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Diffusional mechanism of strong selection in Ostwald ripening
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The purpose of this paper is to show through a systematic asymptotic analysis that fluctuations, accounted
for as a diffusional perturbation in the Lifshitz-Slyozov-WagieSW) model of Ostwald ripening, provides,
as conjectured previously by Meersfidhys. Rev. B60, 3072(1999], a "strong” selection of the limiting
solution, out of a one-parameter family of similarity solutions with a finite support, as the sole attractor of time
evolution. Throughout the latter, the previously described weak selection of other similarity solutions of that
family, by the initial conditions with finite supports, occurs as intermediate time asymptotics. The respective
mechanism is traced first for a simple instance of the LSW model with linear characteristic equatieger
power in the particle growth rate law equatdl), beginning with the analysis of steady states in the perturbed
problem in similarity variables and weak selection in the unperturbed problem, followed by a detailed
asymptotic analysis of the time-dependent perturbed problem, and generalized next for an arbitrary integer
power in the rangg —1,2]. The approximate asymptotic solutions obtained are compared with the exact
numerical ones.

PACS numbds): 05.70.Fh

I. INTRODUCTION

1/ 1 1

v(r,t)=—N(ﬁ——>. 3)
Ostwald ripening(OR) is a term pertaining to the coars- r t r
ening of the particles of the condensed phase in a two phase _ ) )
mixture which forms at the late stage of a first order phasdiere;N is some integer power in the rangesX=—1 (see
transition. During this stage, due to decrease of the equilibRefs:[4] and[S]) which depends on the substrate transport
rium substrate concentratiépartial vapor pressujevith the ~ Mechanism, an&(t) is the unknown time-dependent critical
increase of particle radius, particles larger than some criticaparticle radius, to be determined as a part of solution together
size grow at the expense of the smaller ones. The mean fielfith f(r,t), evolving from a given initial particle size distri-
approach to this process, initiated by Toda$ has been bution
finalized independently by Lifshitz and Slyozov and Wagner
[2], [3] in their respective models of OR. These models con- t=0: f(r,00="fo(r). 4
sist of continuity equation, for the particle size distribution

function f(r,t) in the size space, of the general form Equations (1)—(3) admit a similarity transformation

(r,t,R,f)«(X,7,a,u) where

ft+(v(r!t)f)rzov O<r<00, (1) Tzlnt, (5@
where v(r,t) is the growth rate of a particle of radius x=rt~HN*2), (5b)
specified below, and an equation of the total substrate mass
conservation in both phasdsolution and the condensed R=tYN*2)/q, (50)
phase. Through the assumption that majority of the substrate
is in the condensed phase, valid at the late stage of solution u(x, 7)=t¥N+2f(r 1), (5d)

decomposition, this latter equation is further reduced to that
of the total particle masgsolume conservation of the form In terms of similarity variables Eq$1)—(3) assume the form
(in scaled variables

X

—_ —_ + JE—
U N2 N2 (XN

u) =0 (6a)

X

CL’(T)—;

J'wr3f(r,t)dr=1. 2
0

_ , _ , f ux3dx=const. (6b)
Finally, particle growth ratev(r,t) in Eq. (1) is usually 0
specified, through some sort of quasi-steady-state reasoning,
in the form Equations (6) possess a one-parameter family of
r-independent similarity solutionft,5] for every N=—1,
parametrized by the constant critical size parameteary-
*Electronic address: robinst@bgumail.bgu.ac.il ing in a certain range. Thus, fak=1 (Lifshitz-Slyozov

