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Analytical estimate of stochasticity thresholds in Fermi-Pasta-Ulam andw4 models
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We consider an infinitely extended Fermi-Pasta-Ulam model. We show that the slowly modulating ampli-
tude of a narrow wave packet asymptotically satisfies the nonlinear Schro¨dinger equation~NLS! on the real
axis. Using well known results from inverse scattering theory, we then show that there exists a threshold of the
energy of the central normal mode of the packet, with the following properties. Below threshold the NLS
equation presents a quasilinear regime with no solitons in the solution of the equation, and the wave packet
width remains narrow. Above threshold generation of solitons is possible instead and the packet of normal
modes can spread out. Analogous results are obtained for thew4 model. We also give an analytical estimate for
such thresholds. Finally, we make a comparison with the numerical results known to us and show that, they are
in remarkable agreement with our estimates.

PACS number~s!: 05.45.Yv, 02.30.2f, 05.20.2y
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I. INTRODUCTION AND RESULTS

Since the pioneering work of Fermi, Pasta, and Ul
~FPU! @1# great effort has been devoted to understand
classical many-body dynamical systems. It became c
from the beginning that a system as ‘‘simple’’ as the o
described by the Hamiltonian

HN~q,p!5 (
n50

N
1
2 pn

21U~qn!1V~r n! ~1!

~where qn is the position of thenth particle on a one-
dimensional lattice,pn the corresponding conjugate mome
tum, r n[qn112qn , while U and V are given nonquadratic
potentials, and some specific boundary conditions are
signed! gives rise, in general, to a complex dynamics, w
coexistence of ordered and chaotic motions, depending
the initial data, on the length of the integration time, and
the numberN of degrees of freedom. At present, a satisfa
tory understanding of this dependence is lacking. It has
come customary to define suitable stochasticity thresho
namely, critical values of some control parameters such
below them one has somehow regular motions while ab
them the dynamics presents certain characteristics of irre
larity or ‘‘chaoticity.’’ Normal mode coordinatesQ,P ~nor-
malizing the quadratic part ofHN) can be introduced in the
familiar way, such that the Hamiltonian~1! takes the form

HN~Q,P!5 1
2 (

k
~Pk

21vk
2Qk

2!1V~Q!, ~2!

wherevk is the frequency of thekth normal mode andV is a
suitable perturbing term, producing mode-mode coupling
the particular case of initial data corresponding to excitati
of a packet of modes of nearby frequencies centered abo
certain k0, a suitable control parameter for a stochastic
threshold is the harmonic energyE of the initially excited
packet; indeed, by increasingE, the energy sharing betwee
PRE 611063-651X/2000/61~6!/7081~6!/$15.00
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normal modes due toV becomes more and more effectiv
and energy flows out of the initially excited packet, the m
tions becoming more irregular. A popular criterion to defi
a threshold in numerical simulations consists in check
whether equipartition is established within a fixed obser
tion time ~see@2# and @3#!. Another one just requires that
certain fraction of the initial energy be given out by the in
tially excited packet, irrespective of the modes to which t
energy flows@4,5#. The available numerical results indica
that the energy thresholdEk0

c , apart from the exceptiona

case of the so-calledb model ~see below!, is an increasing
function of vk0

.

As far as analytical estimates are concerned, the m
famous one is due to Izrailev and Chirikov~IC! @6#, who, by
the way, were also the first to introduce the notion of a mo
dependent threshold itself. The IC criterion is based on
concept of the so-called overlapping of resonances, whic
known to work rather well for very few degrees of freedo
@7,8#. By extending it to the limit of very many degrees o
freedom and using the fact that in such a limit neighbor
normal mode frequencies become asymptotically reson
the authors predicted that the thresholdEk0

c should be a de-

creasing function ofvk0
, at least for the FPUb model. A

completely different approach was introduced by Berm
and Kolovskii @9#, following the idea of approximating the
equations of motion of the Hamiltonian system by a w
known integrable partial differential equation, namely, t
nonlinear Schro¨dinger equation~NLS!. They showed that
such an approximation should hold below a certain ene
threshold, which they estimated to have the formEk0

c

'(k0 /N)/(1/b).
In the present paper we too make reference to conc

involving the NLS equation, but exploit more consisten
the notions of inverse scattering and soliton theory@10,11#.
This leads, in a way that will be described below, to a d
ferent analytical estimate for the threshold. This is work
7081 ©2000 The American Physical Society
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out for two models. The first one is an infinitely extend
FPU model, with Hamiltonian

