PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Descriptive parameter for photon trajectories in a turbid medium
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In many applications of laser techniques for diagnostic or therapeutic purposes it is necessary to be able to
characterize photon trajectories to know which parts of the tissue are being interrogated. In this paper, we
consider the cw reflectance experiment on a semi-infinite medium with uniform optical parameters and having
a planar interface. The analysis is carried out in terms of a continuous-time random walk and the relation
between the occupancy of a plane parallel to the surface to the maximum depth reached by the random walker
is studied. The first moment of the ratio of average depth to the average maximum depth yields information
about the volume of tissue interrogated as well as giving some indication of the region of tissue that gets the
most light. We have also calculated the standard deviation of this random variable. It is not large enough to
qualitatively affect information contained in the first moment.

PACS numbegs): 87.64.Cc, 42.25.Fx

[. INTRODUCTION for parameters of physical interest. It has also been shown to
yield results that, except at very short times, are close to
There is a lively and growing interest in developing tech-those of the discrete-time random walk or diffusion ap-
niques for measuring optical parameters in tissue for possibleroaches.
diagnostic purposes. Useful summaries of the current state in
both theory and experiment are to be found in REfs.6] as
well as in several meeting Proceedings devoted to the sub-
ject, cf, for example, Ref§4] and[5]. In all of these appli- The tissue is modelled as a semi-infinite simple cubic lat-
cations it is necessary to characterize photon trajectories itice bounded by a planar interface, the coordinate of an ar-
order to specify the regions of tissue that are being interrobitrary point being = (x,y,z), wherex, y, andz are integers.
gated. The planar surface or interface is assumed to consist only of
Optical spectroscopy is based on information obtainedrapping points, and is specified lzy=0. Points in the inte-
from highly scattered diffusive photons. Because of the dif-rior of the tissue correspond tw>0.
fusion photon trajectories can only be known in a statistical Tissues generally scatter light strongly in the forward di-
sense. Theoretical models are therefore required to translagection. The effects of anisotropy can be incorporated in ran-
experimental data into usable information. In this paper, welom walk or diffusion models by using scaling relationships
describe features that characterize photon trajectories in @escribed in Refd[10] and[11]. Conversion of the dimen-
continuous waveécw) experiment. The tissue is modelled as sjonless coordinate to a physical coordinateis expressed
a semi-infinite medium with uniform optical properties. A in terms of the transport-corrected scattering coefficigt,
crude characterization of the region being probed can be , (1-g), whereg=(cos6), @being the scattering angle,
given in terms of at least two .pare_\meters, which can be Ca'asr_:r\/i/,u; [10,11]. Absorption in the interior of the me-
culated by random walk or diffusion theory. These are theyjym will be assumed to follow Beer's law so that the prob-

maximum depth to which an eventually detected photon haébility that the random walk makes a single step without
penetrated into the tissue. An expression for this parameterlg

Il. DESCRIPTION OF THE MODEL

) ) : eing absorbed is equal to expg) wherev=pu,/u.. The
derived in Ref{7]. The second is the average depth probe (?rametewa is the absorption coefficient. Typical values of

by a photon that eve_ntually rtlaac.hes.the surface at a specifi v'in human tissue in NIR are generally quite small, being of
distance from the point at which it originally enters the tissue o order of 0.01 ’

[12|’1§|H. bine th lculati b lculat The diffusion process will be modelled in terms of an
n this paper, we combiné these caiculations by ca Cuaisotropic CTRW in which steps are allowed to nearest-

mgdtftwhe joint _ollstr|but|on tOfche (;neatlrr]l dfeptr? tOf penetrat.'::nneighbors only. That is to say, a step can only be made to a
and the maximum penetration depth ot photons re-emi e%articular one of the six adjacent sites with a probability

