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Solid-phase structures of the Dzugutov pair potential

J. Roth
Institut für Theoretische und Angewandte Physik, Universita¨t Stuttgart, Paffenwaldring 57, 70550 Stuttgart, Germany
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~Received 20 December 1999!

In recent computer simulations of a simple monatomic system interacting via the Dzugutov pair potential,
freezing of the fluid into an equilibrium dodecagonal quasicrystal has been reported@M. Dzugutov, Phys. Rev.
Lett. 70, 2924 ~1993!#. Here, using a combination of molecular dynamics simulation and thermodynamic
perturbation theory, we conduct a detailed analysis of the relative stabilities of solid-phase structures of the
Dzugutov-potential system. At low pressures, the most stable structure is found to be a bcc crystal, which gives
way at higher pressures to a fcc crystal. Although a dodecagonal quasicrystal and as-phase crystal compete
with the bcc crystal for stability, they always remain metastable.

PACS number~s!: 64.70.Dv, 61.43.Bn, 61.44.Br, 61.50.Ah
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I. INTRODUCTION

Several years ago@1#, Dzugutov and Dahlborg introduce
a model pair potential for the purpose of studying glass tr
sitions by means of molecular dynamics~MD! simulation.
Most simulations of glass transitions to date have been
formed using binary mixtures, since one-component sim
liquids, when supercooled, readily nucleate crystallites. T
Dzugutov potential, which features a pronounced maxim
at a range typical of next-nearest-neighbor coordination
tances in close-packed crystals, suppresses crystallizatio
construction, and thus facilitates glass formation. Follow
its initial successful use in studies of supercooled liqu
@1,2#, the Dzugutov potential was subsequently adopted
simulations of freezing@3,4#. Contrary to expectations, how
ever, the observed solid structure was determined to be
markably, a monatomic dodecagonal quasicrystal. The st
ture, also known as tetrahedrally or topologically clo
packed~tcp! @5#, is of the Frank-Kasper type and is com
posed of layers of square-triangle tilings. In previous wo
the Dzugutov potential and the associated dodecagonal s
ture have been used to study self-diffusion in quasicrys
@6#.

The motivation for the present work stems primarily fro
our interest in the nucleation and stability of quasicrys
phases. Further motivation comes from the realm of coll
physics, where, given the extreme tunability of colloidal
terparticle interactions, it is conceivable that a Dzugutov-l
pair potential might be engineered to produce bulk samp
of one-component quasicrystals@7#. The main purpose of the
study reported here is to chart, by means of both MD sim
lation and thermodynamic perturbation theory, the fluid-so
phase diagram of the Dzugutov-potential system.

The paper is organized as follows. In Sec. II, after spe
fying the pair potential, we give details of the simulatio
methods and describe our analyses of the resulting s
structures. Section III outlines the theoretical methods us
while Sec. IV characterizes the quasicrystal and other st
tures of interest. In Sec. V we present results—from b
simulation and theory—for relative stabilities of competi
PRE 611063-651X/2000/61~6!/6845~13!/$15.00
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solid structures. Among our main results, we find that~1! at
low temperatures and pressures, the stable solid structu
the bcc crystal;~2! at high pressures, the stable solid is t
fcc crystal; and~3! the stable ground state (T50) is never
the dodecagonal quasicrystal, but rather a periodic cry
whose structure depends on the pressure. Finally, in Sec
we summarize and discuss implications of the results
future work.

II. MOLECULAR DYNAMICS SIMULATIONS

A. The interaction

The Dzugutov pair potential@2#, plotted in Fig. 1, is de-
fined by

F~r !5F1~r !1F2~r !, ~1!

where

FIG. 1. Dzugutov pair potential together with histograms
neighbor distances for fcc~black bars!, bcc~gray bars!, ands-phase
~unshaded bars! crystals at reduced densityrs350.9. Heights of
bars are proportional to numbers of neighbors.
6845 ©2000 The American Physical Society
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F1~r !5H A~r 2m2B!expS c

r 2aD , r ,a

0, r>a,
~2!

and

F2~r !5H B expS d

r 2bD , r ,b

0, r>b,
~3!

with the parameters

m A c a B d b

16 5.82 1.1 1.87 1.28 0.27 1.94
.

The potential is characterized by a minimum atr
51.13s of depth20.581e, having the same form as that o
the Lennard-Jones potential, followed by a maximum ar
51.63s of height 0.460e. The maximum is designed to pre
vent the system from crystallizing into simple crystal stru
tures. Beyond the maximum the potential tends to zero c
tinuously and is cut off at a range ofr c51.94s, which
ensures that CPU times remain within reasonable limits.

B. Simulation method

Classical isothermal (N-V-T) and isothermal-isobaric
(N-P-T) MD simulations were performed using the co
straint method@8#. An extension of this method allows us t
introduce constant temperature or pressure gradients@9#.
Newton’s equations of motion were integrated using
fourth-order Gear predictor-corrector algorithm~see, e.g.,
@8#! with a time increment ofdt50.0005sAm/e for all
simulations. Periodic boundary conditions were applied to
orthorhombic simulation cell, whose volume~in the N-P-T
simulations! was permitted to change isotropically.

The sample sizes range from 54 to 1024 atoms, with
lengths of the cell along the three orthogonal coordinate a
being chosen to make the sample shapes as close to cub
possible. Simulations with the stable phases were carried
with samples containing 54, 250, and 1024 atoms for the
phase; 60 and 480 atoms for thes phase; and 108 and 50
atoms for the fcc phase. Most results are reported for 2
500, and 1024 atoms, though if not explicitly stated, t
sample size is irrelevant. The potential energy and entha
per atom were found to be quite insensitive to sample si

C. Structural analysis

To analyze the structures that arise in a simulation at fi
temperature, we quenched the system by setting the temp
ture in ourN-P-T MD program to zero, thereby using th
program as a steepest descent algorithm. Quenching fo
the system to seek out its local energy minimum, which
cilitates structure identification.

Dzugutov@2# has pointed out that vacancies may play
major role in stabilizing quasicrystalline structures. To det
mine the number of vacancies in a sample, we begin
constructing the Voronoi cells and their dual, the Delaun
cells, and determining from the latter the distribution of fr
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volumes in the structure. Although the free volume distrib
tion gives a reasonable representation of the interstitial s
it greatly overestimates the vacancies~by a factor of about
10!. This is because the Delaunay cells are face-to-f
packed tetrahedra, whereas the vacancies should be r
sented by spheres that could easily cover several tetrahe
To determine the correct number of vacancies, we first se
the Delaunay cells that are large enough to accommodat
atom and do not overlap with an already existing atom. W
these cells we create trees of mutually overlapping cells,
nodes of the tree being the centers of the Delaunay cells
the edges the distance vectors between cells too close t
filled simultaneously. We then fill the tree with sphere
starting at the outermost ends. After adding a sphere, all
Delaunay cells connected to its node are discarded. The
sphere is then added onto the next outermost node rem
ing. The procedure is repeated until the whole tree is fill
after which the algorithm repeats with another Delauney c
not belonging to the current tree. This method allows us
fill the sample as densely as possible with vacancies.

