
PHYSICAL REVIEW E JUNE 2000VOLUME 61, NUMBER 6
Molecular wall effects: Are conditions at a boundary ‘‘boundary conditions’’?
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Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307

~Received 21 December 1999!

This paper addresses and answers ‘‘no’’ to the question of whether the literal molecular-dynamically-derived
species velocities prevailing at a solid surface bounding a two-component fluid continuum undergoing mo-
lecular diffusion constitute the appropriate species-velocity boundary conditions to be imposed upon the fluid
continuum. In a broader context, generic boundary condition issues arising from the presence of different
length scales in continuum-mechanical descriptions of physical phenomena are clarified. This is achieved by
analyzing a model problem involving the steady-state diffusion of a dilute system of Brownian spheres~the
latter envisioned as tractable models of solute ‘‘molecules’’! through a quiescent viscous solvent continuum
bounded laterally by solid plane walls. Both physicochemical~potential energy! and hydrodynamic~steric!
wall interaction effects experienced by the Brownian spheres are explicitly accounted for in our refined,
microscale continuum model of the diffusion process. Inclusion of these ‘‘solid-wall–fluid’’~s-f! boundary-
generated forces@above and beyond the usual ‘‘fluid-fluid’’~f-f ! intermolecular forces implicit in the conven-
tional Fick’s law macroscale continuum description# serves to simulate the comparables-f molecular boundary
forces modeled in molecular dynamics simulations of the diffusional process. A singular perturbation frame-
work is used to clarify the physical interpretation to be ascribed to ‘‘continuum-mechanical boundary condi-
tions.’’ In this same spirit we also clearly identify the origin of the physical concept of a ‘‘surface field’’ as
well as of the concomitant surface transport conservation equation for strongly adsorbed species at solid walls.
Our analysis of such surface phenomena serves to emphasize the fact that these are asymptotic, surface-excess,
macroscale conceptsassignedto a surface, rather than representing literal molecular material entities physi-
cally confined to the surface. Overall, this paper serves to illustrate the manner in which molecular simulations
need to account for these different length scales and corresponding scale-dependent concepts if such analyses
are to avoid drawing incorrect inferences regarding the molecular origins of continuum-mechanical boundary
conditions.

PACS number~s!: 68.45.Da, 46.15.Ff, 05.40.Jc
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I. INTRODUCTION

A number of studies have appeared recently purportin
derive the boundary conditions to be imposed up
continuum-mechanical equations via ‘‘exact’’ molecular d
namics simulations of the appropriate physical scenario~see,
for instance, @1–4#!. Typically, such simulations involve
computing the trajectories of molecules based upon
Langevin-type description of the molecular motion. Duri
such calculations one computes the mean molecular mo
averaged over a few molecular diameters near the ‘‘wa
~the solid wall being modeled in the simulations by a set
fixed lattice points interacting via potential-energy forc
with the fluid molecules! to draw conclusions regarding th
boundary conditions to be imposed at the wall upon
continuum-mechanical equations describing the trans
phenomena.

At a continuum scale, however, one expects the bound
conditions to be explicitly dependent upon the particu
continuum equation that purports to quantify the physi
phenomenon being modeled. For instance, while the no-
condition for pure fluids is a well-accepted boundary con
tion for viscous continua, it is also well known that an invi
cid fluid continuum model cannot, on purely mathemati
grounds, satisfy such avector velocity boundary condition
@5#. Thus, any statement regarding the boundary conditi
derived by molecular dynamic simulations must logically
accompanied by an unequivocal elucidation of the expl
PRE 611063-651X/2000/61~6!/6879~19!/$15.00
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continuum equation to which such boundary conditions
intended to apply. It is quite clear, however, that despite
fact that molecular dynamics approaches can possibly y
detailed information about the exact statistical behavior
those fluid molecules moving in close proximity to a wa
such simulations cannot~at least to our knowledge! furnish
the continuum equations themselves. Consequently, w
the actual physical conditions prevailing at the bound
might, in fact, accurately accord with the inferences dra
from molecular dynamic simulations, such conclusions qu
tifying the literal ‘‘conditions at a boundary’’ are useless
the role of ‘‘boundary conditions’’ due to ignorance of th
continuum-mechanical equations to which they are mean
apply. As such, it is necessary to clearly distinguish ‘‘con
tions at a boundary’’ from ‘‘boundary conditions.’’

For instance, in a recent article@3# it is claimed that the
boundary condition accompanying the convective-diffus
transport of a binary fluid mixture is one that demands t
the vectorvelocities of both species individually satisfy no
slip conditions at the wall. This so-called ‘‘boundary cond
tion’’ was derived by an exact simulation of the motion
molecules near the wall. For the purely diffusive case, wh
convection is absent, it is obvious that this boundary con
tion contradicts Fick’s law of molecular diffusion@6#, at least
in its usually accepted form—which excludes ‘‘externa
forces and assumes the diffusion coefficient to be posi
independent. It might, however, be argued that Fick’s law
unlikely to be valid near the wall, where strong gradients d
6879 ©2000 The American Physical Society



r
sl
n
-

-
e
rt
u
th
n
r

be
dg

re
d
n
u
m
i-
i
n

n
w
l

u
en
di
r

ng
ua
p

r
ts
b
-

te

ti-
s
as
m

e

c
tl
ss
s
e

tin
d

o

-

r or
ity
r-

u-
be
in a
ical
ate,
n is
e
ests
u-

on
-
le
ory
d-
ale
ary

ter
ntal

in-
ini-

l-

id;

the

the
s

eir

o-

n-
of

x-

or,
he

o-
ed
will

d-
con-

6880 PRE 61HOWARD BRENNER AND VENKAT GANESAN
to solid-wall–fluid~s-f! interaction forces are likely to occu
@7#. In such a case one might further argue that the no-
species boundary condition needs to be applied to a refi
microscale form of Fick’s law, one which embodies ‘‘mo
lecular wall effects’’—allowing for the variation of molecu
lar diffusivity with distance from the wall as well as for th
existence of short-range attractive or repulsive forces exe
on the fluid molecules by the wall. However, reiterating o
earlier remarks, in the absence of information regarding
explicit form of this refined continuum-mechanical equatio
the utility of such ‘‘exact’’ knowledge of the molecula
‘‘conditions at the boundary’’ is greatly diminished.

In the particular quiescent binary diffusion case to
studied in this paper, the fact that such exact knowle
~derived from simulations! is consistent with the known
continuum-mechanical equations reinforces our claim
garding the inapplicability of the literal, molecularly derive
conditions at the wall serving the role of boundary conditio
to be imposed on the conventional macroscale continu
equations quantifying the phenomenon. Indeed, in so
cases, such ‘‘molecular wall effects’’ might furnish cond
tions at the boundary that appear superficially consistent w
the accepted continuum-mechanical boundary conditio
thereby leading to claims of having furnished amolecular
‘‘proof’’ of the appropriate continuum boundary conditio
~as in the case where the above-mentioned authors deal
the single-component fluid case@2#—namely, the classica
no-slip fluid-mechanical boundary condition!.

Paralleling the issues addressed in this paper, altho
only peripheral to our scaling argument context, is an ext
sive body of research concerned with the possibility of in
vidual component ‘‘slip’’ occurring at solid boundaries fo
situations involving binary diffusion processes occurri
among miscible species—typically gases—whose individ
mass densities are unequal. This literature includes com
hensive reviews by Noever@8# and Jackson@9#. The latter
deals at length with the original gaseous diffusion expe
ments of Graham@10#, as well as with pertinent experimen
by many others, including the comprehensive study
Kramers and Kistemaker@11#. An equally expansive theoret
ical @8,9,12–14# and simulation~@1,15#! literature exists on
the topic, to cite only a few references thereto, and da
back as far as Maxwell@16#. Diffusion occurring in such
systems, wherein gradients“r exist in the local total mass
densityr, necessarily induces a local convective velocityv
~@12–14#!, as is immediately evident from the overall con
nuity equation,]r/]t1“•(rv)50. In contrast, our paper i
concerned exclusively with situations wherein the total m
density is constant in both space and time. In such circu
stances the ensuing diffusional process cannot give ris
convection, whence the fluid-mechanical velocityv is every-
where zero, including, of course, at the boundaries. As su
although this nonuniform density literature independen
raises interesting questions regarding the fundamental i
of slip vs nonslip boundary conditions in diffusing system
it does so in a context wholly different from that of th
present paper. Even apart from the major distinction exis
between compressible vs incompressible fluids, those stu
do not deal with the issue of length scales@17#, the central
theme of the present study, in distinguishing between m
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lecular ‘‘conditions at a boundary’’ and continuum ‘‘bound
ary conditions.’’

A. Philosophy

The explicit question addressed in this paper is whethe
not the literal statistical-mechanical mean species-veloc
fields existing at a boundary between a ‘‘smooth’’ solid su
face and a fluid~as determined by molecular dynamic sim
lations! constitute the appropriate boundary conditions to
imposed on the comparable continuum fields appearing
conventional transport equation description of the phys
phenomenon. By using a particular example we demonstr
at least in this one instance, that the answer to this questio
‘‘no.’’ This specific counterexample to what might otherwis
seem a self-evident molecular dynamics inference sugg
the need for caution in interpreting the results of such sim
lations in other contexts too. Using singular perturbati
methods we demonstrate~albeit in the context of the elemen
tary physical situation embodied in our illustrative examp!
that the fundamental source of the seemingly contradict
conclusion that ‘‘conditions at a boundary’’ are not ‘‘boun
ary conditions’’ lies in the disparity between the length sc
l of the intermolecular forces appearing in the near-bound
simulation and the macroscopic length scaleL characterizing
the continuum physical phenomenon. Typically, the lat
scale corresponds to a linear dimension of the experime
apparatus normal to the wall.

Molecular dynamic modeling of physical phenomena
volving fluid-solid boundaries needs to address, at a m
mum, at least different three length scales:~i! the length
scalel f f of the fluid-fluid interactions between the fluid mo
ecules@18#; ~ii ! the length scalel s f of the interactions be-
tween the molecules of the solid wall and those of the flu
and~iii ! the macroscopic length scaleL ~normal to the solid
wall! of the physical apparatus within whose boundaries
simulations are intended to apply.~Typically, L would be
either the distance between two planar walls bounding
fluid laterally on either side of a fluid-filled gap, or the radiu
of a circular tube containing the fluid.! In most circum-
stances the two molecular length scalesl f f and l s f will be
comparable in magnitude, in which case we will denote th
common magnitude by the single symboll : $ l f f ,l s f%[ l
@19#.

