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Three-dimensional spinning solitons in the cubic-quintic nonlinear medium
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We find one-parameter families of three-dimensional spatiotemporal bright vortex solitons~doughnuts, or
spinning light bullets!, in bulk dispersive cubic-quintic optically nonlinear media. The spinning solitons display
a symmetry-breaking azimuthal instability, which leads to breakup of the spinning soliton into a set of frag-
ments, each being a stable nonspinning light bullet. However, in some cases the instability is developing so
slowly that the spinning light bullets may be regarded as virtually stable ones, from the standpoint of an
experiment with finite-size samples.

PACS number~s!: 42.65.Tg
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The existence of stable optical spatiotemporal solitons
light bullets@1–3# ~LBs!, is now a well-established fact. Al
though LBs cannot be stable in the Kerr (x (3)) medium be-
cause of the collapse@4#, stability can be easily achieved i
saturable@5,6# or quadratically nonlinear (x (2)) media@7,8#.
Although a fully localized LB in three dimensions~3D! has
not yet been observed in an experiment, the first succes
experiments with quasi-two-dimensional~quasi-2D! bullets
in a bulk x (2) medium have been recently reported@9#.

A natural and fairly interesting generalization of LB is
concept of a spinning LB in the form of a ‘‘doughnut’’~i.e.,
with a hole in the middle!. Here, however, the stability is
major issue, as, unlike their zero-spin counterparts, the s
ning bullets are prone to be unstable against azimuthal
turbations. In the 2D models with thex (2) and saturable non
linearities, direct numerical simulations have revealed a v
strong azimuthal instability@10#, which was later observed
experimentally in ax (2) medium @11#. As a result of this
instability, an initial LB with spin ‘‘1’’ ~see an exact defini
tion below! does not decay into radiation but instead sp
into three~in the x (2) medium! or two ~in the saturable one!
fragments, each being a moving zero-spin bullet, so that
spin momentum is transformed into the orbital momentum
the fragments.

The first direct numerical results for a 3D spinning bul
in the x (2) model have been very recently obtained in R
@12#. The main result is that this bullet is strongly unstab
splitting into a set of the moving zero-spin solitons, qu
similar to what is known in the 2D case. Thus, it is a ch
lenging problem to find a physically meaningful model
which aspinningLB would be either stable or, at least, su
ficiently weakly unstable.

A model that has a chance to feature this property is
one with a cubic-quintic~CQ! nonlinearity, which postulates
a nonlinear correction to the medium’s refractive index in
form dn5n2I 2n4I 2, I being the light intensity. Obviously
this may be formally obtained by an expansion of the sa
rable nonlinearity, withdn5n2I @11(n4 /n2)I #21. However,
an important difference is that while the latter nonlinearity
always self-focusing,d(dn)/dI.0, the CQ model change
the sign of the focusing at a critical intensityI c5n2 /(2n4).
Note that an experimental measurement of the nonlinea
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electric response in the polydiacetylenepara-toluene sul-
fonate~PTS! optical crystal suggests that the CQ nonline
ity, rather than the saturable one, may correctly model
medium@13#.

Direct numerical simulations of the dynamics of 2D so
tons with spin ‘‘1’’ in the CQ model were first reported i
Ref. @14#. According to that work, the spinning 2D bulle
was fairly robust provided that its energy was not too sm
It has proved robust not only against small perturbations,
also against collisions, which were found to be nearly elas
A 3D light bullet in the same model was considered ve
recently in @15#. However, direct stability simulations wer
not performed in the latter work; in particular, the stabili
analysis was limited to the application of the well-know
Vakhitov-Kolokolov criterion @16#, which is a necessary
condition for the full stability of the soliton, but does no
take into regard the most detrimental azimuthal pertur
tions.

The objective of the present work is a direct numeric
analysis of the 3D spinning LBs in the CQ model, includin
a full study of their robustness upon propagation. The m
result is that the spinning bullets are always unstable; h
ever, their instability may be developing, depending on
LB’s energy, much slower than in thex (2) model, and in
some cases it is found to be so slow that the spinning bu
becomes virtually stable, from the standpoint of a possi
experiment in finite-size 3D samples.