TElectronic address: boris@bgumail.bgu.ac.il model of OR we have
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3 2/3 5 3 2/3
— $ —
5 a< 5| o (7
x —65%+ 3«
u=Cx%ex f —————ds 8
0s°—3as+s
with constantC defined by conditiori6b). For (3)?*<a<2(2)?® Eq.(8) yields
CxX%(ap—X)"0(X—ay) "2 "(azg—x) "1 72, for 0<x<ay,
" 0, for x=a,, (%3
|
@;<0, O0<a,<as. (9b) that namely this perturbation provides the “strong” selection

of the limiting Lifshitz-Slyozov-WagnerLSW) similarity
Here, yo=(5vo—6)/(3—2vy), y1=(12—7vy)/(6—4vy),  Ssolution, corresponding to the extreme left value of param-
¥2=3Vo/[(6—4vy)S], Vo=aa,, s=\3/(aa,) and a, eter @, as the sole asymptotic attractor in the problén
a,, as are the respective roots of the equativh-3ax  With a finite initial support and a power low approach of its
+3=0. boundary by the initial profile.
In their original papef2], Lifshitz and Slyozov argued It is our purpose in this paper to demonstrate through a

through heuristic arguments that only one limiting solutionSystematic asymptotic analysis that this strong selection prin-
of this family, corresponding to ciple indeed holds and trace the detailed mechanism by

which the critical size parameter evolves from its arbitrary
3\ 23 3\ 13 initial value, through that corresponding to a finite support in
01:(5) , a2=a3=<§) ,  a1=—2a,, (108  the unperturbed problem, to its final limiting LSW value. We
choose, for the sake of simplicity, to introduce the diffu-

sional perturbation directly into similarity formulatid6) (as

oy \T73

u=Cx2 @ X ) ex;{ __* for 0<x<a,, is observed in due course, this neither restricts generality nor
u= X+ 2a; ay—X changes qualitatively the resylt§hus, the perturbed prob-

0 for x=a, lem reads

(10b
X 4 1 )

is the attractor in time for the systetfa), (6b) for any ad- N L N L N a(7) - XY T E oo
missible set of initial states compatible with E@&b). Sub- x (114
sequent studies showed that this was not the case, and any of
the finite support solutions witlr in the range £)?*<a S
<2(2)?? are in fact stable for suitable perturbatiofesg., fo ux“dx=const. (11b

with a support smaller then that for the basic solutidvieer-

son et al. [5] suggested by formal heuristic arguments the We begin with a detailed study of the cabe=—1.
following “weak” selection criterium of these solutions: the Analysis of this simplest case allows us to infer the universal
power with which a time dependent solution profile ap-mechanism of the critical radius evolution in a diffusionally
proaches zero at the support boundary is preserved througherturbed problem, yielding an approximate asymptotic so-
out the time evolution and, thus, determines the asymptotitution which is compared with the exact numerical one. The
value ofa. In other words, the similarity solution the system very same evolution mechanism is then shown to be valid for
asymptotically evolves to in time is picked by the respectivethe general casél=—1, with the respective approximate
power in the initial condition with a finite support. This prin- and exact numerical solutions compared for the LS céke (
ciple was rigorously proved by Carr and Penrp8kfor the  =1).

caseN= —1, possibly relevant for sintering in a Stokes flow  Our presentation has the following structure. In Sec. Il we
[6] and dynamics of certain branched polymer systgils  carry out a detailed solution of the unperturbed problem for

Ambiguity of the weak selection, resulting from the non- N=—1 and study thee—0 limit of the steady state solu-
unigueness of time asymptotics, dependant on such an esséions to the respective perturbed problem for E¢fla),
tially unmeasurable parameter as the power in the initial prot11b). It is shown that the limiting LSW solution, as opposed
file at the support boundary, is likely removed by the strongto its similarity counterparts with a finite support, belongs to
selection principle, also conjectured by Meerson on the inthe set of limiting steady-state solutions to the perturbed
tuitive ground. The essence of this principle is as follows. problem.[In addition to the LSW solutiom=81 exp(3x)

It has been commonly acceptésince the works of Zel- with exponential decay at infinity, this set also includes a
dovich[8] and Frenke[9]) that the account of fluctuation in family of solution with algebraic decay, particular for the
the system under consideration amounts to a perturbation @ase N=—1.] Furthermore, in Sec. Ill we describe the
the Eq.(1) by a diffusion term. Meerson conjectur¢io] mechanism for time evolution of the critical size parameter
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in the diffusionally perturbed problem foN=-1, and,

Ul,r:():UO(X), (12b)

based on this, develop an approximate asymptotic solution to
the time dependent perturbed problem, exhibiting the strong

selection property. This solution is compared to the exact

numerical one.