]trom tt;]e t|ssrl:et surface tqttdztertn:;]ne that cag be dlearlne qual to 1/6. The times between successive steps by the ran-
rom those photons re-emitted at the surface. Ur developy, ., \yaiker will be assumed to be identically distributed

ment is based on the lattice random theory as first applied 0 ndom variables whose : ;
) X properties are described by the
this problem in Ref[7] and thereafter also framed and ana’probability density

lyzed in terms of the continuous-time random welkl RW),
[8], analyzed if9]. The advantage in using this formalism in
the present instant is that it allows one to find exact results ¢(t)=ke"“, (2.1
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so that the mean time between successive stefts #s1/k. L

Henceforth, we work in terms of dimensionless times by E L’ (L',L|A)
settingr=Kkt, or equivalently by setting=1. The motion of _ _L'=1

the random walker is described by a propaggtr, 7|ry;0) (Zav Zmax=LIA) = — ' 29
which is the probability that a random walker is at 2 H(L',LIA)

=(x,y,2z) at time 7 if it was initially at ro=(Xg,Yg,20)- L'=1

Since it will be assumed that any plane parallel to the surfaceILhis is a conditional average but can be converted into a

of the lattice is translationally invariant, the propagator sat- . i o
isfies the property joint average and probability by multiplying Eq&.4) and

(2.5 together; that is
P(p,Z;71p0,20;0)=p(p—p0,2;7/020;0), (2.2 (Zays Zmax< L | A) = (Za Zmax< L,AYG(L|A).  (2.6)

wherep=(x,y) is any point in a plane parallel to the inter- This, in turn, can be converted into an expression for the
face. The advantage of working with the CTRW is that thejoint average depth and probability that,.=L, through the
propagator for the nearest-neighbor random walk on an infiildentity

nite lattice(that is, a boundary-free latticeand the negative

exponential interjump density is known exacf). It is (ZadZmax= LAY =(Zay, | Zmax<L + 1»A>_<Zav’|zmax<'-’('§‘>7)
—(1+v)7 pe e e
p(r;7|rg;0)= T'X—XO(§) Iy_y0<§) Iz—zo<§)1 l1l. MAXIMUM DEPTH
2.3 In this section, we derive an expression fg{L|A) as

defined in Eq(2.4). The probability that the maximum depth
wherel ,(u) is a modified Bessel function of the first kind is exactly equal td_ and that the photon reaches the surface
[14]. The effects of simple boundaries, e.g., reflecting or abis then expressed as
sorbing planes, are readily calculated in terms of these propa-
gators for motion in free space. d(L|IA)=g(L+1|A)—g(L|A). 3.1

Let z,,.c denote therandom maximum depth of penetra-

tion of the photon, or random walk into the medium, and letThus, only a knowledge of the functig{L |A) is required to
z,, be the average depth of a single trajectory conditioned ofalculate the functioms(L|A). To ensure satisfaction of the
eventually reaching the interface, independent of the locatiofequirement that ,,,<L it is necessary to make=L an
of the absorbing point. This parameter will be calculated@bsorbing boundary.
from the mean occupancy of level By the terminology The joint probability density that the random walker
“occupancy of levelz’ we mean the fraction of time spent reaches the surface=0 at time 7 and that the maximum

by the random walk at depthbefore reaching the absorbing depth is less thah has been shown in Ref9] to be
s L

surface. The event “absorption at the interfaze=Q)" will ) _ .
A= o R N R Y |
v(L;7|A)= 3L 12'1 exp{ 3 st(ZL) smz( 3 )

be denoted by the lettéx. The initial position of the random
walker is set at one lattice site below the surfad®,lj

=(0,0,1) where the lattice spacing is of the order of a scat- (3.2
tering length.

