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Decay and slowing down of the multiquanta Davydov-like solitons in molecular chains

Zoran Ivić, Željko Pržulj, and Dragan Kostic´
Theoretical Physics Department–020, The ‘‘Vinča’’ Institute of Nuclear Sciences, 11001 Belgrade, Serbia, Yugoslavia

~Received 29 November 1999!

Dynamics and the stability of the multivibron solitons in molecular chains have been examined by means of
the perturbation method based upon the inverse scattering transform. We demonstrate that due to the coupling
with phonons the soliton radiates energy which causes its slowing down and gradual decay of its amplitude. It
was shown that the soliton lifetime depends strongly on temperature and the values of the basic physical
parameters of the system. On the basis of these results the possible role of the multivibron solitons in the
intramolecular vibrational energy transfer has been critically assessed.

PACS number~s!: 87.15.2v, 05.20.Dd, 05.45.Yv, 71.35.2y
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I. INTRODUCTION

The long distance charge~electron, proton, . . .! and in-
tramolecular vibrational energy transfer is central to che
cal and molecular dynamics@1,2# in complex molecules,
such as polyacetylene, polypeptide chains (a-helix mol-
ecule!, acetanilide~ACN!, etc., where these processes pl
an important role in a number of phenomena, including m
tabolism, photochemical reactions~photosynthesis in par
ticular!, etc.@1–6#. Therefore the explanation of the transpo
mechanisms in such molecules is of great importance for
understanding of these phenomena on the microscopic le
A potential solution of the problem, in the context of th
resolution of the so-called crisis in bioenergetics@5,6#, was
proposed by Davydov and co-workers@7,8# who argued that
the energy losses of the ‘‘exciton’’~electron, vibron, proton,
etc.! through the dispersion and dissipation due to the c
pling with environment may be prevented by the se
trapping~ST! of the vibrational energy quanta and formatio
of the robust, stable, large radius, particlelike entities n
commonly known as Davydov solitons~DS! @9,10#.

Davydov’s ideas have stimulated numerous theoret
and experimental examinations@9–18#, sometimes with quite
controversial results. Nevertheless, in spite of everything
is fairly certain now, on the basis of the investigations c
ried out within the general theory of the ST phenomena@16–
18#, that the single particle~exciton! soliton cannot be
formed and therefore cannot participate in the intramolec
vibrational energy transfer in biopolymers such asa helix
and acetanilide~ACN!, but still could be relevant for the
charge~electron! transfer in these substances. This is a c
sequence of the smallness of the width of the vibron ban
these substances as compared to the maximal phonon
quency~nonadiabatic limit! @9–19#. Under such conditions
small-polaron band states should be formed, if ST arise
all, rather than the soliton@11,12#. Quite on the contrary
concerning the electron-phonon interaction, the adiabati
condition in these systems is satisfied and the soliton for
tion is allowed on account of the single electron ST@18#.
Nevertheless, intramolecular vibrational energy transfer
these substances by means of the solitonic mechanism
not be excluded totally. However, the original idea must
revised and founded upon the multiquanta soliton as
transfer mechanism. The possibility of the formation of su
solitons was discussed recently in Ref.@19# where it was
PRE 611063-651X/2000/61~6!/6963~8!/$15.00
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shown that the effective, phonon-mediated, vibron-vibron
teraction may lead to the soliton formation even in the
systems.

In our previous publications we have examined, with
the framework of the mean-field method, the conditions
the creation of such a multiquanta~i.e., multivibron! soliton
dependent on the values of the system parameters and
perature@19#, the possibility of its experimental verificatio
due to the specific soliton-induced modifications of the ph
non spectrum arising on account of the ‘‘dressing’’ effe
@20#, and their kinetic properties@21#. However, in applica-
tions to realistic physical systems, the crucial problem is
examination of its stability under the influence of vario
perturbations that can arise during its motion. In the pres
paper we shall focus ourselves on the examination of
stability of such solitons and we shall calculate its lifetim
using the perturbative treatment based upon the inverse
tering transform~IST! formalism @22–25#.

II. MODEL

The starting point of our analysis is the model Lagrang
of the system derived in our previous paper@21#

L5
i\

2 E
2`

` dx

R0
~ ḃb* 2bḃ* !2Hs2Hi1Lph . ~1!

