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Molecular wall effects: Are conditions at a boundary “boundary conditions”?
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This paper addresses and answers “no” to the question of whether the literal molecular-dynamically-derived
species velocities prevailing at a solid surface bounding a two-component fluid continuum undergoing mo-
lecular diffusion constitute the appropriate species-velocity boundary conditions to be imposed upon the fluid
continuum. In a broader context, generic boundary condition issues arising from the presence of different
length scales in continuum-mechanical descriptions of physical phenomena are clarified. This is achieved by
analyzing a model problem involving the steady-state diffusion of a dilute system of Brownian sftheres
latter envisioned as tractable models of solute “moleculebfough a quiescent viscous solvent continuum
bounded laterally by solid plane walls. Both physicochemipaitential energyand hydrodynamidsterig
wall interaction effects experienced by the Brownian spheres are explicitly accounted for in our refined,
microscale continuum model of the diffusion process. Inclusion of these “solid-wall—fl(8ef) boundary-
generated forcelmbove and beyond the usual “fluid-fluid(f-f) intermolecular forces implicit in the conven-
tional Fick’s law macroscale continuum descripfiserves to simulate the comparabliémolecular boundary
forces modeled in molecular dynamics simulations of the diffusional process. A singular perturbation frame-
work is used to clarify the physical interpretation to be ascribed to “continuum-mechanical boundary condi-
tions.” In this same spirit we also clearly identify the origin of the physical concept of a “surface field” as
well as of the concomitant surface transport conservation equation for strongly adsorbed species at solid walls.
Our analysis of such surface phenomena serves to emphasize the fact that these are asymptotic, surface-excess,
macroscale conceptsssignedto a surface, rather than representing literal molecular material entities physi-
cally confined to the surface. Overall, this paper serves to illustrate the manner in which molecular simulations
need to account for these different length scales and corresponding scale-dependent concepts if such analyses
are to avoid drawing incorrect inferences regarding the molecular origins of continuum-mechanical boundary
conditions.

PACS numbses): 68.45.Da, 46.15.Ff, 05.40.Jc

[. INTRODUCTION continuum equation to which such boundary conditions are
intended to apply. It is quite clear, however, that despite the
A number of studies have appeared recently purporting tdact that molecular dynamics approaches can possibly yield
derive the boundary conditions to be imposed upordetailed information about the exact statistical behavior of
continuum-mechanical equations via “exact” molecular dy-those fluid molecules moving in close proximity to a wall,
namics simulations of the appropriate physical scen@ee, such simulations canngat least to our knowledgedurnish
for instance,[1-4]). Typically, such simulations involve the continuum equations themselves. Consequently, while
computing the trajectories of molecules based upon &he actual physical conditions prevailing at the boundary
Langevin-type description of the molecular motion. During might, in fact, accurately accord with the inferences drawn
such calculations one computes the mean molecular motioflom molecular dynamic simulations, such conclusions quan-
averaged over a few molecular diameters near the “wall”tifying the literal “conditions at a boundary” are useless in
(the solid wall being modeled in the simulations by a set ofthe role of “boundary conditions” due to ignorance of the
fixed lattice points interacting via potential-energy forcescontinuum-mechanical equations to which they are meant to
with the fluid moleculesto draw conclusions regarding the apply. As such, it is necessary to clearly distinguish “condi-
boundary conditions to be imposed at the wall upon thedions at a boundary” from “boundary conditions.”
continuum-mechanical equations describing the transport For instance, in a recent artic|8] it is claimed that the
phenomena. boundary condition accompanying the convective-diffusive
At a continuum scale, however, one expects the boundaryransport of a binary fluid mixture is one that demands that
conditions to be explicitly dependent upon the particularthe vectorvelocities of both species individually satisfy no-
continuum equation that purports to quantify the physicalslip conditions at the wall. This so-called “boundary condi-
phenomenon being modeled. For instance, while the no-sliion” was derived by an exact simulation of the motion of
condition for pure fluids is a well-accepted boundary condi-molecules near the wall. For the purely diffusive case, where
tion for viscous continua, it is also well known that an invis- convection is absent, it is obvious that this boundary condi-
cid fluid continuum model cannot, on purely mathematicaltion contradicts Fick’s law of molecular diffusidl], at least
grounds, satisfy such wector velocity boundary condition in its usually accepted form—which excludes “external”
[5]. Thus, any statement regarding the boundary conditionforces and assumes the diffusion coefficient to be position
derived by molecular dynamic simulations must logically beindependent. It might, however, be argued that Fick’s law is
accompanied by an unequivocal elucidation of the explicitunlikely to be valid near the wall, where strong gradients due
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to solid-wall—fluid(s-f) interaction forces are likely to occur lecular “conditions at a boundary” and continuum “bound-
[7]. In such a case one might further argue that the no-sligry conditions.”

species boundary condition needs to be applied to a refined

microscale form of Fick's law, one which embodies “mo-

lecular wall effects”—allowing for the variation of molecu- A. Philosophy

lar diffusivity with distance from the wall as well as for the The explicit question addressed in this paper is whether or
existence of short-range attractive or repulsive forces exertebot the literal statistical-mechanical mean species-velocity
on the fluid molecules by the wall. However, reiterating ourfields existing at a boundary between a “smooth” solid sur-
earlier remarks, in the absence of information regarding théace and a fluidas determined by molecular dynamic simu-
explicit form of this refined continuum-mechanical equation,lations constitute the appropriate boundary conditions to be
the utility of such “exact” knowledge of the molecular imposed on the comparable continuum fields appearing in a
“conditions at the boundary” is greatly diminished. conventional transport equation description of the physical
In the particular quiescent binary diffusion case to bePhenomenon. By using a particular example we demonstrate,
studied in this paper, the fact that such exact knowledg@t leastin this one instance, that the answer to this question is
(derived from simulationsis consistent with the known NO.” This specific counterexample to what might otherwise
continuum-mechanical equations reinforces our claim reS€em a self-evident molecular dynamics inference suggests
garding the inapplicability of the literal, molecularly derived the need for caution in interpreting the results of such simu-

conditions at the wall serving the role of boundary conditionsl"’m?:sdIn Otzer con';extslbtqf[): lfr?mg s;ngtula;rthpertlurbatlon
to be imposed on the conventional macroscale continuu ethods we demonstratalbeit in the context of the elemen-

equations quantifying the phenomenon. Indeed, in som ary physical situation embodied in our |IIu_strat|ve exan)_lple
. o . . that the fundamental source of the seemingly contradictory
cases, such “molecular wall effects” might furnish condi-

. I~ . ..conclusion that “conditions at a boundary” are not “bound-
tions at the boundary that appear superficially consistent wit Y

h d ; hanical bound diti ry conditions” lies in the disparity between the length scale
the accepted continuum-mechanical boundary c€onditions, st he jntermolecular forces appearing in the near-boundary
thereby leading to claims of having furnishedvelecular

: ' @ simulation and the macroscopic length sdaleharacterizing
“proof” of the appropriate continuum boundary condition the continuum physical phenomenon. Typically, the latter
(as in the case where the above-mentioned authors deal witlzgje corresponds to a linear dimension of the experimental
the single-component fluid cag@]—namely, the classical apparatus normal to the wall.
no-slip fluid-mechanical boundary conditjon Molecular dynamic modeling of physical phenomena in-
Paralleling the issues addressed in this paper, althouglolving fluid-solid boundaries needs to address, at a mini-
only peripheral to our scaling argument context, is an extenmum, at least different three length scalesi) the length
sive body of research concerned with the possibility of indi-scalel ¢ of the fluid-fluid interactions between the fluid mol-
vidual component “slip” occurring at solid boundaries for ecules[18]; (ii) the length scald; of the interactions be-
situations involving binary diffusion processes occurringtween the molecules of the solid wall and those of the fluid;
among miscible species—typically gases—whose individuaind (iii ) the macroscopic length scale(normal to the solid
mass densities are unequal. This literature includes comprevall) of the physical apparatus within whose boundaries the
hensive reviews by NoevdB] and Jackso9]. The latter simulations are intended to applgTypically, L would be
deals at length with the original gaseous diffusion experi-ither the distance between two planar walls bounding the
ments of Graharh10], as well as with pertinent experiments fluid laterally on either side of a fluid-filled gap, or the radius
by many others, including the comprehensive study byof a circular tube containing the fluidin most circum-
Kramers and Kistemaké¢fi 1]. An equally expansive theoret- stances the two molecular length scalgsand|¢; will be
ical [8,9,12—14 and simulation([1,15]) literature exists on comparable in magnitude, in which case we will denote their
the topic, to cite only a few references thereto, and datesommon magnitude by the single symHol {l,ls=I
back as far as Maxwell16]. Diffusion occurring in such [19].
systems, wherein gradien¥p exist in the local total mass The fundamental difference between the latter intermo-
density p, necessarily induces a local convective veloaity lecular length scaléand the apparatus length scalés that
([12-14), as is immediately evident from the overall conti- the former is intrinsic to the physicochemical molecular con-
nuity equationgp/dt+V - (pv)=0. In contrast, our paper is stitutions of the solid wall and fluid phases, independently of
concerned exclusively with situations wherein the total masshe dimensiorL of the apparatus in which the transport ex-
density is constant in both space and time. In such circumperiment is being conducted. In contrast, the length dcéde
stances the ensuing diffusional process cannot give rise t@an extrinsic variable under the control of the investigator,
convection, whence the fluid-mechanical velogitis every-  independently of the molecular constitution of either the
where zero, including, of course, at the boundaries. As suclsolid or fluid phases. An “exact”l(®L)-scale model of the
although this nonuniform density literature independentlyphysics quantifying the whole system—either exact in a mo-
raises interesting questions regarding the fundamental issuecular dynamics sense or exact in a refined
of slip vs nonslip boundary conditions in diffusing systems,microcontinuum-mechanical sense to be discussed—uwill
it does so in a context wholly different from that of the necessarily embody both the intermolecutéands-flength
present paper. Even apart from the major distinction existingcaled, as well as the apparatus length sdalés such, the
between compressible vs incompressible fluids, those studidigeral molecular dynamic conditions prevailing at the bound-
do not deal with the issue of length scaldd], the central aries of the system would be the same as the boundary con-
theme of the present study, in distinguishing between moditions satisfied by this refined L)-microscale continuum
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model, whence no distinction would exist between the two.the correct limiting behavior of the pertinent fields proximate
The differential equations quantifying conventional mac-to solid boundaries cannot be obtained by effectively setting
roscale continuum-mechanical models, applicable on th& =« at the outset of the calculations and subsequently fo-
length scalel, while implicitly embodying the intermolecu- cusing exclusively on théscale behavior.
lar f-f forces, do not incorporate the effects of #ié&forces— In the generic terminology of singular perturbation theory
either explicitly or implicitly. This is evident from the fact [23-2§, and in relation to the magnitude of the small per-
that the constitutive relationg20] that enter into classical turbation parametdrL = 8, say, current molecular dynamic
continuum-mechanical formulations are concerned only withsimulations of phenomena occurring near boundaries furnish
the f-f aspect of the problem. As such, these conventionalhe numerical equivalents of the leading-ordeero-ordey
macroscale descriptions of the physical phenomena fail toinner” or boundary-layer-like fields, where distances nor-
embody the correct physics in regions of thickn@gé) near  mal to the boundary are scaled within contrast, conven-
the wall, where the-fforces are of at least equal importance tional continuum equations furnish only the corresponding
to thef-f forces.(Indeed, thes-fforces in that region may be (zero-order “outer” or bulk fields, where distances normal
dominan.t over thé-f forces, as, for example, in the case of i the boundary are scaled with In the usual way with such
“adsorption” phenomena—see Sec. JlI. , singular perturbation analyses, the requisite asymptotic
It is precisely because of this failure to incorporat 1 5¢ching conditions between these two asymptotic limiting
forces that one needs to supplement conventidRatale fields in the limit 5—~0 serve to furnish the appropriate