An outline of our later calculations is as follows: In the Hence, it follows that the joint probability that the interface

following section, we calculate is reached at some time by a random walk in which the
maximum penetration depth is less thats
g(L|A)=PHzmax<L|A}, (2.9 ,
o T
L smz(T)

yvhich is defined as fche probability that the maximum depth g(L,A)= fwv(L;T|A)dT: 1 .
is equal toL, conditional on eventual absorption at0. 0 L L ™)
This quantity is calculated by inserting a perfectly absorbing 3v+2 S'r‘z(ﬁ)}
plane atz=L, which has the effect of removing all photons (3.3
that would have penetrated to a depth_adr greater. In Sec.
4 we calculate the relative occupancy of the deptfor A quantity of greater interest thag(L,A) is the conditional,
Zmax<L and conditioned on eventual absorption of the pho-ather than the joint, probability that,,,<L, conditioned on
ton at the interface. This, in turn, will allow us to to find the eventual absorption at the surface. This can be expressed in
conditional first moment{z,,|zma<L,A) which we interpret terms of the joint probability that,, is less tharL and that
as the mean depth conditional on the maximum depth beinthe particle eventually reaches the interfagfl.,A), as
less tharL and on ultimate absorption at=0.

Let the relative occupancy of the depth BgL’,L|A). g(L,A)
This function is the fraction of time s ! g(L|A)= ’

pentz+L" when the g(=,A)

maximum depth is exactly equal kg conditioned on absorp-
tion at the interface. Wheit(L’,L|A) is known, the average where the denominator is the probability of eventual absorp-
depth is calculated as tion at the interface. This can be calculated as

j=1

(3.9
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FIG. 1. Curves of log{ #(L|A)] for several values of the inter-  FIG. 2. A curve ofzy,,) plotted against. One sees a relatively

nal absorption parametev, These show that the maximum depth rapid falloff of this parameter to unity with increasing values of the
tends to remain within three lattice spacings of the surface over th@Psorption parameter. Itis obvious that when the absorption param-

range of values of that are physiologically realistic. eter is infinitez,,= 1/2 since in this case the photon only samples
z=1 once and is then absorbed at the surface.

L sinz(ﬂ-—1> given depth is occupied during the course of the random
g(0,A)= lim E 2 L _ walk, [8]. The difference between the average penetration
Lo L 22 [ ™) depth as calculated here, and that in R&g], is that we now
Sv+2 S'nZ(Z” condition the average depth on the existence of a maximum.
. As a final step we perform the average over all values of the
1 f’* sin? 0 do maximum.
7 Jo [3v+1—cosh] Let pL(p.z;t|po.Zo;to) be the probability that a photon

that is at site fg,zg) atty and is at(p,2) at timet with both
=1+3v—6r+9r°. (3.5 z=0 andz=L being absorbing planes. It is therefore the

propagator under the condition thg},,<L. The propagator
Figure 1 shows points of the logarithm of the probability under the condition that,,=L is

that the the maximum depth reached by the photon,
log:d ¢(L|A)], plotted asa function df for c_iifferent_ value; aL(p.Z:tpo.Zoito) =PL+1(pZit| po. 2o to)
of v. Because of the rapid decrease of this function evident
from this figure one sees that the penetration by the random —pu(p.zitlpo.z05te). (4D
walker of the semi-infinite medium is essentially confined to
the first three lattice sites in thedirection (i.e., 32/u.)  The probability that the random walker is at deptht time
when the dimensionless absorption parametéras physi- & later reaching the interface at time=¢ at the surface
ologically realistic values. Significant differences appearpoint p=(x,y), was shown in Ref13] to have the form
only at larger values of where the probabilities are quite
small. _ e et . _

The average value df,, can be found by multiplying Ug(zlp;L)= 6 2 Le au(p’.z:£€[0,1,0
Eq. (3.2) by L and summing. A consequence of the property P
lim _g(L[A)=1is that Xqup—p',z;7 —£0,1,0d7. (4.2

o This relation says that the random walker, initially at the
(Zma = 2 [1—g(L|A)]. (3.6) point (0,1), later reached the pointp(,z) at time & from
L=1 which it moved to the poinfp, 1) at time7’. As its final step

