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Diffusional mechanism of strong selection in Ostwald ripening

I. Rubinstein* and B. Zaltzman†

Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, 84990, Israel
~Received 24 May 1999!

The purpose of this paper is to show through a systematic asymptotic analysis that fluctuations, accounted
for as a diffusional perturbation in the Lifshitz-Slyozov-Wagner~LSW! model of Ostwald ripening, provides,
as conjectured previously by Meerson@Phys. Rev. E60, 3072 ~1999!#, a ’’strong’’ selection of the limiting
solution, out of a one-parameter family of similarity solutions with a finite support, as the sole attractor of time
evolution. Throughout the latter, the previously described weak selection of other similarity solutions of that
family, by the initial conditions with finite supports, occurs as intermediate time asymptotics. The respective
mechanism is traced first for a simple instance of the LSW model with linear characteristic equations~integer
power in the particle growth rate law equals21), beginning with the analysis of steady states in the perturbed
problem in similarity variables and weak selection in the unperturbed problem, followed by a detailed
asymptotic analysis of the time-dependent perturbed problem, and generalized next for an arbitrary integer
power in the range@21,2#. The approximate asymptotic solutions obtained are compared with the exact
numerical ones.

PACS number~s!: 05.70.Fh
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I. INTRODUCTION

Ostwald ripening~OR! is a term pertaining to the coars
ening of the particles of the condensed phase in a two ph
mixture which forms at the late stage of a first order ph
transition. During this stage, due to decrease of the equ
rium substrate concentration~partial vapor pressure! with the
increase of particle radius, particles larger than some crit
size grow at the expense of the smaller ones. The mean
approach to this process, initiated by Todes@1#, has been
finalized independently by Lifshitz and Slyozov and Wagn
@2#, @3# in their respective models of OR. These models c
sist of continuity equation, for the particle size distributio
function f (r ,t) in the size space, of the general form

f t1„v~r ,t ! f …r50, 0,r ,`, ~1!

where v(r ,t) is the growth rate of a particle of radiusr
specified below, and an equation of the total substrate m
conservation in both phases~solution and the condense
phase!. Through the assumption that majority of the substr
is in the condensed phase, valid at the late stage of solu
decomposition, this latter equation is further reduced to t
of the total particle mass~volume! conservation of the form
~in scaled variables!:

E
0

`

r 3f ~r ,t !dr51. ~2!

Finally, particle growth ratev(r ,t) in Eq. ~1! is usually
specified, through some sort of quasi-steady-state reaso
in the form
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v~r ,t !5
1

r N S 1

R~ t !
2

1

r D . ~3!

Here,N is some integer power in the range 2>N>21 ~see
Refs. @4# and @5#! which depends on the substrate transp
mechanism, andR(t) is the unknown time-dependent critica
particle radius, to be determined as a part of solution toge
with f (r ,t), evolving from a given initial particle size distri
bution

t50: f ~r ,0!5 f 0~r !. ~4!

Equations ~1!–~3! admit a similarity transformation
(r ,t,R, f )↔(x,t,a,u) where

t5 ln t, ~5a!

x5rt 21/(N12), ~5b!

R5t1/(N12)/a, ~5c!

u~x,t!5t4/(N12)f ~r ,t !. ~5d!

In terms of similarity variables Eqs.~1!–~3! assume the form

ut2
x

N12
ux2

4

N12
u1S 1

xN Fa~t!2
1

xGuD
x

50 ~6a!

E
0

`

ux3dx5const. ~6b!

Equations ~6! possess a one-parameter family
t-independent similarity solutions@4,5# for every N>21,
parametrized by the constant critical size parametera vary-
ing in a certain range. Thus, forN51 ~Lifshitz-Slyozov
model of OR! we have
709 ©2000 The American Physical Society
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S 3

2D 2/3

<a,2S 3

5D 2/3

, ~7!

u5Cx2expS E
0

x 26s213a

s323as1s
dsD ~8!

with constantC defined by condition~6b!. For (3
2 )2/3,a,2( 3

5 )2/3, Eq. ~8! yields

u5H Cx2~a22x!g0~x2a1!g22g1~a32x!2g12g2, for 0,x,a2 ,

0, for x>a2 ,
~9a!
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a1,0, 0,a2,a3 . ~9b!