In order to help characterize and distinguish the so
structures observed in the simulations, we have compu
from the atomic coordinates both radial and angular distri
tion functions. However, such averaged functions often
not allow unique identification of a structure, which requir
as well the spatial distribution of bonds. Thus, we have a
generated bond order diagrams. These are stereographic
jections of the nearest-neighbor bonds constructed as
lows. First, all neighbor vectors are determined and norm
ized to unit length. Next, the vectors are placed at a comm
origin so that their end points lie on the unit sphere. Fina
the distribution of the points on the sphere is represented
stereographic projections along the three coordinate a
The pictures thus obtained reveal the global symmetry of
sample.

III. THEORY

For comparison with the simulation data, we have ind
pendently calculated the phase behavior of the system
means of thermodynamic perturbation theory. Taking
Dzugutov pair potential as input, we apply the approxim
theory of Weeks, Chandler, and Andersen~WCA! @10# to a
classical system ofN pairwise-interacting particles in a vol
umeV. The WCA approach is especially well suited to pa
potentials that contain a steeply repulsive core and has b
successfully applied to the Lennard-Jones potential@11–13#,
which has a repulsive core similar to that of the Dzugut
potential.

The WCA approximation splits the pair potentialf(r ) at
its first minimum into a short-range repulsive reference p
tential f0(r ) and a perturbation potentialfp(r ) and pre-
scribes a mapping of the reference system onto an effec
hard-sphere~HS! system. The Helmholtz free energyF of
the system separates correspondingly into reference and
turbation parts, according to

F5F01E
0

1

dl^Fp&l , ~4!

whereF0 is the free energy of the reference system,
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Fp[(
i , j

fp~ ur i2r j u! ~5!

is the total perturbation energy, and^•••&l denotes averag
ing with respect to the probability distribution of a syste
with pair potential fl(r )5f0(r )1lfp(r ). Expansion of
^Fp&l in powers ofl about the reference system (l50)
generates an exact perturbation series. Mapping the refer
system onto an effective HS system, the free energy ma
expressed, tofirst order in the perturbation potential, as

F@r~r !#5FHS@r~r !#

1
2pN2

V E
0

`

dr8 r 82gHS„r 8;@r~r !#…fp~r 8!,

~6!

whereFHS@r(r )# andgHS„r ;@r(r )#… are the free energy an
radial distribution function~RDF!, respectively, of the HS
reference system, both functionals of the equilibrium o
particle number densityr(r ). The RDF is defined, in turn
according to

gHS„r ;@r~r !#…[
1

4pr2V
E dVE dr 8 r (2)~r 8,r 81r !,

~7!

as an orientational and translational average of the t
particle densityr (2)(r ,r 8). The second- and higher-orde
terms are proportional to successively higher powers of
verse temperature 1/T, the coefficients being related to mea
fluctuations ofFp @14#. Accuracy of the first-order approxi
mation@Eq. ~6!# is thus assured as long as fluctuations inFp
remain sufficiently small relative to the thermal energykBT.

The free energy of the fluid phase is calculated via
uniform limit @r(r )→r# of Eq. ~6!, using the essentially
exact Carnahan-Starling and Verlet-Weis forms@14# for the
HS free energy per particle,f HS(r), and RDF,gHS(r ), re-
spectively. For the solid phase, the HS free energy functio
is approximated by means of classical density-functio
~DF! theory@15#. The DF approach is based on the existen
of a functionalF @r(r )# of the densityr(r ) that satisfies a
variational principle, according to whichF @r(r )# is
minimized—for given average density and extern
potential—by the equilibrium density, its minimum valu
equaling the Helmholtz free energyF. In the absence of an
external potential,F @r(r )# may be decomposed into an e
actly known ideal-gas contribution

Fid@r~r !#5kBTE dr r~r !$ ln@r~r !L3#21%, ~8!

which is the free energy in the absence of interactionsL
being the thermal de Broglie wavelength!, and an excess
contributionFex@r(r )#, depending entirely upon internal in
teractions.

Here we approximate the excess free energy of the
solid by the modified weighted-density approximati
~MWDA ! @16,17#, which gives a reasonable description
the HS system. The MWDA maps the excess free energy
ce
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particle of the solid onto that of a corresponding unifor
fluid of effective density, according to

1

N
F ex

MWDA@r~r !#5 f HS~ r̂ !, ~9!

where the effective~or weighted! density

r̂[
1

NE drE dr 8 r~r !r~r 8!w~ ur2r 8u; r̂ ! ~10!

is a self-consistently determined weighted average ofr(r ).
The weight functionw(r ) is specified by normalization an
by the requirement thatF ex

MWDA@r(r )# generate the exac
two-particle ~Ornstein-Zernike! direct correlation function
c(r ) in the uniform limit. This leads to an analytic relatio
@16# betweenw(r ) and the fluid functionsf HS and c(r ),
computed here using the solution of the Percus-Yevick~PY!
integral equation for hard spheres@14#.

Practical calculation ofFHS@r(r )# andgHS„r ;@r(r )#… re-
quires specifying the solid density, i.e., the coordinates of
lattice sites~equilibrium particle positions! and the shape o
the density distribution about these sites. Here we cons
fcc, hcp, bcc, ands-phase crystals and the dodecagonal q
sicrystal structures described below in Sec. IV. The den
distribution is modeled by the Gaussian ansatz. This pla
at each siteR a normalized isotropic Gaussian, such that

r~r !5S a

p D 3/2

(
R

exp~2aur2Ru2!, ~11!

the single parametera determining the width of the distribu
tion. The Gaussian ansatz has been shown by simulation@18#
to reasonably describe the density distribution of clo
packed crystals. For nonoverlapping neighbori
Gaussians—consistently the case here—the ideal-gas
energy per particle@Eq. ~8!# is very accurately approximate
by

1

N
Fid5 3

2 kBT ln~aL2!2 5
2 , ~12!

to within an irrelevant constant. The HS free energy is o
tained, for a given solid structure and average density,
minimizing the approximate functional FHS@r(r )#
5Fid@r(r )#1F ex

MWDA@r(r )# @from Eqs.~9!, ~10!, and ~12!#
with respect toa. Predictions of the MWDA for free ener
gies and pressures of HS solids are in good agreement
simulation data for both fcc@16# and bcc@19# crystals. Al-
though the theory underpredicts by roughly 20% the Lind
mann ratios~ratio of root-mean-square particle displaceme
to nearest-neighbor distance! at melting for both crystal sym-
metries, it is only the free energies that determine thermo
namic phase behavior. Note that in simulations of the HS
crystal a constraint of single-cell occupancy is usually i
posed in order to stabilize the crystal against shear.

