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Nonlinear magnetic electron tripolar vortices in streaming plasmas
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Magnetic electron modes in nonuniform magnetized and unmagnetized streaming plasmas, with character-
istic frequencies between the ion and electron plasma frequencies and at spatial scales of the order of the
collisionless skin depth, are studied. Two coupled equations, for the pert(irbéde case of magnetized
plasma or self-generatedfor the unmagnetized plasma caseagnetic field, and the temperature, are solved
in the strongly nonlinear regime and stationary traveling solutions in the form of tripolar vortices are found.

PACS numbdis): 52.35.Mw, 52.35.Py

I. INTRODUCTION In this paper, starting with the standard set of equations

describing electron magnetic modes in inhomogeneous mag-

Magnetic electron modes are known to exist in inhomo-netized and unmagnetized plasmas, we derive basic nonlin-

geneous unmagnetizgd] and magnetized plasmadg,3]. ear equations for the perturbéhd self-generateanagnetic

They appear on spatial scales of the order of the collisionlesteld and for the temperature, which in some regimes are
skin depth and at frequencies between the ion and electrdknown to possess nonlinear solutions in the form of a vortex
plasma frequencies. In the problem of unmagnetized plasmaain[7,8]. Here, we present nonlinear solutions driven by
they lead to the spontaneous generation of a magnetic fieldector-product type nonlinearities, i.e., tripolar stationary
[4], occurring as a first-order baroclinic effect, i.e., due to avortex structures settled in the plasma flow and carried in the
term of the formVnyx VT;, wheren, and T, are the non- direction of it, which resemble structures discovered in ex-

uniform basic state concentration and the electron temperderiments with rotating fluids and obtained in some plasma
ture perturbation, respectively. In the nonlinear limit, in Problems, that is, on quite different time and spatial scales.
some circumstances, these linearly unstable modes can satu-
rate into dipolar vortex structures of localized magnetic field II. MODEL AND DERIVATIONS
[5,6] and a vortex chaif7]. In the case of a magnetized ) ]
plasma[2], in the linear limit, an oscillatory instability may ~ 1he model of a weakly inhomogeneous electron-ion
arise, which in the nonlinear regime leads to the formation of|aSma is used, with perturbations satisfying the condition
a dipolar vortex. In the presence of free energy in the form ofK_|<Ln,Lr, wherekis the wave number of perturbations
a shear flow perpendicular to the magnetic field lines, thi€Xisting in the system, andl,,L; are the characteristic
instability may cause the generation of a vortex chaih !gngths of th_e concentratlo_n and te_mperature inhomogene-
The inclusion of the ion dynamids] results in the density Iti€s, respectively. Perturbations of high frequencxcompared
perturbation and in new classes of modes and instabilities. to the ion plasma frequency, i.@v,;<d/t<(wye,CV), are
Tripolar vortices, the subject of this paper, are relativelystudied, so that the heavy ions make a neutralizing back-
novel phenomena in plasma physi®-12, although they ground, and we study slow electron motion, neglecting the
are well known in theory, and also in experiments with ro-displacement current. The density perturbations are ne-
tating fluids[13], and they have been observed in the seas ofjlected, i.e.,n=ny(x), there is a plasma flow in the basic
our plane{14]. In principle, they consist of a rotating central state along thg axis,v o= v o(X) éy' and all basic state quan-
vortex with two satellites of opposite vorticity. In experi- tities arex-dependent functions.
ments with fluids they develop from slightly disturbed mo-  The basic equations describing electron magnetic modes
nopolar vortices, around the axis of rotation of rotating ves+in such a system are, respectively, the electron momentum

sels with a rigid body rotation profile; in our plasma and energy equations, and the Maxwell equations:
problems they appear in the linear profile of the plasma flow

and are carried in the direction of it. Being stationary and
traveling, they have regions of closed streamlines and there-
fore can carry plasma patrticles efficiently, so they can be of
importance from the plasma transport point of view. In fluids
they are proven to be robust and long-living structures that (£+J.V’)(Tnly):0 2.2
survive many rotations of the system; the remarkable ex- at ’ '
ample reported in Refl14] was visible for a period of sev-

eral months. Locally, in plasmas they represent a rather L B

strong nonuniformity in the system, and the effects of linear VXE=—— (2.3
wave trapping and scattering, similar to the theory developed
for the interaction of linear drift waves with dipolar vortices .
[15,16), should be worth investigating. VXB=—pugehv. (2.4

&+*VQ
gt v

- e . . o 1.
UZ_E(E'FUXB)—W]V(HT), (2.1
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The above set of equations will be used to investigate two The linearized Eqs(2.7) and (2.8), in the local approach
different cases, i.e., perturbations in magnetized and unmagvhen the basic state gradients can be assumed as constants,
netized plasma, and flutelike-independent perturbations yield an oscillatory instability8], which is closely connected

will be studied.