g]racégﬁgir;}gnnus?,?ziﬁu:g&gig'tgfgﬁxﬁggfﬁalﬁer?g:]?gé in boundary conditions to be imposed on the outer fields. And it
y o ’ : ppler . IS precisely because this boundary condition is an asymptotic
this manner, such continuum-mechanical descriptions still dg

not represent the correéie., molecularly deriverphysics matchingcondition, rather than Bteral condition prevailing

in the neighborhood of the boundaries, namely, at distanc at the actual physical solid-fluid boundary, that current mo-

) - .. lecular dynamics simulations furnish conditions at a bound-

from the boundary o©O(l). The simple reason for this fail- : . : :
. . . .. _ary that are generally inconsistent with conventional
ure is that macroscale continuum-mechanical descriptions

are generally incapable of resolving phenomena on molec continuum-mechanical boundary conditions. On the other

9 y P " ; gp L l1‘|and, were such simulations ever to reach the stage where
lar length scales. Only “exact” I@L)-scale descriptions, . . )

. ) . they were computationally capable of dealing with tiike

namely, those microcontinuum or molecular dynamic de- s -

L . <1 case, rather than being limited to thd.=0O(1) case,
scriptions that properly embody physical phenomena occur; o . .
! the potential inconsistency would presumably disappear. In
ring on all length scales betwednand L, are capable of

encapsulating the exact physia2). At best, by invoking an U cfeumstances, in order o capiure the underlying phys-
appropriate boundary condition, the solution of the conveni) one would no longer require conventiorf mac?oscale
tional f-f continuum-mechanical equations satisfying this 9 q

o . : continuum-mechanical descriptions of the phenomena, to-
boundary condition will nevertheless only beymptotically . . . o
. o . . gether with their concomitant need for constitutive equa-
equivalentto the exact solution in a singular perturbation

: . : (tjions, phenomenological coefficients, and macroscale bound-
sense, but not in a truly equivalent physical sense as regards " nditions. However that dav appears to lie far in the
fine-scale behavior near the boundaries. No sirgkcale y ) ! Y app

boundary condition can ever fully compensate for the loss O;uture. And even then, itis difficult to imagine a scenario in

detailedl-scale physical molecular information about #hé Wwhich continuum m_echar_ucs wou_Id no longer prove l_JserI
(or possibly even thes-g interactions implicit in such a for at least qualitatively interpreting the gross behavior of

coarse-scale descriotion complex fluid-mechanical phenomena. Moreover, moving
>Cription. , beyond zero-order macroscale descriptions, first-order cor-
Because of limitations imposed by currently available ™ 7. ;
computational resources, contemporary molecular dynamirectlons to these classical zero-order results should be able to
. : ’ . oynamig, nish systematic tools for rationally analyzing situations
simulations are capable of addressing only those situatio

for which the apparatus length scélés of the same order of "ffom a continuum viewpaint, in Wh.'c.h terms Of ordbiL, :
magnitude ad. This is evident from the fact that in such though small, are nevertheless sufficiently sensible to require
simulations[1—4] distances normal to the boundary are in- an accounting in quantifying the basic physics.

variably rendered dimensionless with intermolecular dis—cogbﬁzisbrg:s é?ggétgymbg?ecﬁ?ar]:F;%tgt:;%%%r?ﬁi?n:;vgclzgnical
tanced. By doing so, such simulations implicitly limit them-

selves to situations in whicH/L=0(1). In contrast, agg{osghgs%oa:lbreelég;]ﬁﬁl hor(;]rglaergzﬁarr_;pnpaeriirctso SJiftir tchoen-
conventional macrocontinuum-mechanical descriptions oﬁ P 9 y

transport phenomena apply only in circumstances wheré UM mechanics.
[/L<1. Itis because of the wide disparity between these two

regimes, coupled with the generally singular nature of per-

turbation solutions of the exact€ L)-microscale problems The following sections address a simple physical prob-
in the limit of I/L—0, that molecular dynamic calculations lem, namely, the nonconvective transport of noninteracting
of the conditions at a boundary do not bear a one-to-on®rownian particles diffusing through an otherwise quiescent
correspondence with the boundary conditions to be imposediscous liquid bounded laterally by a pair of solid plane
on conventionalf-f continuum models of the phenomena, walls. In an attempt to mirror the main moleculsif wall
except perhaps fortuitouslias we believe to be the case for physics via a continuum model, we explicitly incorporate the
the classical no-slip fluid-mechanical velocity boundary con-physicochemical and hydrodynamical interaction forces oc-
dition for single-component systenjg]). Stated explicitly, curring between the solid wall and the binary fluid system

B. Outline
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into an (®L)-scale microcontinuum-mechanical constitu- =L,
tive equation for the solute flux which embodies several §-cegpneees S >
simple refinements of the conventionlalscale macrocon-

. -, . . radius = a .
tinuum F|ck§ law flux re'latlon. o Solute reservoir 9\ 1, ( Solute reservoir
The physically plausible constitutive form adopted for © ®)
this “exact” microscale model is designed to mirror the es- 0 N i =0 . +

. . .. . X = < =
sential I-scale features implicitly present in the molecular - = T
[ x

dynamics descriptiof3] of the near-wall diffusion phenom- Wa{ ‘
ena, particularly the vanishing of the individual species sol-
ute and solvent component velocities along the wall, and th
existence of short-range steric repulsive forces occasioned
the impenetrability of the wall. At the same time, this model
faithfully reproduces classicdl-scale, Fick’s law behavior
“far” from the wall—namely, at distances large compared
with |. This exact, [®L)-scale microcontinuum model is neously attempts to construe these surface adsorption phe-
then used to illustrate a fundamental macrocontinuumhomena as being purely moleculdrscale, near-wall con-
mechanical concept that—though implicitly assumed in allcepts. These paradoxes are eventually resolved by
analyses—is rarely, if ever, explicitly stated. This relates toconsidering the issue of the very different length scales in-
the issue of thémacroscalgboundary conditions to be im- volved. Their resolution further serves to clarify the origins
posed on the conventional Fick’s ldwscale continuum de- of surface fields as arising from the fundamental scaling
scription. Explicitly, the existence of the microscale modelissue—whereby the “strength” of the adsorptive wall-
serves to initiate a formal singular perturbation scheme tdnteraction forces is shown to be a relative rather than abso-
identify appropriate innef-scale and outet-scale expan- lute concept. That is, all other things being equal, the extent
sions, in addition to identifying the spatial region relative to of the adsorption depends upon the dimendicof the con-

the walls within which conventional continuum-mechanicaltainer within which the adsorption process occurs, except in
equations would be expected to apply. Further, we also eghe asymptotic limit/L—0. It is only in the latter case that
tablish the boundary conditions applicable to this classicathe phenomenon of adsorption becomes an intrinsic physico-
Fick’s law description of the diffusional process. In particu- chemical property, attributable solely to the molecular-level
lar, such boundary conditions are shown to arise from thénteractions between the wall, solute, and solvent.

requisite asymptoticd—0 matching condition between the

respective inner limit of the outer fields and the outer limit of Il. WALL EFFECTS ON BINARY DIFFUSION

the inner fields.

This singular perturbation approach underlies all
continuum-mechanical interpretations of macroscale bound- As in Fig. 1, we consider a steady-state diffusional pro-
ary conditions[31-33. We argue that any approach that cess occurring within a diffusion cell, arising from a pre-
fails to address the presence within the underlying physics ascribed solute concentration difference maintained between
the two disparate length scalesind L will, except for for-  the two ends the cell. The cédlvhose lower half is shown in
tuitous circumstances, necessarily fail to furnish the correcFig. 1) consists of(i) two smooth plane parallel walls sepa-
L-scale boundary conditions. In a later section we brieflyrated by a distancel2, in they* direction, which bound the
consider a closely related issue which is also purelyfluid laterally; and(ii) a pair of solute/solvent reservoirs
asymptotic in nature, namely, the concepts of surface-exceseparated by a distantg, which bound the fluid longitudi-
fields and concomitant surface-excess transport processaally. We suppose in what follows that 2~O(L,), so that
arising from preferential “adsorption” of the solute at the the single symbolL=L, can be used to characterize the
wall relative to the solvent. The existence of this additionallength scale of the entire apparatus. The fluid housed within
surface feature serves to further reinforce our generic argithe cell consists of a mobile binary system composed of a
ments about the current limitations of molecular dynamicdilute suspension diolloidally and hydrodynamicaljynon-
simulations. During the course of this adsorption analysis wénteracting, neutrally buoyant, rigid Brownian sphefesl-
identify the origins of such surfacénore properly termed ute “molecules”) of radiusa dispersed in an incompressible
“surface-excess) phenomena as again arising from the ex-viscous Newtonian fluid continuuiithe solveni of viscosity
istence of different length scales, in this case the large disi. The purely fluid(f-f) portion of the system is assumed to
parity existing in the magnitudes of the respective solute antbe thermodynamically “ideal.” By virtue of the geometric
solvents-fforces|[characterized, say, by the respective lengthsymmetry of the parallel wall system, coupled with the finite
scales [sf)soute 2N (s1)sovend €Xerted by the wall on the size of the Brownian spheres, it suffices to limit attention to
two different molecular species comprising the binary fluidthe range.,>y* =a as regards the spatial distribution of the
continuum. We argue that these surface-excess concepts doenters of theBrownian particles.
not purely molecular scale in origifi.e., purely inner-scale The microscale constitutive model equation ultimately
conceptions Rather, they are strictly macroscale notions,adopted for the exact solute flux incorporates shiewall-
arising from the need to account for the slack existing befluid interaction effects on the transport of those solute mol-
tween the outefcontinuum-mechanical-scale and the ex- ecules moving in proximity to the walls, as well as display-
act (| ®L)-scale descriptions of the physical phenomena. Weng classicalf-f fluid behavior far from the walls. This
point out the existence of paradoxes arising when one errdntroduces two disparate length scales into the problem, viz.,

FIG. 1. Depiction of the lower half of the diffusion celhot
rawn to scale L, and 2., represent the length and width of the
ell, respectively, in thex and y* directions. Also shown is a
Brownian sphere of radiua.