Here, g05(5v026)/(322v0), g15(1227v0)/(624v0),
g253v0 /@(624v0)s#, v05aa2 , s5A3/(aa2) and a1 ,
a2 , a3 are the respective roots of the equationx323ax
1350.

In their original paper@2#, Lifshitz and Slyozov argued
through heuristic arguments that only one limiting soluti
of this family, corresponding to

a5S 3

2D 2/3

, a25a35S 3

2D 1/3

, a1522a2 , ~10a!

u5H u5Cx2S a22x

x12a2
D 7/3

expS 2
a2

a22xD for 0<x,a2 ,

0 for x>a2
~10b!

is the attractor in time for the system~6a!, ~6b! for any ad-
missible set of initial states compatible with Eq.~6b!. Sub-
sequent studies showed that this was not the case, and a

the finite support solutions witha in the range (32 )2/3,a

,2( 3
5 )2/3 are in fact stable for suitable perturbations~e.g.,

with a support smaller then that for the basic solution!. Meer-
son et al. @5# suggested by formal heuristic arguments t
following ‘‘weak’’ selection criterium of these solutions: th
power with which a time dependent solution profile a
proaches zero at the support boundary is preserved thro
out the time evolution and, thus, determines the asympt
value ofa. In other words, the similarity solution the syste
asymptotically evolves to in time is picked by the respect
power in the initial condition with a finite support. This prin
ciple was rigorously proved by Carr and Penrose@6# for the
caseN521, possibly relevant for sintering in a Stokes flo
@6# and dynamics of certain branched polymer systems@7#.

Ambiguity of the weak selection, resulting from the no
uniqueness of time asymptotics, dependant on such an e
tially unmeasurable parameter as the power in the initial p
file at the support boundary, is likely removed by the stro
selection principle, also conjectured by Meerson on the
tuitive ground. The essence of this principle is as follows

It has been commonly accepted~since the works of Zel-
dovich @8# and Frenkel@9#! that the account of fluctuation in
the system under consideration amounts to a perturbatio
the Eq. ~1! by a diffusion term. Meerson conjectured@10#
of
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that namely this perturbation provides the ‘‘strong’’ selecti
of the limiting Lifshitz-Slyozov-Wagner~LSW! similarity
solution, corresponding to the extreme left value of para
eter a, as the sole asymptotic attractor in the problem~1!
with a finite initial support and a power low approach of
boundary by the initial profile.

It is our purpose in this paper to demonstrate throug
systematic asymptotic analysis that this strong selection p
ciple indeed holds and trace the detailed mechanism
which the critical size parameter evolves from its arbitra
initial value, through that corresponding to a finite support
the unperturbed problem, to its final limiting LSW value. W
choose, for the sake of simplicity, to introduce the diff
sional perturbation directly into similarity formulation~6! ~as
is observed in due course, this neither restricts generality
changes qualitatively the results!. Thus, the perturbed prob
lem reads

ut2
x

N12
ux2

4

N12
u1S 1

xn Fa~t!2
1

xGuD
x

5«2uxx ,

~11a!

E
0

`

ux3dx5const. ~11b!

We begin with a detailed study of the caseN521.
Analysis of this simplest case allows us to infer the univer
mechanism of the critical radius evolution in a diffusiona
perturbed problem, yielding an approximate asymptotic
lution which is compared with the exact numerical one. T
very same evolution mechanism is then shown to be valid
the general caseN>21, with the respective approximat
and exact numerical solutions compared for the LS caseN
51).

Our presentation has the following structure. In Sec. II
carry out a detailed solution of the unperturbed problem
N521 and study the«→0 limit of the steady state solu
tions to the respective perturbed problem for Eqs.~11a!,
~11b!. It is shown that the limiting LSW solution, as oppose
to its similarity counterparts with a finite support, belongs
the set of limiting steady-state solutions to the perturb
problem.@In addition to the LSW solutionu581 exp(23x)
with exponential decay at infinity, this set also includes
family of solution with algebraic decay, particular for th
case N521.# Furthermore, in Sec. III we describe th
mechanism for time evolution of the critical size parame
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in the diffusionally perturbed problem forN521, and,
based on this, develop an approximate asymptotic solutio
the time dependent perturbed problem, exhibiting the str
selection property. This solution is compared to the ex
numerical one.