Il. WEAK SELECTION IN THE OSTWALD-RIPENING
MODEL WITH N=-1 AND STEADY-STATE SOLUTIONS
IN THE DIFFUSIONALLY PERTURBED VERSION
OF THIS MODEL

J x3udx=const. (120
0

This problem has been studied by Carr and Pen®kor a

simplified conservation conditiofL2c) of the form

In this section we present a detailed study of the unper- fmxudx: const (12d)

turbed equation6a) with N=—1 and of the steady-state

0

solutions for the respective diffusionally perturbed equation

(119. Particularity of the cas&l=—1 stems from the fact
that the characteristic equations for E6@) are linear in this
case and the solution may be found analytically.

The respective model problem reads

u,—3u+{[x(a(r)—1)—1Ju},=0, 0<x<oo,
(129

C[1—x(a—1)]@ @D for o<x<

For completeness, we rederive below the respective solution
of the problem(123, (12b) with the original conservation
condition (120).

Let us recall first that the one-parameter family of the
steady-state solutions to this problem, parametrized by the
critical size paramete#>0, is

a—1
1<a<4,u= 1
0 for x=——7,
a=1, u=Cexp—3x) for x=0,
0<a<l1l, u=C([l—a]x+1)~ ¢ a/(1-a for x=0. (13

Furthermore, let us simplify the problef@2a—(120 by

integrating Eq.(12a four times, while defining a new un-

known:

Q(X,T)d:eff:j:f:f:U“,T)d|depdS (14)

Equation(123 is rewritten accordingly as

Q,—3a(1)Q+{X[a(7)~1]-1}Qx=0, 0<x<e,
(153

with the initial condition
Ql;=0=Qo(x) (15b)

and the integral conservation conditigh2¢) transformed
into the boundary condition at=0 of the form

Qlx-0=1. (150

Introducing the Lagrange variableg,T) as

y=xexp< - for[a(s)—l]ds>

T t
+f0 exp(—fo[a(s)—l]ds>dt, (16a
T

=7 (16b)

and the new unknown functiovi(y,T) as

T
V=Q exp(—3f a(s)ds), (17
0

we obtain the following free boundary problem férand «:
V=0, yo(T)<y<w, (183

T
V|yy0=exp< —3f a(s)ds> , (18b)

0

T t
Yo(T)= fo exp( — fo[a(s)—l]ds)dt, (1890

V]120=Qo(Y). (180
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Straightforward analysis of Eq$§183—(18d) yields the fol-

lowing equation fora:

T
exp( —3] a(s)ds) =Qq
0

fOTexp{ - J:[a(s)— l]ds)dt

19

To solve this equation let us defing(l) as the time at

which the free boundary=yy(T) reaches the poing=1.
We have from Eqs(180¢), (18d), (19)

|:fOT°(')exp( —fot[a(s)—l]ds)dt, (203
To(h)
QO(I)=exp( —3f0 a(s)ds). (20b)
The solution of Eqs(20a), (20b) yields
To()=In 1+f|Q51’3(s)ds>, (21a
0
~ Qoh | i )
a[To(l)]= 3Q§/3(I)(1+foQ0 (s)ds|. (21b

An obvious consequence of Eq21a), (21b) is the fol-
lowing “weak’ selection principle: if

O[(Xg—Xx)?] for x—Xxg—0
Qo)=1 4 for x>xo
or
O[(Xo—X)" 4] for x—x,—0
Uo(X)= 0 for x>xg 22
then
lim Ty(l)=00 (239
|4>X0
and
. Y
ima(t)=——=. 23b
lim a(t) = —= (230)

