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In recent computer simulations of a simple monatomic system interacting via the Dzugutov pair potential,
freezing of the fluid into an equilibrium dodecagonal quasicrystal has been repdrt&rugutov, Phys. Rev.
Lett. 70, 2924 (1993]. Here, using a combination of molecular dynamics simulation and thermodynamic
perturbation theory, we conduct a detailed analysis of the relative stabilities of solid-phase structures of the
Dzugutov-potential system. At low pressures, the most stable structure is found to be a bcc crystal, which gives
way at higher pressures to a fcc crystal. Although a dodecagonal quasicrystalbaptase crystal compete
with the bcc crystal for stability, they always remain metastable.

PACS numbdps): 64.70.Dv, 61.43.Bn, 61.44.Br, 61.50.Ah

[. INTRODUCTION solid structures. Among our main results, we find tfiatat
low temperatures and pressures, the stable solid structure is
Several years agd ], Dzugutov and Dahlborg introduced the bcc crystal{2) at high pressures, the stable solid is the
a model pair potential for the purpose of studying glass tranfcc crystal; and(3) the stable ground statél €0) is never
sitions by means of molecular dynami@®D) simulation. the dodecagonal quasicrystal, but rather a periodic crystal
Most simulations of glass transitions to date have been pewhose structure depends on the pressure. Finally, in Sec. VI
formed using binary mixtures, since one-component simpléve summarize and discuss implications of the results for
liquids, when supercooled, readily nucleate crystallites. Théuture work.
Dzugutov potential, which features a pronounced maximum
at a range typical of next-nearest-neighbor coordination dis-
tances in close-packed crystals, suppresses crystallization by Il. MOLECULAR DYNAMICS SIMULATIONS
construction, and thus facilitates glass formation. Following
its initial successful use in studies of supercooled liquids
[1,2], the Dzugutov potential was subsequently adopted in The Dzugutov pair potentidR], plotted in Fig. 1, is de-
simulations of freezin§3,4]. Contrary to expectations, how- fined by
ever, the observed solid structure was determined to be, re-
markably, a monatomic dodecagonal quasicrystal. The struc-
ture, also known as tetrahedrally or topologically close D(r)=dy(r)+Py(r), (1)
packed(tcp) [5], is of the Frank-Kasper type and is com-
posed of layers of square-triangle tilings. In previous work,
the Dzugutov potential and the associated dodecagonal strughere
ture have been used to study self-diffusion in quasicrystals
[6].
The motivation for the present work stems primarily from
our interest in the nucleation and stability of quasicrystal
phases. Further motivation comes from the realm of colloid
physics, where, given the extreme tunability of colloidal in-
terparticle interactions, it is conceivable that a Dzugutov-like
pair potential might be engineered to produce bulk samples
of one-component quasicrystdlg. The main purpose of the
study reported here is to chart, by means of both MD simu-
lation and thermodynamic perturbation theory, the fluid-solid
phase diagram of the Dzugutov-potential system.
The paper is organized as follows. In Sec. Il, after speci- -1
fying the pair potential, we give details of the simulation
methods and describe our analyses of the resulting solid
structures. Section Ill outlines the theoretical methods used, giG. 1. Dzugutov pair potential together with histograms of
while Sec. IV characterizes the quasicrystal and other struteighbor distances for fdblack barg, bee(gray bars, ando-phase
tures of interest. In Sec. V we present results—from bothunshaded bascrystals at reduced densipyo®=0.9. Heights of
simulation and theory—for relative stabilities of competing bars are proportional to numbers of neighbors.

A. The interaction

o(r)/e
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volumes in the structure. Although the free volume distribu-
, r<a tion gives a reasonable representation of the interstitial sites,
2 it greatly overestimates the vacancigy a factor of about
0, r=a, 10). This is because the Delaunay cells are face-to-face
packed tetrahedra, whereas the vacancies should be repre-
and sented by spheres that could easily cover several tetrahedra.
To determine the correct number of vacancies, we first select
B exr{ d ) r<b the Delaunay cells that are large enough to apcommodatg an
3) atom and do not overlap with an already existing atom. With
0, r=b, these cells we create trees of mutually overlapping cells, the
nodes of the tree being the centers of the Delaunay cells and
the edges the distance vectors between cells too close to be
filled simultaneously. We then fill the tree with spheres,
starting at the outermost ends. After adding a sphere, all the
Delaunay cells connected to its node are discarded. The next
16 5.82 1.1 1.87 1.28 0.27 1.94° sphere is then added onto the next outermost node remain-
ing. The procedure is repeated until the whole tree is filled,
after which the algorithm repeats with another Delauney cell
not belonging to the current tree. This method allows us to
fill the sample as densely as possible with vacancies.
In order to help characterize and distinguish the solid

Dy(r)=

with the parameters

m A c a B d b

The potential is characterized by a minimum at
=1.13r of depth—0.581¢, having the same form as that of
the Lennard-Jones potential, followed by a maximunr at