II. WEAK SELECTION IN THE OSTWALD-RIPENING
MODEL WITH N521 AND STEADY-STATE SOLUTIONS

IN THE DIFFUSIONALLY PERTURBED VERSION
OF THIS MODEL

In this section we present a detailed study of the unp
turbed equation~6a! with N521 and of the steady-stat
solutions for the respective diffusionally perturbed equat
~11a!. Particularity of the caseN521 stems from the fac
that the characteristic equations for Eq.~6a! are linear in this
case and the solution may be found analytically.

The respective model problem reads

ut23u1$@x„a~t!21…21#u%x50, 0,x,`,
~12a!
-

to
g

ct

r-

n

uut505u0~x!, ~12b!

E
0

`

x3udx5const. ~12c!

This problem has been studied by Carr and Penrose@6# for a
simplified conservation condition~12c! of the form

E
0

`

xudx5const. ~12d!

For completeness, we rederive below the respective solu
of the problem~12a!, ~12b! with the original conservation
condition ~12c!.

Let us recall first that the one-parameter family of t
steady-state solutions to this problem, parametrized by
critical size parametera.0, is
1,a,4, u5H C@12x~a21!# (42a)/(a21) for 0<x,
1

a21

0 for x>
1

a21
,

a51, u5C exp~23x! for x>0,

0,a,1, u5C~@12a#x11!2(42a)/(12a) for x>0. ~13!
Furthermore, let us simplify the problem~12a!–~12c! by
integrating Eq.~12a! four times, while defining a new un
known:

Q~x,t! 5
de fE

x

`E
s

`E
p

`E
q

`

u~ l ,t!dldqdpds. ~14!

Equation~12a! is rewritten accordingly as

Qt23a~t!Q1$x@a~t!21#21%Qx50, 0,x,`,
~15a!

with the initial condition

Qut505Q0~x! ~15b!

and the integral conservation condition~12c! transformed
into the boundary condition atx50 of the form

Qux5051. ~15c!

Introducing the Lagrange variables (y,T) as
y5x expS 2E
0

t

@a~s!21#dsD
1E

0

t

expS 2E
0

t

@a~s!21#dsD dt, ~16a!

T5t ~16b!

and the new unknown functionV(y,T) as

V5Q expS 23E
0

T

a~s!dsD , ~17!

we obtain the following free boundary problem forV anda:

VT50, y0~T!,y,`, ~18a!

Vuy5y0
5expS 23E

0

T

a~s!dsD , ~18b!

y0~T!5E
0

T

expS 2E
0

t

@a~s!21#dsD dt, ~18c!

VuT505Q0~y!. ~18d!
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Straightforward analysis of Eqs.~18a!–~18d! yields the fol-
lowing equation fora:

expS 23E
0

T

a~s!dsD 5Q0F E
0

T

expS 2E
0

t

@a~s!21#dsD dtG .
~19!

To solve this equation let us defineT0( l ) as the time at
which the free boundaryy5y0(T) reaches the pointy5 l .
We have from Eqs.~18c!, ~18d!, ~19!

l 5E
0

T0( l )

expS 2E
0

t

@a~s!21#dsD dt, ~20a!

Q0~ l !5expS 23E
0

T0( l )

a~s!dsD . ~20b!

The solution of Eqs.~20a!, ~20b! yields

T0~ l !5 lnS 11E
0

l

Q0
21/3~s!dsD , ~21a!

a@T0~ l !#52
Q08~ l !

3Q0
2/3~ l !

S 11E
0

l

Q0
21/3~s!dsD . ~21b!

An obvious consequence of Eqs.~21a!, ~21b! is the fol-
lowing ‘‘weak’’ selection principle: if

Q0~x!5H O@~xo2x!g# for x→x020

0 for x.x0

or

u0~x!5H O†~xo2x!g24
‡ for x→x020

0 for x.x0
~22!

then

lim
l→x0

T0~ l !5` ~23a!

and

lim
t→`

a~ t !5
g

g23
. ~23b!