A. Magnetized plasma

Assume a spatially nonuniform magnetic fielﬁo
=Bo(x)éZ and the plasma concentratio(x), causing an

with the direction of the basic state gradienfsandT},.

For perturbations with typical wavelengths of the order of

the collisionless skin depths=c/w,e, and with conditions

(Ag,Lg)/L,<1, we introduce the following notations and
normalization:

electron fIOWz;O(x)éy in the basic state, perpendicular to — eB; ANgd 9
both the magnetic field lines and the basic state gradients. vo(X)=vof(x), leﬁ’ =~ o
Using Eqgs.(2.1)—(2.4) one can find that the stationary basic vo
state is described by 2 (2.9
(Qoy 1) Q > € MNoo
: ( B ) vo/N g o) wpe meg
—| 5—+neTy| =0, (2.5 0TS
dX 2,LLO
Then with accuracy to the second-order small terms Egs.
and (2.7) and(2.8) can be written as
R 1 . . . J Q. a0y, 9Ty .
vo(x)——MOenOVXBO— w—geeZXVQo, (2.6) (VDO = 1(%) 3y No(X) oy +f(x)
2
where Qg=eBy/m and w,, are the electron gyrofrequency X AR +(an _ 9 9 )VZQl_O
and plasma frequency, respectively, and the subscript O de- ay gx dy dy ox
notes the basic state quantities. (2.10

The following set of nonlinear equations for the perturba-

tion of the magnetic field,; and electron temperatuil, is

J
obtained: P +ez>< V(Ql+Q )[Tl Py(x)]=0. (2.1
a1 o, e Mo d N 1 (%)/ Here, the dimensionalless functiog(x)=(y—1)ny(x)
at\ moeng m  peeng X Mom\ Ng —To(x) is introduced, andhg(x) and To(x) are normalized
o ) to some characteristic density and temperature of the system,
ey 1 , Novo|[dBy  Ng dTy Noo and Ty, respectively, and, according to the basic state
m  ueeNg| © ng /| dy mng dy Egs.(2.5 and(2.6), f(x)=Q(x).
In the nonlinear limit, looking for localized solutions that
Vo ) voNg aZBl are stationary in the reference frame moving with constant
oMy JY e Ixay velocity u in the direction perp.en(.jlculgr to both the basic
0 o€y state gradients and the magnetic field lines, dl1) can be
1 integrated, giving
- 5{B1,V?B1}=0, 2.7
(mo€Mo) —J(X)=F(Q 1+ Qp—ux). (2.12
9Ty T T4 Here, F(£) is an arbitrary function of the given argument,
ot ot T} +vo(X) and we may take it as lineatF(£)=F(Q,+Qy—ux),
whereF, is a constant. On the condition of vanishing per-
Ty (y—1)T, turbations at infinity we have
—+—2{no,Bl}=O. (2.8
ay o€y ! A 0
To—(y=1Dng=F1(Qo—u) (2.13
Here the Poisson bracket notation is used, and
of, of, ofq of,
{fl’fZ}_WW_WW’ T1=F1Q;. (2.14
and This, together with E¢(2.5), yields the following connection
between the basic state functions:
V=264 24 (ngTo)’
=—e+ —e, n
x> ayy Qo(x)=F, o . (2.15
(y=1)ng—To—Fyu

the primes denote thederivatives of the corresponding ba-
sic state functions, and other notation is standard.