The perturbation free energy in Eq.~6! requires knowl-
edge of the hard-sphere RDF, which may be expressed
general, as a sum over coordination shells:
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gHS„r ;@r~r !#…5(
i 51

`

g( i )
„r ;@r~r !#…. ~13!

The functionalsg( i )
„r ;@r(r )#… are obtained using the ap

proach of Rasco´n et al. @13#, which approximates the secon
and higher coordination shells in mean-field fashion and c
rects the first coordination shell for nearest-neighbor corr
tions. Thus, ignoring correlations fori>2, and substituting
r (2)(r ,r 8)5r(r )r(r 8), together with Eq.~11!, into Eq. ~7!,
yields

g( i )~r ;@r#!5
1

4pr S a

2p D 1/2 ni

rRi
exp@2a~r 2Ri !

2/2#, i>2,

~14!

whereni is the coordination number andRi the lattice vector
magnitude of thei th shell. The first peak is parametrized b

g(1)
„r ;@r~r !#…5

A exp@2a1~r 2r 1!2/2#

r
, r>d, ~15!

whered is the effective HS diameter and where the para
etersA, a1, and r 1 are determined by imposing three su
rules, namely, the virial equation~relating the contact value
to the bulk pressureP), normalization to the neares
neighbor coordination numbern1, and approximation of the
first moment by its mean-field value. Together, then, the
pressureP5r2] f HS/]r and the value ofa that minimizes
FHS@r(r )# determinegHS„r ;@r(r )#… and so the perturbation
free energy for a given solid structure. The approximat
expressed by Eqs.~13!–~15! is in excellent agreement with
simulation data for the HS fcc crystal, and has been succ
fully applied, in a perturbation theory, to Lennard-Jones a
square-well solids@13#. The approximation has also bee
tested against, and found to closely match, Monte Ca
simulation data forgHS„r ;@r(r )#… of a HS bcc crystal~at
densityrs351.1), subjected to a single-cell occupancy co
straint to suppress shear instability@20#. Further simulations
will be required, however, to test the approximation for t
HS bcc crystal at lower densities, where next-neare
neighbor correlations and anisotropies in the density dis
bution may not be negligible.

It remains still to specify the effective HS diameterd.
According to the WCA prescription,d is the root of the
nonlinear equation

E dr yHS„r ;@r~r !#;d…De~r !50, ~16!

where

yHS„r ;@r~r !#;d…[ exp@fHS~r ;d!/kBT#gHS„r ;@r~r !#;d…

is the HS cavity function and

De~r !5exp@2f0~r !/kBT#2exp@2fHS~r ;d!/kBT#
~17!

is a function that is nonzero only over a narrow ran
jd (j!1) aroundr 5d. This choice ensures that the fre
energy of the reference system differs from that of the eff
tive HS system only by terms ofO(j4) and higher. In prac-
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tice, lacking knowledge of the cavity function of the H
solid for r ,d, we expand the quantityr 2yHS„r ;@r(r )#;d… in
a Taylor series aboutr 5d and retain the first three terms.

The theory set out above provides a reasonable appr
mation for the Helmholtz free energy of the system at te
peratures of ordere/kB and higher. From the free energy, an
bulk thermodynamic property may then be calculated.
particular relevance to phase behavior are the pressure
chemical potential. In Sec. V D, we present our theoreti
predictions for the phase diagram of the Dzugutov-poten
system.

IV. SOLID STRUCTURES

A. Dodecagonal quasicrystal

The structural model of the dodecagonal quasicrystal
we have investigated is a layered system that is periodi
one direction, but quasiperiodic and twelvefold symmetric
the perpendicular plane@21#. It is of Frank-Kasper type, i.e.
it is mostly tetrahedrally close packed, and can be descri
as a periodicABAB̄stacking of a primary dodecagonal lay
A and two secondary hexagonal layers,B and B̄, which are
rotated by 30 ° with respect to each other to obtain do
cagonal symmetry. The atoms in layerA form the vertices of
a simple tiling made of squares, triangles, 30 ° rhombus
and two kinds of hexagons. The threefold-symmetric he
gon is known as the ‘‘shield.’’ These tiles, together wi
their decorations, are shown in Fig. 2. A sample of a squa
triangle configuration is displayed in Fig. 3. The dodecag
nal quasicrystal structure can also be regarded as the d
ration of a simple dodecagonal tiling@22,23#.

The stability of the monatomic Frank-Kasper-type dec
ration of the square-triangle-rhombus-shield tiling with t
potential of Eq.~1! was reported by Dzugutov@3#. Upon
cooling below the glass transition temperature, a glass for
which transforms, after a very long annealing time, into
dodecagonal quasicrystal. The underlying tiling structure
mainly a decorated square-triangle tiling with a few rho
buses and shields.

The aperiodicity of quasicrystals forbids periodic boun
ary conditions in the simulation. Taking a finite patch wi
open boundary conditions also should be avoided, as the
face energy would affect structural stability. A solution is
use periodic approximants, which are finite, orthorhom
cells whose boundaries match on opposite sides. In this w
periodic boundary conditions may be applied, as is do
throughout this paper.

FIG. 2. The basic tiles of the dodecagonal model: square,
angle, rhombus, shield, and twofold-symmetric hexagon. The
ted atoms are placed inA layers atz51/4 and 3/4, the white atoms
in B layers atz50, and the black atoms atZ51/2. All tiles can also
occur with black and white atoms exchanged, depending on t
orientation. The twofold-symmetric hexagon is unstable and d
not occur in our tilings.
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B. Square-triangle crystals

In addition to the quasicrystalline tilings, it is also po
sible to generate crystalline phases with squares and trian
decorated in the same fashion as for the quasicrystals. If
squares are used, theA15 or b-W phase~also known as
cP8 Cr3Si) is obtained, whereas a pure triangle tiling resu
in theZ structure (hp7 Zr3Al4). If both squares and triangle
are permitted, thes phase or b-U ~also known as
tp30 Cr46Fe54) and the H phase are obtained. The tw
phases differ in the arrangement of the tiles. The vertex c
figurations of the crystalline phases are shown in Fig.
They are denoted bya, z, h, ands, according to the phase i
which they appear.

The unit cell of thes phase can be subdivided into tw
regular triangles and two squares. The atoms at the ver
of these tiles are 14-fold coordinated, while the atom in
center of the triangles is 15-fold coordinated. The remain
atoms on the edges and in the interior of the square
12-fold coordinated icosahedra. Since all coordination sh
have a triangular surface, all atoms are tetrahedrally c
packed. Pure square-triangle structures and tilings with a
tional shields are very stable@21#. Rhombuses, however, ar
unstable and transform into the other tiles.