The equation governing the evolution of the electroma
netic field envelopeA (I 5uAu2) in a CQ isotropic disper-
sive medium is the cubic-quintic nonlinear Schro¨dinger
equation,

2ik0

]A

]z
1¹'

2 A1k0D
]2A

]t2
12k0

2~n2 /n0!uAu2A

22k0
2~n4 /n0!uAu4A50, ~1!

wherek0 is the propagation constant,D52d2k0 /dv2.0 is
the coefficient of temporal dispersion which is assum
anomalous~there is no chance to have solitons if the disp
sion is normal, withD,0), t[t2z/vg , vg being the group
velocity of the carrier wave, is the ‘‘reduced time,’’ and th
7142 ©2000 The American Physical Society
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Laplacian¹'
2 ~representing the spatial diffraction! acts on

the transverse coordinates. Defining rescaled variableu
5AAn4 /n2, T5tn2A2k0 /Dn0n4, Z5zk0n2

2/n0n4, and
(X,Y)5(x,y)k0n2A2/n0n4, one transforms Eq.~1! into a
normalized form,

i
]u

]Z
1S ]2u

]X2
1

]2u

]Y2
1

]2u

]T2D 1uuu2 u 2uuu4 u 50. ~2!

Here,X, Y, andT are, respectively, the normalized transve
spatial and temporal variables,Z being the normalized propa
gation distance.

First we look for stationary solutions to Eq.~2! of the
form u5U(r ,T)exp(isu)exp(ikZ), wherer andu are the po-
lar coordinates in the transverse plane,k is a propagation
constant, and the integers is the ‘‘spin.’’ The amplitudeU
can be taken real and obeys the equation

S ]2U

]r 2
1

1

r

]U

]r
2

s2

r 2
U1

]2U

]T2 D 2kU1U3 2U5 50, ~3!

k parametrizing the family of stationary solutions.
Equation ~2! has a well-known conserved quantity~dy-

namical invariant!, which is usually called energy~or the
number of quanta! and has the form of an integrated intens
of the field,

E5E E E uu~X,Y,T!u2dXdYdT. ~4!

The other obvious dynamical invariants of Eq.~2! are the
Hamiltonian

FIG. 1. The propagation constantk ~a! and HamiltonianH ~b!
of the spinning light bullet vs the energyE for the doughnutlike
light bullets.

FIG. 2. The stationary spinning-bullet solutions:~a! s50, ~b!
s51, and~c! s52. The values ofk are indicated near the curves
e

H5E E E @ uuXu21uuYu21uuTu22~1/2!uuu4

1~1/3!uuu6#dXdYdT, ~5!

the momentum~equal to zero for the solution considered!,
and the angular momentum in the transverse plane

L5E E E ~]f/]u!uuu2dXdYdT, ~6!

f being the phase of the complex fieldu.
One readily finds from Eq.~3! that the values ofL andH

for the stationary spinning LBs are related to its energy
follows: L5sE and

H5kE2 2
3 E E 2prU 6~r ,T!drdT. ~7!

We have numerically found one-parameter families of
3D spinning-LB solutions that have the form of a doughn
with a hole in the center. In accord with the results predic
by means of the semianalytical variational approximation
veloped in Ref.@15#, the solutions exist provided that the
energy exceeds a certain threshold value. As an additio
test of the accuracy of numerical computations, we have u
a relationship which can be obtained directly from Eq.~3!:

kE5~1/4!E E 2prU 4drdT. ~8!

To quantify the LB solutions, in Fig. 1 we show the prop
gation constantk and the HamiltonianH of the zero-spin
(s50) and spinning LBs, withs51 ands52, vs their en-
ergyE. It is evident that, in accord with Ref.@15#, the thresh-
old energy strongly increases with the value of the spin.

In Fig. 1 full and dashed lines correspond, respectively
stable and unstable branches, as per direct numerical re

FIG. 3. Gray-scale contour plots illustrating the instability of t
light bullet with spins51 andk50.01: ~a! Z50, ~b! Z5520, and
~c! Z5600.

FIG. 4. The same as in Fig. 3, but fork50.08: ~a! Z50, ~b!
Z5600, and~c! Z5630.
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7144 PRE 61D. MIHALACHE et al.
for the stability presented below. In particular, it will be se
that only thes50 solitons may be fully stable. Thes50
branch of the solutions in Fig. 1 is divided into stable a
unstable portions on the basis of the above-mentio
Vakhitov-Kolokolov criterion@16#.

