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Decay and slowing down of the multiquanta Davydov-like solitons in molecular chains
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Dynamics and the stability of the multivibron solitons in molecular chains have been examined by means of
the perturbation method based upon the inverse scattering transform. We demonstrate that due to the coupling
with phonons the soliton radiates energy which causes its slowing down and gradual decay of its amplitude. It
was shown that the soliton lifetime depends strongly on temperature and the values of the basic physical
parameters of the system. On the basis of these results the possible role of the multivibron solitons in the
intramolecular vibrational energy transfer has been critically assessed.

PACS numbsgfs): 87.15-v, 05.20.Dd, 05.45.Yv, 71.35y

[. INTRODUCTION shown that the effective, phonon-mediated, vibron-vibron in-
teraction may lead to the soliton formation even in these
The long distance chargelectron, proton, ..). and in-  systems.
tramolecular vibrational energy transfer is central to chemi- In our previous publications we have examined, within
cal and molecular dynamicgl,2] in complex molecules, the framework of the mean-field method, the conditions for
such as polyacetylene, polypeptide chaing-helix mol- the creation of such a multiquantiee., multivibron soliton
eculg, acetanilide(ACN), etc., where these processes playdependent on the values of the system parameters and tem-
an important role in a number of phenomena, including mePerature{19], the possibility of its experimental verification
tabolism, photochemical reactior(photosynthesis in par- due to the specm_c_sohton-mduced modifications pf the pho-
ticulan), etc.[1—6]. Therefore the explanation of the transport NON spectrum arising on account of the “dressing” effect
mechanisms in such molecules is of great importance for the20l, and their kinetic propertieg21]. However, in applica-
understanding of these phenomena on the microscopic leveions to realistic physical systems, the crucial problem is the
A potential solution of the problem, in the context of the €xamination of its stability under the influence of various
resolution of the so-called crisis in bioenergetiés6], was  Perturbations that can arise during its motion. In the present
proposed by Davydov and co-workdi&8] who argued that Paper we shall focgs ourselves on the exammgtlor) of the
the energy losses of the “excitomelectron, Vibron, proton, Stab|l|ty of such SO.|It0nS and we shall calculate ItS lifetime
etc) through the dispersion and dissipation due to the coulsing the perturbative treatment based upon the inverse scat-
pling with environment may be prevented by the self-tering transform(IST) formalism[22-29.
trapping(ST) of the vibrational energy quanta and formation
of the robust, stable, large radius, particlelike entities now Il. MODEL
commonly known as Davydov solitortBS) [9,10].
Davydov's ideas have stimulated numerous theoretical The starting point of our analysis is the model Lagrangian
and experimental examinatiof—18|, sometimes with quite  Of the system derived in our previous pap2t]
controversial results. Nevertheless, in spite of everything, it
is fairly certain now, on the basis of the investigations car- i f=dx . -
ried out within the general theory of the ST phenomglt- L= EJOOR_O(BIB —BB*) ~Hs=Hi+ Lpp- @
18], that the single particlglexciton soliton cannot be
formed and therefore cannot participate in the intramolecula,

vibrational energy transfer in biopolymers such aselix subsystem which, as shown[i1], may be approximated by

and acetanilidg ACN), but still could be relevant for the e X o
charge(electron transfer in these substances. This is a con-the Hamiltonian of the nonlinear Scitiager modelNSM)

sequence of the smallness of the width of the vibron band in
these substances as compared to the maximal phonon fre- Ho=(A—Eg—2J )J'w d_X|’8|2
quency (nonadiabatic limit [9—19]. Under such conditions s B =t | R,
small-polaron band states should be formed, if ST arise at

all, rather than the solitofil1,12. Quite on the contrary, e RzJ'm d—x|,8 2-2E f“ d_X|ﬂ|4 @
concerning the electron-phonon interaction, the adiabaticity efto ) Ry X BJ_=Ro '
condition in these systems is satisfied and the soliton forma-
tion is allowed on account of the single electron E®|. while
Nevertheless, intramolecular vibrational energy transfer in
these substances by means of the solitonic mechanism can-

f—|ereHS represents the Hamilton’s function of the solitonic

not be excluded totally. However, the original idea must be H:‘]effRO Z ” d_X IqROquiqx

revised and founded upon the multiquanta soliton as the ' N G J-=Ro frwg

transfer mechanism. The possibility of the formation of such N

solitons was discussed recently in REE9] where it was X (ag—a-g)(B*Bx—c.c) 3
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denotes the soliton-phonon interaction Hamiltonian. As usual Jeit F qug _