H~q,p!5 (
nPZ

1

2
pn

21
V2

8
r n

21
a

3
r n

31
b

4
r n

4 ~3!

involving the real parametersV, a, andb ~with V, b.0)
for which the harmonic frequencies are known to be giv
by the dispersion relationv(k)5V sin(k/2), kP(0,p#; this
includes the particular casea50, which is known as theb
model. For the threshold we find the estimate

EFPU
c ~v!'V4

v2

8a2@12~v/V!2#13bv2

~4!

wherev is the frequency of the central normal mode of
initially excited narrow wave packet. The qualitative d
namical property characterizing the threshold is the follo
ing one: if at t50 one hasE(v)!EFPU

c (v), the wave
packet dynamics turns out to be dispersive and the width
the packet remains narrow, while forE(v)@EFPU

c (v) the
width of the packet can increase because of the presenc
solitons.

We then consider the so calledw4 model, with Hamil-
tonian

H~q,p!5 (
nPZ

1

2
pn

21
m2

2
qn

21
e

2
r n

21
l

4
qn

4 ~5!

involving the real parametersm, e, l (e,l.0), and analo-
gously obtain the estimate

Ew4
c

~v!'
1

l
~v42vc

4!u~v2vc! ~6!

wherevc[Am(m214e)1/4 while u(•) is the Heaviside step
function. The sharp cutoffvc in the latter threshold is due t
the special form of the dispersion relation of the lineariz
problem, namely,v(k)5Am214e sin2(k/2).

It will be shown below that in both cases, namely, for t
FPU system and thew4 model, the thresholds given here a
in remarkable agreement with the available numerical e
mates.

Notice that, at variance with@6# and @9#, who were con-
sidering finite chains of particles, we deal with infinitely e
tended chains. On the other hand, we consider initial d
with packets having a finite amount of energy, namely, w
a vanishing energy per particle. This point will be discuss
in the concluding section.

The analytical treatment leading to the definition and
timate of the threshold for the FPU model is given in Sec.
and the comparison with available numerical estimates
given in Sec. III. The analogous discussion for thew4 model
is given in Sec. IV, while some further comments are giv
in Sec. V.
n
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II. MULTIPLE-SCALE EXPANSION
FOR THE FPU MODEL

In this section we study the Hamiltonian~3!. Inspired by
@3#, in analogy with the methods of fluid mechanics we i
troduce dimensionless variables and look for suitable dim
sionless order parameters. The dimensionless variablet,
xn , and rn are defined byt5(V/2)t, xn5qn /A, and rn
5r n /A, whereA is a parameter having the dimensions
length and playing the role of a dimensional control para
eter; indeed, for fixedxn , by increasingA one increases the
‘‘actual’’ amplitudesqn5Axn and velocitiesq̇n of the par-
ticles, and so also the energy of the excited modes. In te
of such dimensionless variables the equations of motion t
the form

ẍn5~xn111xn2122xn!F~rn ,rn21 ;R,m!,
~7!

F511AmR~rn1rn21!1R~rn
21rn21

2 1rnrn21!

~the overdot now denoting the derivative with respect tot),
where there appear just two dimensionless parame
namely,R54bA2/V2 andm54a2/(bV2); of these,R plays
the role of a Reynolds number, whilem is independent of the
‘‘amplitude’’ A. In general, a realistic intermolecular pote
tial has a form of the typeV(r n)5V0f (r n /j0) with a suit-
able functionf, whereV0 is a characteristic energy~measur-
ing, for example, the depth of a well! and j0 is a
characteristic interaction length. A typical case is t
Lennard-Jones~LJ! potential

VLJ~r n!54V0F S j0

r n121/6j0
D 12

2S j0

r n121/6j0
D 6G1V0 .

~8!

Truncating its Taylor expansion~aboutr n50) to fourth or-
der, one can approximate it by a FPU potential w
the following coefficients: V2/8536V0 /(21/3j0

2), a/3
5252V0 /(A2j0

3), and b/451113V0 /(22/3j0
4). It is easily

shown that for all potentials of the above mentioned form
dimensionless parameterm is independent ofV0 andj0, de-
pending only on the functional form off; in particular, for
the LJ potential one hasm.1.78.