A. Problem description
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the molecular rangé of the wall interaction forces, and the E
apparatus length scale We then elaborate the singular per-

turbation scheme that arises from the incongruity of these

two length scales. Elucidation of the requisite matching con- No adsorption
ditions between these will be shown formally to furnish the /

macroscale boundary conditions to be imposed on the outer,

Fick's law—level diffusion equation governing the macro- 0 .

scale solute transport process. E iy =Y
As pointed out in the Introduction, conventional ;

continuum-mechanical transport equatidndether derived N PR

by statistical-mechanical argumer(t34] or simply postu- Adsorption

lated on the basis of macroscopic conservation principles to-
gether with appropriate constitutive modetgenerally em- m
body onlyf-f forces, and implicitly entail the assumption of
only relatively weakinhomogeneities in the physical fields. ————
As such, this continuum description does not include the ) ) ] )
steep species gradient effects encountered near the wall, aris- F'G- 2- Typical potential-energy profiles experienced by the
ing from thes-f interactions. Indeed, for a given fluid, such Brownian sphere, illustrating) the short-range impenetrability of
interactions may depend quantitatively upon the specifid’® Wall to the rigid sphere(ii) the asymptotic limitE., (presum-
physicochemical constitution of the wall itself, as occurs in22 achieved well before the sphere center reaches the midpoint
the case of adsorption phenomena. Explicit incorporation o etween the two walls (i) the essentially monotonic approach of

. o . o . he potential to its limiting value in the absence of solute adsorp-
these “molecular wall effects” requires refining the classical

Fick’s | d A f the diffusi I tion; and(iv) the existence of a potential-energy minimugp, in
Ick’s law description of the diifusional process so as tocircumstances where solute adsorption occurs. As discussed by

epr|C|tI_y take account of thesef forces. In this context we Shapiro, Brenner, and GuéBs] [see also Eq69)], the subsequent
use a simple embellishment of Fick's law to model the transheqry requires that the integrgfdy* {exd E.—E(y*)]—1} be con-

port of the Brownian molecules, which are subject to bothyergent. The nonadsorbing case arises when the nature of the
steric hydrodynamic wall effects and potential-energy wallpotential-energy function is such that the above integral ©@9,
interaction forces. This microscale refineméntexplicitly whereas adsorption occurs when the integral i©0f).

introduces a potential whose gradient represents the physico-

chemical interaction force between the wall and a Brownian V.J=0, )
solute particle; andi) incorporates a position-dependent and

transversely isotropic diffusivity tensdd (in place of the in whichJ denotes the flux density of the Brownian particles
usual position-independent and isotropic Stokes-Einstein difrelative to the fixed walls. This flux is assumed to possess the
fusivity D.,=kT/67na), one whose components normal and constitutive form

parallel to the wall depend upon the distayé&eof the center

of the Brownian sphere from the w#B5]. Both of these two J=—D-VP+M-FP, (3

wall-induced modifications are regarded as arising fiof _ . - )
type forces, inasmuch as each originates from an interactioff€ré P=P(x,y*) denotes the probability density for the
center of a Brownian particle to be situated at the point

between the solid wall and the Brownian solute molecules;

The conventionaf-f Fick’'s law description does not incor- (x,y’f). The fieldP is equiv'alent toa cor.resp'onding volu-
porate such forces into its formulation. metric solute number density concentration field on the as-

The wall-interaction potential, denoted H (the latter sumption that the system is sufficiently dilute so as to behave
representing the physical potential rendered dimensionledd€@lly in a physicochemical sense, in which circumstances
with kT), is assumed to vary only in a direction normal to the the& number density and probability density may be used in-
wall, and to asymptotically attain a constant limiting value terchangeably, modulo a normalization factor. In the above,

E.. at distances from the wall that are large compared witfP @ndM respectively denote the tensor diffusivity and mo-
molecular dimensions. Explicitly bility of a diffusing Brownian particle. The vector force field

F=F(y*)y, with F=—kT dE/dy* andy a unit vector in

E(y*)—E.,=const (y*>I). (1) the y* direction, represents the interaction potential-energy
force exerted by the wall on a Brownian sphere whose center
. . o . lies at a distancg* from the wall.

This potential-energy functlon IS characte_rlzed by a mplecu- The diffusivity and mobility of the Brownian spheres

lar length scald; that is, E gr, more preciselyE—E.., IS paye been assumed to be tensorial in nature rather than scalar

sensible only in the regiog™ =O(l). As such,E is func- g4 4q g quantify the anisotropy arising from the proximity of

tionally of the form E=E(y*/I). Typical potential-energy 5 gpnere to the plane wdl7]. We suppose, based upon the

profiles for both adsorbing and nonadsorbing solute molyometric symmetry of the sphere—plane-wall configuration,

ecules are illustrated in Fig. 2. Subsequent discussion, hoWgqjiring these tensors to be transversely isotropic with re-
ever, eschews the need for choosing any explicit functlonaéard to the direction normal to the wall. that

form for the potential-energy function.

Based on the above physical description, we model the D=D,[(y* —a)/a]&x+ D, [(y* —a)/a]yy, (4)
macroscopically steady transport of the diffusing Brownian
particles using a Smoluchowski framewd36]: and

I
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M=M,[(y* —a)/a]&x+M [(y* —a)/alyy. (5) removed far from the boundaries, namely, only in the
“outer” region, y*=0(L), and there constitute the so-
The arguments of the latter pair of expressions explicitlycalled outer equations. In the following, we utilize singular
indicate the functional dependence Bfand M upon the  perturbation techniques to explicitly identify the existence
distancey* —a of the closest point on the Brownian sphere and location of these two distinct regions, as well as to es-
from the wall[38]. Since wall effects become negligible far tablish the pertinent transport equations and boundary condi-
from the walls), the following asymptotic behavior prevails: tions appropriate to each.
Dy,D,—Dx=const (y*>a). 6) B. Nondimensionalization

Furthermore, in view of the Nernst-Planck relationship exist-  Utilizing the above data regarding the constitutive forms
ing between the diffusivity and mobility tensors, namely of the various quantities appearing in E8), Eq.(2) reduces

(39,40, to
D=kTM, (7) U JP _dE

D, (?_ +P d_ =0. (11
similar asymptotic behavior also holds fbt, andM, . y y

—_ + J—
D2 ay
Based upon hydrodynamical considerations involving therpe |ater represents a steady-state microscale diffusion

singular nature of the hydrodynamic lubrication forces for agq ation, one which explicitly and exactly incorporates all of
spherical particle in contact with a solid plane wkd7],

. - . the (®L)-scale continuum-levdlf ands-f interactions in a
requiring thatM =0 aty* =a, we have thaf41] simple, albeit physically plausible, manrie4]. This equa-
D,,D,—0 for y*—a—0. ®) tion i.s' to be supplemented py the no—normal—ﬂux bou'n.dary
condition, J (x,y* =a) =0, arising from the impermeability
This property requires that a Brownian particle be diffusion-of the wall to solute transport. Equivalently, we require that
ally immobile when in contact with the wall despite the ex-
istence of a macroscopic solute concentration gradient in the D (
x direction for ally*, including the “wall,” y* =a. Use of +
the above limiting property in Ed3) yields

aP

dE
W_I—PW):O at y*:a (VX), (12)

together with the prescribed uniform solute concentrations

J(x,y*=a)=0. 9 maintained at the two ends of the cell:
The generic relations between the solute diffusion flux P(x=0y*)=P;=const;
and the solute species velocity(not to be confused with the (13)
fluid-mechanical velocity, which is zero in the present cir- P(x=Ly,y*)=P,=const V(L ,>y*>a).

cumstancesis J=Pv [42]. Accordingly, sinceP is necessar-
ily everywhere finite, the preceding equation requires that It will prove convenient to work henceforth with dimen-
[43] sionless equations. This nondimensionalization is effected as
follows. Imagine that each of the independent and dependent
v(x,y*=a)=0. (100 variables appearing in the preceding dimensional equations
is augmented by affixing a superscript asterisk tag we
have already done explicitly for the dimensional distapte
from the wal). We then define the dimensionless counter-
parts of these dimensional variables as folloimsth P§ a
characteristic solute concentratjon

The latter species-specific, no-slip, exaeb ()-scale condi-
tion at the boundary is identical with thescale species-
velocity “boundary condition”(so called proposed in a re-
cent molecular dynamics study of transport in binary
convective-diffusive system$]. However, we argue below
that the above exact condition, which arises frethforces

x=x*/Ly, y=(y*-a)lL,, P=P*/Pg,
(and hence should be construed as a “wall effectioes

not, in fact, constitute the appropriate species-specific bound- D=D*/D* (14
ary condition to be imposed on the conventiohalcale -
Fick's law formulation of the solute diffusion problem, 3 =JL,IDEPY,  J,=JiL,/DEP . (15)

which addresses onlyf forces. Rather, the appropriate mac-

roscale boundary condition is eventually to be determined ag-or physical clarity in the analysis which follows, we will
an asymptotienatching conditionmposed upon the classical |at5in the nondimensional symbbl,=D*/D*=1 in sub-

Fick’'s law macrocontinuum equation—the so-called outerSequent equationsAdditionally, it will prove convenient to

equation—so as to enable a smooth interpolation with the, e gefine the following nondimensional length-scale pa-
[-scale inner equatiofthe latter includings-f forces.