The fundamental difference between the latter interm
lecular length scalel and the apparatus length scaleL is that
the former is intrinsic to the physicochemical molecular co
stitutions of the solid wall and fluid phases, independently
the dimensionL of the apparatus in which the transport e
periment is being conducted. In contrast, the length scaleL is
an extrinsic variable under the control of the investigat
independently of the molecular constitution of either t
solid or fluid phases. An ‘‘exact’’ (l % L)-scale model of the
physics quantifying the whole system—either exact in a m
lecular dynamics sense or exact in a refin
microcontinuum-mechanical sense to be discussed—
necessarily embody both the intermolecularf-f ands-f length
scalesl, as well as the apparatus length scaleL. As such, the
literal molecular dynamic conditions prevailing at the boun
aries of the system would be the same as the boundary
ditions satisfied by this refined (l % L)-microscale continuum
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model, whence no distinction would exist between the tw
The differential equations quantifying conventional ma

roscale continuum-mechanical models, applicable on
length scaleL, while implicitly embodying the intermolecu
lar f-f forces, do not incorporate the effects of thes-f forces—
either explicitly or implicitly. This is evident from the fac
that the constitutive relations@20# that enter into classica
continuum-mechanical formulations are concerned only w
the f-f aspect of the problem. As such, these conventio
macroscale descriptions of the physical phenomena fa
embody the correct physics in regions of thicknessO( l ) near
the wall, where thes-f forces are of at least equal importan
to thef-f forces.~Indeed, thes-f forces in that region may be
dominant over thef-f forces, as, for example, in the case
‘‘adsorption’’ phenomena—see Sec. III.!

It is precisely because of this failure to incorporates-f
forces that one needs to supplement conventionalL-scale
macrocontinuum equations with appropriateL-scale ‘‘bound-
ary conditions’’@21#. However, even when supplemented
this manner, such continuum-mechanical descriptions stil
not represent the correct~i.e., molecularly derived! physics
in the neighborhood of the boundaries, namely, at distan
from the boundary ofO( l ). The simple reason for this fail
ure is that macroscale continuum-mechanical descript
are generally incapable of resolving phenomena on mole
lar length scales. Only ‘‘exact’’ (l % L)-scale descriptions
namely, those microcontinuum or molecular dynamic d
scriptions that properly embody physical phenomena oc
ring on all length scales betweenl and L, are capable of
encapsulating the exact physics@22#. At best, by invoking an
appropriate boundary condition, the solution of the conv
tional f-f continuum-mechanical equations satisfying th
boundary condition will nevertheless only beasymptotically
equivalentto the exact solution in a singular perturbatio
sense, but not in a truly equivalent physical sense as reg
fine-scale behavior near the boundaries. No singleL-scale
boundary condition can ever fully compensate for the loss
detailedl-scale physical molecular information about thes-f
~or possibly even thes-s! interactions implicit in such a
coarse-scale description.

Because of limitations imposed by currently availab
computational resources, contemporary molecular dyna
simulations are capable of addressing only those situat
for which the apparatus length scaleL is of the same order o
magnitude asl. This is evident from the fact that in suc
simulations@1–4# distances normal to the boundary are
variably rendered dimensionless with intermolecular d
tancesl. By doing so, such simulations implicitly limit them
selves to situations in whichl /L5O(1). In contrast,
conventional macrocontinuum-mechanical descriptions
transport phenomena apply only in circumstances wh
l /L!1. It is because of the wide disparity between these
regimes, coupled with the generally singular nature of p
turbation solutions of the exact (l % L)-microscale problems
in the limit of l /L→0, that molecular dynamic calculation
of the conditions at a boundary do not bear a one-to-
correspondence with the boundary conditions to be impo
on conventionalf-f continuum models of the phenomen
except perhaps fortuitously~as we believe to be the case f
the classical no-slip fluid-mechanical velocity boundary co
dition for single-component systems@2#!. Stated explicitly,
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the correct limiting behavior of the pertinent fields proxima
to solid boundaries cannot be obtained by effectively sett
L5` at the outset of the calculations and subsequently
cusing exclusively on thel-scale behavior.

In the generic terminology of singular perturbation theo
@23–28#, and in relation to the magnitude of the small pe
turbation parameterl /L5d, say, current molecular dynami
simulations of phenomena occurring near boundaries furn
the numerical equivalents of the leading-order~zero-order!
‘‘inner’’ or boundary-layer-like fields, where distances no
mal to the boundary are scaled withl. In contrast, conven-
tional continuum equations furnish only the correspond
~zero-order! ‘‘outer’’ or bulk fields, where distances norma
to the boundary are scaled withL. In the usual way with such
singular perturbation analyses, the requisite asympt
matching conditions between these two asymptotic limit
fields in the limit d→0 serve to furnish the appropriat
boundary conditions to be imposed on the outer fields. An
is precisely because this boundary condition is an asympt
matchingcondition, rather than aliteral condition prevailing
at the actual physical solid-fluid boundary, that current m
lecular dynamics simulations furnish conditions at a bou
ary that are generally inconsistent with convention
continuum-mechanical boundary conditions. On the ot
hand, were such simulations ever to reach the stage w
they were computationally capable of dealing with thel /L
!1 case, rather than being limited to thel /L5O(1) case,
the potential inconsistency would presumably disappear
such circumstances, in order to capture the underlying ph
ics ~albeit ‘‘far’’ from boundaries in terms of the length sca
l!, one would no longer require conventionalf-f macroscale
continuum-mechanical descriptions of the phenomena,
gether with their concomitant need for constitutive equ
tions, phenomenological coefficients, and macroscale bou
ary conditions. However, that day appears to lie far in
future. And even then, it is difficult to imagine a scenario
which continuum mechanics would no longer prove use
for at least qualitatively interpreting the gross behavior
complex fluid-mechanical phenomena. Moreover, mov
beyond zero-order macroscale descriptions, first-order
rections to these classical zero-order results should be ab
furnish systematic tools for rationally analyzing situatio
from a continuum viewpoint, in which terms of orderl /L,
though small, are nevertheless sufficiently sensible to req
an accounting in quantifying the basic physics.

In the short term, ‘‘hybrid’’ computations@29,30#—which
combine both discrete molecular and continuum-mechan
approaches, albeit in anad hocmanner—appear to offer th
best hope for reconciling molecular dynamics with co
tinuum mechanics.

B. Outline

The following sections address a simple physical pro
lem, namely, the nonconvective transport of noninteract
Brownian particles diffusing through an otherwise quiesc
viscous liquid bounded laterally by a pair of solid plan
walls. In an attempt to mirror the main moleculars-f wall
physics via a continuum model, we explicitly incorporate t
physicochemical and hydrodynamical interaction forces
curring between the solid wall and the binary fluid syste
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into an (l % L)-scale microcontinuum-mechanical constit
tive equation for the solute flux which embodies seve
simple refinements of the conventionalL-scale macrocon-
tinuum Fick’s law flux relation.

The physically plausible constitutive form adopted f
this ‘‘exact’’ microscale model is designed to mirror the e
sential l-scale features implicitly present in the molecu
dynamics description@3# of the near-wall diffusion phenom
ena, particularly the vanishing of the individual species s
ute and solvent component velocities along the wall, and
existence of short-range steric repulsive forces occasione
the impenetrability of the wall. At the same time, this mod
faithfully reproduces classicalL-scale, Fick’s law behavior
‘‘far’’ from the wall—namely, at distances large compare
with l. This exact, (l % L)-scale microcontinuum model i
then used to illustrate a fundamental macrocontinuu
mechanical concept that—though implicitly assumed in
analyses—is rarely, if ever, explicitly stated. This relates
the issue of the~macroscale! boundary conditions to be im
posed on the conventional Fick’s lawL-scale continuum de
scription. Explicitly, the existence of the microscale mod
serves to initiate a formal singular perturbation scheme
identify appropriate innerl-scale and outerL-scale expan-
sions, in addition to identifying the spatial region relative
the walls within which conventional continuum-mechanic
equations would be expected to apply. Further, we also
tablish the boundary conditions applicable to this class
Fick’s law description of the diffusional process. In partic
lar, such boundary conditions are shown to arise from
requisite asymptoticd→0 matching condition between th
respective inner limit of the outer fields and the outer limit
the inner fields.

This singular perturbation approach underlies
continuum-mechanical interpretations of macroscale bou
ary conditions@31–33#. We argue that any approach th
fails to address the presence within the underlying physic
the two disparate length scalesl and L will, except for for-
tuitous circumstances, necessarily fail to furnish the corr
L-scale boundary conditions. In a later section we brie
consider a closely related issue which is also pur
asymptotic in nature, namely, the concepts of surface-ex
fields and concomitant surface-excess transport proce
arising from preferential ‘‘adsorption’’ of the solute at th
wall relative to the solvent. The existence of this addition
surface feature serves to further reinforce our generic a
ments about the current limitations of molecular dynam
simulations. During the course of this adsorption analysis
identify the origins of such surface~more properly termed
‘‘surface-excess’’! phenomena as again arising from the e
istence of different length scales, in this case the large
parity existing in the magnitudes of the respective solute
solvents-f forces@characterized, say, by the respective len
scales (l s f)solute and (l s f)solvent# exerted by the wall on the
two different molecular species comprising the binary flu
continuum. We argue that these surface-excess concept
not purely molecular scale in origin~i.e., purely inner-scale
conceptions!. Rather, they are strictly macroscale notion
arising from the need to account for the slack existing
tween the outer~continuum-mechanical! L-scale and the ex
act (l % L)-scale descriptions of the physical phenomena.
point out the existence of paradoxes arising when one e
l
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neously attempts to construe these surface adsorption
nomena as being purely molecular,l scale, near-wall con-
cepts. These paradoxes are eventually resolved
considering the issue of the very different length scales
volved. Their resolution further serves to clarify the origi
of surface fields as arising from the fundamental scal
issue—whereby the ‘‘strength’’ of the adsorptive wa
interaction forces is shown to be a relative rather than ab
lute concept. That is, all other things being equal, the ext
of the adsorption depends upon the dimensionL of the con-
tainer within which the adsorption process occurs, excep
the asymptotic limitl /L→0. It is only in the latter case tha
the phenomenon of adsorption becomes an intrinsic phys
chemical property, attributable solely to the molecular-le
interactions between the wall, solute, and solvent.

II. WALL EFFECTS ON BINARY DIFFUSION

A. Problem description

As in Fig. 1, we consider a steady-state diffusional p
cess occurring within a diffusion cell, arising from a pr
scribed solute concentration difference maintained betw
the two ends the cell. The cell~whose lower half is shown in
Fig. 1! consists of~i! two smooth plane parallel walls sepa
rated by a distance 2Ly in they* direction, which bound the
fluid laterally; and ~ii ! a pair of solute/solvent reservoir
separated by a distanceLx , which bound the fluid longitudi-
nally. We suppose in what follows that 2Ly;O(Lx), so that
the single symbolL[Ly can be used to characterize th
length scale of the entire apparatus. The fluid housed wi
the cell consists of a mobile binary system composed o
dilute suspension of~colloidally and hydrodynamically! non-
interacting, neutrally buoyant, rigid Brownian spheres~sol-
ute ‘‘molecules’’! of radiusa dispersed in an incompressib
viscous Newtonian fluid continuum~the solvent! of viscosity
m. The purely fluid~f-f ! portion of the system is assumed
be thermodynamically ‘‘ideal.’’ By virtue of the geometri
symmetry of the parallel wall system, coupled with the fin
size of the Brownian spheres, it suffices to limit attention
the rangeLy.y* >a as regards the spatial distribution of th
~centers of the! Brownian particles.