dots and subscripts denote derivation in respedt dod x, fx, )= —= > ——2eiXa_(t)—al(t)], (7
. ; 1 hw q q

respectively. Finally VN “q q

i% . ; 2
=—> (af 2iJ F
Eph—? - (agdqg—H.c)—Hpn (4 : effE qdRo

fz(X,t): \/N ﬁ(})
denotes a phonon subsystem Lagrangian. Here we use tﬂe , q ith th i fih K solit
same notation as in Refsl9-21] so thata; anda, are the herre{ ': accolrinan(x: Wn|1 re asrsdutmhgtl?r? 0 h (re]vx:wea bso ! ?nr-n
phonon creation and annihilation operatg8ss B(x,t) rep- phonon coupling, we may regal (n€ phonon subsyste
. ; ' . is practically unaffected by this interaction and consequently,
resents the soliton amplitude, afg is the exciton-phonon : .
: ) . the time dependence of phonon operators in Egsand(8)
coupling parameter. It is given as F ; i . . :
e 12 . . 9 simply denotes the interaction picture with respect to the
=2ix(hI2Mwy)Y%singR, in the case of coupling with = Etrt
. q . - . phonon Hamiltonian. In other wordsagy(t)=age™ ',
acoustic phonons with frequenay,= wgsinqRy/2|, and as q q

Trey — T alogt n
F=x(%/2M wo) Y2 for the coupling with the dispersionless gq:(sttzar_nage'n 2He-l;ngfm(;rl]z m?gr'tanljea:(]jatth(tah:orezgt]%rr: fSL;E:_
optical phonons with frequencyw,=wo=const. Herewg y IS quitibriu lonfu

=2(k/M)¥2 denotes the maximal acoustic phonon fre-fions of these forces are
guency,x is the spring constani denotes the mass of the

e (@j(t)—a_q1). (8
q

2
molecular groupR, denotes the lattice constant. The energy (fl(x,t)fI(x’,t’)>= RUSTES 2 (qRO)seiq(x—x’)
spectrum of the system is determined by the following pa- N q
rameters: vibron excitation energp), small-polaron bind- - , - ,
ing energy[ Eg=(1IN)S,(|Fq/%/fwg)], and finally the ef- X[vqe' a4 (14 pg)e ' at =],
fective intersite transfer integral{;;=Je™ (). Here 9)
2 [Fol®  ,dRy _— 1632.. S
M=y 2 (rwg? S 2 (et D) (O FF0 ) = = 3] aRgel el vt

denotes the temperature-dependent coupling constant intro- +(1+7)e7iwq(tft')]_ (10)
duced in[16,18 (v, is the equilibrium phonon distribution a

~ The above model Lagrangian describes the system comquation(6) has the similar form as the one considered re-
sisting of the classical partig®—multiquanta solito(s) in-  cently by Flytzaniset al. [24] who examined the radiative

teracting with the quantum-mechanical thermal bathjecay of the one-dimensional adiabatic acoustic polaron.
(phonons. It was derived assuming that the soliton existencerheir results enable one to estimate the possible role of the

condition[19] original Davydov concept for the chargelectron transfer
B(T in molecular chains. As compared with that study the only
T< (M) 5 difference we have here is the nature of the “random” forces
S(T) (5 . :
N which are now the quantum-mechanical operators. However,

. o during the practical calculations we shall encounter the mean
is satisfied. HereB(T)=(8/37)(2J/hwg)[S(T)/S(0)] de-  values of the product of these forces, so that this difference is
notes the temperature-dependent adiabaticity parametefre|evant, and the only condition that must be satisfied is the
Since we are primarily interested in the substances such agnaliness of the external forces. This condition is satisfied as
ACN anda helix, for which system parameters belong to thecan be seen from the magnitude of the above correlators that
nonadiabatic regiong<<1), the above condition implies that are proportional to the coupling constant, which is small in
the soliton existence is allowed §<1. For that reason the the soliton sector for the system we are dealing with. There-
perturbative treatment based upon the IST method is justiore, in further calculations we may follow, as closely as
fied. possible, the procedure utilized [ig4,25. As a first step we