HereHs represents the Hamilton’s function of the soliton
subsystem which, as shown in@21#, may be approximated by
the Hamiltonian of the nonlinear Schro¨dinger model~NSM!

Hs5~D2EB22Je f f!E
2`

` dx

R0
ubu2

1Je f f R0
2E

2`

` dx

R0
ubxu222EBE

2`

` dx

R0
ubu4, ~2!

while

Hi5
Je f fR0

AN
(

q
E

2`

` dx

R0

iqR0Fq

\vq
eiqx

3~aq
†2a2q!~b* bx2c.c.! ~3!
6963 ©2000 The American Physical Society
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denotes the soliton-phonon interaction Hamiltonian. As us
dots and subscripts denote derivation in respect tot and x,
respectively. Finally

Lph5
i\

2 (
q

~ ȧq
†aq2H.c.!2Hph ~4!

denotes a phonon subsystem Lagrangian. Here we use
same notation as in Refs.@19–21# so thataq

† andaq are the
phonon creation and annihilation operators,b[b(x,t) rep-
resents the soliton amplitude, andFq is the exciton-phonon
coupling parameter. It is given as Fq
52ix(\/2Mvq)1/2sinqR0 in the case of coupling with
acoustic phonons with frequencyvq5vBsinuqR0 /2u, and as
F5x(\/2Mv0)1/2 for the coupling with the dispersionles
optical phonons with frequencyvq5v0[const. HerevB
52(k/M )1/2 denotes the maximal acoustic phonon fr
quency,k is the spring constant,M denotes the mass of th
molecular group,R0 denotes the lattice constant. The ener
spectrum of the system is determined by the following
rameters: vibron excitation energy (D), small-polaron bind-
ing energy@EB5(1/N)(q(uFqu2/\vq)#, and finally the ef-
fective intersite transfer integral (Je f f5Je2S(T)). Here

S~T!5
2

N (
q

uFqu2

~\vq!2
sin2

qR0

2
~2n̄q11!

denotes the temperature-dependent coupling constant i
duced in@16,18# ( n̄q is the equilibrium phonon distribution!.

The above model Lagrangian describes the system
sisting of the classical particle~s!—multiquanta soliton~s! in-
teracting with the quantum-mechanical thermal b
~phonons!. It was derived assuming that the soliton existen
condition @19#

S~T!,
B~T!

N ~5!

is satisfied. HereB(T)5(8/3p)(2J/\vB)@S(T)/S(0)# de-
notes the temperature-dependent adiabaticity param
Since we are primarily interested in the substances suc
ACN anda helix, for which system parameters belong to t
nonadiabatic region (B,1), the above condition implies tha
the soliton existence is allowed ifS!1. For that reason the
perturbative treatment based upon the IST method is ju
fied.

In order to calculate the soliton lifetime we shall analy
the perturbed nonlinear Schro¨dinger equation~NSE! arising
in the standard way from the above model Lagrangian,

i\ḃ~x,t !1Je f f R0
2bxx~x,t !14EBub~x,t !u2b~x,t !

5 f 1~x,t !b~x,t !1 f 2~x,t !bx~x,t !. ~6!

The irrelevant term (D22Je f f2EB)b(x,t) is removed by
the simple phase transformation

b̃~x,t !5ei [(D22Je f f2EB)t/\]b~x,t !.

Here f 1(x,t) and f 2(x,t) are fluctuation forces due to th
coupling with phonons. They are explicitly given as follow
al
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f 1~x,t !5
Je f f

AN
(

q

Fqq2R0
2

\vq
eiqx@a2q~ t !2aq

†~ t !#, ~7!

f 2~x,t !5
2iJe f f

AN
(

q

FqqR0
2

\vq
eiqx~aq

†~ t !2a2q~ t !!. ~8!