From the form of Eqs.~7! it is natural to takeAR as the
‘‘small parameter’’ in a perturbative scheme. Following a
approach familiar in the theory of wave propagation in no
linear dispersive media, involving generation and modulat
of higher harmonics of carrier waves, we introduce the
satz

xn5 (
aPZ

eia(qn2vqt)c (a)~z,t1 , . . . ,tM ;AR!, ~9!

where z5R1/2n, t j5Rj /2t, and vq52 sin(q/2) for a fixed
wave vectorqP(0,p), while t1 , . . . ,tM are the so-called
slow times; fixing the numberM of slow times takes the
place of fixing the perturbative order in standard perturbat
theory. The reality ofxn obviously impliesc (2a)5(c (a))* .
The ansatz~9! is known as a multiple-scale expansion~MSE!
~see@12# and references therein!.
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It is easy to show that the MSE is nothing but a narr
packet approximation@9# with a wave packet widthdk
'AR, provided some constraints are satisfied. Indeed, if
fundamental harmonic is the only one initially excited~i.e.,
c (a)50 for aÞ61 at t50), the Fourier transformx̂k of xn
turns out to be

x̂k5 (
a561

(
n

e2 i (k2aq)nc (a)~ARn!

'
1

AR
(

a561
ĉ (a)S k2aq

AR
D ; ~10!

in the last step the sum overn was converted into a Rieman
integral using R!1 as a lattice step, and the functio
ĉ (a)(j)5*dze2 i jzc (a)(z) was introduced. On the othe

hand, if we take initial data such thatj 2̄'1, where

j 2̄5E djj2uĉ (61)~j!u2/E djuĉ (61)~j!u2, ~11!

it follows that x̂k(0)Þ0 only for uk6qu&AR, namely, we
are exciting a packet of normal modes centered aboutq with
a width of sizeAR. Since we are takingAR!1, this is a
narrow ~or quasimonochromatic! wave packet.

Now, substituting the ansatz~9! into the equations of mo
tion ~7! and proceeding up to orderM52 as sketched in the
Appendix, one finds that the zero-order amplitude of the f
damental harmonicc[c0

(1)5c (1)
„z2(dvq /dq)t1 ,t2 ;0…

satisfies the nonlinear Schro¨dinger equation

i ]t2
c2

vq

8
]z

2c2
vq

2 F8mS 12
vq

2

4 D 13vq
2G ucu2c50.

~12!

The functionc turns out to be the dominant contribution
the approximate solution~9!, because MSE calculation
show that higher harmonics~with uau>2) are at most of
orderAR, i.e., negligible with respect toc, for q@AR, in the
generic case in whichmÞ0. The fact thatc dominates is
instead always guaranteed in the special casem50 ~or
equivalentlya50).

The NLS equation~12! is an integrable one@13,14#. From
inverse scattering transform theory it is known that, since
dispersion coefficient2 1

8 vq5 1
2 (d2vq /dq2) and the coeffi-

cient of the nonlinear termucu2c are both negative, Eq.~12!
a priori admitssoliton solutions in the class of initial dat
rapidly decreasing forz→6` ~this is indeed the class w
choose to investigate here, corresponding to finite ene
excitations in the lattice!. The following theorem holds, how
ever @15,11#.

If the initial datum satisfies the condition

E
R
dzuc~z,t250!u,

s

A2
F8mS 12

vq
2

4 D 13vq
2G21/2

[Sq

~13!

~wheres5 ln(21A3)), then Eq. (12) admits no soliton solu
tions.
e

-

e

y

Condition~13! implies @10# that, for solutionsc(z,t2) of
the NLS equation, the infinite time limit (t2→`) and the
low initial amplitude limit @ uuc(0)uu1→0# commute; thus
Eq. ~13! guarantees that solutions of the NLS equation~12!
present a purely dispersive dynamics and are analytical c
tinuations of solutions of the linearized equation~corre-
sponding to the quadratic part of the FPU Hamiltonian!. In
other terms, condition~13! guarantees that one is in a ‘‘regu
lar’’ regime, with motions qualitatively similar to the unpe
turbed ones. An intense spreading of the energy out of
excited packet might occur instead only if condition~13! is
violated. The reasons why this is actually expected are
plained at the end of the present section. So we take
lowest energy violating condition~13! as our analytical esti-
mate of the threshold.