PRE 61
Qlx=0=1. (249

The steady-state version of Eq@49—(240) reads

£2Quy+3aQ—[x(a—1)—1]Q,=0, 0<x<oo,
(259
Q(0)=1. (25b)
The solution to this problem for=1 is
Q=Cyexp(r_x)+(1—Cy)expr.x) (26)

with r.=(—1%1-12:%)/2¢%. Taking into account
boundedness ofi=d*Q/dx* we find thatC,;=0(&®) and
thus, to the leading order ia,

lim Q(x)=exp(— 3x) (27

e—0

in accordance with the respective expression in @dg).
Solving Egs.(253), (25b) for <1 we find

1 [—xy+1]?
Q:(_X7+1) ZGX%—T
3(y+1) 11 [—xy+1]?
Y(— 2y _Z’Z'_—Zysz ) (28a

with y=a—1 and

Y(a,b,2)=C1M, p(2) +C5(C1)M, —p(2), (28D

where M, ,(2), M, _n(z) are the respective Whittaker's
functions(see Ref[11]) and constan€, is related toC, by
means of Eq(25b). Using asymptotic properties of the Whit-
taker's functionssee Ref[11]), we find

We reiterate(see the Introductionthe ambiguity of this
“weak” selection principle and of the related nonuniqueness
of asymptotics, as dependent on such an essentially unmea-
surable characteristic as the value of the logarithmic deriva-
tive of the initial profile at the support boundary. This ambi-
guity is to be removed by the “strong” selection principle
(see Ref[10]) analyzed belowSec. Ill), whereas we con-
clude this section by analyzing the steady-state solutions of limQ(X)=[1—(a—1)x] 3«1~ (30)
the diffusionally perturbed counterpart of the problerba — £—0
(150 of the form

Q(x)x=0(x" 31~ )35 x—w (29)

Q,—3a(7)Q+[x(a(1)—1)—1]Q,=22Qyy, 0<x<oe, The last case to be considered is &<4, corresponding to
(24a  the compact support solutions of the unperturbed steady-state
problem with the respective power-law vanishing at the right
Ql,—0=Qo(x), (24b) edge of the support. In this case we find
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—xy+1]? 3(y+1) 11 [—xy+1)? 1 1
(—xy+1) Y%x JLoo il 3t )——,—,—u for Osx<—=——
4’)/82 2y 474 2782 y a—1
Q= (32)
0 for x=—,
Y
|
with First, let us consider the diffusionally perturbed evolution
of a similarity solution with a finite support and a power law
Y(a,b,2)=C1M4(2). (32)  vanishing at the support’s right edge, corresponding to a
. . . nonlimiting value ofa:
Making once more use of the asymptotic properties of the
Whittaker’s functions, we obtain a(0)=ape (1,9, (359
1—xy)? _
Q(x)=C,0 ex;{%) Vlr-0=Qo
4ye 1
1 [1-y(ag—1)]3%/(*0™ D) for o=y<———,
as £—0 for every finite x>, (33 - %o
0 for y= .
We conclude that for boundedness in the ligit-0 we ap—1
must have lim_ ,C;=0 which is incompatible with bound- (35b)

ary condition(25b). Thus, no similarity solutions with a fi-
nite support, but the one withh=1, may be recovered as the [In what follows we generalize our analysis to arbitrary ini-
£—0 limits of the respective steady state solutions in thetial data with a compact support and a diffusional perturba-
diffusionally perturbed model. In other words, these solu-tion in physical (nonsimilarity) variables] The initial data
tions, corresponding to the critical size parametein the  (35b) is a regular smooth function for all values ypexcept
range K a<4 and characterized by a power law vanishing
of the solution profile at the support boundary are unstabl
with respect to small diffusional perturbation.