In order to calculate the soliton lifetime we shall analyzerewrite Eq. (6) in the dimensionless form which is conve-
the perturbed nonlinear Scliioger equatior(NSE) arising  nient for the practical calculations. Using the new variables
in the standard way from the above model Lagrangian, z=xIRy, 7=(Jes/%)t, Q=0qR,, perturbed NSE(6) at-

. ) 5 tains the simple form:
17 B(X,1) + Jesr RoBux(X,1) +4Eg| B(X,1)[“B(X,1)

[ (2,7)+ bl 2,7) +2|9(2,7)|*Y(2,7) = R(2,7).
= ,(6,1) B0 D) + Fo(X,1) By(X,1). 6) i (2,7)+ A2, 7) + 2| P(z,7)|*P(z,7) = R(z,7) an
The irrel tt —2Je1—E )i db L ,
theesli:;%faevgﬂaszr?:aﬁsforrﬁgtionB)B(X ) Is removed by Here the nonlinearity parameteEg/Jo¢; was absorbed into
the scaled amplitude/(z, 7)= V2Eg/Je11B(X,t). The term
B(x,t)=el(A=2eri= BVl g(x 1), on the right-hand side which defines perturbation is specified

as
Here f,(x,t) and f,(x,t) are fluctuation forces due to the
coupling with phonons. They are explicitly given as follows: R(z,7)=F(z,7)P(z,7)+Ts(z,7) b, (2, 7). (12



PRE 61

DECAY AND SLOWING DOWN OF THE MULTIQUANTA . ..

6965

In this equationf,(z,7) andf,(z,7) are the random forces The first terms in the above expressions, proportionay,to

(7) and (8) written in the dimensionless units

hzn=3 3 A(Qerire,
==
(13

fz(Z,T)=2 Bj(Q)eiJc\erein’
Q j==*1

where the operator functions are explicitly given as

—1FeQ? T

1 FoQ?
Al(Q):W fL(DQ aQ! =

N g ©
(14)

A_1(Q)=

1 FoQ

. 1 FgQ
Bl(Q)—Zl\/—N%aQ,

B Q=2 = ;>-a_o.
Correlators of the above random forces are defined as
T 48 3 1 — — . o
(fuznti@'. )= > Q¥R glelQltr=r)
Q

+(1+ vg)e ielRlt=m], (15

16S _ L ,
<f2(Z,7')f]2L(z’,7-f)>=W EQ: QelQ(zfz )[VQe'C‘Q‘("*T )

+(1+ vg)e el (16)

In the above equations, in the same way af2#i, we have
introduced the dimensionless speed of sourd

=(hwg/2Jei1)=~1/B. Obviously, for the systems we are

dealing withc>1.

IIl. SOLITON DECAY AND SLOWING DOWN

come from the normalization of the soliton solution,

2i 77ei[(vZ)/2+(4772—v2/4)7—qso]

Psor= cosh27(z—V7)—z0]

(19

and denote the soliton norm and momentum, respectively.
The second terms in Eq6l7) and(18) come from the con-
tinuum component and denote the number of the emitted
guanta(17) and the momentum of the radiation fie(d8).
HereV=uvn/J.¢:Ry is the soliton velocity in dimensionless
units (v is the real soliton velociy Note that the original
Hamiltonian from which our model Lagrangidf)—(4) has
been derived21] does not include the anharmonic terms in
the Hamiltonian of the phonon subsystem, which are neces-
sary for the examination of the so-called “supersonic” soli-
tons [26]. Consequently, our further analysis concerns
the subsonic caseVc or v<cg). Quantity B(\,7)

Eb()\,r)e*“”zf may be calculated by virtue of the expres-
sion[22]

d . w
d—lj — —e 4Nra()\) f_ dz{[TD* (z,\)]?R*(2)

+[V@*(2,M)]*R(2)}. (20)
Here W(12(\,7) stands for the two-component one-soliton
Jost function for the NSE, while(\) denotes the IST re-
flection coefficient. In the absence of the external field both
the soliton amplitude and the velocity are constant in time.
Under the influence of the external forces soliton parameters
evolve in time. In particular, the perturbation may induce
coupling between the two independent branches, soliton and
radiation, of the spectrum of NSM. This in turn may cause
the “particles” exchange between them which finally leads
to the soliton decay and slowing down. In order to study
these effects, let us differentiate with respect to time the
averaged(averaging is taken over the equilibrium phonon