) o it moved to the surface=0 at timer=7'. While Eq.(4.2)
A plot of (zyay as a function ofy, shown in Fig. 2, empha- \ya5 derived for motion in a semi-infinite space in Réf,

sizes the fact that the maximum depth of penetration, as megy extension to allow for motion in a slab is straightforward.
sured in lattice spacings, is very close to 1 except at Veryhe expected, or local, time spentzat time 7 is found by

small values ofv. Higher moments ofn., can also be rep- jntegrating Eq.(4.2) with respect toé. If this quantity is
resented as an infinite series similar to that in E96). denoted byT(;z|p;L) then

IV. AVERAGE PENETRATION

i T(TJZIP:L)=f U, A(2]p;L)dé. (4.3
We next define and calculate a measure of the the average 0

penetration depth, conditioned on a finite maximum depth. In

calculating this function, we follow the analysis in REI2] The expected amount of time spentzatconditioned on
by identifying the average penetration depth with the occuboth the eventual absorption at the surface at the poamtd
pancy at a given depth, that is, the relative fraction of time aon the maximum penetration depth being less thas
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E(le;L)ZfOOOT(T;Z|P;L)dT, (4.9

This is a Laplace transform d&f(7;z|p;L) with the Laplace
parameter set equal to 0. The functiB(z|p;L) is not itself A
of direct interest, but rather its sum over all points on thegk 048

surface
E(zL)=2 E(Zp;L) (4.5
P
0.40 i 1 L 1 |
. . . . . . . 0.00 0.02 0.04 0.06 0.08 0.10
is. It is useful to interpret this as a two-dimensional Fourier v
series evaluated at the origin in two-dimensional Fourier
space because, when the sum gvés taken, the formula in FIG. 3. A curve of(za,/Zmay as a function ofv. This function
Eg. (4.2 is a convolution in the two-dimensional space.  increases as a function af but only very gradually, except at the
Let U, (zlw;L) be the joint Fourier-Laplace transform V€Y smallest values of.
defined by

z - LIA) 1
A - | <;Q=Z<anm»ﬂﬁ)—5 (4.10
Ug,s(z|‘°3|-):fo e*STdTJ' U, (Z]p;L)e'e Pd?p. max  L=1

(4.6) The propagator needed to calculaig(p,z;7]0,1;0) is

found by placing an absorbing boundaryzatL. A slight

This transform can be expressed in terms of the joint transmodification of the argument in Re] allows us to express
form of the propagator that appears in Ed.2). It is not  the propagatop (p,z;7]0,1;0) as
difficult to show that

9 DL(P,Z;T|0,1;O)=eTlx(%)|y(g>
Ugo(Zlw;L)= mdf(m,z;s—l— v|0,1;0), (4.7)

T T

R ) o X > [IZIL+Z—1(§)_I2IL+Z+1(§) .
where §,(w,z;s+7|0,1;0) is the joint transform of I=—c
q.(p,z;7/0,1;0). As inearlier work we identify the distribu- (4.10)
tion of the average depth with the occupartoy local time,
[15]) of the random walk, i.e., it is the fraction of time spent By appealing to an argument similar to one found in R@f.
at depthz before absorption at the interfaze- 0. Recall that we can show that the sum oviem this last formula can be
d(L’,L|A) is the relative occupancy of levél’ when the  written as a finite series,
maximum depth is equal th, conditional on eventual ab-

sorption at the surface=0. The expression for this function - T T
is 2 2121 l21L 4241
[ 3 3
2(0,L":v]0,1:0) 2L al wlz
9(L',LIA)= qL | , L'<L, 4.8 = elmcosmliL) gin — | gin —|.
L= L L
2 2(0,2;1/0,1;0)
= (4.12
so that the mean depth calculated wizep,=L is To get from Eq.(4_.1]) to Eqg. (4.7) it is necessary to sum
over allx andy which eliminates these parameters.
L
” T
Z (OZ V|01 0) 2 IX(§>:eT/3, (413
(Zad LIA))=— - (4.9 x=-o
2 (02,+[0,1;0 which then allows us to write
. . . . Y Ay V4
Notice that(z,(L|A)) is necessarily greater than 1 since we 6 L sin T sin —
ha_lve used integer depths in our calculations. However, when pL(0Z;2|0,1;0)= — E . (4.14
v is very large, detected photons tend to be those that return L= 3p+1 ol
immediately to the interface. Under these conditions the av- vil-cos 1~