=1.63 of height 0.46@. The maximum is designed to pre- structures observed in the simulations, we have computed
vent the system from crystaliizing into simple crystal struc_from the atomic coordinates both radial and angular distribu-

tures. Beyond the maximum the potential tends to zero con: : >
. . - . tion functions. However, such averaged functions often do
tinuously and is cut off at a range af.=1.940, which

ensures that CPU times remain within reasonable limits. not allow uniqug ide_ntif?catipn of a structure, which requires
as well the spatial distribution of bonds. Thus, we have also

generated bond order diagrams. These are stereographic pro-

) ) ) ] _Jections of the nearest-neighbor bonds constructed as fol-

Classical isothermal N-V-T) and isothermal-isobaric |ows. First, all neighbor vectors are determined and normal-
(N-P-T) MD simulations were performed using the con-jzed to unit length. Next, the vectors are placed at a common
straint method8]. An extension of this method allows us to origin so that their end points lie on the unit sphere. Finally,
introduce constant temperature or pressure gradigdits the distribution of the points on the sphere is represented by
Newton's equations of motion were integrated using astereographic projections along the three coordinate axes.
fourth-order Gear predictor-corrector algorithfeee, €.9., The pictures thus obtained reveal the global symmetry of the
[8]) with a time increment ofst=0.0005ym/e for all sample.
simulations. Periodic boundary conditions were applied to an
orthorhombic simulation cell, whose volunti the N-P-T IIl. THEORY
simulation$ was permitted to change isotropically.

The sample sizes range from 54 to 1024 atoms, with the For comparison with the simulation data, we have inde-
lengths of the cell along the three orthogonal coordinate axegendently calculated the phase behavior of the system by
being chosen to make the sample shapes as close to cubicragans of thermodynamic perturbation theory. Taking the
possible. Simulations with the stable phases were carried olzugutov pair potential as input, we apply the approximate
with samples containing 54, 250, and 1024 atoms for the bctheory of Weeks, Chandler, and AndersddCA) [10] to a
phase; 60 and 480 atoms for thephase; and 108 and 500 classical system dfl pairwise-interacting particles in a vol-
atoms for the fcc phase. Most results are reported for 250/meV. The WCA approach is especially well suited to pair
500, and 1024 atoms, though if not explicitly stated, thepotentials that contain a steeply repulsive core and has been
sample size is irrelevant. The potential energy and enthalpguccessfully applied to the Lennard-Jones potefitia13,
per atom were found to be quite insensitive to sample sizeWhich .h?S a repulsive core similar to that of the Dzugutov

potential.
C. Structural analysis The WCA approximation splits the pair potentia(r) at
o . . . its first minimum into a short-range repulsive reference po-

To analyze the structures that arise in aS|m'uIat|on at finitggntial ¢o(r) and a perturbation potentiab,(r) and pre-
temperature, we quenched the system by setting the tempergsipes a mapping of the reference system onto an effective
ture in ourN-P-T MD program to zero, thereby using the hard-sphergHS) system. The Helmholtz free enerdy of

program as a steepest descent algorithm. Quenching forcgse system separates correspondingly into reference and per-
the system to seek out its local energy minimum, which fas hation parts, according to

cilitates structure identification.
Dzugutov[2] has pointed out that vacancies may play a 1
major role in stabilizing quasicrystalline structures. To deter- F=Fq+ f d\(D )y, (4)
mine the number of vacancies in a sample, we begin by 0
constructing the Voronoi cells and their dual, the Delaunay
cells, and determining from the latter the distribution of freewhereF is the free energy of the reference system,

B. Simulation method



PRE 61 SOLID-PHASE STRUCTURES OF THE DZUGUTOQV PRI. .. 6847

particle of the solid onto that of a corresponding uniform

D=2 dplri—ri) (5 fluid of effective density, according to
i<j
: : 1
is the total perturbation energy, afé- - ), denotes averag- — FMWDA () 9
ing with respect to the probability distribution of a system N™ & Lp(1)]=Ths(p). ©

with pair potential ¢, (r)= ¢o(r) +N¢éy(r). Expansion of
(P, in powers of A about the reference systemm£0)  where the effectivéor weighted density
generates an exact perturbation series. Mapping the reference

system onto an effective HS system, the free energy may be L1 R
expressed, tdirst orderin the perturbation potential, as p= Nj dff dr’ p(r)p(r")w(|r=r’[;p) (10
F =F . . . .
[p()]=Fud p(r)] is a self-consistently determined weighted average (o).
2mwN? (= - ) ) The weight functionw(r) is specified by normalization and
t— fo dr' r"2gus(r";[p(rDeég(r’), by the requirement thaFM"PA[p(r)] generate the exact