Here, in accordance with the assumption of the weak solit
phonon coupling, we may regard that the phonon subsys
is practically unaffected by this interaction and consequen
the time dependence of phonon operators in Eqs.~7! and~8!
simply denotes the interaction picture with respect to
phonon Hamiltonian. In other words,aq(t)5aqe2 ivqt,
aq

†(t)5aq
†eivqt. Thus one may take that the phonon su

system is in the thermal equilibrium and the correlation fun
tions of these forces are

^ f 1~x,t ! f 1
†~x8,t8!&5

4Je f f
2 S

N (
q

~qR0!3eiq(x2x8)

3@ n̄qeivq(t2t8)1~11 n̄q!e2 ivq(t2t8)#,

~9!

^ f 2~x,t ! f 2
†~x8,t8!&5

16Je f f
2 S

N (
q

qR0
3eiq(x2x8)@ n̄qeivq(t2t8)

1~11 n̄q!e2 ivq(t2t8)#. ~10!

Equation~6! has the similar form as the one considered
cently by Flytzaniset al. @24# who examined the radiative
decay of the one-dimensional adiabatic acoustic polar
Their results enable one to estimate the possible role of
original Davydov concept for the charge~electron! transfer
in molecular chains. As compared with that study the o
difference we have here is the nature of the ‘‘random’’ forc
which are now the quantum-mechanical operators. Howe
during the practical calculations we shall encounter the m
values of the product of these forces, so that this differenc
irrelevant, and the only condition that must be satisfied is
smallness of the external forces. This condition is satisfied
can be seen from the magnitude of the above correlators
are proportional to the coupling constant, which is small
the soliton sector for the system we are dealing with. The
fore, in further calculations we may follow, as closely
possible, the procedure utilized in@24,25#. As a first step we
rewrite Eq. ~6! in the dimensionless form which is conve
nient for the practical calculations. Using the new variab
z5x/R0 , t5(Je f f /\)t, Q5qR0, perturbed NSE~6! at-
tains the simple form:

ict~z,t!1czz~z,t!12uc~z,t!u2c~z,t!5R~z,t!.
~11!

Here the nonlinearity parameter 2EB /Je f f was absorbed into

the scaled amplitudec(z,t)5A2EB /Je f fb(x,t). The term
on the right-hand side which defines perturbation is speci
as

R~z,t!5 f 1~z,t!c~z,t!1 f 2~z,t!cz~z,t!. ~12!
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In this equationf 1(z,t) and f 2(z,t) are the random force
~7! and ~8! written in the dimensionless units

f 1~z,t!5(
Q

(
j 561

Aj~Q!ei jc uQuteiQz,

~13!

f 2~z,t!5(
Q

(
j 561

Bj~Q!ei jc uQuteiQz,

where the operator functions are explicitly given as

A1~Q!5
21

AN

FQQ2

\vQ
aQ

† , A21~Q!5
1

AN

FQQ2

\vQ
a2Q ,

~14!

B1~Q!52i
1

AN

FQQ

\vQ
aQ

† , B21~Q!52i
21

AN

FQQ

\vQ
a2Q .

Correlators of the above random forces are defined as

^ f 1~z,t! f 1
†~z8,t8!&5

4S

N (
Q

Q3eiQ(z2z8)@ n̄QeicuQu(t2t8)

1~11 n̄Q!e2 icuQu(t2t8)#, ~15!

^ f 2~z,t! f 2
†~z8,t8!&5

16S

N (
Q

QeiQ(z2z8)@ n̄QeicuQu(t2t8)

1~11 n̄Q!e2 icuQu(t2t8)#, ~16!

In the above equations, in the same way as in@24#, we have
introduced the dimensionless speed of soundc
5(\vB/2Je f f)'1/B. Obviously, for the systems we ar
dealing withc@1.

III. SOLITON DECAY AND SLOWING DOWN

In the absence of perturbation, NSE is exactly integra
and besides the known soliton solution it also has the se
delocalized linear solutions that form the continuum, the
called ‘‘exciton,’’ band. In the context of IST theory thes
linear modes are usually called radiation fields@22,23#. Due
to the exact integrabilty of the NSE, the unperturbed mo
has an infinite set of the integrals of motion, each consis
of the two parts corresponding to the soliton and the c
tinuum branch of the spectrum, respectively. In the pres
context only the first two are interesting for us. This is t
norm ~number of quanta!

