (t)
~x2xi !3dA•T1ti

l . ~A7!

As in the case of linear momentum, we also consider
corresponding equation for the template. The contribution
the torque of the gravitational forces vanishes, and the c
tribution of the constraint forces cancelsti

l by construction
up to an accuracy determined by the maximum deviation
a tracer from a reference point. To the same accuracy,
change of angular momentum of the fluid can be written
the moment of inertia times the change of angular veloc
which equals that of the template, again to the degree
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mitted by the tracer force law. We thus recover appro
mately the equation of angular motion of a rigid particleP in
a fluid in the absence of external torques,

I iv̇5 R
]P

~x2xi !3dA•T. ~A8!

3. Uniqueness

The distribution of the constraint forces in the partic
template region is not uniquely determined by demand
that the fluid motion should match the rigid body motion
the particle. Also, the motion of the system as a whole d
not uniquely fixf. The prescription given in the text selec
one of the possible distributions, but leaves some ‘‘gau
freedom,’’ which is very similar to the indeterminate o
forces in static networks of rigid elements. Also here,
rigid template can ‘‘absorb’’ inner stress consequences
the motion.

If we write the Navier-Stokes equations in the form,

f2“p5G~v !, ~A9!

whereG collects the terms depending on spatial and tem
ral derivatives ofv, then from taking curl and divergence
we find

“3f5“3G, ~A10!
-

.

pl

D

-

/
g

s

e

e
n

-

¹2p5“•f2“•G. ~A11!

The first equation implies that the velocity distribution~and
its rate of change! only determinesf up to the gradient“f
of a scalar. In general, such contributions influence the p
sure distribution~A11! and thus the motion. If, however,f
fulfills additional conditions, i.e.,f50 on ]V i , it will not
have consequences for the motion or in the exterior ofV i . If
we extendf over the whole domain such that“f exists
everywhere andf50 in the exterior of allV i , then p1f
solves~A11! for f→f1“f. The scalarf does not contribute
to the momentum flux through]V i , if its surface integral
r]V i

dAf vanishes. Likewise, the contribution to the torqu
here with respect to the origin, but similarly for any refe
ence point, is

E
V i

dxx3~“f!5E
V i

dxf“3x2E
V i

dx“3~xf!

52 R
]V i

dA3~xf! ~A12!

and vanishes if the surface integral vanishes. This is the c
in particular, iff50 on ]V i as stated above.

Since thef acting on the fluid has a reaction force
opposite sign on the particle template, these conditions g
antee also vanishing force and torque contributions on
template as a whole.
n,
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