erage depth is 1/2. It is therefore reasonable to define the
average depth in terms of the depth in terms of the halfwao thatp,(0,L;»|0,1;0)=0. Substitution of this expression
point between the integer depths. This leads to the formulainto Eq. (4.9) yields an exact representation for the mean
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value ofz,, conditioned on eventual absorptionzat0 and a  serves to ensure, with greater certainly, thgtis approxi-
maximum penetration less than[16]. mately equal t@ya/2.

Figure 3 contains a plot of the average(af,/z., as a
function of ». The standard deviation &,,/z.,., decreases V. DISCUSSION
as a function ofv as one expects since absorption tends to  Qur analysis has been developed for cw measurements.
filter out the longer paths. The plot (f,,/Z,,) confirms the  More detailed information is potentially available from the
finding in Fig. 1 that the degree of penetration of the photonratio (z,,/z., as a function of space and time for the time-
measured in lattice spacings, is relatively shallow in the presgated measurement. However, a physical argument suggests
ence of even a small amount of internal absorption. Thighat if the distance is large the trajectory should flatten out
qualitative phenomenon can be explained by noting tha&nd remain close to the absorbing interface. Our present re-
when photons are close to the absorbing boundary fluctuasults indicate that in the cw measuremént,/z;., iS ap-
tions in their motion tends to remove them from the bulk, proximately equal to 1/2 except at the very smallest values of
while photons near the maximum penetration depth are nahe absorption coefficient, suggesting that there is a volume
similarly removed. Increasing the internal absorption onlyof tissue that is uniformly probed by photons.

[1] B. B. Das, F. Liu, and R. R. Alfano, Rep. Prog. Ph§6, 227 (North-Holland, Amsterdam, 1994

(1997. [9] G. H. Weiss, J. M. Portaand J. Masoliver, Opt. Commun.
[2] J. C. Hebden, S. R. Arridge, and D. T. Delpy, Phys. Med. Biol. 146, 268(1998.

42, 825(1997). [10] A. H. Gandjbackhche, R. F. Bonner, and R. Nossal, J. Stat.
[3] S. R. Arridge and J. C. Hebden, Phys. Med. Bi2, 841 Phys.69, 35(1992.

(1997). [11] A. H. Gandjbackhche, R. Nossal, and R. F. Bonner, Appl. Opt.
[4] Trends in Optics and Photonicedited by R. R. Alfano and J. 32, 504 (1993.

G. Fujimoto(Optical Soc. Am), 1996; ed. J. G. Fujimoto and [12] G. H. Weiss, R. Nossal, and R. F. Bonner, J. Mod. G.

M. S. PattersoriOptical Soc. Am), 1998. 349(1989.

[5] Proceedings of Opt. Tomography and Spect. of Tissue, I1I[13] G. H. Weiss, Appl. Opt37, 3558(1998.
edited by B. Chance, R. R. Alfano, and B. J. Tromberg, SPIE[14] Handbook of Mathematical Functionsedited by M.

vol. 3597(1999. Abramowitz and I. A. StegufDover Publications, New York,
[6] A. H. Gandjbackhche and G. H. Weiss, Prog. OpXXIV , 1970.

385(1995. [15] S. Karlin and H. M. Taylor,A Second Course in Stochastic
[7] R. F. Bonner, R. Nossal, S. Havlin, and G. H. Weiss, J. Opt. ProcessegAcademic Press, New York, 1981

Soc. Am. A4, 423(1987). [16] D. J. Bicout, A. M. Berezhkovskii, and G. H. Weiss, Physica A

[8] G. H. Weiss,Aspects and Applications of the Random Walk 258 352(1998.