In the absence of perturbation, NSE is exactly integrableensemblg equations(17) and(18). In such a way and, hav-
and besides the known soliton solution it also has the set dhg in mind that the number of quanta is conserved
delocalized linear solutions that form the continuum, the so{dA7dr=0), from Eq.(17) we easily obtain the mean soli-
called “exciton,” band. In the context of IST theory these ton decay rate

linear modes are usually called radiation fie]@&,23. Due

to the exact integrabilty of the NSE, the unperturbed model dy
has an infinite set of the integrals of motion, each consisting ar 2

jo P(N)dA. (21

of the two parts corresponding to the soliton and the con-

tinuum branch of the spectrum, respectively. In the present ) .
context only the first two are interesting for us. This is theSoliton slowing down may be analyzed with the help of the

norm (number of quanta

N= [ dduznl=an+ [ asool @z

and field momentum
i o
Pzif dz(¢,(z,7)* (z,7)—c.c)

:znv+f 2X|B(\)|?d\. (18

equation

d(nV):_fw

i NPOVN, (22)

which may be derived in the same way as the preceding
equation.

In further analysis our primary task is to calculate the
mean spectral densityMSD) of the radiation field:P(\)
=(2/m)ReB* (\,7)dB(\,7)/d7). It can be done with the
help of Eq.(20) from which one may find the desired quan-
tity B(\) and its time derivative. Substituting the explicit
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form of the single soliton Jost functiofiEgs.(A3) and(A4) in [22]] into Eg.(20) and performing the integration overwe
arrive at

dB(N) ™ e QA7) _
e ERvie el v LIA(Qai(\, 7)+VB;(Q)ax(\, )], (23
N+ +q2 T Q-2a— 5
4] "7 2
cosh————
47

wheref(Q,\,7)=jc|Q|—4(\2+ %)+ QV—2\V—V?/4, a;=3 (A + V/4)>— Q(\ + V/4)— 7?, anda,= — (A + V/4)?>+ Q?%/8.

In order to findB(\) we use the procedure as|[iB5]. That is, we first multiply the above equation &%, and in some later
stage the limita—0 will be taken. This trick corresponds to adiabatically turning on the perturbation which was absent at
7= —o0, In such a way we obtain

77_2 e—if(Q,A,q)r
BrN=r—y7r— 2 2 v LTIA[(Qai(h, )+ VB[(Q)az(\, )]a(f(QN, 7). (24
()\+Z 2 2T Q-2\—3
cost——

47

In deriving this expression we have used the identity, lir(x+ia)  1=P(1k) Fim8(x) (P denotes the principal value
Combining the last two equations we obtain the following expression for the MSD of the radiation field:

22 aZ(\, 7)(AT(Q)A(Q"))+V2a3(\, 7)(BI(Q)B;/(Q’
P()\):—th Z E 1 77)< J(Q) j (Q )> Z(V 7])( J(Q) i (Q )> S(HQ' N, 7). (25
()ﬁL_ + 72 Q.Qjj==1 Q-2\— =
4 @ 2
cos e T
Performing the above denoted averaging over the phonon ensemble and replacing the summaf)doydtierintegration in
accordance with the rule (Mj=q- - - =(1/27)f7 _dQ- - - the last expression becomes
T = Fol?2 (2vo+1)(a2Q*+V2Q?%a3 V2
PN = - VE: 2.2 f dQ|ﬁ Q| 2( Q )(a1Q VQ 2)5 (C+jV)Q_4j()\2+772)_2j)\V_jZ )
i (og) q—2\— =
4 | 7 2
cos 47 T
(26)
|
Integrals overQ in the above expression may be evaluated 16mSKT 1
easily due to the presence of t@efunction. In such a way P(N)= =
we obtain a quite cumbersome expression/0x) which is hwg  [X2+ 5%]?
not convenient for further analysis. In particular, thus ob-
tained, the exact expression for the spectral density is a very o (a'fQ2+V2a§)
complicated function of the radiation field wave vectar) ( Xf d =
so that the evaluation of the integrals owerwhich must be o cosHQ_Z)\ .
found for the calculation of the average soliton decay rate, is 4y
quite difficult, and, in general, it cannot be found in closed
form analytically. For that reason we have to introduce some 1 24 2
reasonable approximation. In particular, in the high and low % i 5(Q_ j _77 ) 27
temperature case it can be satisfactory estimated by means of i£E1lctiv| ctjVv

the approximations proposed bef¢&2—25.