def
the pointy=1/(ay—1), around which an order wide in-
fernal layer is formed.
The outer problem, valid for ally(T) such thaty—y
>g, is the unperturbed problefi8a—(18d) and its solution

lll. STRONG SELECTION IN DIFFUSIONALLY is the respective similarity solutigrQq(y),aq]. Hence,

PERTURBED PROBLEM

In this section we analyze the time-dependent diffusion- V(y,T)=Qq(y) forally=y, and y—y>e, (363
ally perturbed problem(119—(11b), with N=—1, in the
form (248 —(240 and study the mechanism of “strong” se- a(T)=ag forall T>0 such tha@_yo(T)>g,
lection by which the limiting valuex=1 of the critical size (36b)
parameter is picked through time evolution. The existence of
this “strong” selection is suggested by numerical solution of exd —(ap—1)T]
the time-dependent diffusionally perturbed problem and by Yo(T)=
the respective limiting results for steady-state solutions of
the previous section. forall T>0 suchthaty—yy(T)>e (360

In terms of the Lagrange variabley,T), V(y,T), de-
fined by Eqs.(16d, (16b), (17), Egs.(24a—(240 yield the  and, thus,e andV are constant in time for all values af
following free boundary problem: <O(|In(e))).

Let us consider the inner problem whose solution affects

T .
Vo= g2 _Zf $)—11ds|Viy, 0<y(T)<y<ow, the value ofe for T=0(|In(g)|). In terms of the inner space
L XF{ o[a( )~ ) i Yo(T)<y=<e and time variables

ag— 1

>0 (343 ,_ y—y 373

T>0,
.
V|y_yo=exr( _3fo a(s)ds), (34b . ;
T:J exp(—zf [a(s)—l]ds)dp (37b
0 0

T p
yo(T>=f0 exp(—fo[a<s>—1]ds)dp, (340

this problem reads, to the leading ordersin

V]r—0=Qo(Y)- (340 Wi =W,,, —o<z<wx, (383
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(38b @

2.0

(ag—1)PeP(—2)P z<0,
Wi-0=1 4 >0

where B=3a,/(ag—1) andW(z,T)=V(y,T). Integration
of Egs.(38a), (38b) yields

7 (@D 0 p(_<z—é>2)
W(z,T)= 2\/ﬁ € fﬁw( &)Fex e dé. ol
(39

Let us recall that folT<O(|In(g)|), the critical size param-
eter « is almost constant and, thus,

x__ 1 1 -~ 12}
= 2(a0—1)1_exq_2(“0_1)T]—§—2—[yo(T)—y] . 1
(40) . . 2~

0 4 8 12 T 16

It follows from Eq. (40) that for T still the interval O(1) _ _ N _ _
<T<0O(|In(e)|), when the inner layer still has no effect on FIG. 1. Time evolution of the critical size parameterin the

. LT e T approximate analytical solutiofline 1) to the diffusionally per-
szzzelrlr;ert;!??g already approaches its limiting value turbed problem(349—(34d) for ap=2 ande=10"%, and in the
0 1] 3

respective exact numerical soluti¢ime 2).

y-y 1 1
)l

<1. (41)

:,I_l
2

V(y,00=Qq(y)+W

Furthermore, taking into account E(R7b) we observe that

inequality (41) holds for all T in the interval O(1)<T 5
<O(1/e?). This implies that by the timd@ when the free The respective leading order approximate solutigg, T),
boundaryy,(T) reaches the internal layer, the inner timés ~ «(T) are given by Eqs(218—(21b). For comparison, we
already at its limiting value and the solution of the innerpresent in Fig. 1 the numerical solution of full diffusionally
problem ceases to evolve. Thus, we conclude that fof all perturbed problem(348—(34d) for ay=2 and =103
>0(1) the solution of the probleni34a—(349 is, to the along with a respective approximate solution.