Figure 2 shows the radial profile of the 3D solitons f
several values ofk. It is seen that, with the increase ofk, the
amplitude of the solitons attains a maximum atkmax
.0.113 fors50 , andkmax.0.138 fors51 ands52. For
k.kmax, the soliton’s amplitude decreases and its shape
comes flatter. It is relevant to mention that the semianalyt
approximation of Ref.@15# yields very close results for th
characteristics of the stationary solutions. For instance
predicted that, fors51, the threshold energy wasEthr
5750, and this value was attained atk50.033, cf. Fig. 1~a!.

Figures 3–6 show some representative gray-scale con
plots of the intensityuu(X,Y,T50)u2. They display the mos
important result: by direct numerical simulations of Eq.~2!,
we have found that the spinning LBs arealways unstable
against azimuthal perturbations. Eventually, the instabi
leads to a breakup of the doughnuts into several mov
zero-spin solitons. Examples fors51 are displayed in Figs
3 and 4 for two different values ofk. Remarkably, the three
fragments emerging in the case of a smaller initial energy
the spinning LB~smallerk) haveunequal energiesand, ac-
cordingly, unequal intensities at their central points~Fig. 3!.
With the increase of the initial energy, the number of t
fragments decreases from three to two. In the latter case
two fragments have exactly equal energies~Fig. 4!. For an
initial LB with s52, we have found that a typical outcome
splitting into four fragments withequal energies~see Figs. 5
and 6!.

Thus the initial internal angular momentum of the sp
ning LB is converted into the orbital momentum of th
emerging fragments, which fly out tangentially to a circu
crest of the doughnut soliton. Running much more simu
tions, we have found that the number of the fragments
roughly, twice the original spins.

Despite the instability of the spinning LBs, they may ha
a chance to be observed in a finite-size bulk sample if
instability is developing slowly enough, so that the LB m
be formed and survive over several LBssoliton periods. In
terms of the propagation constant, the soliton period isZ0
[p/2k. To estimate a relation betweenZ0 and the propaga

FIG. 5. Gray-scale contour plots illustrating the instability of t
light bullets with spins52 andk50.01:~a! Z50, ~b! Z5220, and
~c! Z5320.
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tion distance over which the LB survives, we notice that,
the cases51 andk50.01, which corresponds to the ca
displayed in Fig. 3, numerical data show that the splitti
actually commences atZsplit.400, while the corresponding
soliton’s period isZ0'160. The ratioZsplit /Z0'2.5 is at a
border of a range in which the LB can be a physically me
ingful object. However, in the cases51 andk50.08, which
corresponds to Fig. 4, we findZsplit.550, whileZ0'20, so
that in this case LB may be regarded as avirtually stable
object. Generally, we observed a clear trend to stabiliza
of the spinning LBs with an increase of their energy~i.e.,
increase ofk). Note that, on the contrary to the situatio
with the CQ model, the instability of the spinning LBs in th
3D x (2) model is very strong, so that the spinningx (2) bul-
lets cannot exist stably even over one soliton’s period@12#.

The instability turns out to be much stronger fors52: in
the casek50.01, we findZsplit.130, and fork50.08, the
result isZsplit.180. Thus, it would be less feasible, but n
impossible, to experimentally observe LBs withs52. Prob-
ably, there is no chance to observe them withs.2.

These results, showing that all the 3D bullets in t
present model are eventually unstable, calls to revisit the
version of the same model. Accurate simulations reveal
the 2D bullets are also subject to a relatively weak azimut
instability ~the same result was earlier obtained by Nesh
@17#!. The stability of the 2D bullets reported in Ref.@14#
was, most probably, a result of insufficiently long simul
tions.

In conclusion, in the framework of the standard cub
quintic nonlinear Schro¨dinger model in a 3D dispersive me
dium, we have found one-parameter families of spatiotem
ral spinning bright solitons in the form of a doughnut with
hole in its center. All these spinning spatiotemporal solito
are subject to an instability against azimuthal perturbatio
which leads to the splitting of the doughnut ‘‘bullet’’ into
several fragments, each being a stable moving zero-spin
ton. However, in certain cases the splitting distance may
much larger than the corresponding soliton period, wh
renders experimental observation of the spinning bul
quite feasible.

D. Mihalache, D. Mazilu, L.-C. Crasovan, and F. Leder
acknowledge grants from the Deutsche Forschungsgem
schaft ~DFG!, Bonn ~SFB 196!. B.A.M. is indebted to D.
Neshev for a valuable discussion.

FIG. 6. The same as in Fig. 5, but fork50.08: ~a! Z50, ~b!
Z5230, and~c! Z5260.
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