N5E
2`

`

dzuc~z,t!u254h1E
2`

`

dluB~l!u2 ~17!

and field momentum

P5
i

2E2`

`

dz~cz~z,t!c* ~z,t!2c.c.!

52hV1E
2`

`

2luB~l!u2dl. ~18!
le
of
-

l
g
-

nt

The first terms in the above expressions, proportional toh,
come from the normalization of the soliton solution,

csol5
2ihei [(Vz)/21(4h22V2/4)t2f0]

cosh@2h~z2Vt!2z0#
~19!

and denote the soliton norm and momentum, respectiv
The second terms in Eqs.~17! and ~18! come from the con-
tinuum component and denote the number of the emi
quanta~17! and the momentum of the radiation field~18!.
HereV5v\/Je f fR0 is the soliton velocity in dimensionles
units (v is the real soliton velocity!. Note that the original
Hamiltonian from which our model Lagrangian~1!–~4! has
been derived@21# does not include the anharmonic terms
the Hamiltonian of the phonon subsystem, which are nec
sary for the examination of the so-called ‘‘supersonic’’ so
tons @26#. Consequently, our further analysis concer
the subsonic case (V,c or v,c0). Quantity B(l,t)
[b(l,t)e24il2t may be calculated by virtue of the expre
sion @22#

dB
dt

52e24il2ta~l!E
2`

`

dz$@C (1)* ~z,l!#2R* ~z!

1@C (2)* ~z,l!#2R~z!%. ~20!

Here C (1,2)(l,t) stands for the two-component one-solito
Jost function for the NSE, whileb(l) denotes the IST re-
flection coefficient. In the absence of the external field b
the soliton amplitude and the velocity are constant in tim
Under the influence of the external forces soliton parame
evolve in time. In particular, the perturbation may indu
coupling between the two independent branches, soliton
radiation, of the spectrum of NSM. This in turn may cau
the ‘‘particles’’ exchange between them which finally lea
to the soliton decay and slowing down. In order to stu
these effects, let us differentiate with respect to time
averaged~averaging is taken over the equilibrium phono
ensemble! equations~17! and ~18!. In such a way and, hav
ing in mind that the number of quanta is conserv
(dN/dt50), from Eq.~17! we easily obtain the mean sol
ton decay rate

dh

dt
52

1

4E2`

`

P~l!dl. ~21!

Soliton slowing down may be analyzed with the help of t
equation

d~hV!

dt
52E

2`

`

lP~l!dl, ~22!

which may be derived in the same way as the preced
equation.

In further analysis our primary task is to calculate t
mean spectral density~MSD! of the radiation field:P(l)
5(2/p)Rê B* (l,t)dB(l,t)/dt&. It can be done with the
help of Eq.~20! from which one may find the desired qua
tity B(l) and its time derivative. Substituting the explic
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form of the single soliton Jost functions@Eqs.~A3! and~A4! in @22## into Eq. ~20! and performing the integration overz, we
arrive at

dB~l!

dt
5

p

S l1
V

4 D 2

1h2
(
Q

(
j 561

ei f (Q,l,h)t

cosh

Q22l2
V

2

4h
p

@ iA j~Q!a1~l,h!1VBj~Q!a2~l,h!#, ~23!

where f (Q,l,h)5 jcuQu24(l21h2)1QV22lV2V2/4, a153(l1V/4)22Q(l1V/4)2h2, anda252(l1V/4)21Q2/8.
In order to findB(l) we use the procedure as in@25#. That is, we first multiply the above equation byeat, and in some later
stage the limita→0 will be taken. This trick corresponds to adiabatically turning on the perturbation which was abs
t52`. In such a way we obtain

B 1~l!5
p2

S l1
V

4 D 2

1h2
(
Q

(
j 561

e2 i f (Q,l,h)t

cosh2
Q22l2

V

2

4h
p

@2 iA j
†~Q!a1~l,h!1VBj

†~Q!a2~l,h!#d„f ~Q,l,h!…. ~24!

In deriving this expression we have used the identity lima→0(x6 ia)215P(1/x)7 ipd(x) ~P denotes the principal value!.
Combining the last two equations we obtain the following expression for the MSD of the radiation field:

P~l!5
2p2

F S l1
V

4 D 2

1h2G2 (
Q8,Q

(
j 8, j 561

a1
2~l,h!^Aj

†~Q!Aj 8~Q8!&1V2a2
2~l,h!^Bj

†~Q!Bj 8~Q8!&

cosh2
Q22l2

V

2

4h
p

d„f ~Q8,l,h!…. ~25!