The microscale constitutive model equation ultimate
adopted for the exact solute flux incorporates thes-f wall-
fluid interaction effects on the transport of those solute m
ecules moving in proximity to the walls, as well as displa
ing classical f-f fluid behavior far from the walls. This
introduces two disparate length scales into the problem, v

FIG. 1. Depiction of the lower half of the diffusion cell~not
drawn to scale!. Lx and 2Ly represent the length and width of th
cell, respectively, in thex and y* directions. Also shown is a
Brownian sphere of radiusa.
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the molecular rangel of the wall interaction forces, and th
apparatus length scaleL. We then elaborate the singular pe
turbation scheme that arises from the incongruity of th
two length scales. Elucidation of the requisite matching c
ditions between these will be shown formally to furnish t
macroscale boundary conditions to be imposed on the ou
Fick’s law–level diffusion equation governing the macr
scale solute transport process.

As pointed out in the Introduction, convention
continuum-mechanical transport equations~whether derived
by statistical-mechanical arguments@34# or simply postu-
lated on the basis of macroscopic conservation principles
gether with appropriate constitutive models! generally em-
body only f-f forces, and implicitly entail the assumption o
only relatively weak inhomogeneities in the physical field
As such, this continuum description does not include
steep species gradient effects encountered near the wall,
ing from thes-f interactions. Indeed, for a given fluid, suc
interactions may depend quantitatively upon the spec
physicochemical constitution of the wall itself, as occurs
the case of adsorption phenomena. Explicit incorporation
these ‘‘molecular wall effects’’ requires refining the classic
Fick’s law description of the diffusional process so as
explicitly take account of theses-f forces. In this context we
use a simple embellishment of Fick’s law to model the tra
port of the Brownian molecules, which are subject to bo
steric hydrodynamic wall effects and potential-energy w
interaction forces. This microscale refinement~i! explicitly
introduces a potential whose gradient represents the phy
chemical interaction force between the wall and a Brown
solute particle; and~ii ! incorporates a position-dependent a
transversely isotropic diffusivity tensorD ~in place of the
usual position-independent and isotropic Stokes-Einstein
fusivity D`5kT/6pma!, one whose components normal a
parallel to the wall depend upon the distancey* of the center
of the Brownian sphere from the wall@35#. Both of these two
wall-induced modifications are regarded as arising froms-f-
type forces, inasmuch as each originates from an interac
between the solid wall and the Brownian solute molecu
The conventionalf-f Fick’s law description does not incor
porate such forces into its formulation.

The wall-interaction potential, denoted byE ~the latter
representing the physical potential rendered dimension
with kT!, is assumed to vary only in a direction normal to t
wall, and to asymptotically attain a constant limiting val
E` at distances from the wall that are large compared w
molecular dimensions. Explicitly,

E~y* !→E`5const ~y* @ l !. ~1!

This potential-energy function is characterized by a mole
lar length scalel; that is, E or, more precisely,E2E` , is
sensible only in the regiony* 5O( l ). As such,E is func-
tionally of the form E[E(y* / l ). Typical potential-energy
profiles for both adsorbing and nonadsorbing solute m
ecules are illustrated in Fig. 2. Subsequent discussion, h
ever, eschews the need for choosing any explicit functio
form for the potential-energy function.

Based on the above physical description, we model
macroscopically steady transport of the diffusing Brown
particles using a Smoluchowski framework@36#:
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“•J50, ~2!

in which J denotes the flux density of the Brownian particl
relative to the fixed walls. This flux is assumed to possess
constitutive form

J52D•“P1M•FP, ~3!

where P[P(x,y* ) denotes the probability density for th
center of a Brownian particle to be situated at the po
(x,y* ). The field P is equivalent to a corresponding volu
metric solute number density concentration field on the
sumption that the system is sufficiently dilute so as to beh
ideally in a physicochemical sense, in which circumstan
the number density and probability density may be used
terchangeably, modulo a normalization factor. In the abo
D andM respectively denote the tensor diffusivity and m
bility of a diffusing Brownian particle. The vector force fiel
F[F(y* ) ŷ, with F52kT dE/dy* and ŷ a unit vector in
the y* direction, represents the interaction potential-ene
force exerted by the wall on a Brownian sphere whose ce
lies at a distancey* from the wall.

The diffusivity and mobility of the Brownian sphere
have been assumed to be tensorial in nature rather than s
so as to quantify the anisotropy arising from the proximity
a sphere to the plane wall@37#. We suppose, based upon th
geometric symmetry of the sphere–plane-wall configurati
requiring these tensors to be transversely isotropic with
gard to the direction normal to the wall, that

D5D i@~y* 2a!/a# x̂x̂1D'@~y* 2a!/a# ŷŷ, ~4!

and

FIG. 2. Typical potential-energy profiles experienced by t
Brownian sphere, illustrating~i! the short-range impenetrability o
the wall to the rigid sphere;~ii ! the asymptotic limitE` ~presum-
ably achieved well before the sphere center reaches the midp
between the two walls!; ~iii ! the essentially monotonic approach
the potential to its limiting value in the absence of solute adso
tion; and ~iv! the existence of a potential-energy minimumEm in
circumstances where solute adsorption occurs. As discusse
Shapiro, Brenner, and Guell@58# @see also Eq.~69!#, the subsequen
theory requires that the integral*a

`dy* $exp@E`2E(y* )#21% be con-
vergent. The nonadsorbing case arises when the nature of
potential-energy function is such that the above integral is ofO( l ),
whereas adsorption occurs when the integral is ofO(L).
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M5M i@~y* 2a!/a# x̂x̂1M'@~y* 2a!/a# ŷŷ. ~5!

The arguments of the latter pair of expressions explic
indicate the functional dependence ofD and M upon the
distancey* 2a of the closest point on the Brownian sphe
from the wall @38#. Since wall effects become negligible fa
from the wall~s!, the following asymptotic behavior prevails

D i ,D'→D`5const ~y* @a!. ~6!

Furthermore, in view of the Nernst-Planck relationship ex
ing between the diffusivity and mobility tensors, name
@39,40#,

D5kTM , ~7!

similar asymptotic behavior also holds forM i andM' .
Based upon hydrodynamical considerations involving

singular nature of the hydrodynamic lubrication forces fo
spherical particle in contact with a solid plane wall@37#,
requiring thatM50 at y* 5a, we have that@41#

D i ,D'→0 for y* 2a→0. ~8!

This property requires that a Brownian particle be diffusio
ally immobile when in contact with the wall despite the e
istence of a macroscopic solute concentration gradient in
x direction for ally* , including the ‘‘wall,’’ y* 5a. Use of
the above limiting property in Eq.~3! yields

J~x,y* 5a!50. ~9!

The generic relations between the solute diffusion fluxJ
and the solute species velocityv ~not to be confused with the
fluid-mechanical velocity, which is zero in the present c
cumstances! is J5Pv @42#. Accordingly, sinceP is necessar-
ily everywhere finite, the preceding equation requires t
@43#

v~x,y* 5a!50. ~10!

The latter species-specific, no-slip, exact (l % L)-scale condi-
tion at the boundary is identical with thel-scale species
velocity ‘‘boundary condition’’~so called! proposed in a re-
cent molecular dynamics study of transport in bina
convective-diffusive systems@3#. However, we argue below
that the above exact condition, which arises froms-f forces
~and hence should be construed as a ‘‘wall effect’’!, does
not, in fact, constitute the appropriate species-specific bou
ary condition to be imposed on the conventionalL scale
Fick’s law formulation of the solute diffusion problem
which addresses onlyf-f forces. Rather, the appropriate ma
roscale boundary condition is eventually to be determined
an asymptoticmatching conditionimposed upon the classica
Fick’s law macrocontinuum equation—the so-called ou
equation—so as to enable a smooth interpolation with
l-scale inner equation~the latter includings-f forces!.

This program underlines our main objective in this p
ticular example, namely, that of illustrating the singular co
sequences arising from the existence of disparate scale
casioned by the presence of the bounding walls. Numer
simulations adjoining the wall probe only the physics of t
‘‘inner’’ region, y* 5O( l ). In contrast, conventiona
continuum-mechanical equations are valid only in regions
y

-
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removed far from the boundaries, namely, only in t
‘‘outer’’ region, y* 5O(L), and there constitute the so
called outer equations. In the following, we utilize singul
perturbation techniques to explicitly identify the existen
and location of these two distinct regions, as well as to
tablish the pertinent transport equations and boundary co
tions appropriate to each.

B. Nondimensionalization

Utilizing the above data regarding the constitutive form
of the various quantities appearing in Eq.~3!, Eq.~2! reduces
to

D i

]2P

]x2 1
]

]y FD'S ]P

]y
1P

dE

dyD G50. ~11!

The latter represents a steady-state microscale diffu
equation, one which explicitly and exactly incorporates all
the (l % L)-scale continuum-levelf-f ands-f interactions in a
simple, albeit physically plausible, manner@44#. This equa-
tion is to be supplemented by the no-normal-flux bound
condition,Jy(x,y* 5a)50, arising from the impermeability
of the wall to solute transport. Equivalently, we require th

D'S ]P

]y*
1P

dE

dy* D50 at y* 5a ~;x!, ~12!

together with the prescribed uniform solute concentratio
maintained at the two ends of the cell:

P~x50,y* !5P15const;
~13!

P~x5Lx ,y* !5P25const ;~Ly.y* .a!.

It will prove convenient to work henceforth with dimen
sionless equations. This nondimensionalization is effecte
follows. Imagine that each of the independent and depend
variables appearing in the preceding dimensional equat
is augmented by affixing a superscript asterisk to it~as we
have already done explicitly for the dimensional distancey*
from the wall!. We then define the dimensionless count
parts of these dimensional variables as follows~with P0* a
characteristic solute concentration!:

x5x* /Lx , y5~y* 2a!/Ly , P5P* /P0* ,
~14!

D5D* /D *̀ ,

Jx5Jx* Lx /D *̀ P0* , Jy5Jy* Ly /D *̀ P0* . ~15!

~For physical clarity in the analysis which follows, we wi
retain the nondimensional symbolD`5D *̀ /D *̀ [1 in sub-
sequent equations.! Additionally, it will prove convenient to
further define the following nondimensional length-scale p
rameters:

e5
def

a/Ly and d5
def

l /Ly . ~16!

