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Descriptive parameter for photon trajectories in a turbid medium
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In many applications of laser techniques for diagnostic or therapeutic purposes it is necessary to be able to
characterize photon trajectories to know which parts of the tissue are being interrogated. In this paper, we
consider the cw reflectance experiment on a semi-infinite medium with uniform optical parameters and having
a planar interface. The analysis is carried out in terms of a continuous-time random walk and the relation
between the occupancy of a plane parallel to the surface to the maximum depth reached by the random walker
is studied. The first moment of the ratio of average depth to the average maximum depth yields information
about the volume of tissue interrogated as well as giving some indication of the region of tissue that gets the
most light. We have also calculated the standard deviation of this random variable. It is not large enough to
qualitatively affect information contained in the first moment.

PACS number~s!: 87.64.Cc, 42.25.Fx
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I. INTRODUCTION

There is a lively and growing interest in developing tec
niques for measuring optical parameters in tissue for poss
diagnostic purposes. Useful summaries of the current sta
both theory and experiment are to be found in Refs.@1–6# as
well as in several meeting Proceedings devoted to the
ject, cf, for example, Refs.@4# and @5#. In all of these appli-
cations it is necessary to characterize photon trajectorie
order to specify the regions of tissue that are being inte
gated.

Optical spectroscopy is based on information obtain
from highly scattered diffusive photons. Because of the d
fusion photon trajectories can only be known in a statisti
sense. Theoretical models are therefore required to tran
experimental data into usable information. In this paper,
describe features that characterize photon trajectories
continuous wave~cw! experiment. The tissue is modelled
a semi-infinite medium with uniform optical properties.
crude characterization of the region being probed can
given in terms of at least two parameters, which can be
culated by random walk or diffusion theory. These are
maximum depth to which an eventually detected photon
penetrated into the tissue. An expression for this paramet
derived in Ref.@7#. The second is the average depth prob
by a photon that eventually reaches the surface at a spec
distance from the point at which it originally enters the tiss
@12,13#.

In this paper, we combine these calculations by calcu
ing the joint distribution of the mean depth of penetrati
and the maximum penetration depth of photons re-emi
from the tissue surface to determine what can be lear
from those photons re-emitted at the surface. Our deve
ment is based on the lattice random theory as first applie
this problem in Ref.@7# and thereafter also framed and an
lyzed in terms of the continuous-time random walk~CTRW!,
@8#, analyzed in@9#. The advantage in using this formalism
the present instant is that it allows one to find exact res
PRE 611063-651X/2000/61~6!/6958~5!/$15.00
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for parameters of physical interest. It has also been show
yield results that, except at very short times, are close
those of the discrete-time random walk or diffusion a
proaches.

II. DESCRIPTION OF THE MODEL

The tissue is modelled as a semi-infinite simple cubic
tice bounded by a planar interface, the coordinate of an
bitrary point beingr5(x,y,z), wherex, y, andz are integers.
The planar surface or interface is assumed to consist onl
trapping points, and is specified byz50. Points in the inte-
rior of the tissue correspond toz.0.

Tissues generally scatter light strongly in the forward
rection. The effects of anisotropy can be incorporated in r
dom walk or diffusion models by using scaling relationshi
described in Refs.@10# and @11#. Conversion of the dimen-
sionless coordinater to a physical coordinater̄ is expressed
in terms of the transport-corrected scattering coefficient,ms8
5ms(12g), whereg5^cosu &, u being the scattering angle
as r̄5r&/ms8 @10,11#. Absorption in the interior of the me
dium will be assumed to follow Beer’s law so that the pro
ability that the random walk makes a single step witho
being absorbed is equal to exp(2n) wheren5ma /ms8 . The
parameterma is the absorption coefficient. Typical values
n in human tissue in NIR are generally quite small, being
the order of 0.01.

The diffusion process will be modelled in terms of a
isotropic CTRW in which steps are allowed to neare
neighbors only. That is to say, a step can only be made
particular one of the six adjacent sites with a probabil
equal to 1/6. The times between successive steps by the
dom walker will be assumed to be identically distribut
random variables whose properties are described by
probability density

c~ t !5ke2kt, ~2.1!
6958 ©2000 The American Physical Society
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so that the mean time between successive steps is^t&51/k.
Henceforth, we work in terms of dimensionless times
settingt5kt, or equivalently by settingk51. The motion of
the random walker is described by a propagatorp(r ;tur0 ;0)
which is the probability that a random walker is atr
5(x,y,z) at time t if it was initially at r05(x0 ,y0 ,z0).
Since it will be assumed that any plane parallel to the surf
of the lattice is translationally invariant, the propagator s
isfies the property

p~r,z;tur0 ,z0 ;0!5p~r2r0 ,z;tu0,z0 ;0!, ~2.2!