V. RESULTS

A. Analysis and comparison of solid structures

In this section we discuss the geometric properties of
amorphous structure, the bcc and fcc crystals, the nucle

FIG. 3. Patch of a decorated square-triangle quasicrystal.
dotted atoms are atz51/4 and 3/4 in theA layer, the white atoms
are atz50 in theB layer, and the black atoms are atz51/2 in the

B̄ layer.

FIG. 4. Vertex configurations of the crystalline phases with
single vertex configuration. From left to right:A, Z, H, ands phase
or a, z, h, ands vertex, respectively.
les
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tcp phase, and thes phase. We have used three diagnost
to compare the structures: the radial distribution funct
~RDF!, the angular distribution function~ADF! of nearest
neighbors separated by a distance less than the first minim
of the RDF ~usually r ,1.6s), and bond order diagrams
which aid in identifying the global symmetry even if th
symmetry elements are oriented in random directions.

1. Radial distribution functions

Figure 5~a! compares the radial distribution functions
the structures most commonly observed in the simulatio
Typical of the amorphous structures is an asymmetric fi
peak, which appears to consist of two overlapping she
followed by a second maximum in the range 1.7s,r

e

FIG. 5. Radial distribution functions for various systems.~a!
From bottom to top: fcc, bcc,s phase, tcp phase, amorphous pha
The samples have been expanded toPs3/e50.001 and quenched to
T50. Vertical scale is in arbitrary units, all curves being scaled
the same maximum.~b! A sample obtained from cooling a
Ps3/e525 andkBT/e50.75. The shoulder atr 51.5s indicates the
onset of a transition to fcc.~c! Hard-sphere solid at reduced densi
rs351.0, computed from Eqs.~13!–~15!: fcc crystal~solid curve!,
bcc crystal~long-dashed curve!, ands phase~short-dashed curve!.
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,2.7s, which is the well-known double peak. The unusua
sharp slope on the short-distance side indicates a w
defined second-nearest-neighbor distance, which is ca
by the repulsive part of the maximum of the potential. T
maximum at about 1.9s is formed by two opposite corner
of a bipyramid consisting of two regular tetrahedra. A se
ond remarkable sharp slope is found at the third maximum
about 2.7s. Notice that the RDFs of the tcp structures o
tained on cooling are completely indistinguishable fro
those of the amorphous case.

The RDF of thes phase shows an example of the perfe
square-triangle-rhombus-shield phases. The quasicrysta
and other crystalline and approximant phases differ only
the fine structure of the subpeaks. Evidently the tcp-ph
RDF is a broadened envelope of thes-phase RDF.

The RDFs of the bcc and fcc structures, however,
radically different. For bcc, the first maximum is indee
split, and in the second maximum the short-distance pa
lower than the next peak. This maximum is now formed
the distances across the tetragonal octahedron in the
structure. At higher temperatures, when the peaks of
RDF are broadened and overlap, the RDF of the bcc pha
similar to the RDF of the tcp phases except that the weig
of the two subpeaks of the second maximum between 1s
and 2.7s are interchanged.

The RDF of the fcc crystal exhibits a peak at about 1.6s.
Since this is the position of the potential maximum, it is cle
that the fcc phase is unstable at low pressures. Fig.~b!
shows the transition from a bcc phase to the fcc phas
kBT/e50.75. The small maximum at 1.5s indicates forma-
tion of regular squares, which are characteristic of fcc str
tures. The MD data are strikingly similar to theoretical pr
dictions for the hard-sphere fcc crystal@Fig. 5~c!#.

The sequence of phases at low temperatures and inc
ing pressure becomes clear when we examine the RDFs
the bcc ands phases, the first two overlapping atomic she
occupy the minimum of the potential. The next shell is b
yond the maximum. For the fcc structure, the first shell
also in the minimum and the second shell is at the maxim
If the structures are compressed, the energies of the bcc
s phasesincrease, since the second maximum of the RD
moves up the maximum of the potential. The energy of
fcc structuredecreases, since the second maximum of th
RDF moves down the potential maximum.

2. Angular distribution functions

The results for the angular distribution functions~Fig. 6!
are consistent with the results for the RDFs. The amorph
and tcp structures are indistinguishable. The tcp-phase A
is a broadened version of the ADF of thes phase. All of
these phases, as well as the liquid, show two maxima
rather narrow extremum at small angles around 60° an
broad peak at about 120°. Both maxima indicate the e
tence of equilateral triangles. The ADFs of bcc and fcc str
tures are again completely different. Especially remarka
are the maxima at an angle of 90°, indicating the existenc
rectangles in these phases. For the bcc phase these angl
formed by distances between atoms along the fourfold a
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3. Bond order diagrams

We have seen that the amorphous and tcp structures
tained by cooling cannot be distinguished by the RDF
ADF. Are they really different? As shown in Fig. 7, bon
order diagrams can give a clear answer. The diagram for
bcc structure@Fig. 7~a!# is relatively simple, exhibiting seven
maxima—four from the separation along the space diago
and three from the distances along the fourfold directions.
the sample shown here was not perfect, thin bridges join
maxima. The liquid~not shown! is characterized by an iso
tropic distribution of the bonds covering the whole sphe
homogeneously. The diagram for the tcp phase@Fig. 7~b!# is
somewhat more complicated, featuring an equator w
twelve maxima, indicating the presence of a quasicrys
Other prominent features are two further circles of maxi
at higher latitudes and two peaks at the poles. For nonper
samples the distribution of the maxima is distorted, and
symmetry may not be dodecagonal. Occasional ringlike
rangements of overlapping maxima surrounded by furt
maxima suggest twinning and multigrain samples.

Comparing samples classified as amorphous or
phases, we find that a continuous transition between the
may be possible. In Fig. 7~b! the maxima can be seen qui
clearly. In other samples, however, the maxima are alm
obscured by a rather homogeneous background no
Quenching and annealing improves the diagrams only m
ginally. It is possible that some of the amorphous samp
actually consist of a number of micrograins. If in fact this
the case, it would mean that the amorphous and tcp ph
have the samelocal arrangement of atoms, although th
amorphous sample did not succeed in ordering globally.