Observe in the above nondimensionalizations that
valuey50 corresponds to~the surface of! a Brownian par-
ticle being in contact with the wall, and that the dimensio
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less distancey normal to the wall straddles the rang
e2121>y.0. Accordingly, we note for later reference th
y ranges over the values̀.y.0 in circumstances wher
e→0.

Upon rewriting the trio of equations~11!–~13! in terms of
these dimensionless variables, they become

D i~e21y!
]2P

]x2 1
]

]y FD'~e21y!S ]P

]y
1P

dE~d21y!

dy D G50,

~17!

P~x50,y!5P15const; P~x51,y!5P25const,
~18!

and

Jy[2D'~e21y!S ]P

]y
1P

dE~d21y!

dy D50 at y50.

~19!

Given the diffusivity and potential-energy phenomenologi
data required in the above equations, together with p
scribed values ofP1 andP2 , it can be shown mathematicall
that the preceding trio of equations uniquely determine
exact (l % L)-scale fieldsP(x,y) andJ(x,y).

Hydrodynamic considerations arising from the vanish
Brownian sphere mobility components at the wall dicta
that

J~x,y50!50 ~20!

@cf. Eq.~9!#. In view of the fact that Eq.~19! already requires
that Jy(x,y50)50, the only new condition demanded b
Eq. ~20! is

Jx[2D i~e21y!
]P

]x
50 at y50. ~21!

It is important to observe that this latter relation does notper
se constitute a ‘‘boundary condition’’ at the wall, since th
only boundary condition imposed on the exact system
equations at the wall is that specified by Eq.~19!. Rather, it
represents a ‘‘condition at a boundary,’’ a condition whi
arises strictly as a consequence of what might aptly
termed ‘‘molecular wall effects.’’ Given the role of th
Brownian particles as ‘‘molecules,’’ this phraseology a
pears entirely appropriate.

Specification of a tangential flux componentJx at the
wall, as in Eq.~21!, as a condition to be imposed on th
solution of the trio of equations~17!–~19!, will generally
overspecify the boundary data defining the boundary va
problem, and hence result in a nonexistent solution
P(x,y). That such overspecification in present circumstan
does not result in nonexistence is trivially a consequenc
the fact thatD i50 at y50. Any value of this diffusivity
component other than zero would fail to lead to an exist
solution~see, for example, the Davis, Kezirian, and Brenn
tangential ‘‘slip’’ microscale boundary condition cited i
Ref. @41# for possible circumstances whereinD iÞ0 at the
wall, and hence for which the zero flux specification, E
~20!, would result in a nonexistent solution!. Despite the fact
that Eq. ~21! is not a boundary condition, but is rather
l
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condition at a boundary, we will nevertheless continue
refer to the condition~21! @or, equivalently,~20!# in what
follows as a ‘‘boundary condition.’’ This is done in the spir
of the claim of the molecular dynamic simulations@3,7#.
Subsequently, we will demonstrate, contrary to this cla
that the macro-
scale flux density, J0, say, entering into the conventiona
macroscale Fick’s law continuum diffusion equation,¹2P
50, does not vanish at the wall,y50, despite the vanishing
of the exactmicroscaleflux densityJ at the wall.

Attention is limited in what follows to physical circum
stances wherein bothe!1 and d!1. The issue thereby
engendered, namely, of the relative magnitude of
ratio e/d[a/ l , entails three possible scenarios:e/d!1;
e/d@1; and e/d;O(1). It will be assumed in the subse
quent analysis that the last condition prevails. This choic
dictated exclusively by considerations of simplicity of ana
sis. Adoption of the first or second choices would have
quired us to perform two singular perturbation analys
rather than one, in a sequential manner so as to take acc
of the existence ofthreedifferent length scales, namely,a, l,
and L, in the analysis@45,46#. However, final results and
conclusions for the three different situations are almost id
tical as regards theL-scale outer solution~the f-f domain of
interest to continuum mechanicians!, whence for illustrative
purposes we consider only the indicated case. Furtherm
having supposed thate/d;O(1), we mayhenceforth as-
sume without loss of generality thatd5e, since anyO(1)
distinctions between the two parameters may be abso
into the precise definition of the molecular length scalel.

C. Exact, outer „continuum-mechanical…,
and inner „molecular simulation… scales

The set of exact, (l % L)-scale equations~17!–~20! @or Eq.
~21!#, which explicitly incorporate both physicochemic
~potential-energy! and mechanical~steric hydrodynamic!
wall effects, can be shown to possess a solution which b
exists and is unique, based jointly upon~i! the prescribed
boundary conditions;~ii ! the constitutive forms assumed fo
the fields appearing in these equations; and~iii ! specification
of the y dependence of the phenomenological coefficie
appearing in the latter constitutive equations. The cor
sponding probability density fieldP(x,y;d) obtained as their
solution then constitutes an ‘‘exact’’ physical description
the diffusion scenario in the sense thatP embodies bothf-f
ands-f forces throughout the entire fluid domain, and at
length scales. It is notable that this microscale physical
scription, together with the explicit microscale phenomen
logical diffusivity data required therein, supports the conte
tion that J50 at the wall, the claim of the molecula
simulations@3#.

However, a conventional macroscale Fick’s law formu
tion of the above two-dimensional problem forP would en-
tail a force-free constitutive expression, characterized b
position-independent diffusivity (D`51). The informal in-
tuitive ‘‘derivation’’ of this conventional formulation from
Eqs.~17!–~19!, given below, involves introducing the naiv
assumption that, simply becaused5e!1, one may therebya
priori setd5e50 in Eqs.~17! and ~19!, whereupon for all
y.0 one would have thatD i(`)5D'(`)5D` . @Implicit
in this replacement ofd ande by their limiting values is the



p

b

-

s

es

-

at
ui
m
s

a
on

th
on

ui
i-

o-

tion

w

by

-
an
of

are

ifi-
ing

las-
d

l ef-
sics

e

es
as

ct
s

lds
—
ion-

in

ally

ip-
s

nd-
. It

6886 PRE 61HOWARD BRENNER AND VENKAT GANESAN
fundamentally incorrect assumption that the fieldP(x,y;d)
possesses a regular, rather than singular, perturbation ex
sion in the small parameterd5e.#

Upon denoting this zero-order approximate solution
P0(x,y), such a simplification yields, withy lying in the
range 0,y,`,

D`S ]2P0

]x2 1
]2P0

]y2 D50, ~22!

along with the following pair of boundary conditions im
posed at the ends of the cell:

P0~x50,y!5P1 ; P0~x51,y!5P2 , ~23!

together with

D`

]P0

]y
50 at y50. ~24!

Were we in the same naive spirit displayed above to
e50 in the ‘‘boundary condition’’~21!, this would further
require that

D`

]P0

]x
50 at y50 ⇒ ]P0

]x U
y50

50 ;~0,x,1!,

~25!

sinceD`51 is a nonzero constant. However, the solute r
ervoir boundary conditions atx50 andx51 imposed upon
the fieldP0 via Eq. ~23! for all `.y.0 invalidate the pos-
sibility that (]P0/]x)y5050 for all x unless the field is sin-
gular aty50. Consequently, stipulating thatJ050 at y50
as a requirement demanded of the solutionP0 of the mac-
roscale diffusion equation~22! leads to an inconsistency, de
spite the fact that the exact conditionJ50 at y50 is consis-
tent with the exact microscale diffusion equation~17!.

This paradox, stemming from an irreconcilable incomp
ibility existing between the differential equations and req
site boundary conditions, is inherent to the class of proble
involving a singular layer, the latter arising from the pre
ence of a small length-scale parameter~quantified in our
problem byd5e!1!. Resolution of this paradox requires
detailed examination of the near-wall boundary layer regi
y/d;O(1), where our naive assumption of settingd5e
50, D i(y)5D'(y)5D`51, andE(y)5E`5const results
in a fundamental inconsistency. This region constitutes
inner region, whose solution determines the ‘‘boundary c
dition’’ ~more properly, the matching condition! imposed on
the outer regime at the wall,y50. In the next section we
undertake a detailed analysis of this inner layer.

For later reference we note that the solution of the int
tive trio of equations~22!–~24!, corresponding to the class
cal Fick’s law continuum-mechanical formulation¹2P050,
is

P0~x!5P12~P12P2!x, ~26!

along with the following expressions for the flux comp
nents:

Jx
05D`~P12P2!5constÞ0, Jy

050. ~27!
an-
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As already observed, the first member of the latter equa
does not satisfy Eq.~21!; consequently, Eq.~20! is violated
by this approximate solution. The conventional Fick’s la
solution ~26! and ~27! will be shown in what follows to
correspond formally to the zero-order outer field, obtained
the following limiting procedure applied to the exact fieldP:

P05
def

lim
d→0
y fixed

P~x,y;d!. ~28!

The preceding macroscale fieldP0 does not explicitly ac-
count for wall effects@cf. Eqs.~26!, ~6!, and~17! under the
limiting operation of Eq.~28!#. Rather, as will be subse
quently outlined, such wall effects are embodied either by
effectivemacroscale boundary condition or, in the case
solute adsorption, by a macroscalesurface-excessareal den-
sity field ascribed to the wall.

As earlier observed, molecular dynamic simulations
currently capable of probing only the regiony5O(d) very
near to the wall, wherein molecular wall effects are sign
cant. This contrasts with the above circumstances involv
the classical continuum fieldP0, wherein suchs-f wall ef-
fects are wholly absent. As such, conventionall-scale mo-
lecular dynamic simulations cannot and do not embody c
sical continuumL-scale attributes of the type describe
above, since such attributes reflect the absence of wal
fects, and hence represent valid descriptions of the phy
only in the far-field outer regiony5O(1). The‘‘simulation-
like’’ region y5O(d) is known as an inner region in th
generic terminology of singular perturbation analysis@23–
28#. The corresponding inner field, quantifying the attribut
of the exact field in this region, can thereby be envisioned
deriving from the exact field equations~17!–~20! via the
following limiting process:

P̃05
def

lim
d→0
ỹ fixed

P~x,ỹ;d!, ~29!

in which the stretched, boundary layer variable

ỹ5
def y

d
~30!

represents the inner independent variable.
A uniformly valid asymptotic representation of the exa

( l % L)-scale fieldP, the latter satisfying the exact equation
~17!–~20!, accurate to the first order ind may be obtained by
a composite joining of the respective inner and outer fie
by invoking appropriate asymptotic matching conditions
thereby ensuring a smooth transition between the simulat
like l-scale inner field and the classicalL-scale macrocon-
tinuum outer field. In Fig. 3 we highlight these fields
relation to the exact (l % L)-scale microcontinuum field by
delineating the regions wherein each represents a loc
valid description of the exact physics.