two-particle (Ornstein-Zernikg direct correlation function
(6)  ¢(r) in the uniform limit. This leads to an analytic relation
[16] betweenw(r) and the fluid functionsfys and c(r),
whereFd p(r)] andgus(r;[p(r)]) are the free energy and compyted here using the solution of the Percus-Yeyiek)
radial distribution function(RDF), respectively, of the HS integral equation for hard spherf4].
refe_rence system, bo.th functionals of.the e.qumbrlum One-  practical calculation oF 4 p(r)] andgus(r;[p(r)]) re-
particle number density(r). The RDF is defined, in turn,  q,jires specifying the solid density, i.e., the coordinates of the

according to lattice sites(equilibrium particle positionsand the shape of
L the density distribution about these sites. Here we consider
. _ , . fcc, hep, bece, andr-phase crystals and the dodecagonal qua-
= (2)
Ins(5Lp(r)]) 47Tp2\/f dﬂf dr’ pt=(r",r' 1), sicrystal structures described below in Sec. IV. The density

7) distribution is modeled by the Gaussian ansatz. This places
at each sitdR a normalized isotropic Gaussian, such that
as an orientational and translational average of the two-
particle densityp®(r,r'). The second- and higher-order
terms are proportional to successively higher powers of in- P(r)=<
verse temperature T/ the coefficients being related to mean
fluctuations of®, [14]. Accuracy of the first-order approxi-

2?222%3&@2&5 til:ﬁaisrseul;%(\j/:folc:ﬂg {T}Z?#gﬁ:ﬁgg‘;p tion. The Gaussian ansatz has been shown by simulgitijn
y " ., to reasonably describe the density distribution of close-

The free energy of the fluid phase is calculated via the . . :
uniform limit [p(r)—p] of Eq. (6), using the essentially packed crystals. For nonoverlapping neighboring

: . Gaussians—consistently the case here—the ideal-gas free
exact Carnahan-Starling and Verlet-Weis forfhd] for the ; . )
HS free energy per particld,s(p), and RDF,gug(r), re- energy per particl€Eq. (8)] is very accurately approximated

o 3/2

ER‘, exp(— a|r—R|?), (12)

o

the single parameter determining the width of the distribu-

spectively. For the solid phase, the HS free energy functiona y

is approximated by means of classical density-functional 1

(DF) theory[15]. The DF approach is based on the existence ZFy=2kgT IN(aA?)— &, (12)
of a functional F[p(r)] of the densityp(r) that satisfies a N~

variational principle, according to whichF[p(r)] is
minimized—for given average density and externalto within an irrelevant constant. The HS free energy is ob-
potential—by the equilibrium density, its minimum value tained, for a given solid structure and average density, by
equaling the Helmholtz free enerdy In the absence of an minimizing the approximate functional Fyq p(r)]
external potentialF[ p(r)] may be decomposed into an ex- = Fg[ p(r)]+ FVPA[ p(r)] [from Egs.(9), (10), and (12)]
actly known ideal-gas contribution with respect toa. Predictions of the MWDA for free ener-
gies and pressures of HS solids are in good agreement with
B 3 simulation data for both fc16] and bcc[19] crystals. Al-
f‘d[p(r)]_kBTJ drp(niin(p(NA°]-1}, (8 though the theory underpredicts by roughly 20% the Linde-
mann ratiogratio of root-mean-square particle displacement
which is the free energy in the absence of interactiohs ( to nearest-neighbor distanca melting for both crystal sym-
being the thermal de Broglie wavelengttand an excess metries, it is only the free energies that determine thermody-
contribution F,,{ p(r) ], depending entirely upon internal in- namic phase behavior. Note that in simulations of the HS bcc
teractions. crystal a constraint of single-cell occupancy is usually im-
Here we approximate the excess free energy of the Hposed in order to stabilize the crystal against shear.
solid by the modified weighted-density approximation The perturbation free energy in E) requires knowl-
(MWDA) [16,17, which gives a reasonable description of edge of the hard-sphere RDF, which may be expressed, in
the HS system. The MWDA maps the excess free energy pajeneral, as a sum over coordination shells:
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gHs(r;[p<r>]>=i§l g (r;[p(n)]). (13)

The functionalsg®(r:[p(r)]) are obtained using the ap- o&o er
proach of Rasawet al. [13], which approximates the second

and higher coordination shells in mean-field fashion and cor‘;jln FlleG'rhzc.)mehui b?rslilglgle:ngfnwcio?gie(?:r%(;?gl r;:;t(jaelzoiquTe;]r:, dtcl;lt_-
rects the first coordination shell for nearest-neighbor correla: gte, ' ' y gon.