4. Real-space representation of the structures

Real-space pictures~snapshots! of the samples also help
to distinguish the structures. In most cases, the bcc sam
look quite defect-free, with only the vacancies visible. Som
times we find two differently oriented domains in the sim
lation box. Liquid samples obviously do not show any reg
larities. In the quenched amorphous structures, howe
there are sometimes partially ordered parts, underlining
claim that they contain micrograins. The tcp samples, as
emplified by Fig. 7~c!, have layered structures, which,
viewed perpendicular to the layers, resemble the per

FIG. 6. Angular distribution functions. From bottom to top: fc
bcc,s phase, tcp phase, amorphous phase. The samples have
expanded toPs3/e50.001 and quenched toT50.
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PRE 61 6851SOLID-PHASE STRUCTURES OF THE DZUGUTOV PAIR . . .
FIG. 7. ~a! Spherical projection of the nearest-neighbor vect
of a nonperfect bcc sample generated by cooling. Three view
the sphere along perpendicular directions are given.~b! Spherical
projections of the nearest-neighbor vectors of a tcp sample obta
by cooling. Three perpendicular views are given. The poles of
sphere are marked by arrows, and the equator is indicated
dashes. The six maxima along the equator represent the twelv
symmetry.~c! Projection of a tcp sample obtained by cooling
Ps3/e53.5 andkBT/e50.55. The sample has been expanded
Ps3/e50.001 and quenched toT50 after nucleation.
sample in Fig. 3, characterized by centered ringlike str
tures formed by the 14- and 15-fold-coordinated atoms. T
quality of the pictures is often low, however, as the samp
may be twinned or contain several grains.

B. Ground-state structures

The equilibrium structure of a specific potential at a giv
temperature and pressure may be determined, in principle
a global minimization of the Gibbs free energyG. In prac-
tice, however, this procedure is not feasible with MD sim
lations, since direct transitions between local minima
rarely observed. Even if special methods are used to sw
between closely related structures like bcc and fcc, there
may exist a free energy barrier high enough to preven
transition @24#. Instead of attempting to minimizeG, one
identifies promising structures, computes the thermodyna
functions, and compares them. An alternative is thermo
namic integration ofP, starting atP50 and integrating to-
ward higher pressures.

At T50, where entropy no longer affects stability, ide
tifying the ground state simplifies considerably. Here t
Helmholtz free energyF equals the internal energyU, which
in turn equals the potential energyEpot, since the kinetic
energy vanishes. Furthermore, the Gibbs free energyG be-
comes equal to the enthalpyH and the pressureP is deter-
mined by the virial equation, since the kinetic pressurekBT
also vanishes. Common tangent constructions on curve
U(V,T50) vs V yield the stability ranges of competin
phases, and curves of enthalpyH(P,T50) vs P intersect at
the phase coexistence pressures.

We have calculated the ground-state energies by two
dependent methods. First, taking the perfect structures,
have computed lattice summations of the Dzugutov pair
tential. Second, starting from a perfect structure, we h
relaxed the system with the MD simulation program in
isothermal-isobaric ensemble, settingkBT/e50.001 andP to
the desired value. In this mode, molecular dynamics acts
steepest gradient optimization algorithm. The pressure is
rived from the virial equation. In contrast to a lattice su
calculation, where only the volume is scaled, in the simu
tions all atoms may move independently. Therefore the
sults may~and do! differ slightly from the lattice sum calcu
lations for perfect structures.

Since the Dzugutov potential@Eq. ~1!# is isotropic and has
a single minimum, it should favor densely packed structu
if the volume is not restricted. An optimal packing in thre
dimensions would consist of regular tetrahedra, but suc
packing does not exist. Now there are two choices to so
this dilemma: either introduce other coordination polyhed
as in fcc crystals, or use irregular tetrahedra, as in tcp pha
In the Frank-Kasper phases the coordination polyhedra
additionally restricted to deltahedra with five or six triangl
meeting at a vertex. This condition is fulfilled for the icos
hedron and certain polyhedra with 14, 15, and 16 vertic
Although the bcc structure is tetrahedrally close packed,
not a Frank-Kasper phase since its coordination polyhed
~a rhombic dodecahedron! has vertices where only four tri
angles meet.

In a first step toward identifying stable structures w
study stacking variants, distort the phases mentioned ab

s
of

ed
e
ith
ld

o



n
tly

f
th
th
or

tr
e

wi
d
lin
as

on
a

as

ili
ut
s
e
gi
is
of
ne
m
n

uc
re
e

lly
;
ur
ro
.
a

po

ei
rg
n

s
7
,

s o
o

ea

I.
bcc

a

re-
ir

hous
by

oling

6852 PRE 61J. ROTH AND A. R. DENTON
and examine various tcp structures. The fcc structure ca
modified by stacking the densely packed layers differen
We find that the hexagonal close-packed~hcp! and other
stacking variants are considerably less stable than the
structure at high pressures where the fcc is more stable
the bcc ands phases. This result is remarkable since for
Lennard-Jones potential hcp is known to be slightly m
stable than fcc packing@25#.

Distortions of the bcc phase along the principal symme
axis always reduce the stability. The same happens for ths
phase if the layer distance is changed from the optimum
c/a51.03 (a is the edge length of the tiles andc the period
along thez axis!.

The Frank-Kasper phases are of two types: structures
16-fold-coordinated sites and structures without. The do
cagonal quasicrystal and its approximants and crystal
variants are of the latter type, called the square-triangle cl
Structures containing 16-fold~or higher! coordinated atoms
have a lower stability. The sites with the high coordinati
numbers are too numerous and the potential energy incre
because of strained bonds.

We observe the same trend in the square-triangle cl
The stability is lowest for the purely triangularZ phase since
the number of 15-fold sites is also considerable. The stab
increases if the triangles are separated by squares, b
again rather low if the structure contains only squares a
the A phase without 15-fold sites, perhaps because thA
phase has full cubic symmetry and is therefore more ri
than the other structures. Thes phase, on the other hand,
more stable than theH phase, since it contains only pairs
triangles instead of rows. More complicated crystalli
phases, approximants, and the quasicrystals all contain
tures of squares and triangles in different arrangeme
These structures are all inferior to thes phase since they
must contain larger conglomerates of triangles.

In a second step toward identifying ground-state str
tures, we survey the published crystallographic structu
From the lists in Refs.@26–28#, a variety of structures hav
been selected according to the following criteria:~1! coordi-
nation numbers between 10 and 15;~2! derivatives of tcp
structures;~3! derivatives of the bcc structure, especia
vacancy-ordered structures;~4! quasicrystal approximants
and ~5! icosahedral coordination shells. For each struct
examined the required crystallographic data were taken f
Ref. @5#. A full list of the structures is given in the Appendix

Assembling the results, the following picture emerges
T50 ~Fig. 8!: the bcc phase has the absolute minimum
tential energy at a density ofrs350.866. Thes phase acts
as the lower bound for all the square-triangle phases, b
minimal atrs350.879. The fcc phase has a potential ene
minimum at rs351.013. A common tangent constructio
shows that the bcc structure is stable up tors350.887 and
the fcc abovers351.057. The relaxeds phase is stable, a
determined by MD, only within the narrow interval 0.88
,rs3,1.057, whereas the ideals phase is never stable
according to a simple lattice sum calculation. Intersection
the enthalpy curves yield the stability ranges in terms
pressure. The most stable structures are bcc forPs3/e
,1.70, s for 1.70,Ps3/e,2.85, and fcc for Ps3/e
.2.85. The sequence of ground-state structures with incr
ing pressure~and density! is therefore: bcc-s-fcc. The prop-
be
.

cc
an
e
e

y

at

th
e-
e
s.

ses

s.

ty
is

in

d

ix-
ts.