We reiterate~see the Introduction! the ambiguity of this
‘‘weak’’ selection principle and of the related nonuniquene
of asymptotics, as dependent on such an essentially unm
surable characteristic as the value of the logarithmic der
tive of the initial profile at the support boundary. This amb
guity is to be removed by the ‘‘strong’’ selection princip
~see Ref.@10#! analyzed below~Sec. III!, whereas we con-
clude this section by analyzing the steady-state solution
the diffusionally perturbed counterpart of the problem~15a!–
~15c! of the form

Qt23a~t!Q1@x„a~t!21…21#Qx5«2Qxx , 0,x,`,
~24a!

Qut505Q0~x!, ~24b!
s
ea-
-

of

Qux5051. ~24c!

The steady-state version of Eqs.~24a!–~24c! reads

«2Qxx13aQ2@x~a21!21#Qx50, 0,x,`,
~25a!

Q~0!51. ~25b!

The solution to this problem fora51 is

Q5C1exp~r 2x!1~12C1!exp~r 1x! ~26!

with r 65(216A1212«2)/2«2. Taking into account
boundedness ofu5d4Q/dx4 we find thatC15O(«8) and
thus, to the leading order in«,

lim
«→0

Q~x!5exp~23x! ~27!

in accordance with the respective expression in Eq.~13!.
Solving Eqs.~25a!, ~25b! for a,1 we find

Q5~2xg11!2
1
2expS 2

@2xg11#2

4g«2 D
3YS 2

3~g11!

2g
2

1

4
,
1

4
,2

@2xg11#2

2g«2 D ~28a!

with g5a21 and

Y~a,b,z!5C1Ma,b~z!1C2~C1!Ma,2b~z!, ~28b!

where Ma,b(z), Ma,2b(z) are the respective Whittaker’
functions~see Ref.@11#! and constantC2 is related toC1 by
means of Eq.~25b!. Using asymptotic properties of the Whi
taker’s functions~see Ref.@11#!, we find

Q~x!x5O~x23a/(12a)!as x→` ~29!

and

lim
«→0

Q~x!5@12~a21!x#23a/(12a). ~30!

The last case to be considered is 1,a,4, corresponding to
the compact support solutions of the unperturbed steady-s
problem with the respective power-law vanishing at the rig
edge of the support. In this case we find
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Q55 ~2xg11!21/2expS 2
@2xg11#2

4g«2 D YS 2
3~g11!

2g
2

1

4
,
1

4
,2

@2xg11#2

2g«2 D for 0<x,
1

g
5

1

a21

0 for x>
1

g
,

~31!
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Y~a,b,z!5C1Ma,b~z!. ~32!

Making once more use of the asymptotic properties of
Whittaker’s functions, we obtain

Q~x!5C1OFexpS ~12xg!2

4g«2 D G
as «→0 for every finite x.

1

g
. ~33!

We conclude that for boundedness in the limit«→0 we
must have lim«→0C150 which is incompatible with bound
ary condition~25b!. Thus, no similarity solutions with a fi
nite support, but the one witha51, may be recovered as th
«→0 limits of the respective steady state solutions in
diffusionally perturbed model. In other words, these so
tions, corresponding to the critical size parametera in the
range 1,a,4 and characterized by a power law vanishi
of the solution profile at the support boundary are unsta
with respect to small diffusional perturbation.

III. STRONG SELECTION IN DIFFUSIONALLY
PERTURBED PROBLEM

In this section we analyze the time-dependent diffusi
ally perturbed problem~11a!–~11b!, with N521, in the
form ~24a!–~24c! and study the mechanism of ‘‘strong’’ se
lection by which the limiting valuea51 of the critical size
parameter is picked through time evolution. The existence
this ‘‘strong’’ selection is suggested by numerical solution
the time-dependent diffusionally perturbed problem and
the respective limiting results for steady-state solutions
the previous section.

In terms of the Lagrange variables (y,T), V(y,T), de-
fined by Eqs.~16a!, ~16b!, ~17!, Eqs.~24a!–~24c! yield the
following free boundary problem:

VT5«2expS 22E
0

T

@a~s!21#dsDVyy , 0,y0~T!,y,`,

T.0, ~34a!