. . . . . o ted atoms are placed i layers atz=1/4 and 3/4, the white atoms
tions. Thus, ignoring correlations foe=2, and substituting P y

@)(r 1y ) . ! in B layers aiz=0, and the black atoms Zt=1/2. All tiles can also
p(r,r")=p(r)p(r'), together with Eq(11), into EQ.(7),  ,eeyr with black and white atoms exchanged, depending on their

yields orientation. The twofold-symmetric hexagon is unstable and does
1 a \Y2n not occur in our tilings.

aW(r;[pD) = 4—(2—) e —a(r—R)%2], i=2,
e ' (14) tice, lacking knowledge of the cavity function of the HS

solid forr<d, we expand the quantity?y,s(r;[p(r)];d) in

wheren; is the coordination number arR] the lattice vector @ Taylor series about=d and retain the first three terms.

magnitude of theéth shell. The first peak is parametrized by ~ The theory set out above provides a reasonable approxi-
mation for the Helmholtz free energy of the system at tem-
(e _Aexd —ay(r— r1)?22] peratures of orde¢/kg and higher. From the free energy, any
g (rp(r) = r » 1=d, (15 pyik thermodynamic property may then be calculated. Of
particular relevance to phase behavior are the pressure and
whered is the effective HS diameter and where the param-chemical potential. In Sec. V D, we present our theoretical
etersA, a4, andr, are determined by imposing three sum predictions for the phase diagram of the Dzugutov-potential
rules, namely, the virial equatiomelating the contact value system.
to the bulk pressureP), normalization to the nearest-
neighbor coordination number;, and approximation of the
first moment by its mean-field value. Together, then, the HS IV. SOLID STRUCTURES
pressureP = p?df,s/dp and the value ofx that minimizes
Fud p(r)] determinegys(r;[p(r)]) and so the perturbation )
free energy for a given solid structure. The approximation 1he structural model of the dodecagonal quasicrystal that
expressed by Eq€13)—(15) is in excellent agreement with We ha}ve |_nvest|gated is a .Iay_ered system that is penodml in
simulation data for the HS fcc crystal, and has been succes§n€ direction, but quasiperiodic and twelvefold symmetric in
fully applied, in a perturbation theory, to Lennard-Jones andh€ perpendicular plani@1]. Itis of Frank-Kasper type, i.e.,
square-well solidd13]. The approximation has also been it is mostly tetrahEdraIIy close packed, and can be described
tested against, and found to closely match, Monte Carl@s a periodidABAB stacking of a primary dodecagonal layer
simulation data forgus(r;[p(r)]) of a HS bcc crystalat A and two secondary hexagonal layeBsand B, which are
densitypo®=1.1), subjected to a single-cell occupancy con-rotated by 30° with respect to each other to obtain dode-
straint to suppress shear instabili0]. Further simulations cagonal symmetry. The atoms in lay®form the vertices of
will be required, however, to test the approximation for thea simple tiling made of squares, triangles, 30 ° rhombuses,
HS bcc crystal at lower densities, where next-nearestand two kinds of hexagons. The threefold-symmetric hexa-
neighbor correlations and anisotropies in the density distrigon is known as the “shield.” These tiles, together with
bution may not be negligible. their decorations, are shown in Fig. 2. A sample of a square-
It remains still to specify the effective HS diametér triangle configuration is displayed in Fig. 3. The dodecago-
According to the WCA prescriptiond is the root of the nal quasicrystal structure can also be regarded as the deco-

A. Dodecagonal quasicrystal

nonlinear equation ration of a simple dodecagonal tiliig2,23.
The stability of the monatomic Frank-Kasper-type deco-
dr r[p(r)]:d)Ae(r)=0, 16 ration of the square-triangle-rhombus-shield tiling with the
J Yrs(TiLp(N]:d)Ae(r) (16) potential of Eqg.(1) was reported by Dzugutof3]. Upon

cooling below the glass transition temperature, a glass forms,
which transforms, after a very long annealing time, into a
dodecagonal quasicrystal. The underlying tiling structure is
mainly a decorated square-triangle tiling with a few rhom-
buses and shields.
The aperiodicity of quasicrystals forbids periodic bound-
Ae(r)=exf — ¢o(r)/kgT]—exd — dpus(r;d)/kgT] ary conditions in the simulation. Taking a finite patch with
(17) open boundary conditions also should be avoided, as the sur-
face energy would affect structural stability. A solution is to
is a function that is nonzero only over a narrow rangeuse periodic approximants, which are finite, orthorhombic
&d (é<1) aroundr=d. This choice ensures that the free cells whose boundaries match on opposite sides. In this way,
energy of the reference system differs from that of the effecperiodic boundary conditions may be applied, as is done
tive HS system only by terms @(&*) and higher. In prac- throughout this paper.

where

Yus(ri[p(r)];d)= exd ¢us(r;d)/kgT]gus(r:[p(r)];d)

is the HS cavity function and
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FIG. 3. Patch of a decorated square-triangle quasicrystal. The
dotted atoms are a=1/4 and 3/4 in theA layer, the white atoms
are atz=0 in theB layer, and the black atoms arezt 1/2 in the

B layer.

B. Square-triangle crystals
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In addition to the quasicrystalline tilings, it is also pos- 1/c
sible to generate crystalline phases with squares and triangle
decorated in the same fashion as for the quasicrystals. If onl ¢
squares are used, th&l5 or B-W phase(also known as E — 1;;‘(3:%
]

cP8 Cr;Si) is obtained, whereas a pure triangle tiling results 4
in theZ structure bp7 ZrsAl,). If both squares and triangles
are permitted, theoc phase or B-U (also known as
tp30 CpgFe;,) and the H phase are obtained. The two 2
phases differ in the arrangement of the tiles. The vertex con
figurations of the crystalline phases are shown in Fig. 4.
They are denoted bg, z h, ando, according to the phase in 0
which they appear.

