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Nonlinear magnetic electron tripolar vortices in streaming plasmas
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Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with character-
istic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the
collisionless skin depth, are studied. Two coupled equations, for the perturbed~in the case of magnetized
plasma! or self-generated~for the unmagnetized plasma case! magnetic field, and the temperature, are solved
in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.

PACS number~s!: 52.35.Mw, 52.35.Py
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I. INTRODUCTION

Magnetic electron modes are known to exist in inhom
geneous unmagnetized@1# and magnetized plasmas@2,3#.
They appear on spatial scales of the order of the collision
skin depth and at frequencies between the ion and elec
plasma frequencies. In the problem of unmagnetized plas
they lead to the spontaneous generation of a magnetic
@4#, occurring as a first-order baroclinic effect, i.e., due to
term of the form¹W n03¹W T1, wheren0 andT1 are the non-
uniform basic state concentration and the electron temp
ture perturbation, respectively. In the nonlinear limit,
some circumstances, these linearly unstable modes can
rate into dipolar vortex structures of localized magnetic fi
@5,6# and a vortex chain@7#. In the case of a magnetize
plasma@2#, in the linear limit, an oscillatory instability may
arise, which in the nonlinear regime leads to the formation
a dipolar vortex. In the presence of free energy in the form
a shear flow perpendicular to the magnetic field lines, t
instability may cause the generation of a vortex chain@8#.
The inclusion of the ion dynamics@3# results in the density
perturbation and in new classes of modes and instabilitie

Tripolar vortices, the subject of this paper, are relativ
novel phenomena in plasma physics@9–12#, although they
are well known in theory, and also in experiments with r
tating fluids@13#, and they have been observed in the sea
our planet@14#. In principle, they consist of a rotating centr
vortex with two satellites of opposite vorticity. In exper
ments with fluids they develop from slightly disturbed m
nopolar vortices, around the axis of rotation of rotating v
sels with a rigid body rotation profile; in our plasm
problems they appear in the linear profile of the plasma fl
and are carried in the direction of it. Being stationary a
traveling, they have regions of closed streamlines and th
fore can carry plasma particles efficiently, so they can be
importance from the plasma transport point of view. In flui
they are proven to be robust and long-living structures t
survive many rotations of the system; the remarkable
ample reported in Ref.@14# was visible for a period of sev
eral months. Locally, in plasmas they represent a ra
strong nonuniformity in the system, and the effects of line
wave trapping and scattering, similar to the theory develo
for the interaction of linear drift waves with dipolar vortice
@15,16#, should be worth investigating.
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In this paper, starting with the standard set of equatio
describing electron magnetic modes in inhomogeneous m
netized and unmagnetized plasmas, we derive basic no
ear equations for the perturbed~and self-generated! magnetic
field and for the temperature, which in some regimes
known to possess nonlinear solutions in the form of a vor
chain @7,8#. Here, we present nonlinear solutions driven
vector-product type nonlinearities, i.e., tripolar stationa
vortex structures settled in the plasma flow and carried in
direction of it, which resemble structures discovered in e
periments with rotating fluids and obtained in some plas
problems, that is, on quite different time and spatial scal

II. MODEL AND DERIVATIONS

The model of a weakly inhomogeneous electron-i
plasma is used, with perturbations satisfying the condit
uk21u!Ln ,LT , wherek is the wave number of perturbation
existing in the system, andLn ,LT are the characteristic
lengths of the concentration and temperature inhomoge
ities, respectively. Perturbations of high frequency compa
to the ion plasma frequency, i.e.,vpi!]/]t!(vpe ,c¹W ), are
studied, so that the heavy ions make a neutralizing ba
ground, and we study slow electron motion, neglecting
displacement current. The density perturbations are
glected, i.e.,n[n0(x), there is a plasma flow in the bas
state along they axis,vW 05v0(x)eW y , and all basic state quan
tities arex-dependent functions.

The basic equations describing electron magnetic mo
in such a system are, respectively, the electron momen
and energy equations, and the Maxwell equations:

S ]

]t
1vW •¹W D vW 52

e

m
~EW 1vW 3BW !2

1

mn
¹W ~nT!, ~2.1!

S ]

]t
1vW •¹W D ~Tn12g!50, ~2.2!

¹W 3EW 52
]BW

]t
, ~2.3!

¹W 3BW 52m0envW . ~2.4!
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The above set of equations will be used to investigate
different cases, i.e., perturbations in magnetized and unm
netized plasma, and flutelike,z-independent perturbation
will be studied.