wherer5(x,y) is any point in a plane parallel to the inte
face. The advantage of working with the CTRW is that t
propagator for the nearest-neighbor random walk on an
nite lattice~that is, a boundary-free lattice! and the negative
exponential interjump density is known exactly@9#. It is

p~r ;tur0 ;0!5
e2~11n!t

6
I x2x0S t

3D I y2y0S t

3D I z2z0S t

3D ,

~2.3!

where I m(u) is a modified Bessel function of the first kin
@14#. The effects of simple boundaries, e.g., reflecting or
sorbing planes, are readily calculated in terms of these pro
gators for motion in free space.

Let zmax denote the~random! maximum depth of penetra
tion of the photon, or random walk into the medium, and
zav be the average depth of a single trajectory conditioned
eventually reaching the interface, independent of the loca
of the absorbing point. This parameter will be calculat
from the mean occupancy of levelz. By the terminology
‘‘occupancy of levelz’’ we mean the fraction of time spen
by the random walk at depthz before reaching the absorbin
surface. The event ‘‘absorption at the interface (z50)’’ will
be denoted by the letterA. The initial position of the random
walker is set at one lattice site below the surface, (0,1)
5(0,0,1) where the lattice spacing is of the order of a sc
tering length.

An outline of our later calculations is as follows: In th
following section, we calculate

g~LuA!5Pr$zmax,LuA%, ~2.4!

which is defined as the probability that the maximum de
is equal toL, conditional on eventual absorption atz50.
This quantity is calculated by inserting a perfectly absorb
plane atz5L, which has the effect of removing all photon
that would have penetrated to a depth ofL or greater. In Sec
4 we calculate the relative occupancy of the depthz, for
zmax,L and conditioned on eventual absorption of the ph
ton at the interface. This, in turn, will allow us to to find th
conditional first moment,̂zavuzmax,L,A& which we interpret
as the mean depth conditional on the maximum depth be
less thanL and on ultimate absorption atz50.

Let the relative occupancy of the depth beq(L8,LuA).
This function is the fraction of time spent atz5L8 when the
maximum depth is exactly equal toL, conditioned on absorp
tion at the interface. Whenq(L8,LuA) is known, the average
depth is calculated as
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^zav,zmax5LuA&5

(
L851

L

L8q~L8,LuA!

(
L851

L

q~L8,LuA!

, ~2.5!

This is a conditional average but can be converted int
joint average and probability by multiplying Eqs.~2.4! and
~2.5! together; that is

^zav,zmax,LuA&5^zavuzmax,L,A&g~LuA!. ~2.6!

This, in turn, can be converted into an expression for
joint average depth and probability thatzmax5L, through the
identity

^zavuzmax5L,A&5^zav,uzmax,L11,A&2^zav,uzmax,L,A&
~2.7!

III. MAXIMUM DEPTH

In this section, we derive an expression forg(LuA) as
defined in Eq.~2.4!. The probability that the maximum dept
is exactly equal toL and that the photon reaches the surfa
is then expressed as

f~LuA!5g~L11uA!2g~LuA!. ~3.1!

Thus, only a knowledge of the functiong(LuA) is required to
calculate the functionf(LuA). To ensure satisfaction of th
requirement thatLmax,L it is necessary to makez5L an
absorbing boundary.

The joint probability density that the random walk
reaches the surfacez50 at time t and that the maximum
depth is less thanL has been shown in Ref.@9# to be

v~L;tuA!5
e2nt

3L (
j 51

L

expF2
2t

3
sin2S p j

2L D Gsin2S p j

L D .

~3.2!

Hence, it follows that the joint probability that the interfac
is reached at some time by a random walk in which
maximum penetration depth is less thanL is

g~L,A!5E
0

`

v~L;tuA!dt5
1

L (
j 51

L sin2S p j

L D
F3n12 sin2S p j

2L D G .

~3.3!

A quantity of greater interest thang(L,A) is the conditional,
rather than the joint, probability thatzmax,L, conditioned on
eventual absorption at the surface. This can be expresse
terms of the joint probability thatzmax is less thanL and that
the particle eventually reaches the interface,g(L,A), as

g~LuA!5
g~L,A!

g~`,A!
, ~3.4!

where the denominator is the probability of eventual abso
tion at the interface. This can be calculated as
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g~`,A!5 lim
L→`

1

L (
j 51

L sin2S p j

L D
F3n12 sin2S p j

2L D G
5

1

p E
0

p sin2 u

@3n112cosu#
du

5113n2A6n19n2. ~3.5!