. ; ; NSRS rameters:
This program underlines our main objective in this par-
ticular example, namely, that of illustrating the singular con- def def
sequences arising from the existence of disparate scales oc- e=al/L, and s=I/L,. (16)

casioned by the presence of the bounding walls. Numerical

simulations adjoining the wall probe only the physics of the Observe in the above nondimensionalizations that the
“inner” region, y*=0O(l). In contrast, conventional valuey=0 corresponds téthe surface gfa Brownian par-
continuum-mechanical equations are valid only in regions faticle being in contact with the wall, and that the dimension-
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less distancey normal to the wall straddles the range condition at a boundary, we will nevertheless continue to
e 1—1=y>0. Accordingly, we note for later reference that refer to the condition(21) [or, equivalently,(20)] in what
y ranges over the values>y>0 in circumstances where follows as a “boundary condition.” This is done in the spirit

e—0. of the claim of the molecular dynamic simulatiof3,7].
Upon rewriting the trio of equationd1)—(13) in terms of ~ Subsequently, we will demonstrate, contrary to this claim,
these dimensionless variables, they become that the macro-

scale flux density, J°, say, entering into the conventional
[P _dE(ST)] macroscale Fick’s law continuum diffusion equatior’P
D.(e7y) W+ P dy =0, =0, does not vanish at the wayl=0, despite the vanishing
(17)  of the exactmicroscaleflux densityJ at the wall.
Attention is limited in what follows to physical circum-
P(x=0y)=P;=const; P(x=1y)=P,=const, stances wherein botle<1 and §<1. The issue thereby
(18 engendered, namely, of the relative magnitude of the
ratio e/ 6=all, entails three possible scenariog/6<1;

I PP
(€ Y)WﬂL@

and el 5>1; and e/ 5~0(1). It will be assumed in the subse-
JP dE(5™1y) guent analysis that the last condition prevails. This choice is
=—_ -1 — a=o Y _ = dictated exclusively by considerations of simplicity of analy-
Jy=—D,(e7y) +P 0 aty=0. ! : ) i
ay dy sis. Adoption of the first or second choices would have re-

(19 quired us to perform two singular perturbation analyses,

Given the diffusivity and potential-ener henomenolo icalrather than one, in a sequential manner so as to take account
y P gy p 91€¢ the existence ofhreedifferent length scales, namelg, I,

data required in the above equations, together with pre:

; . . and L, in the analysiq45,46. However, final results and
scribed values lel af?dpz’ Itcan be ShO.W” matheman_cally conclusions for the three different situations are almost iden-
that the preceding trio of equations uniquely determine th

exact (oL )-scale fieldsP(x,y) andJ(x.y). Sical as regards thie-scale outer solutiofithe f-f domain of

Hvdrodvnamic considerations arising from the vanishin interest to continuum mechaniciansvhence for illustrative
yarody o 9 ; gpurposes we consider only the indicated case. Furthermore,
Brownian sphere mobility components at the wall dictate

that having supposed that/ 6~0(1), we mayhenceforth as-
sume without loss of generality th@t= e, since anyO(1)
J(x,y=0)=0 (20) distinctions between the two parameters may be absorbed
into the precise definition of the molecular length sdale

[cf. EQ.(9)]. In view of the fact that Eq(19) already requires . _
that J,(x,y=0)=0, the only new condition demanded by C. Exact, outer (continuum-mechanica),
Eq. (20) is and inner (molecular simulation) scales

The set of exact,|@®L)-scale equation&l7)—(20) [or Eq.
(21)], which explicitly incorporate both physicochemical
(potential-energy and mechanical(steric hydrodynamic
wall effects, can be shown to possess a solution which both
It is important to observe that this latter relation doespet  exists and is unique, based jointly upéin the prescribed
se constitute a “boundary condition” at the wall, since the boundary conditions(ii) the constitutive forms assumed for
only boundary condition imposed on the exact system othe fields appearing in these equations; éiidl specification
equations at the wall is that specified by E#9). Rather, it  of the y dependence of the phenomenological coefficients
represents a ‘“condition at a boundary,” a condition whichappearing in the latter constitutive equations. The corre-
arises strictly as a consequence of what might aptly b&ponding probability density fielB(x,y; ) obtained as their
termed “molecular wall effects.” Given the role of the solution then constitutes an “exact” physical description of
Brownian particles as “molecules,” this phraseology ap-the diffusion scenario in the sense tffaembodies botH-f
pears entirely appropriate. and s-f forces throughout the entire fluid domain, and at all

Specification of a tangential flux componedit at the length scales. It is notable that this microscale physical de-
wall, as in Eq.(21), as a condition to be imposed on the scription, together with the explicit microscale phenomeno-
solution of the trio of equation§17)—(19), will generally  logical diffusivity data required therein, supports the conten-
overspecify the boundary data defining the boundary valugion that J=0 at the wall, the claim of the molecular
problem, and hence result in a nonexistent solution fosimulations[3].
P(x,y). That such overspecification in present circumstances However, a conventional macroscale Fick's law formula-
does not result in nonexistence is trivially a consequence aion of the above two-dimensional problem f@rwould en-
the fact thatD,=0 aty=0. Any value of this diffusivity tail a force-free constitutive expression, characterized by a
component other than zero would fail to lead to an existenposition-independent diffusivity..,=1). The informal in-
solution(see, for example, the Davis, Kezirian, and Brennettuitive “derivation” of this conventional formulation from
tangential “slip” microscale boundary condition cited in Egs.(17)—(19), given below, involves introducing the naive
Ref. [41] for possible circumstances wherey#0 at the  assumption that, simply becaue e<1, one may therebs
wall, and hence for which the zero flux specification, Eq.priori seté=e=0 in Egs.(17) and(19), whereupon for all
(20), would result in a nonexistent solutiprDespite the fact y>0 one would have thab,(«)=D, («)=D... [Implicit
that Eq.(21) is not a boundary condition, but is rather a in this replacement of and e by their limiting values is the

oP
JXE—DH(efly)ﬁzo at y=0. (21
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fundamentally incorrect assumption that the fi€l¢k,y; ) As already observed, the first member of the latter equation
possesses a regular, rather than singular, perturbation expaies not satisfy Eq.21); consequently, E¢(20) is violated
sion in the small parametei=e. ] by this approximate solution. The conventional Fick's law
Upon denoting this zero-order approximate solution bysolution (26) and (27) will be shown in what follows to
PO(x,y), such a simplification yields, witly lying in the  correspond formally to the zero-order outer field, obtained by

range <y <o, the following limiting procedure applied to the exact fiétd
9?PY  5?P° def
=\ o Ty |70 @2 PO= lim P(xy:9). (28)
5—0
along with the following pair of boundary conditions im- Y fed
posed at the ends of the cell: The preceding macroscale figRf does not explicitly ac-
0 0 count for wall effectdcf. Egs.(26), (6), and(17) under the
PP(x=0y)=P1; P(x=1y)=P, (23 Jimiting operation of Eq.(28)]. Rather, as will be subse-

quently outlined, such wall effects are embodied either by an
effectivemacroscale boundary condition or, in the case of
PO solute adsorption, by a macroscaleface-excesareal den-
D.——=0 aty=0. (24)  sity field ascribed to the wall.
ay As earlier observed, molecular dynamic simulations are
e<l:urrently capable of probing only the regigr=O(6) very
near to the wall, wherein molecular wall effects are signifi-
cant. This contrasts with the above circumstances involving
the classical continuum fiel@°, wherein suchs-f wall ef-

together with

Were we in the same naive spirit displayed above to s
e€=0 in the “boundary condition”(21), this would further
require that

E1=U PO fects are wholly absent. As such, conventiohatale mo-
DwWZO at y=0=>W =0 V(0<x<1), lecular dynamic simulations cannot and do not embody clas-
y=0 sical continuumL-scale attributes of the type described

(29 above, since such attributes reflect the absence of wall ef-

sinceD,. =1 is a nonzero constant. However, the solute resfects, and hence represent valid descriptions of the physics

ervoir boundary conditions at=0 andx=1 imposed upon only in the far-field outer regiog=0O(1). The"simulation-

the field P° via Eq.(23) for all «>y>0 invalidate the pos- Iil;er]’;rriigtigrnm)i/nzg(@ OIfS Sﬁgomgraseﬁzrki)grt]i%rnrzgi;)lgﬁil;—the
sibility that (9P%dx),—o=0 for all x unless the field is sin- 3 gy guiar p

- i . - B 28]. The corresponding inner field, quantifying the attributes
gular atny. Consequently, stipulating thaf=0 aty=0 of the exact field in this region, can thereby be envisioned as
as a requirement demanded of the solutifhof the mac-

roscale diffusion equatio(22) leads to an inconsistency, de- deriving from the exact field equatiortd?)—~(20) via the

spite the fact that the exact conditids 0 aty=0 is consis- following limiting process:

tent with the exact microscale diffusion equatidr). def

This paradox, stemming from an irreconcilable incompat- BO= lim P(x,V:6) (29)
ibility existing between the differential equations and requi- 50
site boundary conditions, is inherent to the class of problems y fixed

involving a singular layer, the latter arising from the pres-. . .

ence of a small length-scale parametquantified in our in which the stretched, boundary layer variable

problem by§=e<1). Resolution of this paradox requires a

detailed examination of the near-wall boundary layer region, J== (30)

y/6~0(1), where our naive assumption of settirfyF e 6

=0, Dy(y)=D,(y)=D.=1, andE(y)=E..=const results ) ) )

in a fundamental inconsistency. This region constitutes théepresents the inner independent variable.

inner region, whose solution determines the “boundary con- A uniformly valid asymptotic representation of the exact

dition” (more proper'y’ the matching Conditi):)'mnposed on (I @L)'Scale f|e|dP, the latter Satisfying the exact equationS

the outer regime at the waly=0. In the next section we (17)—(20), accurate to the first order iimay be obtained by

undertake a detailed analysis of this inner layer. a composite joining of the respective inner and outer fields
For later reference we note that the solution of the intui-bY invoking appropriate asymptotic matching conditions—

tive trio of equationg22)—(24), corresponding to the classi- thereby ensuring a smooth transition between the simulation-

cal Fick’s law continuum-mechanical formulatiaitP°=0, like I-scale inner field and the classidalscale macrocon-
is tinuum outer field. In Fig. 3 we highlight these fields in
relation to the exactl@L)-scale microcontinuum field by
Po(x)=P;—(P,—Py)X, (26)  delineating the regions wherein each represents a locally

valid description of the exact physics.
along with the following expressions for the flux compo-  In what follows, we elucidate the above physical descrip-
nents: tion by explicitly identifying the inner and outer equations
0 0 quantifying the inner and outer fields, as well as the bound-
Jy=D.(P;—P3)=const-0, Jy=0. (27)  ary conditions to be satisfied by each of these two fields. It
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Y=Ly the resulting expressions, we find that the leading-order field
o LA . obeys the intuitively derived equations already set forth in
(1 ® 5 =Faact (@ L-scale) | 1 (22) and(23). We have not, however, substituted the expan-

sion (31) into the exact microscale wall boundary conditions
(19 and (21) since we do not expect the outer expansion
(31) to be valid within the boundary layer regign=0O( )
existing near the wall. In the absence of such wall boundary
=Wall conditions the solution of the zero-order outer equati@s
and(23) is not unique. As will be shown, the solution of the
domains of the exactl&L)-scale fields, the outefcontinuum- latter equations is rendered unique by imposing a maiching

mechanical L-scale fields, and the innésimulation-scalgl-scale Conqun between the outer expansi@t) and the inner
fields. expansioricf. Eq. (38)] [47].