The unit cell of thes phase can be subdivided into two S ) )
regular triangles and two squares. The atoms at the vertices FIG. 5. Radial distribution functions for various systenta)
of these tiles are 14-fold coordinated, while the atom in the-rom bottom to top: fcc, beer phase, tcp phase, amorphous phase.
center of the triangles is 15-fold coordinated. The remaining "€ Samples have been expande®i6?/ e=0.001 and quenched to
atoms on the edges and in the interior of the square ar =0. Vertical sc_:ale is in arbitrary units, aI_I curves being §ca|ed to
12-fold coordinated icosahedra. Since all coordination shell e3 Sa_me mammum_(b) A sample Obta'nfd from cooling at
have a triangular surface, all atoms are tetrahedrally close?. €= 22 andksT/e=0.75. The shoulder at= 1.5 indicates the

onset of a transition to fc¢c) Hard-sphere solid at reduced density

packed. Pure square-triangle structures and tilings with add}éa3:1.0, computed from Eqg13)—(15): fcc crystal(solid curve,

tional shields are very Stab[él]' Rhompuses, however, are bce crystal(long-dashed curyeand o phase(short-dashed curye
unstable and transform into the other tiles.

Lus®)

tcp phase, and the phase. We have used three diagnostics
to compare the structures: the radial distribution function
(RDF), the angular distribution functiofADF) of nearest
neighbors separated by a distance less than the first minimum
In this section we discuss the geometric properties of thef the RDF (usually r<1.60), and bond order diagrams,
amorphous structure, the bcc and fcc crystals, the nucleateghich aid in identifying the global symmetry even if the
symmetry elements are oriented in random directions.

V. RESULTS

A. Analysis and comparison of solid structures

1. Radial distribution functions

Figure 5a) compares the radial distribution functions of
the structures most commonly observed in the simulations.

FIG. 4. Vertex configurations of the crystalline phases with aTypical of the amorphous structures is an asymmetric first
single vertex configuration. From left to righ&; Z, H, ando phase  peak, which appears to consist of two overlapping shells,
or a, z h, ando vertex, respectively. followed by a second maximum in the range @&<7r
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<2.70, which is the well-known double peak. The unusually
sharp slope on the short-distance side indicates a well-
defined second-nearest-neighbor distance, which is caused
by the repulsive part of the maximum of the potential. The
maximum at about 18 is formed by two opposite corners
of a bipyramid consisting of two regular tetrahedra. A sec-
ond remarkable sharp slope is found at the third maximum at
about 2.7. Notice that the RDFs of the tcp structures ob-
tained on cooling are completely indistinguishable from
those of the amorphous case.

The RDF of theo phase shows an example of the perfect
square-triangle-rhombus-shield phases. The quasicrystalline

and 9ther crystalline and approximant phases differ only in FIG. 6. Angular distribution functions. From bottom to top: fcc,
the fine structure of the subpeaks. Evidently the tcp-phasgcc’a phase, tcp phase, amorphous phase. The samples have been

RDF is a broadened envelope of thephase RDF. expanded tdPo3/e=0.001 and quenched fB=0.
The RDFs of the bcc and fcc structures, however, are

radically different. For bcc, the first maximum is indeed
split, and in the second maximum the short-distance part is
lower than the next peak. This maximum is now formed by ~We have seen that the amorphous and tcp structures ob-
the distances across the tetragonal octahedron in the b&ained by cooling cannot be distinguished by the RDF or
structure. At higher temperatures, when the peaks of th&DF- Are they really different? As shown in Fig. 7, bond
RDF are broadened and overlap, the RDF of the bcc phase eurder diagrams can give a clear answer. The diagram for the

similar to the RDF of the tcp phases except that the weightg’CC structuréFig. ralis relative_ly simple, exhibiting seven
of the two subpeaks of the second maximum between 1.7 maxima—four from the separation along the space diagonals

and 2.7 are interchanged. and three from the distances along the fourfold directions. As

The RDF of the fcc crystal exhibits a peak at abouid.6 the sample shown here was not perfect, thin bridges join the