Figure 1 shows points of the logarithm of the probabil
that the the maximum depth reached by the phot
log10@f(LuA)#, plotted as a function ofL for different values
of n. Because of the rapid decrease of this function evid
from this figure one sees that the penetration by the rand
walker of the semi-infinite medium is essentially confined
the first three lattice sites in thez direction ~i.e., 3&/ms8)
when the dimensionless absorption parametern has physi-
ologically realistic values. Significant differences appe
only at larger values ofL where the probabilities are quit
small.

The average value ofzmax can be found by multiplying
Eq. ~3.1! by L and summing. A consequence of the prope
lim

L→`
g(LuA)51 is that

^zmax&5 (
L51

`

@12g~LuA!#. ~3.6!

A plot of ^zmax& as a function ofn, shown in Fig. 2, empha
sizes the fact that the maximum depth of penetration, as m
sured in lattice spacings, is very close to 1 except at v
small values ofn. Higher moments ofzmax can also be rep-
resented as an infinite series similar to that in Eq.~3.6!.

IV. AVERAGE PENETRATION

We next define and calculate a measure of the the ave
penetration depth, conditioned on a finite maximum depth
calculating this function, we follow the analysis in Ref.@12#
by identifying the average penetration depth with the oc
pancy at a given depth, that is, the relative fraction of tim

FIG. 1. Curves of log10@f(LuA)# for several values of the inter
nal absorption parameter,v. These show that the maximum dep
tends to remain within three lattice spacings of the surface over
range of values ofv that are physiologically realistic.
,
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given depth is occupied during the course of the rand
walk, @8#. The difference between the average penetrat
depth as calculated here, and that in Ref.@12#, is that we now
condition the average depth on the existence of a maxim
As a final step we perform the average over all values of
maximum.

Let pL(r,z;tur0 ,z0 ;t0) be the probability that a photon
that is at site (r0 ,z0) at t0 and is at~r,z! at time t with both
z50 and z5L being absorbing planes. It is therefore th
propagator under the condition thatzmax,L. The propagator
under the condition thatzmax5L is

qL~r,z;tur0 ,z0 ;t0!5pL11~r,z;tur0 ,z0 ;t0!

2pL~r,z;tur0 ,z0 ;t0!. ~4.1!

The probability that the random walker is at depthz at time
j, later reaching the interface at timet>j at the surface
point r5(x,y), was shown in Ref.@13# to have the form

Uj,t~zur;L !5
e2nt

6 (
r8

E
j

t

e2~t2t8!qL~r8,z;ju0,1;0!

3qL~r2r8,z;t82ju0,1;0!dt8. ~4.2!

This relation says that the random walker, initially at t
point ~0,1!, later reached the point (r8,z) at time j, from
which it moved to the point~r, 1! at timet8. As its final step
it moved to the surfacez50 at timet>t8. While Eq.~4.2!
was derived for motion in a semi-infinite space in Ref.@9#,
its extension to allow for motion in a slab is straightforwar
The expected, or local, time spent atz at timet is found by
integrating Eq.~4.2! with respect toj. If this quantity is
denoted byT(t;zur;L) then

T~t;zur;L !5E
0

t

Uj,t~zur;L !dj. ~4.3!

The expected amount of time spent atz, conditioned on
both the eventual absorption at the surface at the pointr and
on the maximum penetration depth being less thanL is

e

FIG. 2. A curve of̂ zmax& plotted againstv. One sees a relatively
rapid falloff of this parameter to unity with increasing values of t
absorption parameter. It is obvious that when the absorption par
eter is infinitezav51/2 since in this case the photon only samp
z51 once and is then absorbed at the surface.
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E~zur;L !5E
0

`

T~t;zur;L !dt, ~4.4!

This is a Laplace transform ofT(t;zur;L) with the Laplace
parameter set equal to 0. The functionE(zur;L) is not itself
of direct interest, but rather its sum over all points on t
surface

E~z;L !5(
r

E~zur;L ! ~4.5!

is. It is useful to interpret this as a two-dimensional Four
series evaluated at the origin in two-dimensional Fou
space because, when the sum overr is taken, the formula in
Eq. ~4.2! is a convolution in the two-dimensional space.

Let Ûj,s(zuv;L) be the joint Fourier-Laplace transform
defined by

Ûj,s~zuv;L !5E
0

`

e2stdtE Uj,t~zur;L !eiv•rd2r.