leading order ire, constant in time everywhere including the  In the rest of this section we consider the diffusional per-

internal layer in which turbation of the OR model with a general initial distribution
on a compact support and a power law vanishing of the dis-
y—y 1 tribution profile at the support boundary for any integer value
VI, T)~W| — = (429  of the parameteN in the rangeN=—1,0,1,2. We begin with
y consideration of the cagé= —1 with the initial data of the

with the free boundary, and critical size parameter de- form

termined by the equalities

ex;<—3f0Ta(s)ds>~W( yo_y,%), (42b)
y

&

T p
Yo(T)= fo eXP( - fo [a(S)—l]ds)dp. (420

Summarizing, the solution to the diffusionally perturbed
problem(343—(34d reads

V=V+0(e), (433

=a+ . 4
a=a+0(e) (430 FIG. 2. Time evolution of the critical size parameterin the

~ ~ . unperturbed problerfline 1), in the exact numerical solution to the
HereV and a are the solutions to the unperturbed problemdiﬁusiona"y perturbed problem for=10"2 (line 2) ande=10"*

(18a—(180), with the inltial data regularized in the vicinity (jine 4), and in the respective approximate analytical solutions for
of the support boundary so that £=10"2 (line 3 ande=10"* (line 5).
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O[(y-y)"], »>4 for y=y-0, 14
[t—0=Vo(y) 0 for y>7. v—3
(45
We distinguish the following three time scales. (3) Final asymptotic stateT=0(|In |). «(T) tends to its

() Initial phase T=0(1). «(T) defined by the solution limiting value 1, following the scenario described above.
of the outer(unperturbegl problem. There is no effect of Summarizing, in the case of a general initial distribution
diffusional perturbation foif in this range. function Vy(y), satisfying condition(45), representation
(2) Transient stateO(1)<T<O(]|In ¢|). Still, no effect of (433, (43b) of the solution to the full diffusionally perturbed
diffusional perturbation upom(T). «(T) reaches its tran- problem still holds, with the following modification of the

sient asymptotic value regularized initial data:
|
~ Y, -y Y%
Vor (5-y7 lim =20 | Y y,To) im ~"Y =17 for y<3,
v y—y-(y=y)” & y—y-(y=y)?
Vit=0= ~ (473
W(y_y T ) im Y1) for y>Y
_1 0 "‘"— 0_ Or .
& yoy-(y=y)” =y
Here
o0 t -
Tozf exp(—zf [a(s)—l]ds)dt (47b
0 0
and«(T) is the critical size parameter obtained by the solution of the respective unperturbed problem
lim a(T) = ap. (479

T—ow

In the Fig. 2 we present a comparison of a numerical solution to the diffusionally perturbed pr&dlam(34d) with the
respective approximate solutigd3a), (43b), (47a—(470 for the initial distribution

(1-y)*+6(1-y)* for O<y<1,
Vo(y)= 0 for 1<y, e=10° and e=10 %

The obtained mechanism of ““strong” selection of the limit- value of the “stabilization” timeT in this case. However,
ing value of the critical size parameter=1 is sufficiently  universal character of the described mechanism of “strong
general and, in particular, also holds for different types ofselection” for differentN is supported by comparison of nu-
diffusional perturbation. Thus, let us consider a general timenerical solution in the diffusionally perturbed models of OR

dependent diffusivity of the type with the respective numerically obtained approximate solu-
tions.
D=g%k(T). (48) Thus, let us consider, for example, the LS model of OR

. . . S N=1). Introducing a new unknown
Repeating the above arguments with slight modifications, wé ) 9

find that the representatioi@7a for the initial data of the .

approximate solution is still valid with only the value of Q:f udx (50)
“stabilization” time T, modified in accordance with Eg. x