In what follows, we elucidate the above physical descr
tion by explicitly identifying the inner and outer equation
quantifying the inner and outer fields, as well as the bou
ary conditions to be satisfied by each of these two fields
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will be seen that the equation governing the outer~zero-
order! field P0 formally reduces to the classical Fick’s la
diffusion equation¹2P0(x,y)50, which is to be solved sub
ject to the two end reservoir boundary conditions, and wh
automatically satisfies the zero-normal-flux condition at
wall by virtue of its one-dimensional character. The cor
sponding inner~zero-order! field P̃0 will be chosen,inter
alia, such as to satisfy Eq.~20!, thereby assuring the consis
tency of the governing equations with the boundary con
tions. The exact solution~or, more properly, the composit
zero-order solution!, obtained by appropriately combinin
these two fields, will be shown to be identical to the ou
solution, except for a thin boundary layer region very nea
the wall. This singular perturbation analysis, outlined belo
illustrates the situation wherein the detailed analysis of
inner region serves to provide the effective macrosc
boundary condition to be imposed at the wally50. In a
subsequent section we use identical concepts to illustra
different scenario, involving so-called ‘‘adsorption’’ phe
nomena, wherein the potential-energy contribution to thes-f
wall effects is implicitly manifested in the outer-scale equ
tions via the additional presence ofL-scale ‘‘surface-excess’
fields.

D. Outer equations

Based upon the scaling arguments explicit and implicit
the arguments of the exact governing equations~17!–~20! we
assume, subject toa posterioriverification, that ford!1 the
solution of this exactly posed system of equations posse
the following regular perturbation expansion:

P~x,y;d!5P0~x,y!1dP1~x,y!1d2P2~x,y!1¯ ,
~31!

together with comparable expansions forJx(x,y;d) and
Jy(x,y;d). The intuitive arguments for smalld, presented in
connection with the approximate solution appearing in E
~26!–~27!, suggest that the expansion~31! will, in general,
be nonuniformly valid. In particular, it is expected to b
applicable only in the regiony@d, far from the wall. The
leading termP0(x,y) of the above expansion corresponds
the field defined in Eq.~28!. While we allow in Eq.~31! for
the fact that the leading term may depend upony, it will, in
fact, prove to be independent ofy, and hence be functionally
dependent only uponx, as in Eq.~26!.

Upon substituting Eq.~31! into the exact microscale equa
tions ~17! and~18!, and equating terms of equal order ind in

FIG. 3. Illustration of the respective physical~i.e., dimensional!
domains of the exact (l % L)-scale fields, the outer~continuum-
mechanical! L-scale fields, and the inner~simulation-scale! l-scale
fields.
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the resulting expressions, we find that the leading-order fi
obeys the intuitively derived equations already set forth
~22! and~23!. We have not, however, substituted the expa
sion ~31! into the exact microscale wall boundary conditio
~19! and ~21! since we do not expect the outer expansi
~31! to be valid within the boundary layer regiony5O(d)
existing near the wall. In the absence of such wall bound
conditions the solution of the zero-order outer equations~22!
and~23! is not unique. As will be shown, the solution of th
latter equations is rendered unique by imposing a match
condition between the outer expansion~31! and the inner
expansion@cf. Eq. ~38!# @47#.

E. Inner equations

In order to establish the inner equations we need to
cale they coordinate by stretching it, as indicated in Eq.~30!.
Insertion of this definition ofỹ into the exact microscale
transport equation~17! yields

d2D i~ ỹ!
]2P

]x2 1
]

] ỹ FD'~ ỹ!S ]P

] ỹ
1P

dE~ ỹ!

dỹ D G50. ~32!

The latter constitutes a reformulation of the original, exac
posed microscale problem governing the concentration fi
P[P(x,ỹ;d), albeit now expressed in terms of inner va
ables. The functional forms of the exact flux components
similarly be expressed in terms of the inner independent v
able as

Jx52D i~ ỹ!
]P

]x
~33!

and

Jỹ52
D'~ ỹ!

d S ]P

] ỹ
1P

dE~ ỹ!

dỹ D . ~34!

To render the functional dependencies ofP and the flux
componentsJx andJỹ explicit, we make use of the following
choice of scaleddependentvariables:

P̃~x,ỹ;d!5
def

P~x,y5d ỹ;d!, ~35!

J̃x~x,ỹ;d!5
def

Jx~x,y5d ỹ;d!, ~36!

and

J̃ỹ~x,ỹ;d!5
def1

d
Jy~x,y5d ỹ;d!. ~37!

We assume, subject toa posteriori verification, that for
d!1 the solution of the exact microscale equation~32! can
be expressed as a perturbation series of the form

P̃~x,ỹ;d!5 P̃0~x,ỹ!1d2P̃1~x,ỹ!1d4P̃2~x,ỹ!1¯ .
~38!

Furthermore, to ensure consistency with the above exp
sion, the corresponding flux componentsJ̃x andJ̃ỹ also need
to be expressed as perturbation expansions of the forms
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J̃x~x,ỹ;d!5 J̃x
0~x,ỹ!1d2J̃x

1~x,ỹ!1d4J̃x
2~x,ỹ!1¯ ~39!

and

J̃ỹ~x,ỹ;d!5 J̃ỹ
0~x,ỹ!1d2J̃ỹ

1~x,ỹ!1d4J̃ỹ
2~x,ỹ!1¯ .

~40!

Attention is restricted in the remainder of this subsect
to the equations and boundary conditions governing
zeroth-order inner fieldsP̃0, J̃x

0, and J̃ỹ
0. Based upon the

assumed functional form~38! of the perturbation series w
can formally define the zeroth-order inner probability dens
field as already set forth in Eq.~29!. Upon utilizing the exact
microscale constitutive equation~3! together with the scaling
embodied in Eqs.~35!–~37!, the functional forms of the
leading-order flux components can be expressed as

J̃x
052D i~ ỹ!

] P̃0

]x
~41!

and

J̃ỹ
052D'~ ỹ!S ] P̃0

] ỹ
1 P̃0

dE~ ỹ!

dỹ
D . ~42!

As previously indicated in Ref.@41#, the diffusivity compo-
nentsD i( ỹ) andD'( ỹ) possess the following limiting prop
erties:

D i~ ỹ! and D'~ ỹ!→0 as ỹ→0. ~43!

The explicit functional forms of these components need
be invoked, however, in the analysis that follows.

Substitution of the inner expansions~38!–~40! into both
the exact equations~32!–~34! and the exact wall boundar
conditions~19! and~21! enables the extraction of those equ
tions and boundary conditions that are mutually compat
at a particular order of expansion. In particular, the diffus
equation governing the zeroth-order inner field can be id
tified as

]

] ỹ
FD'~ ỹ!S ] P̃0

] ỹ
1 P̃0

dE~ ỹ!

dỹ
D G50, ~44!

which is to be solved subject to the zero-order inner w
boundary conditions

J̃x
050 at ỹ50 ~;x! ~45!

and

J̃ỹ
050 at ỹ50 ~;x!. ~46!

Had we substituted the inner expansion~38! into the two end
boundary conditions~18!, the field P̃0 would have been re
quired to satisfy the pair of boundary conditions

P̃0~x50,ỹ!5P15const ~; ỹ! ~47!

and

P̃0~x51,ỹ!5P25const ~; ỹ!. ~48!
n
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However, since the inner expansion is not expected to
valid for all ỹ, but rather only forỹ5O(1), satisfaction of
these two boundary conditions is not required of the in
field.

A first integral of Eq.~44! is

D'~ ỹ!S ] P̃0

] ỹ
1 P̃0

dE~ ỹ!

dỹ
D 5a~x!, ~49!

whence from Eq.~42! it follows that

J̃ỹ
0~x,ỹ!52a~x! ~; ỹ!. ~50!

The vanishing normal flux boundary condition~46! requires
that a(x)50. Consequently, Eq.~49! becomes

] P̃0

] ỹ
1 P̃0

dE~ ỹ!

dỹ
50, ~51!

the solution of which can be expressed as

P̃0~x,ỹ!5b~x!exp@2E~ ỹ!#, ~52!

with b(x) an integration function.
Introduction of this last equation into Eq.~41! yields

J̃x
0~x,ỹ!52D i~ ỹ!

db~x!

dx
exp@2E~ ỹ!#. ~53!

The boundary condition~45! imposed on the parallel flux
componentJ̃x

0 is automatically satisfied for any choice o
b(x) by virtue of Eq. ~43!, positing the vanishing of the
parallel diffusivity component at the wall. Equation~52! thus
satisfies the governing zero-order inner diffusion equat
~44! as well as the corresponding parallel and normal fl
conditions ~45! and ~46! at the wall. However, consisten
with our remarks following Eqs.~47! and ~48!, the solution
~52! is incapable of satisfying the pair of prescribed e
boundary conditions~47! and ~48! for all ỹ . We note, how-
ever, for ỹ→` ~strictly, for ỹ@d!, that

E~ ỹ!→E`5const ~54!

@cf. Eq. ~1!#, whereupon Eq.~52! adopts the asymptotic form

P̃0~x,ỹ@d!>exp~2E`!b~x!. ~55!

F. Matching conditions

The inner and outer solutionsP̃ andP need to be matched
in their common domain of validity. This requires that th
inner and outer expansions of the exact solution of the or
nal problem posed by Eqs.~17!–~20! be asymptotically equa
in the intermediate regiony5O(dq) (0,q,1) lying be-
tween the outer regiony5O(1), corresponding toq50, and
the inner regiony5O(d), corresponding toq51. To terms
of zero order in the respective expansions, this match
condition requires that, loosely speaking@23–28#,

P0~x,y→0!> P̃0~x,ỹ→`!. ~56!
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Upon invoking Eq.~55! this necessitates that the outer so
tion asymptotically adopt the form

P0~x,y→0!>exp~2E`!b~x!. ~57!

The only solution of the zero-order outer equation~22!
and corresponding pair of boundary conditions~23! that is
compatible with the asymptotic functional form~57! is the
y-independent solution,

P0~x!5P12~P12P2!x, ~58!

already derived in Eq.~26! by invoking intuitive arguments
for the cased!1. From Eq.~57!, the latter is equivalent to
the choice

b~x!5exp~E`!@P12~P12P2!x#. ~59!

Substitution of the preceding expression into Eq.~52! yields

P̃0~x,ỹ!5@P12~P12P2!x#exp@E`2E~ ỹ!#, ~60!

constituting the complete and unique solution for the zero
order inner concentration field. In the usual manner
matched asymptotic schemes@23–28# the outer and inner
fields, Eqs.~58! and~60!, can be appropriately combined s
as to furnish a uniformly valid solution of the exact fie
P(x,y;d) for circumstances whereind!1:

P~x,y;d!5@P12~P12P2!x#exp@E`2E~dy!#1O~d!.
~61!