We now formulate the threshold condition in terms of t
harmonic energy of the central normal mode for a wa
packet given by Eq.~9! at t50. To this end, we remark tha
by looking at the Fourier transform~10! one easily finds

Eq~t50;AR![
1

2 H U d

dt
x̂qU2

1vq
2Ux̂qU2J 5

1

R
eq1o~1/R!

~14!

with a certain coefficienteq whose expression is given be
low. Notice that the leading term of theR expansion ofEq is
singular because, asR→0, the equations of motion~7! be-
come linear and the solution~9! represents a plane wave o
an infinite lattice, thus having a diverging energy. A simp
calculation shows that

eq5vq
2uĉ~0,0!u25vq

2U E dzc~z,0!U2

<vq
2S E dzUc~z,0!U D 2

.

~15!

Thus, if condition~13! holds, one necessarily has

Eq~0!<
1

R
vq

2S q
21o~1/R!

5
s2

2R

vq
2

8m~12vq
2/4!13vq

2
1o~1/R!. ~16!

So we take as our estimate for the threshold the lead
contribution to the right-hand side of Eq.~16!, namely,Eq

c

5vq
2S q

2/R. Turning to physical~i.e., dimensional! variables,
one has to multiply the latter expression by a fac
A2V2/45RV4/(16b) and this produces the formula given
Eq. ~4!. In terms ofm54a2/(bV2) and v/V it takes the
form

EFPU
c ~v!5

s2V4

96b

~v/V!2

2m@12~v/V!2#13~v/V!2
. ~17!

We now illustrate why energy sharing is expected abo
threshold. Suppose we relax condition~13!. As a conse-
quence it might happen thatEq(0).Eq

c and also that the
NLS equation~12! admits a general solution with both
radiative ~i.e., dispersive! component and a multisoliton
component@10#. In the presence of solitons the two limit
quoted above no longer commute, and qualitative differen
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with respect to the unperturbed case appear. A single so
causes a wave vector shiftdk'AR/vq and a frequency shif
dv'AR/vqdvq /dq in the fundamental harmonic compo
nent of the wave packet; the energy of the modeq1dk turns
out to be justEq1dk(t2)}Eq

c ~to leading order!. This shows
that solitons contribute to energy transfer to normal mo
initially not excited. WhenEq(0)@Eq

c we expect such a
mechanism to become very efficient and a strong interac
between normal modes to take place, leading to an inte
spreading of the wave packet.

III. COMPARISON WITH THE NUMERICAL RESULTS

We concentrate our attention on the numerical works@4#
and@3#. In the latter, theb model~with a50, i.e.,m50) is
studied, and results are found giving a threshold indepen
of frequency. This is in complete agreement with our e
mate~17!, where form50 the dependence onv is seen to
completely disappear. In the work@4# a Lennard-Jones
model~i.e., withm.1.78) was studied instead, and a thres
old increasing withv more or less in a parabolic way wa
found. It seems nontrivial that our analytical estimate~17!
takes into account, at the same time, two such different
sults. This is illustrated in Fig. 1, whereEc ~normalized to its
maximumEmax

c ) is plotted vsv for four different values of
m. The largest value ofm corresponds to the LJ potential~for
which a paraboliclike behavior is exhibited!, while as m
→0 the curves tend to the horizontal lineEc/Emax

c 51.
A quantitative comparison between our estimate~17! and

the numerical results found in@4# for the LJ potential is
reported in Fig. 2. In@4# the threshold was defined in th
following way. A packet of nearby frequencies, center
about a frequencyv, was initially given a certain energyE,
and the dynamics was followed up to a certain observa
time. A parameterp(0<p<1) was then introduced, repre
senting the maximal fraction of the initial energy which w
given out by the packet. The computations were repeated
increasing values of the initial energyE, and the value ofp
was found to be an increasing function ofE. Having fixed a
value ofp, the critical energyEc(v;p) was then defined a
the one required to produce the given value ofp. It turns out
that the ‘‘curves’’ Ec vs v ~or vs v/V) thus defined, al-

FIG. 1. FPU model; normalized energy threshold vsv/V for
four different values ofm54a2/bV2.
on
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though depending parametrically onp, seem to collapse on a
single curve if the ordinates are normalized through divis
by Emax

c . The fit with our theoretical formula, shown in Fig
2, seems remarkable.

In passing, we point out that numerical results are a
available for a two-dimensional FPU system with LJ inte
action; see@16#.