(48). For example, we have

and integrating the counterpart of Ed.1a with N=1, we

To= fmexp(—t)ex —Zf[a(s)—l]ds dt (49 obtain the following version of the diffusionally perturbed
0 0 problem(11a), (11b):

for k(T)=exp(~T)=1/ corresponding to a constant diffu-

sivity in the original physical variables(t). Q.—Q+
There is no analytical representation for the solution of

the unperturbed OR model problem wibh>—1 (Wagner

modelN=0, LS modelN=1) and we cannot find the exact 0<x<w, >0, (51a

1 1] x )
a’(T)__ _§ Qx:8 k(T)QXX1

X X
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o 0.80
f Qx2dx=2, (51b) ,
0 3
O[(x—x)"], x—X—0, 0.72}, 1
Ql,=0=Qqo(x)= - (510
0, X>X.
a
[Nonlinearity of Eqg.(51a in x does not allow us its further
integration analogous to E¢14).] Defining VO(x,7), a°(7) 0.641
as the solution of the respective unperturbed problem, we
find the Lagrange variablesy(T): y=y(x,7), T=7 as a
solution to the equation
0_56 1 I 1
) 5 10 7 15 20
1/ 1
y-+ x\ & (1)= x| 3 yx=0 (523 FIG. 3. Time evolution of the critical size parameterin the
unperturbed LS problerfiine 1), in the numerical solution of the
with initial condition diffusionally perturbed problem fos=10"2 (line 2), and in the
respective approximate solutigline 3).
Yl,—0=x. (52b)

_ z andT are, respectively, the inner space and time variables,
In terms of these variables, probléBila—(51c) assumes the defined as

form
~ y—y
[0, yo(T)<y, y—y<O(e) 2=, (589
e?k(Tyx(y, T)Vyy, y=y=0(e), T>0, :
(53 7= f k(s)y2(¥,s)ds. (58b)
0
= X(y,T)?
f Vv y dy=expT), (549
YoM X In particular, for a diffusional perturbation in similarity
~ ~ variables k=1) we have
olF-y)", 0<y=y, =)
VIr-o=Vo(y)=1 - (64 3 L
’ y=y, T= m{l—EXQZ(a’/ag—l)T]} (598)
HereV(y,T) = exp(—T)Q(x7). The stabilization time is =2
with
To= f k(T)yZ(y,T)dT (55
0
- 2/3
and the approximate solution is found as that to the respec- a;=x<\a for 0‘>a“m:(§> (590
tive unperturbed problem with the following regularized ini-
tial data: [see Eqs(7)—(9)].
In Fig. 3 we compare the numerical solution to the time-
Vv dependent diffusionally perturbed LS modeN£1, &

=10"3) with the respective approximate solution, namely,

~ o Voly) y—y - that of the unperturbed problem with regularized initial data,
Vo= (y=y) lIm =—=—+W| —=To|, 0<y=<y, Eq.(56), anduy(x) of the form
B y-5-(Y=Y)
B iy (1-x)%, 0=x<1,
W(yey,To), y=y. Uo(x) = 0, x=1. (60
(56) IV. CONCLUSIONS
HereW is the solution of the inner problem (1) As conjectured previously by Meers¢aO], fluctua-
B ~ tions, accounted for as a diffusional perturbation in the LSW
Wi=Wg,, —o<z<x», T>0, (573 model of Ostwald ripening, yields a strong selection of the
limiting LSW similarity solution as a sole attractor in the
im Vo(y) (=2)%7, 2<0 time-dependent problem; on the other hand, the weak selec-
Wis_o= yﬂy_(y_y)y ’ ' (57b) tion of other similarity solutions comes up in this process as

intermediate time asymptotics for the initial conditions with
0, z>0. a compact support.
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(2) The universalindependent of the perturbation param- value, picked by the weak selection, to the final limiting
eter £) characteristic of the strong selection process is thd-S—W value.
scaled internal layer solution profile and, in particular, its
intrinsic inner time asymptotic$42a. Namely this latter LSS
governs, in accordance with Eg2b), the transition of the The authors are indebted to Dr. A. Vilenkin for valuable
critical size parameterr from its intermediate asymptotic discussions.
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