] = Continuum-mechanical
(outer, L - scale)
= Simulation-like
(inner, | - scale)

FIG. 3. lllustration of the respective physidak., dimensional

will be seen that the equation governing the outzero- E. Inner equations

ordey field P° formally reduces to the classical Fick's law  In order to establish the inner equations we need to res-
diffusion equatiorV?P°(x,y) =0, which is to be solved sub- cale they coordinate by stretching it, as indicated in E80).

ject to the two end reservoir boundary conditions, and whichnsertion of this definition ofy into the exact microscale
automatically satisfies the zero-normal-flux condition at thetransport equatiofl7) yields

wall by virtue of its one-dimensional character. The corre-

sponding inner(zero-ordey field P° will be chosen,inter
alia, such as to satisfy E¢20), thereby assuring the consis-
tency of the governing equations with the boundary condi- ) , o
tions. The exact solutiofor, more properly, the composite The latter constitutes a reformulation of the original, exactly
zero-order solutioy obtained by appropriately combining posed nllcroscale problem governing the concentration fl§|d
these two fields, will be shown to be identical to the outerP=P(X.¥:4), albeit now expressed in terms of inner vari-
solution, except for a thin boundary layer region very near t@Ples. The functional forms of the exact flux components can
the wall. This singular perturbation analysis, outlined below,Similarly be expressed in terms of the inner independent vari-
illustrates the situation wherein the detailed analysis of thé@ble as

inner region serves to provide the effective macroscale JP

boundary condm_on to be |m_posgd at the waHrO._ In a Jy=—Dy(y) — (33
subsequent section we use identical concepts to illustrate a IX

different scenario, involving so-called “adsorption” phe-

2

2P P dE®T)
2 v D
o DH(y) 0)(2 + Jy

nomena, wherein the potential-energy contribution togtie and
wall effects is implicitly manifested in the outer-scale equa- D, (y) (P dE(Y)
tions via the additional presencelofscale “surface-excess” Jy=- — fy +P Ty) . (34

fields.

To render the functional dependenciesPofind the flux
D. Outer equations components, andJ; explicit, we make use of the following

Based upon the scaling arguments explicit and implicit inch0|ce of scalediependenvariables:

the arguments of the exact governing equatids—(20) we def
assume, subject @ posterioriverification, that for6<1 the P(x,¥;8)=P(x,y=8Y;9), (35)
solution of this exactly posed system of equations possesses
the following regular perturbation expansion: B def
Ju(X,V; 8) = (X,y= 6V; 5), 36
P(x,y;8)=PO(x,y) + SPL(x,y) + 82P2(X,y) + -+ KX Y30)= (XY = 5Y:6) (36
3)  and
together with comparable expansions fég(x,y;5) and S
Jy(x,y; 8). The intuitive arguments for smad, presented in Jy(x.¥:0) =5 dy(X,y= ;). (37)

connection with the approximate solution appearing in Egs.
(26)—(27), suggest that the expansi¢8l) will, in general, \We assume, subject ta posteriori verification, that for
be nonuniformly valid. In particular, it is expected to be 5<1 the solution of the exact microscale equati8@) can

applicable only in the regioy> &, far from the wall. The pe expressed as a perturbation series of the form
leading termP°(x,y) of the above expansion corresponds to

the field defined in Eq(28). While we allow in Eq.(31) for P(x,¥:8)=P(x,3) + 6°P1(x,3) + 8 P?(x,§) +-.

the fact that the leading term may depend uppit will, in (39

fact, prove to be independent pyfand hence be functionally

dependent only upor, as in Eq.(26). Furthermore, to ensure consistency with the above expan-

Upon substituting Eq.31) into the exact microscale equa- sion, the corresponding flux componeﬁ;sandf]y also need
tions(17) and(18), and equating terms of equal orderdiin  to be expressed as perturbation expansions of the forms
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ENCSD) =32(x,37)+523§(x,7)+6ﬁ§(x,7)+--~ (39) Hoyvever, si~nce the inner exparlsi_on is not gxpeqted to be
valid for all y, but rather only fofy=0(1), satisfaction of

and these two boundary conditions is not required of the inner
field.
J5(x.3:8) =T (x,¥) + 67T (x.Y) + ST (x) +- - A first integral of Eq.(44) is
(40 5
o o _ _ _ _ [P dE®)
Attention is restricted in the remainder of this subsection D, (V) 7y+ P & =a(X), (49

to the equations and boundary conditions governing the

zeroth-order inner field®°, 3, and¥). Based upon the whence from Eq(42) it follows that

assumed functional fornB8) of the perturbation series we

can formally define the zeroth-order inner probability density 39(x5/) ——a(x) (YY). (50)
field as already set forth in E€R9). Upon utilizing the exact y

microscale constitutive equati@) together with the scaling ¢ vanishing normal flux boundary conditiohé) requires

embodied in Eqs(35—(37), the functional forms of the that a(x) =0. Consequently, Eq49) becomes
leading-order flux components can be expressed as ' T

~0 _
. i P o dET) _
B=-Di3) 5 (41) 5 P 51
and the solution of which can be expressed as
~0 _[dP° _ dE®) PO(x,¥)=B(x)exd —E(V)], (52)
Jyz—Dl(y) Ty+P d,y (42
with B(x) an integration function.
As previously indicated in Ref41], the diffusivity compo- Introduction of this last equation into E¢41) yields
nentsD(y) andD, (V) possess the following limiting prop-
erties: ~0p . ~ dB(x) -
H(xY)==Dy(y) =g —exd —EX)]. (53)
D,(y) and D, (y)—0 asy—0. (43

- . The boundary conditior{45) imposed on the parallel flux
The explicit functional forms of these components need not y 45) imp P

be invoked, however, in the analysis that follows componentl? is automatically satisfied for any choice of
Substitution of the inner expansioi38)—(40) into both B(x) by yirtu_e_of Eq. (43), positing the vanishing of the

the exact equationé32)—(34) and the exact wall boundary par.all.el diffusivity component at the \_/vall. Eq_uan@Z) thus .

conditions(19) and(21) enables the extraction of those equa_sansfles the governing zero-order inner diffusion equation

tions and boundary conditions that are mutually compatibld44 as well as the corresponding parallel and normal flux
at a particular order of expansion. In particular, the diffusionconditions (45) and (46) at the wall. However, consistent
equation governing the zeroth-order inner field can be idenith our remarks following Eqsi47) and (48), the solution
tified as (52 is incapable of satisfying the pair of prescribed end
boundary condition$47) and (48) for all . We note, how-

p ever, fory—oo (strictly, fory> ), that

&

=0, (44)

aP° _ _dE(Y)
N 0
which is to be solved subject to the zero-order inner wall
boundary conditions

E(Yy)—E..=const (54

[cf. Eq.(1)], whereupon Eq(52) adopts the asymptotic form

~ ~ POX, V> 8)= -E. .

=0 aty=0 (Vx) (45) P(x,y> 6)=exp(—E..) B(X) (55)
and F. Matching conditions

jgzo aty=0 (Vx). (46) The inner and outer solutio andP need to be matched

in their common domain of validity. This requires that the
Had we substituted the inner expansi@8) into the two end  inner and outer expansions of the exact solution of the origi-

boundary conditiong18), the fieldP° would have been re- nal problem posed by EqgL7)—(20) be asymptotically equal

quired to satisfy the pair of boundary conditions in the intermediate regioy=0(4% (0<qg<1) lying be-
tween the outer regiop=0(1), corresponding tg=0, and
Pox=0Y)= P,=const (VYY) (47 the inner regiory=0(6), corresponding t@=1. To terms
of zero order in the respective expansions, this matching
and condition requires that, loosely speakifzB—28,

Pox=1y)=P,=const (VV). (48) PO(x,y—0)=PO(x,y—x). (56)
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Upon invoking Eq.(55) this necessitates that the outer solu-scale characterizing this microscale formulation was specifi-

tion asymptotically adopt the form cally chosen so as to correspond to the scale of molecular
o _ simulations, wherein wall interaction effects are taken into
PR(x,y—0)=exp—E.)B(X). (57 account. Moreover, the “conditions at the boundary” satis-

The only solution of the zero-order outer equati@®) fied by this microscale description were shown from hydro-

and corresponding pair of boundary conditia@8) that is dynamic mobility consit_j(_arations to correspond trivially_ to
compatible with the asymptotic functional for(67) is the ~ the vector no-flux conditio)=0 at the wall—the generic

y-independent solution, claim of the molecular dynamic simulation calculatididg
in binary fluid transport systenid9]. Thus, the “exact” flux
Po(x)=P;—(P1—P,)x, (58 boundary condition, requiring thal=0 at the wall (or,