Performing the above denoted averaging over the phonon ensemble and replacing the summation overQ by the integration in
accordance with the rule (1/N)(Q•••5(1/2p)*2p

p dQ••• the last expression becomes

P~l!5
p

F S l1
V

4 D 2

1h2G2 (
j 561

E
2p

p

dQ
uFQu2

~\vQ!2

~2nQ11!~a1
2Q41V2Q2a2

2!

cosh2
q22l2

V

2

4h
p

dS ~c1 jV !Q24 j ~l21h2!22 j lV2 j
V2

4 D .

~26!
te

b
ve

,
ed
m
ow
ns

n
w-
Integrals overQ in the above expression may be evalua
easily due to the presence of thed function. In such a way
we obtain a quite cumbersome expression forP(l) which is
not convenient for further analysis. In particular, thus o
tained, the exact expression for the spectral density is a
complicated function of the radiation field wave vector (l)
so that the evaluation of the integrals overl, which must be
found for the calculation of the average soliton decay rate
quite difficult, and, in general, it cannot be found in clos
form analytically. For that reason we have to introduce so
reasonable approximation. In particular, in the high and l
temperature case it can be satisfactory estimated by mea
the approximations proposed before@22–25#.

A. High temperature limit

In this case the phonon average number may be take
nq'kT/\vq , and after the substitution of the explicitQ
dependence of the system parameters we have
d

-
ry

is

e

of

as

P~l!5
16pSkT

\vB

1

@ l̃21h2#2

3E
2p

p

dQ
~a1

2Q21V2a2
2!

cosh2
Q22l̃

4h
p

3 (
j 561

1

uc1 jVu
dS Q24 j

l̃21h2

c1 jV
D . ~27!

Here l̃5l1V/4 and in what follows the tilde will be omit-
ted. Performing the desired integration we obtain the follo
ing expression for the MSD:



u

ctl

n

e

-
th

ay
ls
e
e.
he

-

e

ant

e

, re-
m-

he
ton

s
n of

-
ted
y
ua-

e-
.

re

PRE 61 6967DECAY AND SLOWING DOWN OF THE MULTIQUANTA . . .
P~l!5
16pSkT

\vB
(

j 561

3
R1~l!1R2~l!

uc1 jVucosh2
2l22~c1 jV !l12h2

2h~c1 jV !
p

, ~28!

whereRi(l) stands for the following polynomials:

R1~l!5
16

~c1 jV !2 F9l42
24l3~l21h2!

c1 jV
1

16l2~l21h2!2

~c1 jV !2

1
8l~l21h2!h2

c1 jV
26l2h21h4G , ~29!

R2~l!5
V2

~l21h2!2 Fl42
4l2~l21h2!2

~c1 jV !2
1

4~l21h2!4

~c1 jV !4 G .

~30!

For the estimation of the soliton life time one should calc
late the total mean radiation power*2`

` P(l)dl. Unfortu-
nately, the desired integration cannot be performed exa
However, according to the explicit form ofP(l) ~see Fig. 1!,
these integrals may be fairly good estimates in accorda
with the procedure proposed in Refs.@22–25#.

As one can seeP(l) is highly peaked in the vicinity of
the pointsl1,2

( j )5@c1 jV6A(c1 jV)2216h2#/4 correspond-
ing to the zeros of the argument of cosh2g(l) in the last
expression, while the peak falling ontol50 is substantially
lower. Since we are dealing with the nonadiabatic casc
@1 we havec@h so that theP(l) has two pronounced
maxima atl j5(c1 jV)/2. Whenl@l j spectral density de
creases exponentially so that the main contribution in
desired integrals comes from thel in the vicinity of these
points. Obviously the contribution from the third peak m
be disregarded. Thus we may approximate these integra
( j 51,2P(l j )Dl, where Dl stands for the width of thes
maxima, which is proportional to the soliton amplitude, i.
Dl;h. It was estimated analyzing the behavior of t

FIG. 1. Average spectral density of the radiation field, measu
in units of P05(16pSkT/\vB) for V5c/4 andh50.1 versus the

dimensionless radiation field wave vectorl̃5(l/l1). High tem-
perature limit.
-

y.

ce

e

by

,

cosh22g(l) that mainly determine the shape ofP(l). Thus,
looking for the width of that distribution at half of its maxi
mal value we foundDl (Dl!l j ) from the equation
cosh22@g(lj1Dl/2)#51/2.