Vuy5y0
5expS 23E

0

T

a~s!dsD , ~34b!

y0~T!5E
0

T

expS 2E
0

p

@a~s!21#dsD dp, ~34c!

VuT505Q0~y!. ~34d!
e

e
-

le

-

of
f
y
f

First, let us consider the diffusionally perturbed evoluti
of a similarity solution with a finite support and a power la
vanishing at the support’s right edge, corresponding to
nonlimiting value ofa:

a~0!5a0P~1,4!, ~35a!

VuT505Q0

5H @12y~a021!#3a0 /(a021) for 0<y,
1

a021
,

0 for y>
1

a021
.

~35b!

@In what follows we generalize our analysis to arbitrary in
tial data with a compact support and a diffusional pertur
tion in physical ~nonsimilarity! variables.# The initial data
~35b! is a regular smooth function for all values ofy except

the point ỹ5
def

1/(a021), around which an order« wide in-
ternal layer is formed.

The outer problem, valid for all (y,T) such thatỹ2y
@«, is the unperturbed problem~18a!–~18d! and its solution
is the respective similarity solution@Q0(y),a0#. Hence,

V~y,T!5Q0~y! for all y>y0 and ỹ2y@«, ~36a!

a~T!5a0 for all T.0 such that ỹ2y0~T!@«,
~36b!

y0~T!5
exp@2~a021!T#

a021

for all T.0 such that ỹ2y0~T!@« ~36c!

and, thus,a and V are constant in time for all values ofT
,O(u ln(«)u).

Let us consider the inner problem whose solution affe
the value ofa for T>O(u ln(«)u). In terms of the inner space
and time variables

z5
y2 ỹ

«
, ~37a!

T̃5E
0

T

expS 22E
0

p

@a~s!21#dsD dp ~37b!

this problem reads, to the leading order in«,

WT̃ 5Wzz,2`,z,`, ~38a!
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Wu T̃505H ~a021!b«b~2z!b z,0,

0 z.0,
~38b!

whereb53a0 /(a021) andW(z,T̃)5V(y,T). Integration
of Eqs.~38a!, ~38b! yields

W~z,T̃!5
~a021!b

2ApT̃
«bE

2`

0

~2j!bexpS 2
~z2j!2

4T̃
D dj.

~39!

Let us recall that forT,O(u ln(«)u), the critical size param-
etera is almost constant and, thus,

T̃5
1

2~a021!
12exp@22~a021!T#5

1

ỹ2
2@y0~T!2 ỹ#2.

~40!

It follows from Eq. ~40! that for T still the interval O(1)
,T,O(u ln(«)u), when the inner layer still has no effect o
a, the inner timeT̃ already approaches its limiting valu
1/2(a021), that is,

UT̃2
1

ỹ2U!1. ~41!

Furthermore, taking into account Eq.~37b! we observe that
inequality ~41! holds for all T in the interval O(1),T
,O(1/«2). This implies that by the timeT when the free
boundaryy0(T) reaches the internal layer, the inner timeT̃ is
already at its limiting value and the solution of the inn
problem ceases to evolve. Thus, we conclude that for aT
.O(1) the solution of the problem~34a!–~34c! is, to the
leading order in«, constant in time everywhere including th
internal layer in which

V~y,T!'WS y2 ỹ

«
,

1

ỹ2D ~42a!

with the free boundaryy0 and critical size parametera de-
termined by the equalities

expS 23E
0

T

a~s!dsD'WS y02 ỹ

«
,

1

ỹ2D , ~42b!

y0~T!5E
0

T

expS 2E
0

p

@a~s!21#dsD dp. ~42c!

Summarizing, the solution to the diffusionally perturb
problem~34a!–~34d! reads

V5Ṽ1O~«!, ~43a!

a5ã1O~«!. ~43b!

Here Ṽ and ã are the solutions to the unperturbed proble
~18a!–~18c!, with the initial data regularized in the vicinity
of the support boundaryỹ so that
Ṽ~y,0!5Q0~y!1WS y2 ỹ

«
,

1

ỹ2D 2WS `,
1

ỹ2D . ~44!