A. Magnetized plasma

Assume a spatially nonuniform magnetic fieldBW 0

5B0(x)eW z and the plasma concentrationn0(x), causing an
electron flow v0(x)eW y in the basic state, perpendicular
both the magnetic field lines and the basic state gradie
Using Eqs.~2.1!–~2.4! one can find that the stationary bas
state is described by

d

dx S B0
2

2m0
1n0T0D 50, ~2.5!

and

vW 0~x!52
1

m0en0
¹W 3BW 05

c2

vpe
2

eW z3¹W V0 , ~2.6!

whereV05eB0 /m and vpe are the electron gyrofrequenc
and plasma frequency, respectively, and the subscript 0
notes the basic state quantities.

The following set of nonlinear equations for the perturb
tion of the magnetic fieldB1 and electron temperatureT1 is
obtained:

]

]t S 1

m0en0
¹22

e

m
2

n08

m0en0
2

]

]xD B11F 1

m0m S B0

n0
D 8

2
ev0

m
2

1

m0en0
S v092

n08v08

n0
D G]B1

]y
2

n08

mn0

]T1

]y

1
v0

m0en0

]

]y
¹2B12

v0n08

m0en0
2

]2B1

]x]y

1
1

~m0en0!2
$B1 ,¹2B1%50, ~2.7!

]T1

]t
1

1

m0en0
$B1 ,T01T1%1v0~x!

3
]T1

]y
1

~g21!T0

m0en0
2 $n0 ,B1%50. ~2.8!

Here the Poisson bracket notation is used,

$ f 1 , f 2%[
] f 1

]x

] f 2

]y
2

] f 1

]y

] f 2

]x
,

and

¹W [
]

]x
eW x1

]

]y
eW y ,

the primes denote thex derivatives of the corresponding ba
sic state functions, and other notation is standard.
o
g-

ts.

e-

-

The linearized Eqs.~2.7! and ~2.8!, in the local approach
when the basic state gradients can be assumed as cons
yield an oscillatory instability@8#, which is closely connected
with the direction of the basic state gradientsn08 andT08 .

For perturbations with typical wavelengths of the order
the collisionless skin depthlS5c/vpe , and with conditions
(lS ,LB)/Ln!1, we introduce the following notations an
normalization:

v0~x!5v0 f̂ ~x!, V15
eB1

m
,

lS

v 0̂

]

]t
→ ]

]t
,

~2.9!
~V0 ,V1!

v 0̂ /lS

→~V0 ,V1!, vpe
2 5

e2n00

m«0
.

Then with accuracy to the second-order small terms E
~2.7! and ~2.8! can be written as

]

]t
~¹221!V12 f 9~x!

]V1

]y
2n08~x!

]T1

]y
1 f ~x!

3
]¹2V1

]y
1S ]V1

]x

]

]y
2

]V1

]y

]

]xD¹2V150,

~2.10!

S ]

]t
1eW z3¹W ~V11V0!•¹W D @T12c~x!#50. ~2.11!

Here, the dimensionalless functionc(x)5(g21)n0(x)
2T0(x) is introduced, andn0(x) andT0(x) are normalized
to some characteristic density and temperature of the sys
n00 and T00, respectively, and, according to the basic st
Eqs.~2.5! and ~2.6!, f (x)5V08(x).

In the nonlinear limit, looking for localized solutions tha
are stationary in the reference frame moving with const
velocity u in the direction perpendicular to both the bas
state gradients and the magnetic field lines, Eq.~2.11! can be
integrated, giving

T12c~x!5F~V11V02ux!. ~2.12!

Here, F(j) is an arbitrary function of the given argumen
and we may take it as linear,F(j)5F1(V11V02ux),
whereF1 is a constant. On the condition of vanishing pe
turbations at infinity we have

T082~g21!n085F1~V082u! ~2.13!

and

T15F1V1 . ~2.14!

This, together with Eq.~2.5!, yields the following connection
between the basic state functions:

V0~x!5F1

~n0T0!8

~g21!n082T082F1u
. ~2.15!

Putting Eq.~2.14! into Eq. ~2.10! we obtain



e
d

s
re

tu
te

en
nc

i
it

by

at
ing

f

en
e

le,

or-

s.
,
t

to

m,

in-
of

he

lem,
rba-
d

g-

m

PRE 61 7011NONLINEAR MAGNETIC ELECTRON TRIPOLAR . . .
S ]

]t
1V08

]

]y
1eW z3¹W V1¹W D ~¹221!V1

1~V082V-2F1n08!
]V1

]y
50. ~2.16!