In such a way we obtain the following estimate for th
average soliton decay rate in the real units

dh

dt
52G~v !h, ~31!

whereG(v) denotes a velocity-dependent damping const
given as

G~v !5gF12
1

4~v2/c0
221!

G , ~32!

whereg58pSkTc0 /\vBR0. In an analogous way we hav
calculated the integral*2`

` lP(l)dl so that Eq.~22! be-
comes

d~hv !

dt
522ghv. ~33!

Thus the above IST equations, after some manipulations
sult in the following system equations for the soliton para
eters in real units:

dv
dt

52gF12
c0

2

4~c0
22v2!

Gv, ~34!

dh

dt
52gF11

c0
2

4~c0
22v2!

Gh. ~35!

Equation ~34! may be integrated easily and we obtain t
following expression for the time dependence of the soli
velocity:

v

S 12
4v2

3c0
2D 1/85

v0e2(3/4)gt

S 12
4v0

2

3c0
2D 1/8, ~36!

wherev0,0.87c0 represents the initial soliton velocity. It i
easy to show that this expression represents an equatio
the fourth order ofv2, which can be solved explicitly. How
ever, the resulting solution represents a very complica
function of the soliton velocity on time which is not ver
convenient for practical analysis. Therefore, from this eq
tion we find t as a function of velocity:

T52 lnF v
v0 S 12

4v0
2

3c0
2

12
4v2

3c0
2

D 1/8G , ~37!

which may be simply inverted to find the desired time d
pendence of the soliton velocity. It is given explicitly in Fig
2 where we have plotted, for the two values ofv0, the de-
pendence of the soliton velocity~measured in units ofv0) on

d
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dimensionless timeT (T5 3
4 gt). Here the dashed and dotte

lines correspond tov050.1c0 andv050.8c0, respectively. It
follows that the soliton velocity exponentially decreases.

Time dependence of the soliton amplitude, necessary
the estimation of its lifetime, may be found with the help
the auxiliary relation:hv5h0v0e22gt, which follows from
Eq. ~33! for v,c0. Here h05EB/2Je f f denotes the soliton
initial amplitude. Inserting this relation in the expression f
T we obtain the following equation for the soliton amplitud

z41
a

12a
ze6gt2

1

12a
e10gt50, ~38!

where z5(h0 /h)2, a54v0
2/3c0

2 , b5e8gT /a21. It can be
solved explicitly so we have

h5h0A2SA2b

Ay
2y2AyD 21

, ~39!

where

y5
e20T /3

21/3~a21!2/3
y1

1/6F S 11
e24T

y1
D 1/3

2S 12
e24T

y1
D 1/3G ,

~40!

and

y15F256

27
a3~a21!1e28TG . ~41!

These results are visualized in Fig. 3, which repres
dependence of theh/h0 on T, for the two above chosen
values ofv0. In particular, the dashed and dotted lines c
respond tov050.1c0 and v50.8c0, respectively. The full
line corresponds to a pure exponential curve:h5h0e25T/3,
here introduced for comparison. As one can see the so
amplitude decreases approximately following the pure ex
nential law. On the basis of these predictions one may e
mate the soliton half-life time as follows:

t1/2;
4 ln 2

5g
53.39~ST!21310213 s. ~42!

FIG. 2. Soliton velocity measured in units ofv0 versus the di-
mensionless timeT. High temperature limit.
or

r

t

-

n
-

ti-

B. Low temperature limit

In this case the phonon average number practically v
ishes and we obtain

P~l!5
4pS

~ l̃21h2!2E2p

p

uQudQ

3
~a1

2Q21V2a2
2!

cosh2
Q22l̃

4h
p

(
61

1

uc1 jVu
dS Q24

l̃21h2

c1 jV
D .