Proceeding as in Eq.~56!, but with Jy now written in
place of P, we find with the help of Eq.~50! @in which
a(x)50# that Jy

0 is required to satisfy the matching cond
tion Jy

0(x,y→0)50. Consequently, the normal flux comp
nent at the wall is required to satisfy the following zero-ord
outer, macroscale ‘‘boundary condition:’’

Jy
0~x,y50![2D`

]P0~x,y50!

]y
50. ~62!

This result constitutes one of the central results of this s
tion. That is, by employing rigorous singular perturbati
techniques we have proved that the boundary condition
isfied by the macroscale concentration field requires
only the normal flux component vanish at the wall, this d
spite the fact that the correspondingmicroscalefield trivially
possesses the property that both the normal and the tan
tial flux components vanish at the wall@48#.

G. Discussion

Using a formal singular perturbation scheme we have
lustrated in this section the manner whereby a consistent
turbation solution of the exactly posed microscale proble
defined jointly by the differential equation~17! and condi-
tions ~18!–~20! at the boundaries, can be obtained. It is p
tinent here to recount the major steps in that analysis, so a
highlight the salient features of the argument. Initially w
formulated a complete microscale continuum description
the ‘‘exact’’ ( l % L)-scale physics quantifying the problem
Brownian diffusion in a binary fluid system, embodyings-f
effects arising from wall-fluid interactions. The leng
-

-
f

r

c-

t-
at
-

en-

l-
r-
,

-
to

f

scale characterizing this microscale formulation was spe
cally chosen so as to correspond to the scale of molec
simulations, wherein wall interaction effects are taken in
account. Moreover, the ‘‘conditions at the boundary’’ sat
fied by this microscale description were shown from hyd
dynamic mobility considerations to correspond trivially
the vector no-flux conditionJ50 at the wall—the generic
claim of the molecular dynamic simulation calculations@3#
in binary fluid transport systems@49#. Thus, the ‘‘exact’’ flux
boundary condition, requiring thatJ50 at the wall ~or,
equivalently, that the individual species velocities vanish
the wall!, needs to be applied to the system of equatio
written at this microscale.

In order to make an explicit connection with the conve
tional macroscale Fick’s law formulation of this elementa
diffusion problem, we adopted a naive~outer scale! view-
point, wherein all the small nondimensional parameters
pearing in the exact microscale equations were set equa
zero at the outset of the analysis. This yielded the fami
Fick’s law diffusion equation~characterized by a position
independent diffusivity!. We then pointed out that any effor
to apply at this scale the literal wall boundary condition
valid at the ‘‘inner’’ or ‘‘simulation’’ scale, would lead to an
inconsistency with the other boundary conditions, name
those imposed within the reservoirs situated at the two e
of the diffusion cell. This then suggested the existence o
singular layer near the wall, where the convention
continuum-mechanical Fick’s law formulation is invalid, an
hence needs to be refined so as to admit the simulation-s
vanishing vector flux boundary conditionJ50 at the ‘‘wall’’
~i.e., at the planar surfacey* 5a situated at a distance from
the actual wall equal to the radius of a Brownian solute m
ecule!. We then effected a singular perturbation analysis
show how a solution consistent with all of the simulatio
scale conditions prevailing at the boundaries may be
tained. The vanishing-normal-flux ‘‘boundary condition’’ a
the wall@equivalent ton•J0(y50)50, with n the unit vector
normal to the wall; cf. Eq.~62!#, imposed on the macroscal
continuum-mechanical equations, was derived by match
the outer and inner solutions, each of which was heretof
separately nonunique. This allowed us to propose a u
formly valid composite solution, one which coincided wi
the classical one-dimensional linear concentration profile
most everywhere within the diffusion cell except near t
wall, while simultaneously matching the two-dimensional i
ner solution in a region of thicknessO(d) proximate to the
wall. This inner solution, which embodied the wall effec
explicitly present in the exact microscale description~but
lacking in the macroscale description!, allowed for satisfying
the J50 boundary condition at the wall.

The preceding analysis of this elementary diffusion pro
lem forcefully underlines our main criticisms@6# of the in-
discriminate use of molecular simulations to discern
boundary conditions applicable to conventional continu
equations, the latter referring to those continuum equati
that embodyf-f forces but nots-f forces. As discussed above
a microscale continuum equation was required to satisfy
additional tangential flux boundary condition arising fro
the short-range wall effects. However, this new bound
condition and the accompanying refined equation explic
embodying this flux condition did not impact significantly o
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the well-known solution of the classical Fick’s law on
dimensional diffusion solution for the solute concentrati
field, except in a thin boundary layer of thicknessO(d)
3(d5 l /L!1) proximate to the wall. Furthermore, th
boundary conditions that one must impose on this outer m
roscale Fick’s law diffusion equation in order that it prope
capture the residual long-range effects of the detailed w
physics were derived as being the outer limits of the so
tions of the inner equations, rather than by directly impos
the literal boundary conditions demanded of the inn
equations—the latter corresponding to those discerned
molecular simulations.

In the spirit of simplicity accompanying this article w
excluded the effects of wall roughness. The presence of s
geometric asparities, superposed on the otherwise perfe
smooth surface envisioned in the analysis, introduces yet
other length scale into the problem. In most physical circu
stances this scale can be expected to be small compared
the apparatus length scaleL. On the other hand, the lengt
scale of the roughness—sayl r , the mesoscale—will gener-
ally be significantly greater than that of the molecular w
forces, as well as of the size of the Brownian molecul
resulting in the dual inequalityL@ l r@ l . In such circum-
stances the preceding type of singular perturbation analy
whereby we derived the zero-normal-flux macroscale bou
ary condition at the wall, can again be invoked, beginning
the microscale Brownian molecule level, to furnish the co
parable mesoscale boundary conditions on the rough w
Explicitly, at each such ‘‘mesoscale point’’ lying o
the rough surface one would almost certainly find as
formal result of such an analysis thatn•J50 @whereas
(I2nn)•JÞ0#, with n the unit normal vector at a point o
the rough surface, andJ the mesoscale flux density. Thes
would then constitute mesoscale boundary conditions to
imposed on the new inner mesoscale equations, the l
now being written at the length scalel r of the roughness. The
outer equations~applicable at the Fick’s law macrosca
level, where the roughness is not observable, and hence
l r-scale rough boundary appears as a smoothL-scale wall!,
together with the requisite mesoscale/macroscale matc
conditions, can be determined by effecting a similar singu
perturbation analysis at the scale of the roughness elem
This general procedure was employed in a seminal pape
Richardson@31# ~see also Jansons@50#! to illustrate the ro-
bustness of the classical no-slip, fluid-mechanical, ma
average velocity boundary condition governing the flow
homogeneous fluids relative to solid walls@51#.

In the next section we further elaborate our criticism
the failure of some simulations to give cognizance to
physical distinction existing between ‘‘inner’’ and ‘‘outer’
limits as l /L→0. In particular, we address the phenomen
of continuum surface adsorption@52#, a condition that has no
counterpart at the corresponding molecular scale. The m
point to be addressed is the fact that the magnitudes of
potential-energy forces used in the simulations generally
to distinguish ‘‘adsorptive’’s-f molecular forces~which act
disproportionately on one of the two species! from ‘‘demo-
cratic,’’ nonadsorptives-f molecular forces~which act more
or less equally on both species! by virtue of the fact that such
simulations ignore the macroscopic length scaleL of the
physical apparatus within which the adsorption occurs.
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In the analysis that follows we briefly detail the mann
whereby one supplements the continuum-scale trans
equations, corresponding to the conventional Fick’s law d
fusion equation governing the bulk volumetric density solu
concentration field, with a comparableL-scale Fick’s law
surface diffusionequation governing the surface areal de
sity solute concentration field. The macroscale areal surf
concentrationp and lineal flux density vectorj fields appear-
ing in the latter refer to idealizations arising from a lack
resolution of the molecular-scale phenomena occurring n
to the wall. While literal ‘‘surface’’ transport effects can in
deed be discerned from molecular simulations, continuu
scale surface transport phenomena cannot be directly
cerned by simply investigating the motion of tho
molecules proximate to the walls. Rather, their identificat
and quantification requires that one explicitly address
existence of the apparatus length scaleL.

III. SURFACE ADSORPTION AND TRANSPORT

Here, we extend the analysis of Sec. II so as to inj
additional issues relating to the adsorption and subseq
surface transport of the Brownian solute molecules. Wh
the equilibrium adsorption aspects of these classical phen
ena are generally quite well understood at both the ma
scopic and molecular levels, the same cannot be said of
nonequilibrium surface transport properties. This fact p
vides the motivation for the ensuing analysis, namely,
clarify the strictly continuum-mechanical nature of the su
face transport process by drawing a sharp distinction with
strictly local molecular view of the phenomenon. In this co
text it will be shown that the concepts of surface adsorpt
and transport are devoid of meaning on the length scal
which molecular wall-fluid interaction effects are resolvab
@53#. Rather, these concepts arise at the next scale of res
tion, corresponding to the outer scale of our equations, wh
such wall-interaction effects are implicitly included in th
boundary conditions or, as argued below, equivalently in
auxiliary surface areal density transport fields serving
supplement classical, bulk volumetric density transp
fields; that is, theL-scale surface fields serve the role
boundary conditions imposed upon the conventionalL-scale
Fick’s law volumetric fields @cf. Eq. ~85!#. As such,
molecular-level simulations cannot discern these continuu
scale surface concepts unless they are also attuned to pro
the coarse-grained macrocontinuum scale. In lieu of form
singular perturbation techniques, for simplicity’s sake in t
following analysis we adopt intuitive ‘‘pillbox’’-type argu-
ments~cf. Refs.@52,54# for closely related applications uti
lizing pillbox arguments!, to derive the continuum-scal
equations accompanying the phenomena of surface ads
tion and diffusion. It is a straightforward, albeit lengthy, ma
ter to prove that rigorous singular perturbation argume
furnish boundary conditions~imposed upon the leading
order perturbation fields! that are identical to those derive
via the informal pillbox arguments which follow below. Re
erences@46,55,56,57# use such perturbation schemes to a
dress similar issues relating toliquid-liquid interfaces. The
case oftransientadsorption at a solid wall is likewise treate
rigorously by Shapiro, Brenner, and Guell@58# in the context
of aerosol and hydrosol deposition on surfaces.
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The surface transport equation eventually derived in
section@cf. Eq. ~81! or ~82!# contradicts the boundary con
dition n•J0(x,y50)50 derived in the previous section. Th
disparity reflects the difference in the specific natures of
respective wall-interaction potential forces acting on each
the two diffusing species. Adsorption forces require an
tractive potential well~refer to Fig. 2!, wherein the condition
d exp(2Em)!1 would fail, with Em the potential-energy
minimum ~see the caption of Fig. 2 for a more precise d
tinction between the adsorptive and nonadsorptive cases!. In
turn, this would require us to modify our straightforwa
singular perturbation approach in order to account for t
new feature. Subtleties accompanying the various forms
hibited by potential wells are detailed by Shapiro, Brenn
and Guell@58# and will not be repeated here. Indeed, rath
than attempting to present a comprehensive treatment of
face adsorption phenomena, our main objective in this s
tion is to illustrate, in as elementary a fashion as possible,
physical origin of surface concentration and flux fields,
addition to quantifying their transport. Thus, we distingui
between the results of the previous section and those t
derived in the present section as arising from the differ
forms of the interaction potential in the two cases, wh
eschewing detailed considerations emanating from these
tracting subtleties.