IV. THE w4 MODEL

In this section we apply the MSE to thew4 model ~5!.
Defining xn5qn /A andt5(V/2)t, the equations of motion
in dimensionless form become

ẍn52
4

11h
xn1

h

11h
~xn111xn2122xn!2Rxn

3 .

~18!

Here, as usual,V5Am214e is the maximum frquency in
the dispersion relationv(k)5Am214e sin2(k/2); the dimen-
sionless parametersh54e/m2 andR54lA2/V2 ~Reynolds
number! were also introduced. Making the ansatz~9! and
using exactly the same notations as in the previous sec
the slowly modulating amplitude of the fundamental ha
monic is easily shown to satisfy the NLS equation

i ]t2
c2

~11h!vq
4216

2~11h!vq
3

]z
2c2

3

2vq
ucu2c50, ~19!

where vq is the renormalized dispersion relation, name
vq52v(q)/V5(2/A11h)A11hsin2(q/2). Notice that the
coefficient in front of the dispersive term]z

2c is nothing but
1
2 (d2/dq2)vq . For values ofq such thatvq,2/(11h)1/4

one has (d2/dq2)vq.0 and the NLS equation~19! becomes
‘‘defocusing’’ @14#. In such a case there cannot be solit
solutions in the class of initial data$c(z→6`,0)→0% and,
as a consequence, there is neither an upper bound on thL1
norm of the initial data giving a criterion for a threshold, n

FIG. 2. FPU model; normalized energy threshold vsv/V; com-
parison between the theoretical estimate~for m54a2/bV251.78)
and the numerical data for a Lennard-Jones model. Different po
at a given frequency correspond to different values ofp, the param-
eter indicating the maximal fraction of initial energy given out b
the excited packet.



on

ie

e
.

te

fr
ie
-

im
re
he

e
e
-

a

ees
s

the
n
ite
m
was

is

ith
of
has
ss,
rable
ple,
rac-
pro-
ses

it
ut

ic
s-

ail-
ely,

s
ng
al

ver-
case

ods

data

PRE 61 7085ANALYTICAL ESTIMATE OF STOCHASTICITY . . .
clear-cut evidence of a quasilinear regime. Forq such that
vq>2/(11h)1/4 the theorem quoted in the previous secti
can be applied instead. The upper boundSq to theL1 norm
of the initial datum is

Sq5sA2

3

A~11h!vq
4216

vqA11h
, vq>

2

~11h!1/4
, ~20!

and for the energy thresholdEq
c[vq

2S q
2/R we then obtain

Eq
c5

2s2

3R

~11h!vq
4216

11h
, vq>

2

~11h!1/4
. ~21!

Turning to physical variables, this gives the result~6! quoted
in the Introduction. In terms of the dimensionless quantit
h andv/V, it takes the form

Ew4
c

~v!5H 2s2V4

3l
~v/V!42

1

11h
, v>vc

0, v<vc ,

~22!

where vc5V/(11h)1/4. The energy threshold below th
cutoff vc was set to zero for the reasons explained above
plot of Ec(v)/Emax

c for different values ofh54e/m2 is re-
ported in Fig. 3.

A quantitative comparison with the numerical data of@5#
is reported in Fig. 4. The numerical values of the parame
chosen in@5# were such thath54e/m2540. From Fig. 4
one sees that the agreement is very good for the high
quencies, while the situation concerning the low frequenc
below the cutoffvc , is not so clear. Further numerical in
vestigation might clarify this point. In any case, the cla
that some relevant role might be played by the cutoff f
quencyvc for the w4 model seems to be supported by t
results of another numerical work, namely,@17#. Actually, in
that paper, attention was addressed not to the existenc
energy thresholds in the sense discussed here, but rath
the ‘‘final’’ distribution of energy among the modes. How
ever, the results show that for thew4 model~at variance with
theb FPU model! there exists a characteristic frequency, s
v* , such that equipartition holds only forv.v* , while the

FIG. 3. w4 model; normalized energy threshold vsv/V for four
different values ofh54e/m2.
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energy is lower forv,v* and tends to zero asv tends to its
minimum. It turns out that the characteristic frequencyv* ,
defined in such a way by numerical computations, agr
rather well with our frequencyvc ; a fact that hardly seem
fortuitous.