Putting Eq.(2.14) into Eqg.(2.10 we obtain
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a Jd L L -
G Qg+ exVO,Y (V2-1)Q,
FIoN
+(Q(’)—Q’”—F1n(’))W=O. (216)

It is interesting to note that fof)y=F.ny, Eq. (2.16 be-
comes identical to Eq13) from Ref.[7], obtained in a study
of the formation of nonlinear vortex chains in a homoge-
neous plasma. As shown in a detailed analysis performed in
that paper, in the case of a tarhprofile of the flow, i.e., for X
Qy(x)=ux+Alog coshkx), whereA and « are some con- L )
stants, the only unstable linear modes, occurring as a result F!G: 1. Sketch of the contours of the magnetic tripole in mag-
of the Cherenkov interaction with the nonuniform flow, are "€tized plasma defined by Eq8.20 and(2.2)). Spatial scales are
those with wave numbers satisfying the COﬂditibD’(Kz in units of A g. The two lateral vortices have the opposite sign from
12 . T the central vortex.
—1)"% In the nonlinear limit these unstable modes can satu-
rate into the stationary traveling, single and double vortex
chains obtained in Ref7]. whereJ, , are the Bessel functions, and
However, in the present study with the density gradient
effects included, and for some specific profiles of the func-
tions describing the basic state, a type of vortex solution in
the form of a tripolar vortex will be found. In order to find it

we proceed by integrating E¢R.16), yielding

b—G;a

1+G;=—\3, A=- i
1

(Vz— 1)Q;— Qo(X) +Q5(X) +F1ng(X) =G(Q1+Qp—ux),
(2.1

whereG(¢) is an arbitrary function, which will be taken in
the formG(¢) = Go+ G4 ¢. Let the basic state be described by

G, 2(b—Gja)
1+G; (1+G;)?

the following set of equations: The unknown constants in the solutidi2s20 and(2.21) can
) ) . be found from the boundary conditions on the given circle,
Qo—ux=ax®, whichgives f(x)=u+2ax, i.e., from the continuity conditions for the perturbatién

(2.18 and its first and second derivatives with respect to the coor-
dinater, assuming also that the argumeris constant on the
circle. A sketch of a typical tripolar vortex defined by Egs.

—Qo(X) +QU(X) + F1no(X) =bx2, (2.19 (2.20 and(2.2]) is given ir) I_:ig. 1. 1tis _nicely localized and,
as follows from Eq(2.18), it is created in the plasma flow at
wherea and b are some constants modeling the basic statethe position where the flow amplitude is equal up and
and giving a linear shear flow profile. In this case, usingcarned _by the flow in the direction that is perpendicular to
standard procedufd0—17, Eq. (2.17 can be solved in cy- the basic state gradients.
lindrical coordinates, independently inside and outside a
circle with the radius (, allowing for different values of the
given constant$s ; for these two regions. On condition of
localized solutions for —o we find that In the case of an unmagnetized plasma, EBs)—(2.4)
in the linear domain, due to the first-order baroclinic term,
Q7 (r,0)=BoKo(\1r)+ B,K5(\1r)cos 20, (2.20 describe the self-generation of the magnetic fjdlgand are
of importance in problems of laser-fusion plasmas. The in-
where K, are the modified Bessel functions of the givenclusion of the ion dynamics may introduce new classes of
order, the superscript denotes the outside values of the instabilities, but they appear at much smaller time sci8és

and

B. Unmagnetized plasma

given guantities, with respect to the given circle, and and are not of importance for the present study.
The stationary basic state is trivially satisfied by the
b - _ >
szg, G =0, )\iz 1+G;. plasma flowv o(x) =vo(x)e,, and
T ng
Similarly, the inside solution can be written in the form -|-_0= - n_o' (2.22
a- Ar?
1 (1 0)=aodo(Aor) = —5-—B For the time and space scales used in the previous problem,

A2 we obtain the same equation for the temperature perturba-
r tion, i.e., Eq.(2.8), and a similar one for the self-generated
+ - i il -1 " il

a2Ja(Naf) = )COS %, (223 magnetic field:



7012 J. VRANJEVS G. MARI(:, AND P. K. SHUKLA PRE 61

1 a9, 1 i In a particular_case Wheh(_x)z —F.ng(x), Eq. (2.27 can
T ﬁvi By +———{B1,V{By} be integrated in the traveling reference frame moving with
0 (moeno) constant velocityu in the y direction, yielding

e (951 eUO (981 1

STt Tm ay Tmng o T

y M (V2-1)0=K(O—ux), where O=0Q,+¢(X).

