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Three-dimensional spinning solitons in the cubic-quintic nonlinear medium
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We find one-parameter families of three-dimensional spatiotemporal bright vortex sdbitmmghnuts, or
spinning light bulletg in bulk dispersive cubic-quintic optically nonlinear media. The spinning solitons display
a symmetry-breaking azimuthal instability, which leads to breakup of the spinning soliton into a set of frag-
ments, each being a stable nonspinning light bullet. However, in some cases the instability is developing so
slowly that the spinning light bullets may be regarded as virtually stable ones, from the standpoint of an
experiment with finite-size samples.

PACS numbdis): 42.65.Tg

The existence of stable optical spatiotemporal solitons, oelectric response in the polydiacetylepara-toluene sul-
light bullets[1-3] (LBs), is now a well-established fact. Al- fonate(PTS optical crystal suggests that the CQ nonlinear-
though LBs cannot be stable in the Kew?)) medium be- ity, rather than the saturable one, may correctly model this
cause of the collapget], stability can be easily achieved in medium[13].
saturablg5,6] or quadratically nonlineary®)) media[7,8]. Direct numerical simulations of the dynamics of 2D soli-
Although a fully localized LB in three dimensiort8D) has  tons with spin “1” in the CQ model were first reported in
not yet been observed in an experiment, the first successfiief. [14]. According to that work, the spinning 2D bullet
experiments with quasi-two-dimension@uasi-2D bullets  was fairly robust provided that its energy was not too small.
in a bulk y(?> medium have been recently repor{é. It has proved robust not only against small perturbations, but

A natural and fairly interesting generalization of LB is a also against collisions, which were found to be nearly elastic.
concept of a spinning LB in the form of a “doughnuti.e., A 3D light bullet in the same model was considered very
with a hole in the middle Here, however, the stability is a recently in[15]. However, direct stability simulations were
major issue, as, unlike their zero-spin counterparts, the spirot performed in the latter work; in particular, the stability
ning bullets are prone to be unstable against azimuthal pegnalysis was limited to the application of the well-known
turbations. In the 2D models with thg?) and saturable non- Vakhitov-Kolokolov criterion [16], which is a necessary
linearities, direct numerical simulations have revealed a vergondition for the full stability of the soliton, but does not
strong azimuthal instability10], which was later observed take into regard the most detrimental azimuthal perturba-
experimentally in ay® medium[11]. As a result of this tions.
instability, an initial LB with spin “1” (see an exact defini-  The objective of the present work is a direct numerical
tion below does not decay into radiation but instead splitsanalysis of the 3D spinning LBs in the CQ model, including
into three(in the y* medium or two (in the saturable one a full study of their robustness upon propagation. The main
fragments, each being a moving zero-spin bullet, so that theesult is that the spinning bullets are always unstable; how-
spin momentum is transformed into the orbital momentum ofver, their instability may be developing, depending on the
the fragments. LB’s energy, much slower than in the® model, and in

The first direct numerical results for a 3D spinning bullet some cases it is found to be so slow that the spinning bullet
in the y® model have been very recently obtained in Ref.becomes virtually stable, from the standpoint of a possible
[12]. The main result is that this bullet is strongly unstable,experiment in finite-size 3D samples.
splitting into a set of the moving zero-spin solitons, quite  The equation governing the evolution of the electromag-
similar to what is known in the 2D case. Thus, it is a chal-netic field envelopeA (1=|A[?) in a CQ isotropic disper-
lenging problem to find a physically meaningful model in sive medium is the cubic-quintic nonlinear Sctlirmyer
which aspinningLB would be either stable or, at least, suf- equation,
ficiently weakly unstable.

A model that has a chance to feature this property is the
one with a cubic-quinti¢CQ) nonlinearity, which postulates
a nonlinear correction to the medium’s refractive index in the
form dn=n,l —n4l?, | being the light intensity. Obviously, —2K§(n4/no)|A|4A=0, 1)
this may be formally obtained by an expansion of the satu-
rable nonlinearity, withSn=n,I[ 1+ (n,/n,)1]~ 1. However, wherex, is the propagation constam,= — d?«,/dw?>0 is
an important difference is that while the latter nonlinearity isthe coefficient of temporal dispersion which is assumed
always self-focusingd(sn)/d1>0, the CQ model changes anomalougthere is no chance to have solitons if the disper-
the sign of the focusing at a critical intensity=n,/(2n,).  sion is normal, withD <0), 7=t—2/v4, v4 being the group
Note that an experimental measurement of the nonlinear divelocity of the carrier wave, is the “reduced time,” and the