V. FURTHER COMMENTS

We address here three points. The first one concerns
problem of the thermodynamic limit, namely, the limit i
which one deals with infinitely many particles and an infin
energy, with a finite energy per particle. This is a proble
that plays an essential role in statistical mechanics, and
extensively studied in the frame of the FPU model~see@18–
20#!. Now, it should be quite clear that the present work
not dealing at all~at least in a direct way! with the thermo-
dynamic limit, because we are considering a system w
infinitely many particles while exciting a narrow packet
modes with a finite amount of energy, so that our system
a vanishing energy per particle. We would like to stre
however, that the case considered here has conside
physical interest. Indeed, in nonlinear acoustics, for exam
ultrasonic waves are used to study phonon-phonon inte
tion and in solid state physics many phenomena can be
duced by means of laser radiation; clearly, in both such ca
one is dealing withcoherent pulsesof finite energy~with a
well defined frequency! in macroscopic systems. Anyway,
is not excludeda priori that the present results might turn o
to shed some light on the problem of the thermodynam
limit itself. This is an interesting point that we plan to inve
tigate in the future.

The second point concerns a comparison with the av
able analytical estimates for the energy thresholds, nam
those of Izrailev and Chirikov@6# and of Berman and
Kolovskii @9#. The estimate of Izrailev and Chirikov wa
concerned with theb model and gave a threshold decreasi
with frequency, contrary to the flat behavior of the numeric
data of @3#, which agree very well with our formula~17!.
This seems to indicate that the approach based on the o
lapping of resonances deserves further discussion in the
of infinitely many degrees of freedom.

In any case our results seem to indicate that the meth

FIG. 4. w4 model; normalized energy threshold vsv/V; com-
parison between the theoretical estimate and the numerical
~corresponding top50.5) for h540.
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of inverse scattering are appropriate when many degree
freedom are involved, as was first suggested by Berman
Kolovskii. The problem then remains of understanding w
they found a different analytical estimate for the thresho
Our opinion is as follows. What we have in common is t
idea of defining the threshold as corresponding to an inte
spreading of the energy from the excited packet to ot
modes, in terms of properties of the NLS equation. At t
point we make use of a deep analytical result known in
literature, giving a condition for the existence of soliton
which, at least in the models studied here, just turns ou
constitute the mechanism for the energy sharing. Berman
Kolovskii were using a criterion of self-consistency for th
validity of the narrow packet approximation instead. O
opinion is that the introduction of the latter criterion w
indeed correct, and that the authors apparently just did
work it out in a completely satisfactory way. Indeed, it c
be shown explicitly that a more precise elaboration of th
consistency criterion leads exactly to our formulas@21#.

The third point is a short discussion on the meaning of
threshold introduced in the present paper. From the v
definition given above, it should be quite clear that suc
threshold is just an estimate ‘‘from below’’ ensuring, on t
basis of a deep theoretical result of soliton theory, the e
tence of ordered motions with no effective energy spread
of an initially excited packet. What really occurs, or ev
might be expected, above threshold is an extremely inter
ing question. In particular, from the point of view consider
here, one should extend the present result and understan
role solitons play in connection with Arnold’s diffusio
along the so-called stochastic web, i.e., understand the
v
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of resonances within the multiple-scale approach. T
would possibly allow one to produce relevant informati
about the physically significant problem of the ‘‘final’’ dis
tribution of energy among the modes also. We hope to
able to come back to these very interesting problems in
future. The extremely good agreement of the present ana
cal estimate for the threshold with the numerical resu
seems to be promising.

APPENDIX: PERTURBATIVE METHOD

The ‘‘implementation’’ of the MSE is based on the fo
lowing steps:

xn615 (
aPZ

e6 iaqeia(qn2vqt)c (a)~z6AR,t1 , . . . ,tM ;AR!

5 (
aPZ

e6 iaqeia(qn2vqt)e6AR]z(
l>0

Rl /2c l
(a)~z,t1 , . . . ,tM !;

d2

dt2
xn5S 2 iavq1(

j >1
Rj /2

]

]t j
D 2

xn .

Having made suchAR expansions, grouped together th
terms of the same order, and written down the equation
motion as power series, one just has to set to zero all of t
coefficients, taking care that ‘‘secular’’~i.e., time increasing!
terms in the approximate solution~9! of the equations of
motion are not generated in such a way. As usual in M
applications@12#, by ‘‘killing’’ a secular term at second or-
der @O(R) in our case# the NLS equation is obtained.
,
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