) ] ] S equivalently, that the individual species velocities vanish at
already derived in Eq(26) by invoking intuitive arguments  pe wal), needs to be applied to the system of equations

the choice In order to make an explicit connection with the conven-
tional macroscale Fick’s law formulation of this elementar
BOX)=exp(E.) [Py~ (P1=P2)x]. 9 ditfusion problem, we adopted a naiyeuter scalg view- ’
Substitution of the preceding expression into Eip) yields ~ Point, wherein all the small nondimensional parameters ap-
pearing in the exact microscale equations were set equal to
Pox,y)=[P;—(P,—P,)x]lexdE.—E(y)], (600  zero at the outset of the analysis. This yielded the familiar
Fick's law diffusion equationcharacterized by a position-
constituting the complete and unique solution for the zerothindependent diffusivity We then pointed out that any effort
order inner concentration field. In the usual manner ofto apply at this scale the literal wall boundary conditions,
matched asymptotic schemg®3-2§ the outer and inner valid at the “inner” or “simulation” scale, would lead to an
fields, Eqs.(58) and(60), can be appropriately combined so inconsistency with the other boundary conditions, namely,
as to furnish a uniformly valid solution of the exact field those imposed within the reservoirs situated at the two ends

P(x,y; ) for circumstances whereifi<1: of the diffusion cell. This then suggested the existence of a
singular layer near the wall, where the conventional
P(x,y;8)=[P1—(P1—P2)x]exd E.—E(dy)]+0O(9). continuum-mechanical Fick’s law formulation is invalid, and

hence needs to be refined so as to admit the simulation-scale

Proceeding as in Eq56), but with J, now written in vanishing vector flux boundary conditidr= 0 at the “wall”
place of P, we find with the help of Eyq(50) [in which (i.e., at the planar surfagg® =a situated at a distance from
a(x)=0] thatJO is required to satisfy the matching condi- the actual wall equal to the radius of a Brownian solute mol-

tion J° o(x, y—»O) 0. Consequently, the normal flux compo- ecule. We then effected a singular perturbation analysis to

nent tth wall is required t tisfy the following zero-ord rshow how a solution consistent with all of the simulation-
entatine wall1s c‘a:qu edtosa Sf).’. e.”o OWINg ZEro-ortery e conditions prevailing at the boundaries may be ob-
outer, macroscale “boundary condition:

tained. The vanishing-normal-flux “boundary condition” at

aPO(x,y=0) the wall[equivalent tan- J°(y=0)=0, with n the unit vector
JS(x,y:O)E -D,—————=0. (62 normal to the wall; cf. Eq(62)], imposed on the macroscale
y continuum-mechanical equations, was derived by matching

This result constitutes one of the central results of this sec the outer and inner solutions, each of which was heretofore
separately nonunique. This allowed us to propose a uni-

ion. That i mploying rigor ingular perturbation
o at is, by employing rigorous singular perturbatio formly valid composite solution, one which coincided with

techniques we have proved that the boundary condition sa
isfied by the macroscale concentration field requires thatlhe classical one-dimensional linear concentration profile al-
most everywhere within the diffusion cell except near the

only the normal flux component vanish at the wall, this de-M Il whil it | tching the two-di I

spite the fact that the correspondimgcroscalefield trivially wa WI Ite simultaneous yfTha(Ii mgs 5e WO- |m(inst|or;ﬁ n-

possesses the property that both the normal and the tangerﬁer solution in a region of thicknes3(J) proximate to the
wall. This inner solution, which embodied the wall effects

tial flux components vanish at the wa#ig].

explicitly present in the exact microscale descriptidout
lacking in the macroscale descriptjpmllowed for satisfying
the J=0 boundary condition at the wall.

Using a formal singular perturbation scheme we have il- The preceding analysis of this elementary diffusion prob-
lustrated in this section the manner whereby a consistent pelem forcefully underlines our main criticisni§] of the in-
turbation solution of the exactly posed microscale problemdiscriminate use of molecular simulations to discern the
defined jointly by the differential equatiofi7) and condi- boundary conditions applicable to conventional continuum
tions (18)—(20) at the boundaries, can be obtained. It is per-equations, the latter referring to those continuum equations
tinent here to recount the major steps in that analysis, so as that embodyf-f forces but nos-fforces. As discussed above,
highlight the salient features of the argument. Initially we a microscale continuum equation was required to satisfy the
formulated a complete microscale continuum description ofidditional tangential flux boundary condition arising from
the “exact” (I ®L)-scale physics quantifying the problem of the short-range wall effects. However, this new boundary
Brownian diffusion in a binary fluid system, embodyisg  condition and the accompanying refined equation explicitly
effects arising from wall-fluid interactions. The length embodying this flux condition did not impact significantly on

G. Discussion
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the well-known solution of the classical Fick’'s law one- In the analysis that follows we briefly detail the manner
dimensional diffusion solution for the solute concentrationwhereby one supplements the continuum-scale transport
field, except in a thin boundary layer of thickne€¥ 5) equations, corresponding to the conventional Fick’s law dif-
X (6=1/L<1) proximate to the wall. Furthermore, the fusion equation governing the bulk volumetric density solute
boundary conditions that one must impose on this outer maagoncentration field, with a comparablescale Fick's law
roscale Fick’s law diffusion equation in order that it properly surface diffusionequation governing the surface areal den-
capture the residual long-range effects of the detailed walbity solute concentration field. The macroscale areal surface
physics were derived as being the outer limits of the solu€oncentratiorp and lineal flux density vectgrfields appear-
tions of the inner equations, rather than by directly imposingng in the latter refer to idealizations arising from a lack of
the literal boundary conditions demanded of the innemesolution of the molecular-scale phenomena occurring near
equations—the latter corresponding to those discerned by the wall. While literal “surface” transport effects can in-
molecular simulations. deed be discerned from molecular simulations, continuum-
In the spirit of simplicity accompanying this article we scale surface transport phenomena cannot be directly dis-
excluded the effects of wall roughness. The presence of su¢ered by simply investigating the motion of those
geometric asparities, superposed on the otherwise perfectlygjecules proximate to the walls. Rather, their identification

smooth surface envisioned in the analysis, introduces yet anyg quantification requires that one explicitly address the
other length scale into the problem. In most physical circum-

stances this scale can be expected to be small compared wi?ﬁ(IStence of the apparatus length sdale
the apparatus length scale On the other hand, the length
scale of the roughness—s&y, the mesoscale-will gener-
ally be significantly greater than that of the molecular wall  Here, we extend the analysis of Sec. Il so as to inject
forces, as well as of the size of the Brownian moleculesadditional issues relating to the adsorption and subsequent
resulting in the dual inequality.>1,>1. In such circum- surface transport of the Brownian solute molecules. While
stances the preceding type of singular perturbation analysishe equilibrium adsorption aspects of these classical phenom-
whereby we derived the zero-normal-flux macroscale boundena are generally quite well understood at both the macro-
ary condition at the wall, can again be invoked, beginning akcopic and molecular levels, the same cannot be said of the
the microscale Brownian molecule level, to furnish the com-nonequilibrium surface transport properties. This fact pro-
parable mesoscale boundary conditions on the rough wallides the motivation for the ensuing analysis, namely, to
Explicitly, at each such “mesoscale point” lying on clarify the strictly continuum-mechanical nature of the sur-
the rough surface one would almost certainly find as theface transport process by drawing a sharp distinction with the
formal result of such an analysis thatJ=0 [whereas strictly local molecular view of the phenomenon. In this con-
(I=nn)-J+#0], with n the unit normal vector at a point on text it will be shown that the concepts of surface adsorption
the rough surface, andl the mesoscale flux density. These and transport are devoid of meaning on the length scale at
would then constitute mesoscale boundary conditions to bahich molecular wall-fluid interaction effects are resolvable
imposed on the new inner mesoscale equations, the latt¢b3]. Rather, these concepts arise at the next scale of resolu-
now being written at the length scdleof the roughness. The tion, corresponding to the outer scale of our equations, where
outer equationgapplicable at the Fick's law macroscale such wall-interaction effects are implicitly included in the
level, where the roughness is not observable, and hence ti®undary conditions or, as argued below, equivalently in the
[,-scale rough boundary appears as a smasticale wall, auxiliary surface areal density transport fields serving to
together with the requisite mesoscale/macroscale matchingupplement classical, bulk volumetric density transport
conditions, can be determined by effecting a similar singulafields; that is, thelL-scale surface fields serve the role of
perturbation analysis at the scale of the roughness elementsoundary conditions imposed upon the conventidratale
This general procedure was employed in a seminal paper byick's law volumetric fields [cf. Eg. (85]. As such,
Richardsorn31] (see also Jansori§0]) to illustrate the ro- molecular-level simulations cannot discern these continuum-
bustness of the classical no-slip, fluid-mechanical, massscale surface concepts unless they are also attuned to probing
average velocity boundary condition governing the flow ofthe coarse-grained macrocontinuum scale. In lieu of formal
homogeneous fluids relative to solid wallksl]. singular perturbation techniques, for simplicity’s sake in the
In the next section we further elaborate our criticism offollowing analysis we adopt intuitive “pillbox”-type argu-
the failure of some simulations to give cognizance to thements(cf. Refs.[52,54 for closely related applications uti-
physical distinction existing between “inner” and “outer” lizing pillbox arguments to derive the continuum-scale
limits asl/L—0. In particular, we address the phenomenonequations accompanying the phenomena of surface adsorp-
of continuum surface adsorpti¢82], a condition that has no tion and diffusion. It is a straightforward, albeit lengthy, mat-
counterpart at the corresponding molecular scale. The maiter to prove that rigorous singular perturbation arguments
point to be addressed is the fact that the magnitudes of thieirnish boundary conditiongimposed upon the leading-
potential-energy forces used in the simulations generally faibrder perturbation fieldsthat are identical to those derived
to distinguish “adsorptive”s-f molecular forcegwhich act via the informal pillbox arguments which follow below. Ref-
disproportionately on one of the two spegi@®m “demo-  erenced46,55,56,5T7 use such perturbation schemes to ad-
cratic,” nonadsorptives-f molecular forcegwhich act more dress similar issues relating tmuid-liquid interfaces. The
or less equally on both specjdsy virtue of the fact that such case oftransientadsorption at a solid wall is likewise treated
simulations ignore the macroscopic length schlef the  rigorously by Shapiro, Brenner, and GugB] in the context
physical apparatus within which the adsorption occurs. of aerosol and hydrosol deposition on surfaces.