A, A 5 )
2|K0_+VLA+ KoD_+2K0(n2/no)|A| A
Jz a7

1063-651X/2000/6(B)/71424)/$15.00 PRE 61 7142 ©2000 The American Physical Society



PRE 61 THREE-DIMENSIONAL SPINNING SOLITONS IN THE . . . 7143

® (a) 50
0 —

$=0 S . 25

= S=1"
g g 10 S=3 >0

2 0 N )
§ E 25
-300 - -50.
50 25 0 - - 0 25 50 -0 -25
X X X
-400 L "
3000 4] 1000 2000 3000
energy FIG. 3. Gray-scale contour plots illustrating the instability of the

light bullet with spins=1 and«=0.01:(a) Z=0, (b) Z=520, and
FIG. 1. The propagation constart(a) and HamiltoniarH (b) (c) Z=600.

of the spinning light bullet vs the enerdy for the doughnutlike
light bullets.

A= [ [ ] tudz+ 2 +url2- s2fu
Laplaciaan (representing the spatial diffractipmcts on
the transverse coordinates. Defining rescaled variables +(1/3)|u|6]dXdeT (5)
=AJng/n,, T=mn,\2kq/DNgn,, Z=2zkon3/Ngn,, and

(X,Y)=(x,y);<0n2\/m, one transforms Eq(1) into a the momentumlequal to zero for the solution consideyed
normalized form and the angular momentum in the transverse plane

L=JJJ((7¢/(96)|U|2dXde'I,' (6)

d%u . d%u . d2u
axX? gY?  aT?

au

- 20 _1nldyy —
=+ +|ulu—Jul*u=0. (2

¢ being the phase of the complex fiald
One readily finds from Eq(3) that the values of andH

Here,X, Y, andT are, respectively, the normalized transversesor the stationary spinning LBs are related to its energy as
spatial and temporal variablesbeing the normalized propa- fg|lows: L =sE and

gation distance.

First we look for stationary solutions to EQ) of the
form u=U(r, T)exp(sb)exp(xZ), wherer and 6 are the po- H=xE- %f f 27rUS(r, T)drdT. (7
lar coordinates in the transverse plamejs a propagation
constant, and the integeris the “spin.” The amplitudeU We have numerically found one-parameter families of the
can be taken real and obeys the equation 3D spinning-LB solutions that have the form of a doughnut
with a hole in the center. In accord with the results predicted
P2U 19U 2 52U by means of the semianalytical variational approximation de-
+—-———U+—|—-kU+U3-U%=0, (3) veloped in Ref[15], the solutions exist provided that their

2 2 2 . "
ar Far aT energy exceeds a certain threshold value. As an additional

test of the accuracy of numerical computations, we have used

k parametrizing the family of stationary solutions. a relationship which can be obtained directly from ER):
Equation(2) has a well-known conserved quantigty-

namical invariant which is usually called energgor the _ f f 4

number of quanteand has the form of an integrated intensity «E=(1/9 2mrUTdrdT. ®

of the field,

To quantify the LB solutions, in Fig. 1 we show the propa-
gation constant and the HamiltoniarH of the zero-spin
E:f f f lu(X,Y,T)|2dXdYdT (4) (s=0) and spinning LBs, witls=1 ands=2, vs their en-
ergyE. Itis evident that, in accord with Ref15], the thresh-
old energy strongly increases with the value of the spin.

The other obvious dynamical invariants of EH@) are the In Fig. 1 full and dashed lines correspond, respectively, to
Hamiltonian stable and unstable branches, as per direct numerical results
@ (b) (b) (©)
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FIG. 2. The stationary spinning-bullet solution® s=0, (b) FIG. 4. The same as in Fig. 3, but fa=0.08: (a) Z=0, (b)

s=1, and(c) s=2. The values o are indicated near the curves. Z=600, and(c) Z=630.
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FIG. 5. Gray-scale contour plots illustrating the instability of the  FIG. 6. The same as in Fig. 5, but far=0.08: (a) Z=0, (b)
light bullets with spins=2 and«=0.01:(a) Z=0, (b) Z=220,and Z=230, and(c) Z=260.
(c) Z=320.
tion distance over which the LB survives, we notice that, in
the cases=1 and k=0.01, which corresponds to the case
displayed in Fig. 3, numerical data show that the splitting
gctually commences a,;=400, while the corresponding
soliton’s period isZy~160. The ratioZg,;;/Zo~2.5 is at a
border of a range in which the LB can be a physically mean-
ingful object. However, in the cage=1 andx=0.08, which

for the stability presented below. In particular, it will be seen
that only thes=0 solitons may be fully stable. The=0
branch of the solutions in Fig. 1 is divided into stable and
unstable portions on the basis of the above-mentione
Vakhitov-Kolokolov criterion[16].