It is interesting to note that forV085F1n08 , Eq. ~2.16! be-
comes identical to Eq.~13! from Ref.@7#, obtained in a study
of the formation of nonlinear vortex chains in a homog
neous plasma. As shown in a detailed analysis performe
that paper, in the case of a tanh(x) profile of the flow, i.e., for
V0(x)5ux1A log cosh(kx), whereA and k are some con-
stants, the only unstable linear modes, occurring as a re
of the Cherenkov interaction with the nonuniform flow, a
those with wave numbers satisfying the conditionk.(k2

21)1/2. In the nonlinear limit these unstable modes can sa
rate into the stationary traveling, single and double vor
chains obtained in Ref.@7#.

However, in the present study with the density gradi
effects included, and for some specific profiles of the fu
tions describing the basic state, a type of vortex solution
the form of a tripolar vortex will be found. In order to find
we proceed by integrating Eq.~2.16!, yielding

~¹221!V12V0~x!1V09~x!1F1n0~x!5G~V11V02ux!,
~2.17!

whereG(j) is an arbitrary function, which will be taken in
the formG(j)5G01G1j. Let the basic state be described
the following set of equations:

V02ux5ax2, which gives f ~x!5u12ax,
~2.18!

and

2V0~x!1V09~x!1F1n0~x!5bx2, ~2.19!

wherea andb are some constants modeling the basic st
and giving a linear shear flow profile. In this case, us
standard procedure@10–12#, Eq. ~2.17! can be solved in cy-
lindrical coordinates, independently inside and outside
circle with the radiusr 0, allowing for different values of the
given constantsG0,1 for these two regions. On condition o
localized solutions forr→` we find that

V1
1~r ,u!5b0K0~l1r !1b2K2~l1r !cos 2u, ~2.20!

where K0,1 are the modified Bessel functions of the giv
order, the superscript1 denotes the outside values of th
given quantities, with respect to the given circle, and

G1
15

b

a
, G0

150, l1
2511G1

1 .

Similarly, the inside solution can be written in the form

V1
2~r ,u!5a0J0~l2r !2

Ar2

2
2B

1S a2J2~l2r !2
Ar2

2 D cos 2u, ~2.21!
-
in

ult

-
x

t
-
n

e,

a

whereJ0,2 are the Bessel functions, and

11G1
252l2

2 , A52
b2G1

2a

11G1
2

,

B5
G0

2

11G1
2

2
2~b2G1

2a!

~11G1
2!2

.

The unknown constants in the solutions~2.20! and~2.21! can
be found from the boundary conditions on the given circ
i.e., from the continuity conditions for the perturbationV1
and its first and second derivatives with respect to the co
dinater, assuming also that the argumentj is constant on the
circle. A sketch of a typical tripolar vortex defined by Eq
~2.20! and~2.21! is given in Fig. 1. It is nicely localized and
as follows from Eq.~2.18!, it is created in the plasma flow a
the position where the flow amplitude is equal tou, and
carried by the flow in the direction that is perpendicular
the basic state gradients.

B. Unmagnetized plasma

In the case of an unmagnetized plasma, Eqs.~2.1!–~2.4!
in the linear domain, due to the first-order baroclinic ter
describe the self-generation of the magnetic field@1#, and are
of importance in problems of laser-fusion plasmas. The
clusion of the ion dynamics may introduce new classes
instabilities, but they appear at much smaller time scales@3#
and are not of importance for the present study.

The stationary basic state is trivially satisfied by t
plasma flowvW 0(x)5v0(x)eW y , and

T08

T0
52

n08

n0
. ~2.22!

For the time and space scales used in the previous prob
we obtain the same equation for the temperature pertu
tion, i.e., Eq.~2.8!, and a similar one for the self-generate
magnetic field:

FIG. 1. Sketch of the contours of the magnetic tripole in ma
netized plasma defined by Eqs.~2.20! and~2.21!. Spatial scales are
in units oflS . The two lateral vortices have the opposite sign fro
the central vortex.
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1

m0en0

]

]t
¹'

2 B11
1

~m0en0!2
$B1 ,¹'

2 B1%

5
e

m

]B1

]t
1

ev0

m

]B1

]y
1

1

mn0
$n0 ,T1%

1
1

m0en0
S v09

]B1

]y
2v0

]

]y
¹'

2 B1D . ~2.23!

In the local analysis Eqs.~2.8! and ~2.23! yield a linear in-
stability @7#, which in the absence of the flow becomes
purely growing one. In the nonlocal linear case, assum
perturbations of the form (T1 ,V1)5@ T̂1(x),V̂1(x)#exp
(2ivt1iky), from Eqs.~2.8! and~2.23!, and using Eq.~2.22!,
we obtain the following eigenvalue problem equation
V̂1(x):

V̂19~x!2~k211!V̂1~x!1
e~x!a~x!1 f 9~x!b~x!d

a2~x!1b2~x!
kV̂1~x!