IIl. SURFACE ADSORPTION AND TRANSPORT
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The surface transport equation eventually derived in this
section[cf. Eqg. (81) or (82)] contradicts the boundary con-
dition n-J°(x,y=0)=0 derived in the previous section. This
disparity reflects the difference in the specific natures of the
respective wall-interaction potential forces acting on each of dy L
the two diffusing species. Adsorption forces require an at-
tractive potential wellrefer to Fig. 2, wherein the condition
sexp(—En<1 would fail, with E,, the potential-energy
minimum (see the caption of Fig. 2 for a more precise dis-
tinction between the adsorptive and nonadsorptive ¢akes Area. dA Wall, y*=0
turn, this would require us to modify our straightforward ’
singular perturbation approach in order to account for this FIG. 4. Differential rectangular parallelepipedal pillbox of
new feature. Subtleties accompanying the various forms exdifferential cross-sectional aredA=dx dz differential volume
hibited by potential wells are detailed by Shapiro, BrennerdV=dA dy, and finite (dimensional height y* =L, above the
and Guell[58] and will not be repeated here. Indeed, ratherwall [the latter corresponding to a nondimensional height of
than attempting to present a comprehensive treatment of suy=(L,—a)/L,=1—€].
face adsorption phenomena, our main objective in this sec-

Pillbox

tion is to illustrate, in as elementary a fashion as possible, the P(x,y;8)=PO(x,y)+ P°%x,y=0)
physical origin of surface concentration and flux fields, in -
addition to quantifying their transport. Thus, we distinguish X{exdE.—E(¥)]-1}+0(4). (64

betyveen_ the results of the previous section and tho§e to Be js easily verified that the latter solution asymptotically
derived in the present section as arising from the differen

: . o ~ matches the inner and outer solute concentration and flux
forms of the interaction potential in the two cases, while

: . . . ) fields in the intermediate, overlap region. Equati6d) con-
esch_ewmg detf_ﬂ'led considerations emanating from these d'§iitutes the exact solution of the problem, correct to the ze-
tracting subtleties. roth order ins ’

Consider the differential rectangular parallelepipedal pill-
A. Surface concentration box illustrated in Fig. 4 of infinitesimal cross-sectional area

. - dA=dx dz and finite height, the latter extending from the
Pillbox-type analyses are performed by examining at bOtr]ower wall to the midplane between the two walls in our

the outer and exact scales the total amounts of sdhrtd . . .
g example. In terms of our current dimensionless variables,

other extensive continuum fieldslentified at each scale as whose length scaling is based on the half-gap widjkL,

being contained within a rectangular pillbox surmounting thethe illbox posseses a physical height=L.,, so that, non-
lower wally* =0 and extending to the midplane between the . pribox p - phy yo '
dimensionally,y=1— e at the upper surface of the pillbox.

two walls, and subsequently assigning the difference be\-/. i
: X iewed at a coarse-grained outer scale, the number of solute
tween the two amounts to a continuum-mechanical sur-

facd-excesy areal density field defined at the macroscale.mOIGCl“"edeW0 apparentlycontained within the pillbox is
This scheme, which at the macroscale views the solute as 1—e¢
being distributed between a bulkolumetrig phase and a dV\Pszf dy PU(x,y), (65)
surface(area) or absorbed phase, serves to assure consis- 0
tency of the total amount of the soluter other extensive
entity) present within the system, whether viewed at th
macroscald. or the exact scalepL.

Contrary to what is often assumed to be the case, surface 1-e
concentration does not refer literally to the exact areal con- dW=dAf dy P(x,y;9). (66)
centration(i.e., solute mass or number of molecules per unit 0

areg of the solute “adsorbed” at the wall. Rather, this Therefore, to assure quantitative consistency between the

concept—which is more appropriately termed surface-exceSsumbers of solute molecules recorded at both the outer and
concentration—arises from the need to incorporate the difgyact scales, the difference

ferences, described above, existing between the coarse-

grained bulk concentration fiel¢representing the leading- def

order outer, or macroscale concentration fieldd the exact dWe=dW-dWP (67)
concentration field incorporating the wall effedise., the

leading-order composite solution of the singular perturbatiodn the numbers of solute molecules contained within the pill-
analysi3. In Sec. Il we saw that wall effects, as embodied inbox volume is assigned to that portion of the surface repre-
the wall-interaction potential, lead to a modification of thesented by the aredA This leads one to define the sur-
outer solution near the wall, thereby yielding the following face (-excess areal solute number density concentration
zero-order inner concentration distribution: field:

ewhereas at the exact scale the corresponding solute number
is

Po(x,y=6y)=P°%x,y=0)exd E.—E(})]. (63 def dwe 1-e
Pym M EEEOORETEDL O3 o im g =im [ ayPocyia) - POyl
s—0 A 5 .0J0
The uniformly valid composite solution thereby obtained is (68



6892 HOWARD BRENNER AND VENKAT GANESAN PRE 61

The coarse-scale continuum fighdx) is loosely interpreted where, from Fick’s law, applicable at the outer scale,
as representing the number of adsorbed solute molecules per
unit area at the pointx, 2 on the wally=0, although, of
course, it represents thexcessnumber. Upon introducing

Eq. (64) into Eg. (68) we obtain

IPO(x,y)

Jg(ny):_Dm IX

(71

In contrast, the comparable exact solute transport rate is
p(x)=HP°(x,y=0), given by
(69)
H= 80~ dy{exp[Ex—E(y)] — 1}=const. 1-¢
dN=dzJ dy J(X,y;6). (72
Note that in the upper integration limit we have replaced 0
V=(1—€)/ 6 by » as a consequence of the smallness of the )
parameters, coupled with the fact that=O( ). Anal_ogous to the union of Eq$63) ar_1d (64), to terms of
The last equation constitutes a Henry’s law equilibriumdominant order inS we have the following composite expan-
adsorption relatiorfwith H the Henry’s law constantlin-  Sion for the parallel solute flux component:
early relating the surfa¢eexcessconcentration fielgp(x) to L
the bulk concentration fiel@°(x,y=0) existing at the wall. Je(X,y: 8) =TAxY) +I3(X,y) — I (x,y=0)+O(¥),
Our derivation of this relation elucidates the origin of the (73
concept of surface concentration. In particular, it clearly. )
demonstrates that the notions of adsorption and surface cofft Which
centration arise not from the literal presence of molecules
(Brownian particleg affixed to, or even in proximity to, the
surface in amabsolutesense(i.e., independently of), but
only in a relative sense[59]. Explicitly, such surface con-
cepts are attributable to the very different physical data imBy similar arguments to those enunciated in the preceding
plicitly embedded in the outer and inner fields. This examplesubsection, the difference
again illustrates the fundamental differences existing be-
tween the fine-scale molecular-dynamic-like viewpoint and def
the coarse-scale continuum-mechanical viewpoint. Explic- dNS=dN—dN° (75
itly, conditions at a boundaryas discerned by fine-scale
simulations, are not to be construedtamindary conditions in solute transport rates across the sidewall is assigned to the
to be imposed at the macroscale. The next subsection likesurfacé-excesslineal diffusion flux density of absorbed sol-
wise illustrates the physical origin of the similar concept ofute “along the wall,” defined as
surfacég-excess diffusion.

IPO(x,Y)

J(x3)==Dy(y) — (74

def NS o
B. Surface diffusion )= lim = E5fo dY[I3(x.3) = J(x.y=0)].
Since in our model the individual Brownian solute mol- (76)
ecules were assumed to be immobile at the wall, as implicitly
stated in Eq(20) or (21), one might naively expect the “sur- The above formula can be written in terms of the surface
face flux” of solute to be zero, and hence surface diffusion toconcentration and a phenomenological surface diffusivity as

be absent. Indeed, were one to regard surface transport as

involving the movement of molecules literally in contact . dp

with and translating along the wall, the very concept of sur- Ix=~ Dsa= (77)
face diffusion would be aon sequitur Despite the seeming

plausibility of this vanishing-surface-flux argument, it is nev-\hereDy is the surface diffusivity:

ertheless invalid, a fact that is illustrated in what follows.

Our basic arguments parallel those introduced in the preced- J5dyDy(¥){exdE..—E(Y)]—1}

ing subsection in connection with the more elementary con- D= = = =const. (79
cept of surface concentration. Explicitly, what is termed Jodyiexd E..—E(¥)] -1}

“surface transport” originates from the difference in the net_l_h | i of relati ol furnish . fof th
solute fluxes(parallel to the wal)l through the sides of the _. e,ast pair orre atpn@ | furnis ' ana priori proot o t €
F|cks law—like constitutive equation for the surface diffu-

pillbox, respectively measured at the macro- and exact,.

scales, and subsequently assigned to the wall. S|o_|r1hflux ((.:f' also RfeE[Sﬁ]). f diffusion fl d
For purposes of illustration consider solute transport in e existence of both a surface diffusion flux and a sur-

the x direction through the left-hand side face of the differ- face concentration enables us to definestdace velocitpf

ential pillbox portrayed in Fig. 4. Viewed at the outer scale,the solute as
the time ratedN° of solute transport across this face in the

.. . . . . def ;
positive x direction is given by bS(x) = Jx . (79
1 p(x)

0 Equivalently, from Eq(77),

dN°=dzf ““dy 2(x.y), 70
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dInp(x) dInP%x,y=0) obtained[55,57,61 is analogous to the comparable equation
vy(x)= _DSTE_ H—gx (80)  for fluid-fluid interfaces, and in the context of our model is
given by
o . . dix o
As earlier implied, the existence of such a surface species ax =J,(x,y=0). (81)

velocity may seem paradoxical in view of the immobility of
the Brownian particles at the wall. Resolution of the apparen
contradiction resides in the essential fact that surface-exce
concepts, like surface concentration and surface diffusio
velocity, do not depend upon the exact volumetric solute ap
concentration or diffusion velocity fields existing at the wall —+V,j=3J-n, (82
y=0. Rather, these surface concepts are defined on the ot
coarser outer macroscale wherein wall-fluid interaction def
ﬁg\e/g:fhzgsgoi‘rﬁxﬁ".CI'“Y present. S“b"hdlj”‘zr?‘c“ﬁn effff‘s @here n points from the wall into the fluid, andv=
€SS IMp icitly present, embedded in the surface ar(-l —nn)-V is the surface gradient operator.
eal density fields. The latter now appear as coarseale
fields, introduced so as to rectify the disparity existing be- ) -~
tween quantitative predictions of the extensive aspects of the D General macrocontinuumL-scale boundary conditions
pertinent fields as discerned by the macroscale and exact Our analysis of the distinction between “conditions at a
observers. Indeed, in the elementary problem analyzed heggundary” and “boundary conditions” was based on the
we have encountered no less than four different solute velogarticular example of the two-dimensional diffusion cell
ity fields v, along the wall depending upon the scale of ob-(Fig. 1)—especially they* -independent nature of the reser-
servation and whether or not adsorption takes place. voir boundary conditions, Eqél3). This resulted in the clas-