The respective leading order approximate solutionsṼ(y,T),
ã(T) are given by Eqs.~21a!–~21b!. For comparison, we
present in Fig. 1 the numerical solution of full diffusional
perturbed problem~34a!–~34d! for a052 and «51023

along with a respective approximate solution.
In the rest of this section we consider the diffusional p

turbation of the OR model with a general initial distributio
on a compact support and a power law vanishing of the
tribution profile at the support boundary for any integer va
of the parameterN in the rangeN521,0,1,2. We begin with
consideration of the caseN521 with the initial data of the
form

FIG. 1. Time evolution of the critical size parametera in the
approximate analytical solution~line 1! to the diffusionally per-
turbed problem~34a!–~34d! for a052 and «51023, and in the
respective exact numerical solution~line 2!.

FIG. 2. Time evolution of the critical size parametera in the
unperturbed problem~line 1!, in the exact numerical solution to th
diffusionally perturbed problem for«51023 ~line 2! and«51024

~line 4!, and in the respective approximate analytical solutions
«51023 ~line 3! and«51024 ~line 5!.
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VuT505V0~y!5H O@~ ỹ2y!g#, g.4 for y→ ỹ20,

0 for y. ỹ.
~45!

We distinguish the following three time scales.
~1! Initial phase T5O(1). a(T) defined by the solution

of the outer~unperturbed! problem. There is no effect o
diffusional perturbation forT in this range.

~2! Transient state: O(1),T,O(u ln «u). Still, no effect of
diffusional perturbation upona(T). a(T) reaches its tran-
sient asymptotic value
it-

o
im

w

f
.

-

o

t

a~T!→a05
g

g23
. ~46!

~3! Final asymptotic state. T>O(u ln «u). a(T) tends to its
limiting value 1, following the scenario described above.

Summarizing, in the case of a general initial distributi
function V0(y), satisfying condition ~45!, representation
~43a!, ~43b! of the solution to the full diffusionally perturbed
problem still holds, with the following modification of the
regularized initial data:
ṼuT5055 V02~ ỹ2y!g lim
y→ ỹ2

V0~y!

~ ỹ2y!g
1WS y2 ỹ

«
,T0D lim

y→ ỹ2

V0~y!

~ ỹ2y!g
/~a021!g

for y, ỹ,

WS y2 ỹ

«
,T0D lim

y→ ỹ2

V0~y!

~ ỹ2y!g
/~a021!g

for y. ỹ.

~47a!

Here

T05E
0

`

expS 22E
0

t

@ã~s!21#dsD dt ~47b!

and ã(T) is the critical size parameter obtained by the solution of the respective unperturbed problem

lim
T→`

ã~T!5a0 . ~47c!

In the Fig. 2 we present a comparison of a numerical solution to the diffusionally perturbed problem~34a!–~34d! with the
respective approximate solution~43a!, ~43b!, ~47a!–~47c! for the initial distribution

V0~y!5H ~12y!216~12y!4 for 0<y,1,

0 for 1<y, «51023 and «51024.
,
ng
-
R
lu-

R

d

The obtained mechanism of ‘‘strong’’ selection of the lim
ing value of the critical size parametera51 is sufficiently
general and, in particular, also holds for different types
diffusional perturbation. Thus, let us consider a general t
dependent diffusivity of the type

D5«2k~T!. ~48!

Repeating the above arguments with slight modifications,
find that the representation~47a! for the initial data of the
approximate solution is still valid with only the value o
‘‘stabilization’’ time T0 modified in accordance with Eq
~48!. For example, we have

T05E
0

`

exp~2t !expS 22E
0

t

@ã~s!21#dsD dt ~49!

for k(T)5exp(2T)51/t corresponding to a constant diffu
sivity in the original physical variables (x,t).

There is no analytical representation for the solution
the unperturbed OR model problem withN.21 ~Wagner
modelN50, LS modelN51) and we cannot find the exac
f
e

e

f

value of the ‘‘stabilization’’ timeT0 in this case. However
universal character of the described mechanism of ‘‘stro
selection’’ for differentN is supported by comparison of nu
merical solution in the diffusionally perturbed models of O
with the respective numerically obtained approximate so
tions.