A. High temperature limit

In this case the phonon average number may be taken dtereX =\ +V/4 and in what follows the tilde will be omit-
vq~kT/hw,, and after the substitution of the explic@  ted. Performing the desired integration we obtain the follow-
dependence of the system parameters we have ing expression for the MSD:
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1.2

. cosh ?g(\) that mainly determine the shape Bt\). Thus,
2@ looking for the width of that distribution at half of its maxi-
CREE 5 mal value we foundAN (AN<\;) from the equation

i costr g\ +AN2)]=1/2.
08 In such a way we obtain the following estimate for the
T average soliton decay rate in the real units
0.6 1+
1 dn
04l Ez—F(v)n, (31
024 wherel'(v) denotes a velocity-dependent damping constant
given as
0.0 —t—t—
-1.0 -0.5 0.0 0.5 1.0 1.5 . 2.0 ]_‘( ) 1 (32)
v)= - 5 |,
* 17 a0

FIG. 1. Average spectral density of the radiation field, measured
in units of P,=(167Sk T4 wg) for V=c/4 and »=0.1 versus the Wherey=8nSkT¢/fhwgR,. In an analogous way we have

dimensionless radiation field wave vecfor (\/\,). High tem-  calculated the integral” ,AP(\)d\ so that Eq.(22) be-

perature limit. comes
d(v)
167SKT -
PV=—— 3 a ™ 33
B j=*1
R,(\)+Ry(\) Thus the above IST equations, after some manipulations, re-
% 1 2 27 . (28) sult in the following system equations for the soliton param-
e+ jV[cosh 2N = (cHjV)N+27 - eters in real units:
2n(c+jVv) g ' 5
U CO
whereR;(\) stands for the following polynomials: at Y 1- m v, (34)
] 0~ V)]
4 23O\ 97)  16NA(ZP pP)? .
Rl (c+iv)Z| eFiV (c+jV)? N P (35)
de T ag-on))

NN+ L,

T—@\ oty (29 Equation(34) may be integrated easily and we obtain the
following expression for the time dependence of the soliton
velocity:

2 4 4)\2()\2+ 772)2 4()\2_'_ 772)4 y
Ro(M)=-————55 |\~ ——+ — L
N+ 79) (c+jV) (c+jV) v _ Ug® (36)
30) 4p2 178~ 4 (2) 178>
For the estimation of the soliton life time one should calcu- - 3_0(2) - 3_CS

late the total mean radiation pow¢i  P(\)d\. Unfortu-
nately, the desired integration cannot be performed exactlyvherev,<0.87c, represents the initial soliton velocity. It is
However, according to the explicit form @f(\) (see Fig. 1, easy to show that this expression represents an equation of
these integrals may be fairly good estimates in accordancée fourth order ob?, which can be solved explicitly. How-
with the procedure proposed in Refg2—-23. ever, the resulting solution represents a very complicated
As one can se@®(\) is highly peaked in the vicinity of ~function of the soliton velocity on time which is not very
the points)\(lj)2=[c+jVi J(c+jV)2—165?]/4 correspond- qonveniept for practical. analysis. Therefore, from this equa-
ing to the zeros of the argument of cdgh) in the last tion we findt as a function of velocity:
expression, while the peak falling onko=0 is substantially

1/8
lower. Since we are dealing with the nonadiabatic case _ 4Lc2>
>1 we havec> 5 so that theP(\) has two pronounced v 303
maxima at\; = (c+jV)/2. When\>\; spectral density de- T=—In| — > : (37)
creases exponentially so that the main contribution in the vo _ 4L
desired integrals comes from thein the vicinity of these 3c3

points. Obviously the contribution from the third peak may

be disregarded. Thus we may approximate these integrals lwhich may be simply inverted to find the desired time de-
2j-12P(N\j)AN, where AN stands for the width of these pendence of the soliton velocity. It is given explicitly in Fig.
maxima, which is proportional to the soliton amplitude, i.e.,2 where we have plotted, for the two valueswgf the de-
AN~ 7. It was estimated analyzing the behavior of thependence of the soliton velocifyneasured in units afy) on
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1.0 ¢
viv
0
081
061
0.4+
T v0=0.8c0
02+ o
T v =0.1¢ i
1 o 0 R e
0.0 ‘ ! " ! } P 0.0 0.5 1.0 1.5 2.0 2.5 3.0
0 1 2 3 4 5 T

FIG. 3. Decay of the soliton amplitude versus the dimensionless

FIG. 2. Soliton velocity measured in units of versus the di- time: 7. High temperature limit.