~43!

This expression corresponds to Eq.~28! in the high tempera-
ture limit calculations. Note thatl̃ has the same meaning a
before so that in what follows the tilde may be omitte
Strictly following the procedure as in the previous case
obtain the following expression for the MSD of the radiatio

P~l!516pS (
j 561

~l21h2!@R1~l!1R2~l!#

~c1 jV !2cosh2
2l22~c1 jV !l12h2

2h~c1 jV !
p

.

~44!

To find the soliton decay rate we shall use the similar
proximations as those involved in the deriving of Eq.~29!.

For that purpose we plot the low temperature MSD~Fig.
4!, which behaves in the same way as well as in the h
temperature limit. Thus one safely may follow the same p
cedure as before and we found that the average soliton
plitude and producthv satisfy the following system:

dh

dt
522GS 11

5v2

4c0
2D h, ~45!

d~hv !

dt
522Gc0S 11

13v2

4c0
2 D h. ~46!

Combining these two equations we finally obtain the follo
ing evolution equation for the soliton velocity in the lo
temperature limit:

FIG. 3. Decay of the soliton amplitude versus the dimensionl
time: T. High temperature limit.
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dy

dt
52G~1113y222y210y3!, ~47!

wherey5v/2c0 andG5pSvB /B. The last equation may b
integrated easily and we obtain, as well as in the high te
perature limit,t as a function of the soliton velocity,

T~y!'0.07 lnH y12y

y12y0
A10y0

22y010.8

10y22y10.8
J

20.3@arctan~3.6y20.03!2arctan~3.6y020.03!#.

~48!

Here T55Gt denotes the time measured in the dimensi
less units,y05v0/2c0 (v0 denotes the initial soliton velocity!
while y151.2 represents the only real root of the third ord
polynomial in the right-hand side of Eq.~46!. The desired
time dependence of the soliton velocity may be obtained
inverting this relation. It is visualized in Fig. 5 where w
have plotted the dependence of the soliton velocity, m
sured in units 2c0, on dimensionless timeT55Gt. It follows
that the soliton velocity gradually decreases and after
finite time T05T(y50) it approaches zero. From Fig. 5 w
easily estimate this; let us call it the stopping time, asT0
;v0/2c0 or in real unitst0;(v0/2c0)(B/pSvB).

FIG. 4. Average spectral density of the radiation, measure
units of P0516pS, versus the dimensionless radiation field wa

vector: l̃5l/l1, for V5c/4 andh50.1. Low temperature limit.

FIG. 5. Soliton velocity in units ofv0 versus the dimensionles
time T. Low temperature limit.
-

-

r

y

a-

e

In order to find the time dependence of the soliton amp
tude we shall use an auxiliary relation

ln
h

h0
521.183T ~y!11.087 ln

y12y0

y12y

20.028 ln
10y22y10.8

10y0
22y010.8

. ~49!

By virtue of this relation and the explicit expression forT(y)
one may find, numerically, the desired time evolution of t
soliton amplitude. It is visualized in Fig. 6 for the three va
ues ofv0.

Like in the high temperature case the soliton amplitu
exhibits exponential decay which now substantially depe
on its velocity. Namely, we observe that the soliton at res
comparably more stable than the moving one. In particu
when its velocity approaches zero the relatively rapid de
of the soliton amplitude transits into a somewhat slow
pure exponential one,

h5h~t0!e2T. ~50!

From this relation we estimate the soliton half-life time a

t1/2;
ln 2B

5pSvB
. ~51!