1 i
f 9~x!a~x!d2e~x!b~x!

a2~x!1b2~x!
kV̂1~x!50, ~2.24!

where we introduced the real and imaginary parts of the
quencyv5v r1 id, and

e~x!52kgT0~x!S n08~x!

n0
D 2

1 f 9~x!@v r2 f ~x!k#,

a~x!5@v r2 f ~x!k#22d2,

b~x!52d@v r2 f ~x!k#.

An instability of the Kelvin-Helmholtz type can be readi
found if at any position across the flow the following cond
tion is satisfied:

f 9~x!52kgT0~x!S n08~x!

n0~x!
D 2 v r2 f ~x!k

@v r2 f ~x!k#21d2
.

~2.25!

In the nonlinear limit the temperature equation becomes

S ]

]t
1eW z3¹W ~V11w!•¹W D @T12c~x!#50, ~2.26!

wherew8(x)5 f (x), andc(x) was defined earlier. As in the
previous case Eq.~2.26! can be integrated, yielding Eq
~2.14!, and 2c(x)5F1(w2ux), and from Eq.~2.23! we
have

S ]

]t
1eW z3¹W ~V11w!•¹W D
3@~¹221!V11w9~x!1F1n08~x!#50.

~2.27!
g

r

-

In a particular case whenf (x)52F1n09(x), Eq. ~2.27! can
be integrated in the traveling reference frame moving w
constant velocityu in the y direction, yielding

~¹221!O5K~O2ux!, where O5V11w~x!.
~2.28!

Choosing functionK in the form K(O2ux)5C/@exp(O
2ux)1exp(2O1ux)# it can be shown@8# that Eq.~2.28!
has localized solutions forO in the form of stationary vortex
chains defined by a class of values of the constantC, and
localized in thex direction.

As in the procedure performed in the preceding subs
tion, a tripolar vortex solution of Eq.~2.27! can be readily
found in a form similar to Eqs.~2.20! and~2.21!, by model-
ing the basic state in the following way:w(x)5ux2a1x2,
and w9(x)1F1n08(x)5b1x2, which gives the linear shea
flow f (x)5u12a1x, andn0(x)5b1x3/(3F1)22a1x/F1.

III. CONCLUSION

Two physically very different systems of magnetized a
unmagnetized plasmas are studied, and it is found that
are described by rather similar sets of two coupled equat
for the magnetic field and temperature perturbations. T
equations are derived in the frequency range between the
and electron plasma frequencies and for spatial scales o
order of the collisionless skin depth, for ions making a ne
tralizing background, and for negligible density perturbati
of electrons. In both cases, some linear types of instabili
~i.e., baroclinic-term-driven and streaming type! are dis-
cussed and in the strongly nonlinear limit, for very speci
profiles of the basic state functions~the shear flow, the den
sity, the temperature and magnetic field profiles!, stationary
solutions are found in the form of vortex chains and tripo
vortices.

Equations of the form~2.16! and ~2.27! are generic for
tripolar vortex solutions; the same sort expressions were
tained earlier in quite different physical problems, viz., in
magnetized dusty plasma@10# and in rotating fluids@11#. The
analogy of processes in some very different physical syst
is not surprising; an extraordinary similarity is known to e
ist between problems dealing with nonlinear drift waves
plasmas and Rossby vortices in the atmosphere of our pl
@17,18#, as well as electron magnetohydrodynamic waves
pulsed magnetic field@19#, resulting in the same type of di
polar vortex solutions. However, the presence of the sh
flow and nonuniformity of the system, as studied in t
present paper, turns out to be of crucial importance for
type of nonlinear tripolar solutions obtained here. Con
quently, the fluid-plasma analogy, resulting in tripoles, o
curs also in the case of spatially nonuniform systems w
sheared flows.

As known from linear theory@3#, the inclusion of ion
dynamics in the problem introduces new types of modes o
slower temporal scale close to the ion plasma frequency.
nonlinear study of these modes is worth investigating a
this work is in progress.
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