~4.6!

This transform can be expressed in terms of the joint tra
form of the propagator that appears in Eq.~4.2!. It is not
difficult to show that

Ûj,s~zuv;L !5
1

6~s1n11!
q̂L

2~v,z;s1nu0,1;0!, ~4.7!

where q̂L(v,z;s1nu0,1;0) is the joint transform of
qL(r,z;tu0,1;0). As inearlier work we identify the distribu-
tion of the average depth with the occupancy~or local time,
@15#! of the random walk, i.e., it is the fraction of time spe
at depthz before absorption at the interfacez50. Recall that
q(L8,LuA) is the relative occupancy of levelL8 when the
maximum depth is equal toL, conditional on eventual ab
sorption at the surfacez50. The expression for this functio
is

q~L8,LuA!5
q̂L

2~0,L8;nu0,1;0!

(
z51

L

q̂L
2~0,z;nu0,1;0!

, L8,L, ~4.8!

so that the mean depth calculated whenzmax5L is

^zav~LuA!&5

(
z51

L

zq̂L
2~0,z;nu0,1;0!

(
z51

L

q̂L
2~0,z;nu0,1;0!

. ~4.9!

Notice that^zav(LuA)& is necessarily greater than 1 since w
have used integer depths in our calculations. However, w
n is very large, detected photons tend to be those that re
immediately to the interface. Under these conditions the
erage depth is 1/2. It is therefore reasonable to define
average depth in terms of the depth in terms of the halfw
point between the integer depths. This leads to the form
e

r
r
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n
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y
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K zav

zmax
L 5 (

L51

`

^zav~LuA!&
f~LuA!

L
2

1

2
. ~4.10!

The propagator needed to calculateqL(r,z;tu0,1;0) is
found by placing an absorbing boundary atz5L. A slight
modification of the argument in Ref.@9# allows us to express
the propagatorpL(r,z;tu0,1;0) as

pL~r,z;tu0,1;0!5e2tI xS t

3D I yS t

3D
3 (

l 52`

` F I 2lL 1z21S t

3D2I 2lL 1z11S t

3D G .
~4.11!

By appealing to an argument similar to one found in Ref.@9#
we can show that the sum overl in this last formula can be
written as a finite series,

(
l 52`

` F I 2lL 1z21S t

3D2I 2lL 1z11S t

3D G
5

2

L (
l 51

L

e~t/3!cos~p l /L ! sinS p l

L D sinS p lz

L D .

~4.12!

To get from Eq.~4.11! to Eq. ~4.7! it is necessary to sum
over all x andy which eliminates these parameters.

(
x52`

`

I xS t

3D5et/3, ~4.13!

which then allows us to write

p̂L~0,z;nu0,1;0!5
6

L (
l 51

L sinS p l

L D sinS p lz

L D
3n112cosS p l

L D , ~4.14!

so that p̂1(0,L;nu0,1;0)50. Substitution of this expressio
into Eq. ~4.9! yields an exact representation for the me

FIG. 3. A curve of^zav/zmax& as a function ofv. This function
increases as a function ofv, but only very gradually, except at th
very smallest values ofv.
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6962 PRE 61AMIR H. GANDJBAKHCHE AND GEORGE H. WEISS
value ofzav conditioned on eventual absorption atz50 and a
maximum penetration less thanL @16#.

Figure 3 contains a plot of the average of^zav/zmax& as a
function of n. The standard deviation ofzav/zmax decreases
as a function ofn as one expects since absorption tends
filter out the longer paths. The plot of^zav/zmax& confirms the
finding in Fig. 1 that the degree of penetration of the phot
measured in lattice spacings, is relatively shallow in the pr
ence of even a small amount of internal absorption. T
qualitative phenomenon can be explained by noting t
when photons are close to the absorbing boundary fluc
tions in their motion tends to remove them from the bu
while photons near the maximum penetration depth are
similarly removed. Increasing the internal absorption o
iol
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serves to ensure, with greater certainly, thatzav is approxi-
mately equal tozmax/2.

V. DISCUSSION

Our analysis has been developed for cw measureme
More detailed information is potentially available from th
ratio ^zav/zmax& as a function of space and time for the tim
gated measurement. However, a physical argument sugg
that if the distance is large the trajectory should flatten
and remain close to the absorbing interface. Our presen
sults indicate that in the cw measurement^zav/zmax& is ap-
proximately equal to 1/2 except at the very smallest value
the absorption coefficient, suggesting that there is a volu
of tissue that is uniformly probed by photons.
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