Figure 2 shows the radial profile of the 3D solitons for
several values of. It is seen that, with the increase of the corresponds to Fig. 4, we firdly,—550, whileZy~ 20, S0

amplitude of the solitons attains a maximum &hax that in this case LB may be regarded asidually stable

=0.113 fors=0 , andxma=0.138 fors=1 ands=2. For object. Generally, we observed a clear trend to stabilization
K> Kmax, the soliton’s amplitude decreases and its shape be-

comes flatter. It is relevant to mention that the semianalytica&f ctrgz Szplgfr:)n gNLOI?: m&t: %rr]] Thcere:osr?t rg:;rlilrtﬁgi?fé{i on
approximation of Ref[15] yields very close results for the ith the CQ rr;odel the in’stability of the spinning LBs in the
characteristics of the stationary solutions. For instance, igD @ model is véry strong, so that the spinnigl bul-
Erigl(():tz(:] dt?rits’ vfglzse:v&éstgte'[a;:erz,sahti)é)doggegyFiwaf;;r lets cannot exist stably even over one soliton’s pefitid.
s 959, Cl. Q. 14). The instability turns out to be much stronger ¢ 2: in

Figures 3—6 show some representative gray-scale conto%e casex—0.01. we findZ-..~130 and forx—0.08. the

i i =0)|2 i —Y.UL, split™ ) =U.Ug,

plots of the |nter.13|tyu(X,Y,T 0)|. ' Thgy dlsplay the most result isZg,;=180. Thus, it would be less feasible, but not
important result: by direct numerical simulations of E2), P

we have found that the spinning LBs aaévays unstable ggﬁ/ostigg’igonixgﬁgrqleen:gll())/bzt;?\(/a;vtehér?\sv;y;g2. Prob-
against azimuthal perturbations. Eventually, the instability These results, showing that all the 3D bullets in the

leads to a breakup of the doughnuts into several movm%resent model are eventually unstable, calls to revisit the 2D

zero-spin solitons. Examples fee=1 are displayed in Figs. . . :
. version of the same model. Accurate simulations reveal that
3 and 4 for two different values of. Remarkably, the three ; . )
fragments emerging in the case of a smaller initial energy o}he 2D. .buIIets are also subject to a rglatlvely_weak azimuthal
instability (the same result was earlier obtained by Neshev

the s_pinning LB(sm_aIIerK)'haveunequal energi(a_and, ac- [17]). The stability of the 2D bullets reported in Ré¢fL4]
cordingly, unequal intensities at their central poiffg. 3. was, most probably, a result of insufficiently long simula-

With the increase of the initial energy, the number of the,.
fragments decreases from three to two. In the latter case tﬁ“é) ns. . . .
' ' In conclusion, in the framework of the standard cubic-

two fragments have exactly equal energieg. 4. For an quintic nonlinear Schidinger model in a 3D dispersive me-

T o2, D o R DA QSO £, e v ound on. parametrfamiesof spatterpo-
and 6 ' ral spinning bright solitons in the _form of a doughnut WIFh a
ThL;S the initial internal angular momentum of the Spin_hole in its center. AII the_s_e spinning spatlotemporal soll_tons
ning LB is converted into the orbital momentum of the are subject to an |nstap|l_|ty against azimuthal perturbatlons,
emerging fragments, which fly out tangentially to a circularWhICh leads to the spllttlng of the doughngt “bullet” nto_
' several fragments, each being a stable moving zero-spin soli-

crest of the doughnut soliton. Running much more S'mUIa'ton. However, in certain cases the splitting distance may be

tions, we have found that the number of the fragments Sthuch larger than the corresponding soliton period, which

roughly, twice the original spis. ; ) e=
Despite the instability of the spinning LBs, they may have;i?tdee]fga;)é?:”mental observation of the spinning bullets

a chance to be observed in a finite-size bulk sample if the
instability is developing slowly enough, so that the LB may D. Mihalache, D. Mazilu, L.-C. Crasovan, and F. Lederer
be formed and survive over several LBsliton periodsIn  acknowledge grants from the Deutsche Forschungsgemein-
terms of the propagation constant, the soliton periodjs schaft (DFG), Bonn (SFB 196. B.A.M. is indebted to D.
=7/2k. To estimate a relation betwey and the propaga- Neshev for a valuable discussion.
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