Si his is th o f1h ial ) itis ol maxima. The liquid(not shown is characterized by an iso-
ince this Is the position of the potential maximum, it is Ceartropic distribution of the bonds covering the whole sphere

that the fcc pha_;e is unstable at low pressures. Fig. 5 homogeneously. The diagram for the tcp phiggg. 7(b)] is
shows the transition from a_bcc phase _to _the fcc phase agmewhat more complicated, featuring an equator with
kgT/€=0.75. The small maximum at loSindicates forma-  twelve maxima, indicating the presence of a quasicrystal.
tion of regular squares, which are characteristic of fcc strucother prominent features are two further circles of maxima
tures. The MD data are strikingly similar to theoretical pre-at higher latitudes and two peaks at the poles. For nonperfect
dictions for the hard-sphere fcc crysf#ig. 5(c)]. samples the distribution of the maxima is distorted, and the
The sequence of phases at low temperatures and increassmmetry may not be dodecagonal. Occasional ringlike ar-
ing pressure becomes clear when we examine the RDFs: Fesingements of overlapping maxima surrounded by further
the bcec andr phases, the first two overlapping atomic shellsmaxima suggest twinning and multigrain samples.
occupy the minimum of the potential. The next shell is be- Comparing samples classified as amorphous or tcp
yond the maximum. For the fcc structure, the first shell isphases, we find that a continuous transition between the two
also in the minimum and the second shell is at the maximummay be possible. In Fig.(B) the maxima can be seen quite
If the structures are compressed, the energies of the bcc aféearly. In other samples, however, the maxima are almost
o phasesincrease since the second maximum of the RDF Obscured by a rather homogeneous background noise.
moves up the maximum of the potential. The energy of thé2uénching and annealing improves the diagrams only mar-

fcc structuredecreasessince the second maximum of the 9ginally. It is possible that some of the amorphous samples
RDF moves down the potential maximum actually consist of a number of micrograins. If in fact this is

the case, it would mean that the amorphous and tcp phases
have the samdocal arrangement of atoms, although the

a(0)

3. Bond order diagrams

2. Angular distribution functions amorphous sample did not succeed in ordering globally.
The results for the angular distribution functiofiSg. 6)
are consistent with the results for the RDFs. The amorphous 4. Real-space representation of the structures

and tcp structures are indistinguishable. The tcp-phase ADF Real-space picturesnapshotsof the samples also help

is a broadened version of the ADF of tephase. All of 4 gistinguish the structures. In most cases, the bcc samples
these phases, as well as the liquid, show two maxima: gok quite defect-free, with only the vacancies visible. Some-
rather narrow extremum at small angles around 60° and @mes we find two differently oriented domains in the simu-
broad peak at about 120°. Both maxima indicate the eXiSI'ation box. |_|qu|d Samp|es 0bvi0us|y do not show any regu-
tence of equilateral triangles. The ADFs of bcc and fcc struciarities. In the quenched amorphous structures, however,
tures are again completely different. Especially remarkablehere are sometimes partially ordered parts, underlining our
are the maxima at an angle of 90°, indicating the existence aflaim that they contain micrograins. The tcp samples, as ex-
rectangles in these phases. For the bcc phase these anglesem®lified by Fig. 7c), have layered structures, which, if
formed by distances between atoms along the fourfold axisviewed perpendicular to the layers, resemble the perfect
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sample in Fig. 3, characterized by centered ringlike struc-
tures formed by the 14- and 15-fold-coordinated atoms. The
quality of the pictures is often low, however, as the samples
may be twinned or contain several grains.

B. Ground-state structures

The equilibrium structure of a specific potential at a given
temperature and pressure may be determined, in principle, by
a global minimization of the Gibbs free ener@y In prac-
tice, however, this procedure is not feasible with MD simu-
lations, since direct transitions between local minima are
rarely observed. Even if special methods are used to switch
between closely related structures like bcec and fcc, there still
may exist a free energy barrier high enough to prevent a
transition[24]. Instead of attempting to minimiz&, one
identifies promising structures, computes the thermodynamic
functions, and compares them. An alternative is thermody-
namic integration oP, starting atP=0 and integrating to-
ward higher pressures.

At T=0, where entropy no longer affects stability, iden-
tifying the ground state simplifies considerably. Here the
Helmholtz free energ¥ equals the internal enerdy, which
in turn equals the potential enerdsy,,, since the kinetic
energy vanishes. Furthermore, the Gibbs free en&dye-
comes equal to the enthalpy and the pressurP is deter-
mined by the virial equation, since the kinetic presskg®
also vanishes. Common tangent constructions on curves of
U(V,T=0) vs V yield the stability ranges of competing
phases, and curves of enthaldyP,T=0) vsP intersect at
the phase coexistence pressures.

We have calculated the ground-state energies by two in-
dependent methods. First, taking the perfect structures, we