-
s.

e
m

t
-

ng
y

f
f

s-

erties of the various structures are summarized in Table
Vacancy-ordered phases are more stable than the pure

phase at densities down tors350.7 @Fig. 8~b!#. In the range
0.6,rs3,0.7 the lowest potential energy is attained by
disordered phase formed upon annealing the NiTi2 approxi-
mant phase.

FIG. 8. Ground-state energy per unit volume vs density, in
duced units.~a! Results of lattice summation of the Dzugutov pa
potential for ideal fcc crystal~solid curve!, bcc crystal~long-dashed
curve!, ands phase~short-dashed curve!. ~b! Results of MD simu-
lation, with structural relaxation, fors phase~solid curve!, fcc
~long-dashed curve!, and bcc~short-dashed curve!. ~c! MD simula-
tion data for the bcc vacancy phases and the low-density amorp
structures. The lowest minimum at the right is bcc followed
Cu5Zn8 , Pd42xTe, Mn23Th6, and Ga4Ni3. The next minimum be-
longs to the amorphous phase formed from NiTi2. The remaining
double-dashed curve is the amorphous phase generated by co
the melt.
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C. Finite-temperature phases

From the ground-state calculations we have determi
the stable structures atT50. Insight into the topology of the
phase diagram at finite temperatures can now be obtaine
observing phase transitions between the melt and the s
upon heating, cooling, and compression. As noted in S
V B, it is not possible to determine the relative thermod
namic stabilities of two competing phases directly from co
ventional MD simulations because of the difficulty of com
puting the entropic contribution to the free energy. Howev
by observing the temperature and pressure at which a p
becomes unstable, it is possible to establish limits of m
chanical stability. The results of our MD stability analys
are consolidated in Fig. 9~a!.

1. Heating simulations

If the bcc ands-phase solids are heated at low pressu
the energy and enthalpy for the bcc structure always rem
lower than those for thes phase. At higher pressures, th
energy of thes phase drops below that of the bcc. Th
differences between the enthalpies at higher temperatu
however, are smaller than their fluctuations, such that
relative stabilities of bcc ands phases cannot be resolved

The determination of the melting line has been discus
in detail in Ref.@29#. Here we present only a brief summar
The phase transition line was determined by preparin
solid at kBT/e50 or 0.4 at fixed pressure and heating
continuously at rates ofkBdT/e50.001 or 0.002 per time
step until melting was observed. The criterion for melti
was the divergence of the mean-square displacement. A
same temperature a sudden rise in the potential energy
an associated drop in the density were observed. Sim
simulations have been carried out at constant volume sta
at kBT/e50.001 andPs3/e50.001. We emphasize that th
transition line thus obtained is not strictly the equilibriu
melting line, since with periodic boundary conditions t
sample has no surface at which melting could start an
two-phase coexistence is not possible because the sam
are too small. The solid-fluid transition lines differ on
slightly for the bcc ands phases. The fcc crystal melts
somewhat higher temperatures. At high pressures, howe
the s phase becomes unstable at considerably lower t
peratures than the bcc and fcc structures.

The transition to the fluid can also be determined by
panding a solid at constant temperature starting from h
densities. The transition line obtained in this way for b

TABLE I. Ground-state structure and reduced densityrs3 at
which the potential energy per atomU is minimal. The upper half
contains MD results atkBT/e50.001, the lower half lattice sum
calculations for perfect structures.

Structure rs3 U/Epot

fcc 1.013 22.19
bcc 0.866 22.66
s 0.879 22.57
fcc 1.057 22.22
bcc 0.885 22.29
s 0.90 22.27
d
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crystals is the same as that determined by heating within
statistical fluctuations@Fig. 9~a!#. As noted in Ref.@29#, only
one fluid phase is observed and no transition between a
uid and a vapor phase could be found.

2. Cooling simulations

Cooling simulations were carried out in a manner simi
to the heating runs. Starting samples were obtained fr
solids equilibrated at high temperatures. The cooling r
waskBdT/e50.002 per time step. Similarly to melting, th
freezing transition is delayed, now because critical nuc
must first be formed, and subsequent large-scale reorde
of atoms may be necessary.

We find that the phase nucleating at pressures ab
Ps3/e55 always has bcc symmetry. If the temperature
lowered to aboutkBT/e50.7–1.0, the bcc structure becom
unstable relative to fcc at pressures abovePs3/e520. Al-
though a complete transition to fcc cannot be achieved w
our simulation method, we observe a clear indication that
is the preferred structure. In the radial distribution functi

FIG. 9. Pressure-temperature phase diagram.~a! MD simulation
results: The instability lines denote boundaries where respec
structures are destabilized if compressed to high pressures. Ca
letters mark phases formed by cooling simulations, lower-case
ters phases obtained by ground-state structure calculations. Cr
characterize region where tcp phase is found in cooling simulatio
The region between the melting/expansion transition line and
cooling/compression transition line is the hysteresis region.~b! Per-
turbation theory predictions: Phase boundaries are shown betw
fluid and fcc crystal~solid curve! and between fluid and metastab
bcc crystal~long-dashed curve!. Short-dashed curves are postulat
extrapolations to lowP andT.
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6854 PRE 61J. ROTH AND A. R. DENTON
@Fig. 5~a!# we observe the emergence and growth of a n
peak between the first and the second peaks at abouA2
times the nearest-neighbor distance, which signals the for
tion of regular squares in the close-packed crystal structu

Below Ps3/e55 we do not observe a typical freezin
transition with a jump in potential energy, but only a sha
kink, reminiscent of a glass transition. The nucleating str
tures are partially ordered and possess features typical o
tcp structure, namely, layering, ringlike structures, and
Frank-Kasper polyhedra@see Fig. 7~c!#. In the following, we
refer to such structures as the tcp phase. Although somet
dodecagonal, the tcp structures often do not have a pe
symmetry, and thus may have varying degrees of crysta
ity.

Because of the maximum in the potential, it was not p
sible in general to obtain perfect samples. If the pressur
too low, there is insufficient cohesion to compactify t
samples. This is clearly seen by comparing runs with diff
ent cooling rates. However, if equilibrated for a longer tim
the samples eventually become much denser.

The density ranges for stability have been obtained
cooling at constant volume. For the 500-atom sample
obtain the boundary between the formation of the bcc
the tcp phases atrs350.87, independent of the cooling ra
up to kBdT/e50.0005 per time step. For the 1024-ato
sample, however, the boundary is shifted tors350.84 and
is observed at the first time forkBdT/e50.000 25 per time
step. This is remarkable, since the minimum of thes phase
lies at aboutrs350.9.