mensionless tim@. High temperature limit.
) ) ) 3 B. Low temperature limit
dimensionless tim& (7= 3 yt). Here the dashed and dotted i i
lines correspond to,=0.1c, andv = 0.8y, respectively. It In this case the_ phonon average number practically van-
follows that the soliton velocity exponentially decreases.  iShes and we obtain
Time dependence of the soliton amplitude, necessary for 4nS
- o T . - -
the estimation of its lifetime, may be found with the help of P()‘):”—z)zj 10[dQ

the auxiliary relation:zv = nqvee~ 2, which follows from (N2+

Eqg. (33) for v<c,. Here ny=Eg/2J.¢; denotes the soliton ) ~

initial amplitude. Inserting this relation in the expression for (a1Q2+V2a s )\2+ 7?
7 we obtain the following equation for the soliton amplitude: X N A C+]V| c+ijVv

cosit T
a SN 1 10yt — 4n
J— /A —
2+ 1-aZ 1-a¢ 0, (39 43)

where z=(7,/7)?, a=4vg/3c5, b=e®"7/a"1 |t can be This expression corresponds to E28) in the high tempera-

solved explicitly so we have ture limit calculations. Note that has the same meaning as
before so that in what follows the tilde may be omitted.
b -1 Strictly following the procedure as in the previous case we
=10 2 ——y- \/;/ (39) obtain the following expression for the MSD of the radiation:
Vy
(N2 + 7)) [Ri(N) +Ry(N)]
where PV = 16773 2 AN2—(c+jV)N+272
(C+jV) 2coslit 27 (cH V) T
, e20T/3 ylle[( e74T 1/3_ ( - 8747 1/3 (44)
2U3q—1)2371 Y1 Y1 ’

(400  To find the soliton decay rate we shall use the similar ap-
proximations as those involved in the deriving of E29).
and For that purpose we plot the low temperature MGHy.
4), which behaves in the same way as well as in the high
temperature limit. Thus one safely may follow the same pro-
(41) cedure as before and we found that the average soliton am-
Plitude and productyu satisfy the following system:

256
yl—[ a’(a—1)+e 7).

These results are visualized in Fig. 3, which represen
dependence of they/n, on 7, for the two above chosen

values ofvg. In particular, the dashed and dotted lines cor- d_’7: —26l 1+ LZ (45)
respond tovy=0.1c, and v =0.8c,, respectively. The full dt c2 K

line corresponds to a pure exponential curyes: 7oe 73,

here introduced for comparison. As one can see the soliton 2

amplitude decreases approximately following the pure expo- d(op) —_2Gca| 1+ & 7 (46)
nential law. On the basis of these predictions one may esti- dt 0 ac3 | "

mate the soliton half-life time as follows:

41n2 Combining these two equations we finally obtain the follow-
n - - i lution equation for the soliton velocity in the low
— -3 1910718 g ing evolution eq y

2T g, 3.39SD X107+ s (“42) temperature limit:
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104
3()

3a

0.8

0.6

04—+

021

0.0 —t—t— 1
-0.5 0.0 0.5 1.0 1.5 2.0

T

FIG. 4. Average spectral density of the radiation, measured in £ . pecay of the soliton amplitude versus the dimensionless
units of Py=16xS, versus the dimensionless radiation field wave time 7. Low temperature limit.

vector:x=\/\, for V=c/4 and=0.1. Low temperature limit.
In order to find the time dependence of the soliton ampli-

d tude we shall use an auxiliary relation
T =—G(1+137-2y~10/°), 7 Y
_ I = —1.1837 (y)+ 1.087 2222
wherey=uv/2c, andG= 7Swg/B. The last equation may be Mo yi—y
integrated easily and we obtain, as well as in the high tem- )
perature limit,t as a function of the soliton velocity, _0.0281n 10y“—y+0.8 49)
' 10y2—yo+0.8

yi—y [10y2-y,+0.8
1(y)~0.07 |n| yll— Yo 1Oy02— y0+ 0.8 By virtue of this relation and the explicit expression i)

one may find, numerically, the desired time evolution of the

— 0.3 arctari3.6y— 0.03 — arctari3.6y,— 0.03 ]. soliton amplitude. It is visualized in Fig. 6 for the three val-
ues ofvy.
(48) Like in the high temperature case the soliton amplitude