IV. CONCLUSION

Concluding this paper we note that our analysis sho
that, due to the coupling with phonons, a multiquanta soli
radiates energy~excitons! which induces its slowing down
and the gradual decay of its amplitude. As a consequence
soliton lifetime is finite and determined by the values of t
basic physical parameters of system~coupling constant and
adiabaticity parameter! and temperature. This enables one
determine, more precisely than in@19#, the relevance of the
multiquanta soliton mechanism for the intramolecular vib
tional energy transfer in molecular chains. Namely, the s
ton lifetime should be long enough in order to transport e
ergy over large distances. This imposes certain demand
the values of the system parameters. As could be expe
the rate of the soliton decay is strongly influenced by

in FIG. 6. Decay of the soliton amplitude versus the dimensionl
time T. Low temperature limit.
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value of the coupling constant which must be very small
order to provide sufficient stability of these excitation
However, according to the soliton existence condition~5!,
the smallness of the coupling constant is already assum
such solitons could be formed at all. Therefore, in order
discuss the stability of the particular soliton created of theN
quanta, it is more convenient to express the soliton lifeti
through the number of quanta participating in its formatio
In such a way, taking into account relation~5!, we may re-
write Eqs.~42! and ~51!, respectively, ast1/2;5.65(N/TB)
310213 s andt1/2;NvB

21 . As one can see, the soliton st
bility at low temperatures is comparably better than on
high ones. On the basis of these results we are now
position to estimate the possible role of the multiquanta s
ton in the transport processes for the concrete system. U
the set of parameters which is usually quoted as the re
sentative for thea helix and related molecules~ACN, for
example!, we found that B;0.1420.16, EB5(10223

210222)J, and S;0.0120.1. These values correspond
the nonadiabatic and weak coupling limit, where, in pr
ciple, such solitons may be formed@19#. For these substance
at 300 K, kBT/\vB;1.9522.27, so thatt1/2 must be esti-
mated in accordance with Eq.~42! so that we havet1/2
;10213 s.

Our results seriously question the possible role of mu
quanta solitons in the particular biological context. Name
our estimate for the multiquanta soliton lifetime, at fini
temperatures, is of the same order as previously found
Cottingham and Schweitzer@14# and Schweitzer@15# who
s

.

if
o

e
.

e
a

i-
ng
e-

-

-
,

y

discussed the lifetime of the single particle Davydov solit
~i.e., the soliton created on account of the single vibron S!.
Therefore, our conclusion is that, as well as the origi
Davydov proposal, the multiquanta soliton is not a like
candidate for the intramolecular vibrational energy trans
in biological systems in realistic conditions. However, wh
the original concept fails due to its inherent inconsisten
@16–18#, i.e., a single particle soliton cannot be formed at
for the given conditions~nonadiabatic limit!, the creation of
the multiquanta soliton in principle is quite possible; ho
ever, even if formed such excitation lives too short to
useful in biological processes. This, however, does not
clude the relevance of such a mechanism of vibrational
ergy transfer in different contexts. This can be seen from
estimates of the soliton stopping and lifetime at low tempe
tures which may be of a few orders of magnitude larger th
in the high temperature regime. Namely, for the macrom
ecules with a wider phonon bandwidth, polyacetylene
example (\vB;10220 J), which is high compared with the
thermal energy (kBT) at 300 K, the soliton lifetime should
be estimated by Eq.~51! and therefore could be at least o
two orders of magnitude longer than in thea helix and ACN.
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Fröhlich and F. Kremer~Springer, Berlin, 1983!.

@4# H. Haken,Information and Selforganization~Springer, Berlin,
1986!.

@5# D. E. Green, Science181, 583 ~1973!.
@6# C. W. F. McClare, Nature~London! 240, 88 ~1972!.
@7# A. S. Davydov and N. I. Kislukha, Phys. Status Solidi B59,

465 ~1973!.
@8# A. S. Davydov and N. I. Kislukha, Zh. E´ksp. Teor. Fiz.71,

1090 ~1976! @Sov. Phys. JETP44, 571 ~1976!#.
@9# See, for example,Davidov’s Soliton Revisited, edited by P. L.

Christiansen and A. C. Scott~Plenum, New York, 1990!.
@10# A. C. Scott, Phys. Rep.217, 1 ~1992!.
@11# D. M. Alexander, Phys. Rev. Lett.54, 138 ~1985!.
@12# D. M. Alexander and J. A. Krumhansl, Phys. Rev. B33, 7172

~1986!.
@13# W. Förner, J. Phys.: Condens. Matter4, 1915~1992!.
@14# J. P. Cottingham and J. W. Schweitzer, Phys. Rev. Lett.62,

1792 ~1989!.
@15# J. W. Schweitzer, Phys. Rev. A45, 8914~1992!.
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