The formation of the crystalline structures also depe
on the sample sizes and the cooling rates. A sample with
atoms and a constant density ofrs350.865 froze to the bcc
structure at a cooling rate ofkBdT/e50.001. For 500 atoms
we had to reduce the cooling rate by a factor of one-half,
for 1024 atoms a cooling rate ofkBdT/e50.000 25 per time
step was necessary to obtain a perfect bcc phase, alth
partial bcc ordering was already observed at twice this r

It is easier to obtain the tcp phase in a constant volu
simulation~as Dzugutov did! rather than in a constant pre
sure ensemble. To some extent, the nucleated structure
be annealed also at constant volume. However, most of
defects, especially different domains, cannot be so remo
Annealing at constant pressure also turns out to be inef
tual.

The transition from fluid to solid may also be observed
compressing the fluid at a constant pressure gradien
dPs3/e560.1. The transition curve is the same as for co
ing @Fig. 9~a!#, the collapsed structures being again bcc,
least forkBT/e50.6, 0.8, 1.0, 1.5, and 2.5.

Between the melting and freezing curves we observ
broad hysteresis region, within which the thermodynam
phase transition should occur. The reason for the broad
teresis region is the peculiar form of the potential. The ma
mum strongly inhibits freezing and collapsing of the stru
ture, as intended, indeed, by Dzugutov@30#.

The structures generated by cooling the samples con
free volumes even if the density or pressure during nu
ation is high. In the case of constant volume cooling
reason is obvious, since the volume of the nucleating reg
shrinks with temperature. However, constant pressure c
ing also generates free volumes, even at high pressures,
w
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at the onset of nucleation the frozen domains have a hig
density than the liquid. The rigidity of the solid prevents t
simulation box from contracting fast enough. With the me
ods described in Sec. II C, we can show that the free volum
in the ordered phases are mostly vacancies.

If the simulation samples are quenched toT50 and P
50, and the vacancies are filled with atoms, we find that
density of the bcc phase rises tors350.86460.005,
whereas the densities of the tcp phase remain at aboutrs3

50.84760.005. Although the densities of the bcc samp
are close to the ideal value of 0.8638, the densities of the
phase are far lower than the ideal value at the potential
ergy minimum (rs350.881).

3. Compression simulations

If the structures are compressed at fixed temperature,
bcc structure destabilizes first. One might therefore exp
the bcc structure to be stable only at relatively low tempe
tures. However, this would contradict the cooling simu
tions ~Sec. V C 2!, which yield a bcc structure. A full picture
can be obtained only by calculating the Gibbs free ener
since it may be kinetically favorable for the system to nuc
ate bcc crystallites.

At high pressures the stable structure is clearly fcc, wh
has the lowest energy and enthalpy. Upon compression,
close-packed structure remains stable, and radial distribu
functions of the decaying bcc ands-phase structures show
new peaks characteristic of fcc ordering.

D. Theoretical predictions

For comparison with the MD simulation data, we ha
applied the perturbation theory described in Sec. III to p
dict the thermodynamic phase behavior of the Dzugut
potential system. For the fluid phase and selected solid st
tures, free energies were calculated and a coexiste
analysis performed. Our choice of structures was dictated
the structures actually observed in the simulations. Figure
compares the HS part of the free energy for the fcc, bcc,
s-phase structures. Also shown, for comparison, are co
sponding Monte Carlo simulation data from Ref.@19#. From
the maximum HS volume fractions of these structures
respectively 0.74, 0.68, and 0.53—stability of the HS solid

FIG. 10. Free energy per volume vs density, in reduced un
for the reference hard-sphere solid, computed from Eqs.~6!, ~9!,
and ~12!. Curves have the same meaning as in Fig. 8~a!. Circular
and square symbols are Monte Carlo simulation data, from R
@19#, for hard-sphere bcc and fcc crystals, respectively.
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seen to be strongly influenced by packing efficiency. The
fore, at high temperatures and pressures, where ent
dominates the free energy and the system behaves as a
fective HS system, the structures that are more efficie
packed are favored. As temperature and pressure decr
internal energy makes an increasing contributon to the
energy. As illustrated by the neighbor distance histogra
~Fig. 1! and the corresponding hard-sphere RDFs@Fig. 5~c!#,
the first few coordination shells of the bcc ands-phase struc-
tures are more commensurate with the attractive part of
Dzugutov potential than those of the fcc crystal, favori
these more loosely packed structures over the close-pa
fcc.

Constructing Maxwell common tangents to curves of fr
energy per volume vs density, thus ensuring equality
chemical potentials and pressures in coexisting phases
have mapped out the phase diagram of the system. Pro
tions onto theP-T and T-r planes are shown in Figs. 9~b!
and 11, respectively. As anticipated, the stable solid at h
pressures is the fcc crystal, while the bcc crystal is o
metastable relative to fcc@long-dashed curve in Fig. 9~b!#.
Aside from fcc, bcc, ands phases, we have also consider
several tcp structures observed in the simulations and ra
nal approximants to layered dodecagonal quasicrystals.
tcp and quasicrystal structures, however, were found to b
best only metastable relative to the crystal structures. AT
50, lattice sum calculations of ground-state energies@Fig.
8~a!# show that the bcc structure is the stable structure
Ps3/e,2.66. From this known limit, we postulate that bc
is also the stable solid structure at lowP for small but finite
temperatures. The perturbation theory being of uncertain
curacy forkBT/e,0.5, we further postulate an extrapolatio
of the fluid-fcc phase boundary to zero pressure. This c
fines the stable bcc phase to a small pocket in the lower
corner of theP-T diagram.

VI. DISCUSSION AND CONCLUSIONS

The pressure-temperature phase diagram of the Dzug
potential obtained by MD simulation is surprisingly rich. A
low pressures and temperatures, the bcc phase is stable
lowed, with increasing pressure, by thes and fcc phases
@Fig. 9~a!#. The bcc crystal is nucleated from the fluid fo
sufficiently slow cooling rates and sufficiently high dens

FIG. 11. Predictions of perturbation theory for the fluid-so
phase diagram in the temperature-density (T-r) plane. ForkBT/e
.0.5, theory predicts the fcc crystal to be the only stable so
phase.
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or pressure. It is also obtained by compressing the flu
Below Ps3/e55 or rs350.85, tcp structures, including th
dodecagonal quasicrystal, are formed. The cooling scen
may be summarized as follows.

~1! At high cooling rates a glass is formed, which may
transformed into tcp or bcc solids by annealing atkBT/e
50.4-0.5.

~2! At lower rates the fluid has sufficient time to reord
locally and crystallizes into a bcc crystal. The bcc structu
being relatively simple, the samples are in most cases pe
except for vacancies.