] ) . ~exhibits exponential decay which now substantially depends
Here 7=5Gt denotes the time measured in the dimensionp jts velocity. Namely, we observe that the soliton at rest is
less unitsyo=uv/2cq (vo denotes the initial soliton velocity  comparably more stable than the moving one. In particular,
while y;=1.2 represents the only real root of the third orderyhen its velocity approaches zero the relatively rapid decay

polynomial in the right-hand side of EG46). The desired of the soliton amplitude transits into a somewhat slower,
time dependence of the soliton velocity may be obtained by,yre exponential one,

inverting this relation. It is visualized in Fig. 5 where we

have plotted the dependence of the soliton velocity, mea- n=n(7o)e . (50)
sured in units 2y, on dimensionless tim&=5Gt. It follows

that the soliton velocity gradually decreases and after th&rom this relation we estimate the soliton half-life time as
finite time 7,=7(y=0) it approaches zero. From Fig. 5 we

easily estimate this; let us call it the stopping time, s _In2B 51)
~vol2¢q or in real unitsty~ (v o/2¢o) (B/ 7Swg). 12 57Swg”’ (
0.5
v IV. CONCLUSION
2C
®oal Concluding this paper we note that our analysis shows

that, due to the coupling with phonons, a multiquanta soliton
radiates energyexcitong which induces its slowing down
and the gradual decay of its amplitude. As a consequence the
Vo =0:9C, soliton lifetime is finite and determined by the values of the
02 basic physical parameters of systéooupling constant and
v, =0.6C, adiabaticity parametgand temperature. This enables one to
0.1 determine, more precisely than [ih9], the relevance of the
I Vo =02C, multiquanta soliton mechanism for the intramolecular vibra-
00 . . , ‘ . ) . tional energy transfer in molecular chains. Namely, the soli-
0.0 0.1 0.2 0.3 0.4 ton lifetime should be long enough in order to transport en-
' ergy over large distances. This imposes certain demands on
FIG. 5. Soliton velocity in units of, versus the dimensionless the values of the system parameters. As could be expected
time 7. Low temperature limit. the rate of the soliton decay is strongly influenced by the

03
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value of the coupling constant which must be very small indiscussed the lifetime of the single particle Davydov soliton
order to provide sufficient stability of these excitations. (i.e., the soliton created on account of the single vibron. ST
However, according to the soliton existence conditidh ~ Therefore, our conclusion is that, as well as the original
the smallness of the coupling constant is already assumed favydov proposal, the multiquanta soliton is not a likely
such solitons could be formed at all. Therefore, in order tacandidate for the intramolecular vibrational energy transfer
discuss the stability of the particular soliton created ofAhe in piological systems in realistic conditions. However, while
quanta, it is more convenient to express the soliton lifetimene original concept fails due to its inherent inconsistency
through the number of quanta participating in its formation.[15_1g i.e., a single particle soliton cannot be formed at all
In such a way, taking into account relati¢d), we may re- o the given conditiongnonadiabatic limi, the creation of
write llisqs.(42) and(51),_rfspect|vely, as12~5.65(MTB)  the multiquanta soliton in principle is quite possible; how-
X10"™ s andry,~Nwg ™. As one can see, the soliton sta- eyer, even if formed such excitation lives too short to be
bility at low temperatures is comparably better than on theyseful in biological processes. This, however, does not ex-
high ones. On the basis of these results we are now in gjyde the relevance of such a mechanism of vibrational en-
position to estimate the possible role of the multiquanta solizrgy transfer in different contexts. This can be seen from our
ton in the transport processes for the concrete system. Usingstimates of the soliton stopping and lifetime at low tempera-
the set of parameters which is usually quoted as the repreyres which may be of a few orders of magnitude larger than
sentative for thea helix and related molecule®CN, for i the high temperature regime. Namely, for the macromol-
examplg, we found that B~0.14-0.16, Eg=(10"*°*  ecules with a wider phonon bandwidth, polyacetylene for
—107%%)J, and S~0.01-0.1. These values correspond t0 example fwg~ 10 2° J), which is high compared with the
the nonadiabatic and weak coupling limit, where, in prin-thermal energy KgT) at 300 K, the soliton lifetime should
ciple, such solitons may be form&#9]. For these substances pe estimated by Eq51) and therefore could be at least of

at 300 K, kgT/fwg~1.95-2.27, so thatry, must be esti- o orders of magnitude longer than in thenelix and ACN.
mated in accordance with E¢42) so that we havery),

~10 B s.
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