A. Surface concentration

Pillbox-type analyses are performed by examining at b
the outer and exact scales the total amounts of solute~and
other extensive continuum fields! identified at each scale a
being contained within a rectangular pillbox surmounting
lower wall y* 50 and extending to the midplane between t
two walls, and subsequently assigning the difference
tween the two amounts to a continuum-mechanical s
face~-excess! areal density field defined at the macrosca
This scheme, which at the macroscale views the solute
being distributed between a bulk~volumetric! phase and a
surface~areal! or absorbed phase, serves to assure con
tency of the total amount of the solute~or other extensive
entity! present within the system, whether viewed at t
macroscaleL or the exact scalel % L.

Contrary to what is often assumed to be the case, sur
concentration does not refer literally to the exact areal c
centration~i.e., solute mass or number of molecules per u
area! of the solute ‘‘adsorbed’’ at the wall. Rather, th
concept—which is more appropriately termed surface-exc
concentration—arises from the need to incorporate the
ferences, described above, existing between the coa
grained bulk concentration field~representing the leading
order outer, or macroscale concentration field! and the exact
concentration field incorporating the wall effects~i.e., the
leading-order composite solution of the singular perturbat
analysis!. In Sec. II we saw that wall effects, as embodied
the wall-interaction potential, lead to a modification of t
outer solution near the wall, thereby yielding the followin
zero-order inner concentration distribution:

P̃0~x,y5d ỹ!5P0~x,y50!exp@E`2E~ ỹ!#. ~63!

The uniformly valid composite solution thereby obtained
is
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P~x,y;d!5P0~x,y!1P0~x,y50!

3$exp@E`2E~ ỹ!#21%1O~d!. ~64!

It is easily verified that the latter solution asymptotica
matches the inner and outer solute concentration and
fields in the intermediate, overlap region. Equation~64! con-
stitutes the exact solution of the problem, correct to the
roth order ind.

Consider the differential rectangular parallelepipedal p
box illustrated in Fig. 4 of infinitesimal cross-sectional ar
dA5dx dz and finite height, the latter extending from th
lower wall to the midplane between the two walls in o
example. In terms of our current dimensionless variab
whose length scaling is based on the half-gap widthLy[L,
the pillbox posseses a physical heighty* 5Ly , so that, non-
dimensionally,y512e at the upper surface of the pillbox
Viewed at a coarse-grained outer scale, the number of so
moleculesdW0 apparentlycontained within the pillbox is

dW05dAE
0

12e

dy P0~x,y!, ~65!

whereas at the exact scale the corresponding solute num
is

dW5dAE
0

12e

dy P~x,y;d!. ~66!

Therefore, to assure quantitative consistency between
numbers of solute molecules recorded at both the outer
exact scales, the difference

dWs5
def

dW2dW0 ~67!

in the numbers of solute molecules contained within the p
box volume is assigned to that portion of the surface rep
sented by the areadA. This leads one to define the su
face ~-excess! areal solute number density concentrati
field:

p~x!5
def

lim
d→0

dWs

dA
[ lim

d→0
E

0

12e

dy@P~x,y;d!2P0~x,y!#.

~68!

FIG. 4. Differential rectangular parallelepipedal pillbox o
differential cross-sectional areadA5dx dz, differential volume
dV5dA dy, and finite ~dimensional! height y* 5Ly above the
wall @the latter corresponding to a nondimensional height
y5(Ly2a)/Ly[12e#.
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The coarse-scale continuum fieldp(x) is loosely interpreted
as representing the number of adsorbed solute molecule
unit area at the point~x, z! on the wally50, although, of
course, it represents theexcessnumber. Upon introducing
Eq. ~64! into Eq. ~68! we obtain

p~x!5HP0~x,y50!,
~69!

H5d0` dy$exp[E`2E(y)] 21%5const.

Note that in the upper integration limit we have replac
ỹ5(12e)/d by ` as a consequence of the smallness of
parameterd, coupled with the fact thate5O(d).

The last equation constitutes a Henry’s law equilibriu
adsorption relation~with H the Henry’s law constant!, lin-
early relating the surface~-excess! concentration fieldp(x) to
the bulk concentration fieldP0(x,y50) existing at the wall.
Our derivation of this relation elucidates the origin of t
concept of surface concentration. In particular, it clea
demonstrates that the notions of adsorption and surface
centration arise not from the literal presence of molecu
~Brownian particles! affixed to, or even in proximity to, the
surface in anabsolutesense~i.e., independently ofL!, but
only in a relative sense@59#. Explicitly, such surface con
cepts are attributable to the very different physical data
plicitly embedded in the outer and inner fields. This exam
again illustrates the fundamental differences existing
tween the fine-scale molecular-dynamic-like viewpoint a
the coarse-scale continuum-mechanical viewpoint. Exp
itly, conditions at a boundary, as discerned by fine-scal
simulations, are not to be construed asboundary conditions
to be imposed at the macroscale. The next subsection
wise illustrates the physical origin of the similar concept
surface~-excess! diffusion.

B. Surface diffusion

Since in our model the individual Brownian solute mo
ecules were assumed to be immobile at the wall, as implic
stated in Eq.~20! or ~21!, one might naively expect the ‘‘sur
face flux’’ of solute to be zero, and hence surface diffusion
be absent. Indeed, were one to regard surface transpo
involving the movement of molecules literally in conta
with and translating along the wall, the very concept of s
face diffusion would be anon sequitur. Despite the seeming
plausibility of this vanishing-surface-flux argument, it is ne
ertheless invalid, a fact that is illustrated in what follow
Our basic arguments parallel those introduced in the pre
ing subsection in connection with the more elementary c
cept of surface concentration. Explicitly, what is term
‘‘surface transport’’ originates from the difference in the n
solute fluxes~parallel to the wall! through the sides of the
pillbox, respectively measured at the macro- and ex
scales, and subsequently assigned to the wall.

For purposes of illustration consider solute transport
the x direction through the left-hand side face of the diffe
ential pillbox portrayed in Fig. 4. Viewed at the outer sca
the time ratedN0 of solute transport across this face in t
positivex direction is given by

dN05dzE
0

12e

dy Jx
0~x,y!, ~70!
per
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where, from Fick’s law, applicable at the outer scale,

Jx
0~x,y!52D`

]P0~x,y!

]x
. ~71!

In contrast, the comparable exact solute transport rat
given by

dN5dzE
0

12e

dy Jx~x,y;d!. ~72!

Analogous to the union of Eqs.~63! and ~64!, to terms of
dominant order ind we have the following composite expan
sion for the parallel solute flux component:

Jx~x,y;d!5 J̃x
0~x,ỹ!1Jx

0~x,y!2Jx
0~x,y50!1O~d!,

~73!

in which

J̃x
0~x,ỹ!52D i~ ỹ!

] P̃0~x,ỹ!

]x
. ~74!

By similar arguments to those enunciated in the preced
subsection, the difference

dNs5
def

dN2dN0 ~75!

in solute transport rates across the sidewall is assigned to
surface~-excess! lineal diffusion flux density of absorbed so
ute ‘‘along the wall,’’ defined as

j x~x!5
def

lim
d→0

dNs

dz
[dE

0

`

dỹ@ J̃x
0~x,ỹ!2Jx

0~x,y50!#.

~76!

The above formula can be written in terms of the surfa
concentration and a phenomenological surface diffusivity

j x52Ds

dp

dx
, ~77!

whereDs is the surface diffusivity:

Ds5
*0

`dỹ D i~ ỹ!$exp@E`2E~ ỹ!#21%

*0
`dỹ$exp@E`2E~ ỹ!#21%

5const. ~78!

The last pair of relations@60# furnish ana priori proof of the
Fick’s law–like constitutive equation for the surface diffu
sion flux ~cf. also Ref.@52#!.

The existence of both a surface diffusion flux and a s
face concentration enables us to define thesurface velocityof
the solute as

vx
s~x!5

def j x

p~x!
. ~79!

Equivalently, from Eq.~77!,
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vx
s~x!52Ds

d ln p~x!

dx
[2DsH

d ln P0~x,y50!

dx
. ~80!

As earlier implied, the existence of such a surface spe
velocity may seem paradoxical in view of the immobility
the Brownian particles at the wall. Resolution of the appar
contradiction resides in the essential fact that surface-ex
concepts, like surface concentration and surface diffus
velocity, do not depend upon the exact volumetric sol
concentration or diffusion velocity fields existing at the w
y50. Rather, these surface concepts are defined on
coarser outer macroscaleL, wherein wall-fluid interaction
effects are not explicitly present. Such interaction effects
nevertheless implicitly present, embedded in the surface
eal density fields. The latter now appear as coarseL-scale
fields, introduced so as to rectify the disparity existing b
tween quantitative predictions of the extensive aspects of
pertinent fields as discerned by the macroscale and e
observers. Indeed, in the elementary problem analyzed
we have encountered no less than four different solute ve
ity fields vx along the wall depending upon the scale of o
servation and whether or not adsorption takes place.

~i! The exact ( l % L)-scale solute species velocity at th
wall, vx(x,y50;d), which in our model was identically zer
~for all d! due to the vanishing of the parallel diffusivit
componentD i at the wall.

~ii ! The molecular l-scale solute particle velocity at th
wall, ṽx

0(x,ỹ50), which refers to the value of the~zero-
order! inner velocity atỹ50. For the same reason as in~i!
this velocity too was zero. It is this velocity that we identi
with that calculated from molecular dynamic simulations@3#.

~iii ! Thebulk L-scale solute species velocity at the wall
the absence of adsorption,vx

0(x,y50), which refers to the
value of the~zero-order! outer velocity aty50 for a nonad-
sorptive potential-energy function. In our model this veloc
is equal to2D`d ln P0(x,0)/dx which, in view of Eq.~58!,
is nonzero.

~iv! The surface L-scale solute species velocity in th
presence of adsorption,vx

s(x), which arose from the defini
tion of the surface diffusion flux so as to account for t
disparity in the total amounts of solute transported paralle
the wall at the coarse-grained and exact levels of descript
In our model the value of this surface velocity is given
Eq. ~80! and is nonzero.