(i) The exact(l@L)-scale solute species velocity at the sical one-dimensionay* -independent Fick’s law solution,
wall, vy(x,y=0;6), which in our model was identically zero Eq. (26), for the macrocontinuum volumetric solute concen-
(for all 6) due to the vanishing of the parallel diffusivity tration fieldP° [and ultimately, in the case of adsorption, the
componenD; at the wall. macrocontinuum surface-excess areal solute concentration

(i) The molecular tscale solute particle velocity at the field p, given in terms ofP°® by Eq. (69)]. However, with
wall, 79(x,y=0), which refers to the value of thezero- only little additional effort it is possible to derive results for
ordep inner velocity aty=0. For the same reason as(in  the wall boundary conditions of greater generality than those
this velocity too was zero. It is this velocity that we identify obtained for the specific example treated above. These re-
with that calculated from molecular dynamic simulati8s  sults, which are readily obtained by employing techniques

(iii) Thebulk L-scale solute species velocity at the wall in paralleling those already outlined, are briefly summarized
the absence of adsorption,?(x,y=0), which refers to the below.
value of the(zero-ordey outer velocity aty=0 for a nonad- In dimensionless form, the equation governing the gener-
sorptive potential-energy function. In our model this velocity ally unsteadyL-scale macrocontinuum fiel8°(x,y,z,t) is
is equal to— D..d In P%(x,0)/dx which, in view of Eq.(58), 0
iS nonzero. _ o £+V-J°=O, (83)

(iv) The surface l-scale solute species velocity in the at
presence of adsorption;(x), which arose from the defini- _
tion of the surface diffusion flux so as to account for theWith flux density
disparity in the total amounts of solute transported parallel to
the wall at the coarse-grained and exact levels of description.

In our model the value of this surface velocity is given by
Eq. (80) and is nonzero.

The correspondinghormal velocity components at the

wall are zero in each of the above four cases, although in the ( 0

This represents a special case of flgenerally unsteady-
%?ate) generic flux conservation relatid®7,62]

J°=-D,VPO. (84)

The (single scalar boundary condition imposed upon the
field P at a solid wall is

adsorption case this is true only for the special case wherg| ——p_y2p°
. . . . S's

the reservoir concentratiors; andP, appearing in Eq(18) at

are bothy-independent constants. In circumstances where ei- (85

ther is noty independent,];',(x,y=0) will prove to be non- . .
zero[cf. Eq.(81) below], whence the same will prove true of [cf. Eq.(82)], in which the constantsl andD are expressed

the comparable solute velocity component at the WaIIin terms of the prescribed three-dimensional phenomenologi-
0 ‘cal data by Eqs(69) and(78) (whereiny appearing in those

vy(x,y=0). expressions is to be replaced by the distame®rmal to the

wall). For the nonadsorptive case, whéte=0 (albeit to the

order of our approximation in the small paramdtér), Eq.

(85) properly reduces to the nonadsorptive boundary condi-

Details of the formal derivation of ggenerally unsteady tion,
surface transport equation are peripheral to the focus of this
paper, and will not be presented. The expression ultimately n-VP°=0 at the wall, n=0. (86)

+D,n-VP°=0 at the wall, n=0

C. Surface transport equation
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In the particular example of Fig. 1, with steady-statesufficient distance from the wall such that the wall interac-
y-independent reservoir conditions, the above equations posion forces with the fluid effectively vanish, thereby allowing
sess the elementary one-dimensional solution cited in Ecdfor a smooth matching with the outer-scale continuum fields.

(26) for both the nonadsorptive and adsorptive cases. Temporal and spatial evolution of these continuum-scale
fields can then be simulated by dealing directly with the
E. Discussion conventional phenomenological transport equations, pre-

) ) ) sumed to be applicable in the absence of wall effects. In this

This section has served to clarify the concepts of bothnanner one computationally simulates the formal matching
surface—exces; adsorpt|on. and su_rface—excess diffusion phﬁr‘ocedure required in the singular perturbation analysis.
nomena by using a Brownian particle/plane-wall model. Ex-gych simulations would, in principle, obviate the need for
plicitly, it was demonstrated that these surface notions do N5 tinuum-scale boundary conditions, auxiliary continuum-

possess any physical meaning at the exact and simulationliké .56 surface-excess fields and fluxes, and the like. The re-
levels of modeling. Rather, the interpretations to be ascribedyjting continuum scale distributions thereby obtained would
to them exist only at the next coarser so@erresponding to  hen display complete consistency with the molecular-level
the outer scale in our singular perturbation anajysibierein  |_gcale phenomena occurring near the wall, as well as with
these fields are assigned phenomenologically to the surfagge | -scale phenomena occurring far from the wall compared
so as to rectify the disparity existing between the prediction$yitn, molecular dimensions. We are aware of only a very few

of the exact and outer volumetric density fields. Hencegych studies that explicitly embody these hybrid procedures
simulations purporting to derive these quantities by direcfog 30.

probing of those molecules near to the wall will necessarily
give rise to erroneous macroscale conclusi@sept, pos-
sibly, in fortuitous circumstancgs V. SUMMARY

This contribution has reexamined the classical continuum-
mechanical concepts of “boundary conditions,” as well as

Previous portions of this paper have attempted to elucithe closely related issue of “surface fields,” in the context of
date a number of continuum-scale concepts, especially the simple model of molecular-scale phenomena. This model
molecular origin of boundary conditions and surface fieldsdealt with the purely diffusive transport of spherical Brown-
We have consistently criticized those molecular-level simudan solute particlegcolloidal “molecules”) dispersed in a
lations that claim to derive these quantities by direct probingriscous solvent bounded laterally by solid plane walls.
of the discrete molecular motions occurring near the boundPotential-energy wall-interaction forces were explicitly ac-
ing walls. More explicitly, we have pointed oqf) that the  counted for in the transport equations, as too were purely
physical interpretation of these notions at the continuumsteric hydrodynamic wall effects inhibiting the mobility of
mechanical scale differs fundamentally from the literalthe Brownian particles near the wall. While the validity of
physical interpretation ascribed to them at the statisticalsuch an elementary model for describing true molecular-
molecular scale; andi) that the fundamental differences be- scale phenomena might be questioned, simulations demon-
tween the two are to be explained in terms of the disparatstrating the validity of Stokes law at the molecular s¢&/g]
molecular and apparatus length scales implicit in the respedwherein similar questions might be raigddnd credibility
tive equations governing their behavior, coupled with theto our model, as well as to the accompanying physical rea-
fact that the limiting behavior of the pertinent fields is sin- soning.
gular in the “continuum limit,” where the ratio of these two Using this elementary transport model we clarified the
length scales goes to zero. Despite our criticism, it would bédundamental distinction existing between continuum-
erroneous to conclude that we believe molecular dynamicahechanical boundary conditions and the literal molecular-
simulations to be devoid of utility in continuum-mechanical scale statistical-mechanical conditions prevailing at a solid
contexts. Rather, molecular dynamics has a clearly definedall. We showed unequivocally that these two types of
complementary role to play in terms of those aspects of‘conditions” are, in general, completely different, possess-
continuum-level modeling that aim to go beyond purely phe-ing very different physical interpretations. Explicitly, we
nomenological approaches to transport phenomena. Sualsed singular perturbation analysis to argue formally that
modeling can be effected through hybrid computations, viz.continuum-scale boundary conditions represent the
those that jointly employ both molecular dynamic simula-asymptotic, outer limit of the more exact physical description
tions and continuum descriptions of the same physical phesf the transport processes, whereas the molecular-scale con-
nomena, each, however, in different spatial domains relativeitions prevailing at the wall embody the inner limit of the
to their respective distances from the wall. exact physics. In order to emphasize our fundamental con-

Computations of this nature closely reflect the spirit of thetention thatconditions at a boundary are not boundary con-
singular perturbation scheme outlined in Sec. Il. Explicitly, ditionswe coined the phrase “molecular wall effects.” This
in hybrid computations, molecular-level simulations are em-phraseology was meant to direct attention to the existence of
ployed near the wall, wherein the effect of the moleculara molecular analog of hydrodynamic wall effects. At the
forces is explicitly simulated by using a Langevin equationsame time, just as the diminished mobility of those non-
(or some alternative variation thergohcorporating the wall  Brownian spheres in a neutrally buoyant suspension that are
forces directly into the simulations. Such computations areeither in direct contact with, or closely proximate to, its
then matchedat an average levebnto the continuum-scale bounding surfaces is irrelevant to the gross rheological prop-
fields in an overlap region. The latter domain is situated at @rties of the flowing suspension, so too is the comparable

IV. HYBRID COMPUTATIONS
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immobility of molecules proximate to solid boundaries irrel- respectively, of an adsorbed species at the wall. Rather, they
evant to the gross rheological properties of homogeneouarise from the need to rectify the disparity existing between
fluids composed of these molecules. As such, we are of thtéhe spatial domains of validity of the macroscale continuum
opinion that the molecular dynamic simulatip?] claiming  phenomendwhich do not quantify the correct physics near
to demonstrate the validity of the classical no-glgnvective  the wall owing to their failure to embods-f forceg and the
boundary condition for homogeneous viscous fluids is spuriwall-scale physics.
ous, amounting instead to a demonstration of the existence of
molecular wall effects, rather than constituting a valid com-
putational “proof” of the macroscale adherence condition.
Our analysis also clarified the basic physical principles This work was supported by the Office of Basic Energy
underlying adsorption concepts, such as surface concentr&ciences of the U.S. Department of Energy, as well as by the
tion and surface diffusion, as being dependent upon the scaMathematical, Information and Computational Sciences Di-
of observation of the phenomena in relation to the effectivevision within the Office of Computational and Technology
length scale of the molecular forces. It was argued that thesResearch of the Office of Energy Research of the D.O.E. We
surface fields do not, in a literal physical sense, represerdre grateful to Professor R. Jackson and Professor R. F.
either the true areal surface density or the surface velocitySekerka for valuable discussions and encouragement.
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