Thus, let us consider, for example, the LS model of O
(N51). Introducing a new unknown

Q5E
x

`

udx ~50!

and integrating the counterpart of Eq.~11a! with N51, we
obtain the following version of the diffusionally perturbe
problem~11a!, ~11b!:

Qt2Q1S 1

x Fa~t!2
1

xG2
x

3DQx5«2k~t!Qxx ,

0,x,`, t.0, ~51a!
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E
0

`

Qx2dx52, ~51b!

Qut505Q0~x!5H O@~ x̃2x!g#, x→ x̃20,

0, x. x̃.
~51c!

@Nonlinearity of Eq.~51a! in x does not allow us its furthe
integration analogous to Eq.~14!.# Defining V0(x,t), a0(t)
as the solution of the respective unperturbed problem,
find the Lagrange variables (y,T): y5y(x,t), T5t as a
solution to the equation

yt1F1

x S a0~t!2
1

xD2
x

3Gyx50 ~52a!

with initial condition

yut505x. ~52b!

In terms of these variables, problem~51a!–~51c! assumes the
form

VT5H 0, y0~T!,y, ỹ2y,O~«!

«2k~T!yx
2~ ỹ,T!Vyy , ỹ2y>O~«!, T.0,

~53!

E
y0(T)

`

V
x~y,T!2

yx
dy5exp~T!, ~54a!

VuT505V0~y!5H O@~ ỹ2y!g#, 0,y< ỹ,

0, y. ỹ,
~54b!

HereV(y,T)5exp(2T)Q(x,t). The stabilization timeT0 is

T05E
0

`

k~T!yx
2~ ỹ,T!dT ~55!

and the approximate solution is found as that to the resp
tive unperturbed problem with the following regularized in
tial data:

Ṽ

55 V02~ ỹ2y! lim
y→ ỹ2

V0~y!

~ ỹ2y!g
1WS y2 ỹ

«
,T0D , 0,y< ỹ,

WS y2 ỹ

«
,T0D , y> ỹ.

~56!

HereW is the solution of the inner problem

WT̃5Wzz, 2`,z,`, T̃.0, ~57a!

Wu T̃505H lim
y→ ỹ2

V0~y!

~ ỹ2y!g
~2z!g«g, z,0,

0, z.0.

~57b!
e

c-

z andT̃ are, respectively, the inner space and time variab
defined as

z5
y2 ỹ

«
, ~58a!

T̃5E
0

T

k~s!yx
2~ ỹ,s!ds. ~58b!

In particular, for a diffusional perturbation in similarit
variables (k51) we have

T̃5
1

2~a/a2
221!

$12exp@2~a/a2
221!T#% ~59a!

with

a25 x̃,Aa for a.a lim5S 3

2D 2/3

~59b!

@see Eqs.~7!–~9!#.
In Fig. 3 we compare the numerical solution to the tim

dependent diffusionally perturbed LS model (N51, «
51023) with the respective approximate solution, name
that of the unperturbed problem with regularized initial da
Eq. ~56!, andu0(x) of the form

u0~x!5H ~12x!2, 0<x<1,

0, x>1.
~60!

IV. CONCLUSIONS

~1! As conjectured previously by Meerson@10#, fluctua-
tions, accounted for as a diffusional perturbation in the LS
model of Ostwald ripening, yields a strong selection of t
limiting LSW similarity solution as a sole attractor in th
time-dependent problem; on the other hand, the weak se
tion of other similarity solutions comes up in this process
intermediate time asymptotics for the initial conditions wi
a compact support.

FIG. 3. Time evolution of the critical size parametera in the
unperturbed LS problem~line 1!, in the numerical solution of the
diffusionally perturbed problem for«51023 ~line 2!, and in the
respective approximate solution~line 3!.
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~2! The universal~independent of the perturbation param
eter «) characteristic of the strong selection process is
scaled internal layer solution profile and, in particular,
intrinsic inner time asymptotics~42a!. Namely this latter
governs, in accordance with Eq.~42b!, the transition of the
critical size parametera from its intermediate asymptoti
e
value, picked by the weak selection, to the final limitin
LS–W value.
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