6 : .
¢ P %% I I have computed Iattice_z summations of the Dzugutov pair po-
al %;,e e g;%eg?ﬁ °Fo8 % % o, o | tential. Second, starting from a perfect structure, we have
0o®g 0l «frgf’ °§° ‘%oeSgo;gfge@mQ?o% relaxed the system with the MD simulation program in an
. }g % 8 weo. o 00 € §° @ B isothermal-isobaric ensemble, settiqgl/ e=0.001 andP to
20 @ ame 57 ‘gg é %a S 8 :;ﬁ e the desired value. In this mode, molecular dynamics acts as a
;%& 000@8’,(:‘?; S §5’§ s e steepest gradient optimization algorithm. The pressure is de-
0} ° 0% 200 §° 3,3 eia o %} . rived from the virial equation. In contrast to a lattice sum
3 &0 B2 b “QF’%O@ 3%*%%% ) calculation, where only the volume is scaled, in the simula-
ol ﬁig % © ;92 £ % ‘g 03;3; &0 | tions all atoms may move independently. Therefore the re-
@%5;05,% SR gn o B % sults may(and dg differ slightly from the lattice sum calcu-
2L 08 %m é’ %g’ 8% % lations for perfect structures.
4r % :é, € °§8 % 0 &g ] Since the Dzugutov potentifiEq. (1)] is isotropic and has
08,98 gang iy Rl a single minimum, it should favor densely packed structures

6 - s s - s if the volume is not restricted. An optimal packing in three
: i i dimensions would consist of regular tetrahedra, but such a
packing does not exist. Now there are two choices to solve
this dilemma: either introduce other coordination polyhedra,
as in fcc crystals, or use irregular tetrahedra, as in tcp phases.
In the Frank-Kasper phases the coordination polyhedra are

FIG. 7. (a) Spherical projection of the nearest-neighbor vectors - - - S
of a nonperfect bce sample generated by cooling. Three views Oz?\ddltlonally restricted to deltahedra with five or six triangles

the sphere along perpendicular directions are givenSpherical meeting at a vertgx. This conqun is fulfilled for the icosa-
projections of the nearest-neighbor vectors of a tcp sample obtaindd€dron and certain polyhedra with 14, 15, and 16 vertices.
by cooling. Three perpendicular views are given. The poles of thé\lthough the bcc structure is tetrahedrally close packed, it is
sphere are marked by arrows, and the equator is indicated witROt @ Frank-Kasper phase since its coordination polyhedron
dashes. The six maxima along the equator represent the twelvefol@ rhombic dodecahedrpias vertices where only four tri-
symmetry.(c) Projection of a tcp sample obtained by cooling at angles meet.

Po®/e=3.5 andkgT/e=0.55. The sample has been expanded to In a first step toward identifying stable structures we
Po3/e=0.001 and quenched =0 after nucleation. study stacking variants, distort the phases mentioned above,

(o]
A
n
o
N
S
»
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and examine various tcp structures. The fcc structure can be a3
modified by stacking the densely packed layers differently.

We find that the hexagonal close-packéttp and other

stacking variants are considerably less stable than the fcc
structure at high pressures where the fcc is more stable than é’
the bcec andr phases. This result is remarkable since for the 6
Lennard-Jones potential hcp is known to be slightly more =
stable than fcc packinf25].

Distortions of the bcc phase along the principal symmetry
axis always reduce the stability. The same happens fosthe . ‘ . ‘ .
phase if the layer distance is changed from the optimum at 06 07 08 09,10 11 12
c/a=1.03 (a is the edge length of the tiles armdhe period Po
along thez axis). b 2 : : : : :

The Frank-Kasper phases are of two types: structures with c —
16-fold-coordinated sites and structures without. The dode- FCC -
cagonal quasicrystal and its approximants and crystalline BCC oo
variants are of the latter type, called the square-triangle class. 2 -
Structures containing 16-foltbr highey coordinated atoms “b A
have a lower stability. The sites with the high coordination ™
numbers are too numerous and the potential energy increases - 3
because of strained bonds.

We observe the same trend in the square-triangle class. 21
The stability is lowest for the purely triangul@rphase since
the number of 15-fold sites is also considerable. The stability 3 L L L L L
increases if the triangles are separated by squares, but is 06 0.7 08 0.9 1 1.1 1.2
again rather low if the structure contains only squares as in }
the A phase without 15-fold sites, perhaps becauseAhe
phase has full cubic symmetry and is therefore more rigid €
than the other structures. Tlwephase, on the other hand, is
more stable than thEl phase, since it contains only pairs of
triangles instead of rows. More complicated crystalline S
phases, approximants, and the quasicrystals all contain mix- «
tures of squares and triangles in different arrangements.
These structures are all inferior to tlee phase since they
must contain larger conglomerates of triangles.

In a second step toward identifying ground-state struc-

GaNj -

tures, we survey the published crystallographic structures. AN —vmrmee

From the lists in Refs[26—28, a variety of structures have AMO - eeee e

been selected according to the following critefis: coordi- 2 o3 o4 o5 0f63 07 o8 os 4
nation numbers between 10 and X3) derivatives of tcp 8]}

structures;(3) derivatives of the bcc structure, especially

vacancy-ordered structure$4) quasicrystal approximants;  FIG. 8. Ground-state energy per unit volume vs density, in re-
and (5) icosahedral coordination shells. For each structurgluced units(a) Results of lattice summation of the Dzugutov pair
examined the required crystallographic data were taken frorRotential for ideal fcc crystalsolid curve, bee crystallong-dashed