The correspondingnormal velocity components at the
wall are zero in each of the above four cases, although in
adsorption case this is true only for the special case wh
the reservoir concentrationsP1 andP2 appearing in Eq.~18!
are bothy-independent constants. In circumstances where
ther is noty independent,Jy

0(x,y50) will prove to be non-
zero@cf. Eq.~81! below#, whence the same will prove true o
the comparable solute velocity component at the w
vy

0(x,y50).

C. Surface transport equation

Details of the formal derivation of a~generally unsteady!
surface transport equation are peripheral to the focus of
paper, and will not be presented. The expression ultima
es
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obtained@55,57,61# is analogous to the comparable equati
for fluid-fluid interfaces, and in the context of our model
given by

d jx
dx

5Jy
0~x,y50!. ~81!

This represents a special case of the~generally unsteady-
state! generic flux conservation relation@57,62#

]p

]t
1“s• j5J•n, ~82!

where n points from the wall into the fluid, and“s5
def

(I2nn)•“ is the surface gradient operator.

D. General macrocontinuumL-scale boundary conditions

Our analysis of the distinction between ‘‘conditions at
boundary’’ and ‘‘boundary conditions’’ was based on th
particular example of the two-dimensional diffusion ce
~Fig. 1!—especially they* -independent nature of the rese
voir boundary conditions, Eqs.~13!. This resulted in the clas
sical one-dimensionaly* -independent Fick’s law solution
Eq. ~26!, for the macrocontinuum volumetric solute conce
tration fieldP0 @and ultimately, in the case of adsorption, th
macrocontinuum surface-excess areal solute concentra
field p, given in terms ofP0 by Eq. ~69!#. However, with
only little additional effort it is possible to derive results fo
the wall boundary conditions of greater generality than th
obtained for the specific example treated above. These
sults, which are readily obtained by employing techniqu
paralleling those already outlined, are briefly summariz
below.

In dimensionless form, the equation governing the gen
ally unsteadyL-scale macrocontinuum fieldP0(x,y,z,t) is

]P0

]t
1“•J050, ~83!

with flux density

J052D`“P0. ~84!

The ~single! scalar boundary condition imposed upon t
field P0 at a solid wall is

HS ]P0

]t
2Ds¹s

2P0D1D`n•“P050 at the wall, n50

~85!

@cf. Eq. ~82!#, in which the constantsH andDs are expressed
in terms of the prescribed three-dimensional phenomenol
cal data by Eqs.~69! and~78! ~whereiny appearing in those
expressions is to be replaced by the distancen normal to the
wall!. For the nonadsorptive case, whereH50 ~albeit to the
order of our approximation in the small parameterl /L!, Eq.
~85! properly reduces to the nonadsorptive boundary con
tion,

n•“P050 at the wall, n50. ~86!
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In the particular example of Fig. 1, with steady-sta
y-independent reservoir conditions, the above equations
sess the elementary one-dimensional solution cited in
~26! for both the nonadsorptive and adsorptive cases.

E. Discussion

This section has served to clarify the concepts of b
surface-excess adsorption and surface-excess diffusion
nomena by using a Brownian particle/plane-wall model. E
plicitly, it was demonstrated that these surface notions do
possess any physical meaning at the exact and simulatio
levels of modeling. Rather, the interpretations to be ascri
to them exist only at the next coarser scale~corresponding to
the outer scale in our singular perturbation analysis!, wherein
these fields are assigned phenomenologically to the sur
so as to rectify the disparity existing between the predicti
of the exact and outer volumetric density fields. Hen
simulations purporting to derive these quantities by dir
probing of those molecules near to the wall will necessa
give rise to erroneous macroscale conclusions~except, pos-
sibly, in fortuitous circumstances!.

IV. HYBRID COMPUTATIONS

Previous portions of this paper have attempted to elu
date a number of continuum-scale concepts, especially
molecular origin of boundary conditions and surface fiel
We have consistently criticized those molecular-level sim
lations that claim to derive these quantities by direct prob
of the discrete molecular motions occurring near the bou
ing walls. More explicitly, we have pointed out~i! that the
physical interpretation of these notions at the continuu
mechanical scale differs fundamentally from the lite
physical interpretation ascribed to them at the statistic
molecular scale; and~ii ! that the fundamental differences b
tween the two are to be explained in terms of the dispa
molecular and apparatus length scales implicit in the resp
tive equations governing their behavior, coupled with t
fact that the limiting behavior of the pertinent fields is si
gular in the ‘‘continuum limit,’’ where the ratio of these tw
length scales goes to zero. Despite our criticism, it would
erroneous to conclude that we believe molecular dynam
simulations to be devoid of utility in continuum-mechanic
contexts. Rather, molecular dynamics has a clearly defi
complementary role to play in terms of those aspects
continuum-level modeling that aim to go beyond purely ph
nomenological approaches to transport phenomena. S
modeling can be effected through hybrid computations, v
those that jointly employ both molecular dynamic simu
tions and continuum descriptions of the same physical p
nomena, each, however, in different spatial domains rela
to their respective distances from the wall.

Computations of this nature closely reflect the spirit of t
singular perturbation scheme outlined in Sec. II. Explicit
in hybrid computations, molecular-level simulations are e
ployed near the wall, wherein the effect of the molecu
forces is explicitly simulated by using a Langevin equati
~or some alternative variation thereof!, incorporating the wall
forces directly into the simulations. Such computations
then matched~at an average level! onto the continuum-scale
fields in an overlap region. The latter domain is situated a
s-
q.
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sufficient distance from the wall such that the wall intera
tion forces with the fluid effectively vanish, thereby allowin
for a smooth matching with the outer-scale continuum fiel
Temporal and spatial evolution of these continuum-sc
fields can then be simulated by dealing directly with t
conventional phenomenological transport equations, p
sumed to be applicable in the absence of wall effects. In
manner one computationally simulates the formal match
procedure required in the singular perturbation analy
Such simulations would, in principle, obviate the need
continuum-scale boundary conditions, auxiliary continuu
scale surface-excess fields and fluxes, and the like. The
sulting continuum scale distributions thereby obtained wo
then display complete consistency with the molecular-le
l-scale phenomena occurring near the wall, as well as w
theL-scale phenomena occurring far from the wall compa
with molecular dimensions. We are aware of only a very f
such studies that explicitly embody these hybrid procedu
@29,30#.

V. SUMMARY

This contribution has reexamined the classical continuu
mechanical concepts of ‘‘boundary conditions,’’ as well
the closely related issue of ‘‘surface fields,’’ in the context
a simple model of molecular-scale phenomena. This mo
dealt with the purely diffusive transport of spherical Brow
ian solute particles~colloidal ‘‘molecules’’! dispersed in a
viscous solvent bounded laterally by solid plane wa
Potential-energy wall-interaction forces were explicitly a
counted for in the transport equations, as too were pu
steric hydrodynamic wall effects inhibiting the mobility o
the Brownian particles near the wall. While the validity
such an elementary model for describing true molecu
scale phenomena might be questioned, simulations dem
strating the validity of Stokes law at the molecular scale@63#
~wherein similar questions might be raised! lend credibility
to our model, as well as to the accompanying physical r
soning.

Using this elementary transport model we clarified t
fundamental distinction existing between continuu
mechanical boundary conditions and the literal molecu
scale statistical-mechanical conditions prevailing at a so
wall. We showed unequivocally that these two types
‘‘conditions’’ are, in general, completely different, posses
ing very different physical interpretations. Explicitly, w
used singular perturbation analysis to argue formally t
continuum-scale boundary conditions represent
asymptotic, outer limit of the more exact physical descripti
of the transport processes, whereas the molecular-scale
ditions prevailing at the wall embody the inner limit of th
exact physics. In order to emphasize our fundamental c
tention thatconditions at a boundary are not boundary co
ditions we coined the phrase ‘‘molecular wall effects.’’ Th
phraseology was meant to direct attention to the existenc
a molecular analog of hydrodynamic wall effects. At th
same time, just as the diminished mobility of those no
Brownian spheres in a neutrally buoyant suspension that
either in direct contact with, or closely proximate to, i
bounding surfaces is irrelevant to the gross rheological pr
erties of the flowing suspension, so too is the compara
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immobility of molecules proximate to solid boundaries irre
evant to the gross rheological properties of homogene
fluids composed of these molecules. As such, we are of
opinion that the molecular dynamic simulation@2# claiming
to demonstrate the validity of the classical no-slipconvective
boundary condition for homogeneous viscous fluids is sp
ous, amounting instead to a demonstration of the existenc
molecular wall effects, rather than constituting a valid co
putational ‘‘proof’’ of the macroscale adherence condition

Our analysis also clarified the basic physical princip
underlying adsorption concepts, such as surface conce
tion and surface diffusion, as being dependent upon the s
of observation of the phenomena in relation to the effect
length scale of the molecular forces. It was argued that th
surface fields do not, in a literal physical sense, repres
either the true areal surface density or the surface veloc
A
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respectively, of an adsorbed species at the wall. Rather,
arise from the need to rectify the disparity existing betwe
the spatial domains of validity of the macroscale continu
phenomena~which do not quantify the correct physics ne
the wall owing to their failure to embodys-f forces! and the
wall-scale physics.
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alone, independently of the dimensions of the apparatu
which the adsorption occurs, is a strictly asymptotic conce
Erroneous opinions to the contrary can be traced to a failur
distinguish clearly between ‘‘surface’’ and ‘‘surface-exces
areal densities. Only the latter represents a correct phys
concept. Thus, for example, describing some species as b
‘‘weakly adsorbed’’ in an attempt to quantify some objecti
intrinsic physicochemical property of the binary fluid/soli
wall system, independently of the dimensions of the contai
in which the adsorption experiment is conducted, is a me
ingless, and indeed misleading concept—an oxymoron.
sorption, at leastlinear adsorption, is quantified by an intrinsi
molecular length scalel m , implicitly embodied in the magni-
tude of the Henry’s law constant. The latter length scale,
termediate in magnitude between the molecular scalel f f and
the macroscopic apparatus scaleL, appears naturally as a con
sequence of the proportionality between an areal or sur
density~mass or molecules per unitarea! and a volumetric or
bulk density ~mass or molecules per unitvolume!. Sur-
face~-excess! adsorption is thus necessarily quantified by t
nondimensional ratiol m /L—which, being dependent upon th
in
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linear dimensionL of the apparatus normal to the wall o
which the adsorption measurement is being performed
clearly not an intrinsic material physicochemical property
the system, independently of the magnitude ofL, except in the
singular asymptotic limitl m /L→0. This point of view points
up the impossibility of molecular dynamic simulations bein
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continuum-mechanical region.
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