~3! At sufficiently low density or pressure, a tcp structu
is generated. Characterized by layered symmetry, the
phase can be formed for a wide variety of coordination po
hedra and many energetically similar configurations.

~4! If the bcc crystal is cooled at high pressures or co
pressed at low temperatures, it transforms, at least parti
into the fcc structure.

The stability of the lowest-energy tcp phase, namely,
s phase, relative to the bcc phase, could not be determ
precisely by our simulations. Heating at low pressure sho
that the energy and enthalpy of the bcc are always lower t
those of thes phase. Comparing the two phases at high
pressures and temperatures shows that the difference in
thalpy is no longer significant, but the energy of thes phase
becomes lower than that of the bcc phase at higher press
and temperatures. Furthermore, upon compression the
phase becomes unstable at lower pressure than thes phase.
The detailed topology of the phase diagram in Fig. 9~a! is
still not completely clear, and further simulations are nec
sary to compute the phase boundaries exactly. At low te
peratures the bcc phase appears atlower pressures than thes
phase, whereas in the cooling simulations it is formed
higherpressures compared to the tcp structures. It may be
speculated by Dzugutov@2#, that entropy lowers the free en
ergy of thes phase, and especially of the quasicrystal, th
leading to a stable tcp or quasicrystalline state at higher t
peratures.

Our theoretical calculations for a selection of perfect so
structures suggest that the thermodynamically stable s
phases of the Dzugutov-potential system are limited to
and bcc crystals. Lattice sum calculations atT50 show that
the s phase is almost degenerate with, though of sligh
higher energy than, the bcc crystal. At high temperatu
(kBT@e), where the attractive well in the potential play
only a minor role, packing efficiency strongly disfavors th
s phase relative to both fcc and bcc crystals. At intermedi
temperatures (kBT.e), perturbation theory predicts fcc an
bcc crystals to be always more stable than the relativ
loosely packeds phase. Thus thes phase appears nowher
in theP-T phase diagram and the bcc crystal appears onl
low P andT.

It may be, of course, that first-order perturbation theo
lacks sufficient accuracy to conclusively resolve the relat
stabilities of such closely competing phases. In particu
fluctuations in the total perturbation energy, being stron
for a disordered fluid than for ordered solids, render
theory inherently less accurate for the fluid phase. Moreo
the mean-field neglect of next-nearest-neighbor correlati
in the HS RDF is less justifiable for more open structur
such as the bcc ands phases, than it is for the close-packe
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fcc crystal. Such correlations, if significant, would tend
lower the free energies of the open structures and might
sibly influence the order of stabilities.

Nevertheless, it should be emphasized that the predi
phase diagram is not necessarily at odds with the simula
data, if the tcp and high-T bcc phases, observed in the sim
lations, are regarded asmetastablewith respect to the fcc
structure. Conceivably, for kinetic reasons, the supercoo
fluid first nucleates a metastable bcc crystallite, which up
growth transforms into a stable fcc crystal. In fact, such
havior has been predicted from a general density-wave in
bility argument@31#, and has been observed in simulations
a supercooled Lennard-Jones fluid@32#. Furthermore,
whereas the theory has been applied to perfect structures
simulations often result in solids replete with defects. W
may conjecture, therefore, that the defects in thes and tcp
phases observed in the simulations serve to improve
packing efficiencies~e.g., by increasing nearest-neighbor d
tances!, while approximately preserving the average coor
nation distances, thereby conferring energetic advantage
the fcc structure.

After examining a wide variety of solid structures as ca
didates for stable phases of the Dzugutov potential, we
drawn to conclude that only such simple structures as bc
fcc are competitive. A possible exception is thes phase, a
tetrahedrally close-packed structure, although one of the s
plest examples of its class. These results appear to plac
Dzugutov potential in line with the Yukawa, generalize
Lennard-Jones, rubidium, and Morse potentials, all of wh
favor bcc, fcc, or hcp crystals, supporting the general p
ciple that simple pair potentials tend to favor simple stru
tures. Nevertheless, it remains conceivable that quasicry
and other complex structures, such asA15, Z, or H, might
gain stability through modifications of the Dzugutov pote
tial. Indeed, previous work has identified somewhat rela
pair potentials for simple metals—albeit with no counterp
in the periodic table—for which stable icosahedral quasicr
tals have been predicted@33,34#. Future work along these
lines could examine variations of the Dzugutov potential
ly
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attempts to modify the relative stabilities of the tcp phas
and dodecagonal quasicrystals.
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APPENDIX

The following lists contain the structures investigated
possible ground states in the MD simulations. The notatio
as found in Ref.@5#.

Stacking variants of fcc(abc): hcp(ab), abcacb,
abcbcb.

Frank-Kasper phases:A15 or b-W (cP8 Cr3Si), Z
(hp7 Zr3Al4), s phase orb-U (tP30 Cr46Fe54), H, J,
F, K8, C15(cF24 MgCu2), T @cI162 Mg32(ZnAl) 49#,
m (hR13 Fe7W6), D(V26Fe44Si30).

Square-triangle phases:A, H, Z, s phase,J, F, K8,
inflations ofA andZ, doubling of the tiles of thes phase, a
phase witha and h sites mixed, tetragonal approximants
the quasicrystal with 23, 36, 172, and 836 tiles.

Vacancy-ordered phases derived from bcc:cP1, cI10
b-Hg4Pt, cF12 CaF2 , tC14 AsPd5Tl, cI52 Cu5Zn8 ,
cF120 Pd42xTe, cF120 Sc11Ir4 , cF116 Mn23Th6 , cF88
Bi4Cu4Mn3 , cI112 Ga4Ni3.

The other structures areoP12 Co2Si, oP16 AlDy, oC8
BCr, oC10 AlFe2B2 , oC12 Ge2Th, oC12 Si2Zr, oC16
BCMo2, oC16 Ga3Pt5 , oC16 HgNa, oC28 Al6Mn, oI10
B2CoW2, oI12 Gd2Si3 , oI16 BMo, oI20 Al4U, oF24
Si2Ti, oF48 CuMg2, tP14 Hg5Mn2 , tP20 Al2Gd3 , tP30
AlNb2 , tI12 Al2Cu, tI12 Si2Th, tI16 BMo, tI28 MnU6,
tI32 Si3W5, hP3 Cd2Ce, hP3 AlB2 , hP5 Al3Ni2 , hP6
InNi2 , hP6 CaIn2 , hR7 B5Mo2, cP8 FeSi, cP20 Mn,
cP39 Mg2Zn11, cP138 Al9Mn2Si11, cP140 (AlSi)58Mn12,
cI12 Ga,cI26 Al12W, cI58 Mn, cI76 Cu15Si4 , cF96 NiTi2.
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