L (B0, 029 (2.29
Vo~ " Uo— . .

meeng| % ay  “Cay Tt

In the local analysis Eqg2.8) and (2.23 yield a linear in- Choosing functionk in the form K(O—ux)=C/[expO
stability [7], which in the absence of the flow becomes a~UX) T€xp(-O+ux)] it can be showri8] that Eq.(2.28
purely growing one. In the nonlocal linear case, assuminé"as localized solutions fa® in the form of stationary vortex
perturbations of the form T, Ql)Z['T'l(X) Ql(x)]exp chailjs defined by_ a c_Iass of values of the cons@nand
(—iwt-+iky), from Eqs.(2.8) and(2.23, and using Eq(2.22, ~ '°calized in thex direction.

we obtain the following eigenvalue problem equation for . As in ;he procedure per'formed in the preceding sqbsec—
a (x): tion, a tripolar vortex solution of Eq2.27) can be readily
1 .

found in a form similar to Eqs(2.20 and(2.21), by model-
ing the basic state in the following ways(x) =ux—a;x?,

, and ¢"(x) +Fnj(x)=b,x?, which gives the linear shear
(%) — (K2 1)y (%) + e(x)a(2X)+f (ZX)B(X)(Sle(X) flow f(x)=u+2a;x, andng(x)=bx%/(3F,) — 2a,x/F.
a”(x)+B(X)

L PO a(x) 6= () BX) KO, (X) =0, (2.24

a?(x) + B%(x) Two physically very different systems of magnetized and
) ) ) unmagnetized plasmas are studied, and it is found that they
where we introduced the real and imaginary parts of the frezre gescribed by rather similar sets of two coupled equations
quencyw=w,+i4, and for the magnetic field and temperature perturbations. The
equations are derived in the frequency range between the ion

IlI. CONCLUSION

2

No(X) " and electron plasma frequencies and for spatial scales of the
€(X)= _kyTO(X)( No + 00w = O], order of the collisionless skin depth, for ions making a neu-
tralizing background, and for negligible density perturbation
a(x)=[w, — F(X)k]?— &2, of electrons. In both cases, some linear types of instabilities
' (i.e., baroclinic-term-driven and streaming typare dis-
BX) =28 w,— F(X)K]. cussed and in the strongly nonlinear limit, for very specific

profiles of the basic state functiofithe shear flow, the den-
sity, the temperature and magnetic field profilegationary
solutions are found in the form of vortex chains and tripolar
vortices.
Equations of the form(2.16 and (2.27) are generic for
, 5 tripolar vortex solutions; the same sort expressions were ob-
f"(X)=2k'yT0(X)< no(x)) o~ 0k _ tained earlier in quite different physical problems, viz., in a
No(X)) [w,— f(x)k]2+ &2 magnetized dusty plasnj&0] and in rotating fluid$11]. The
(2.25 analogy of processes in some very different physical systems
is not surprising; an extraordinary similarity is known to ex-
In the nonlinear limit the temperature equation becomes ist between problems dealing with nonlinear drift waves in
plasmas and Rossby vortices in the atmosphere of our planet
[17,18, as well as electron magnetohydrodynamic waves in
[Ti—¢(x)]=0, (2.26  pulsed magnetic fielfl19], resulting in the same type of di-
polar vortex solutions. However, the presence of the shear

whereo' (x)=f(x), and(x) was defined earlier. As in the flow and nonuniformity of the system, as studied in the
previous case EQ(2.26 can be integrated, yielding Eq. present paper, turns out to be of crucial importance for the

_ _ _ type of nonlinear tripolar solutions obtained here. Conse-
E]za'&:)’ and = y(x)=F(¢=ux), and from Eq.(2.23 we quently, the fluid-plasma analogy, resulting in tripoles, oc-
curs also in the case of spatially nonuniform systems with
sheared flows.

An instability of the Kelvin-Helmholtz type can be readily
found if at any position across the flow the following condi-
tion is satisfied:

Jd L - >
E+ez>< VQit¢)-V

i+§z>< ﬁ(Ql+¢).ﬁ) As known from linear theory3], the inclusion of ion
ot dynamics in the problem introduces new types of modes on a
X[(V2=1)Q,+ ¢"(x) +F1n)(x)]=0. slower temporal scale close to the ion plasma frequency. The

nonlinear study of these modes is worth investigating and
(2.27  this work is in progress.
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