Ref.[5]. A full list of the structures is given in the Appendix. CUrve, ando phaseshort-dashed curye(b) Results of MD simu-
{atlon, with structural relaxation, for phase(solid curve, fcc

Assembling the results, the following picture emerges a )
T=0 (Fig. 8: the bcc phase has the absolute minimum po_(Iong-dashed curyeand bce(short-dashed curye(c) MD simula-

- . 3_ tion data for the bcc vacancy phases and the low-density amorphous
tential energy at a density gio~=0.866. _The(r phase acts . structures. The lowest minimum at the right is bcc followed by
as the lower bound for all the square-triangle phases, bemgusZn Pd,_,Te, MyThe, and GaNia. The next minimum be

- 3 : g, -x1€, 31 Mg, 3 -
minimal atpo~=0.879. The fcc phase has a potential energ>10ngs to the amorphous phase formed from BiTihe remaining

. . 3_ .
minimum atpo”=1.013. A common tangent construction yo hle-dashed curve is the amorphous phase generated by cooling
shows that the bcc structure is stable upte*=0.887 and  the melt.

the fcc abovepa®=1.057. The relaxed phase is stable, as

determined by MD, only within the narrow interval 0.887

<poi<1.057, whereas the ideat phase is never stable,

according to a simple lattice sum calculation. Intersections oérties of the various structures are summarized in Table I.
the enthalpy curves yield the stability ranges in terms of Vacancy-ordered phases are more stable than the pure bcc
pressure. The most stable structures are bcc Hor/e phase at densities down par®=0.7[Fig. 8b)]. In the range
<1.70, o for 1.70<Po>/e<2.85, and fcc forPo®e  0.6<pc3<0.7 the lowest potential energy is attained by a
>2.85. The sequence of ground-state structures with increaslisordered phase formed upon annealing the Nafproxi-

ing pressurdand density is therefore: bcer-fcc. The prop- mant phase.
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TABLE I. Ground-state structure and reduced dengity’ at a 20 T
which the potential energy per atodh is minimal. The upper half
contains MD results akgT/e=0.001, the lower half lattice sum
calculations for perfect structures. 15 & T
3 m(\t) \,@&@
Structure po U/Epot (o) &

A 10 4
fec 1.013 -2.19 . FLUID
bce 0.866 —2.66 " bee unstable
o 0.879 —2.57 51, G unsuble - 1
fce 1.057 —-2.22 bee freezes
bcec 0.885 —-2.29 0 tcp forms  +
o 0.90 —2.27 15 2

C. Finite-temperature phases

From the ground-state calculations we have determined
the stable structures &t=0. Insight into the topology of the
phase diagram at finite temperatures can now be obtained by
observing phase transitions between the melt and the solid
upon heating, cooling, and compression. As noted in Sec.
V B, it is not possible to determine the relative thermody-
namic stabilities of two competing phases directly from con-
ventional MD simulations because of the difficulty of com-
puting the entropic contribution to the free energy. However,
by observing the temperature and pressure at which a phase ’ ' k,T/e
becomes unstable, it is possible to establish limits of me-
chanical stability. The results of our MD stability analysis  FIG. 9. Pressure-temperature phase diagfayMD simulation

are consolidated in Fig.(9). results: The instability lines denote boundaries where respective
structures are destabilized if compressed to high pressures. Capital
1. Heating simulations letters mark phases formed by cooling simulations, lower-case let-

ters phases obtained by ground-state structure calculations. Crosses
haracterize region where tcp phase is found in cooling simulations.
he region between the melting/expansion transition line and the

cooling/compression transition line is the hysteresis rediognPer-

If the bcc ando-phase solids are heated at low pressure
the energy and enthalpy for the bcc structure always remai
lower than those for ther phase. At higher pressures, the

energy of theo phase drops below that of the bcc. The ypation theory predictions: Phase boundaries are shown between
differences between the enthalpies at higher temperaturegyig and fec crystalsolid curve and between fluid and metastable

however, are smaller than their fluctuations, such that thgcc crystallong-dashed curve Short-dashed curves are postulated
relative stabilities of bcc and phases cannot be resolved. extrapolations to lowp andT.

The determination of the melting line has been discussed

in detail in Ref.[29]. Here we present only a brief summary. _ . . -
The phase transition line was determined by preparing grystals is the same as that determined by heating within the

solid atkgT/e=0 or 0.4 at fixed pressure and heating it Statistical fluctuationgFig. 9(@)]. As noted in Ref[29], only
continuously at rates okgdT/e=0.001 or 0.002 per time ©One fluid phase is observed and no transition between a lig-
step until melting was observed. The criterion for meltingUid and a vapor phase could be found.
was the divergence of the mean-square displacement. At the
same temperature a sudden rise in the potential energy and 2. Cooling simulations
an associated drop in the density were observed. Similar _ ) ) ) . .
simulations have been carried out at constant volume starting C00ling simulations were carried out in a manner similar
atkgT/e=0.001 andPo3/e=0.001. We emphasize that the to .the hegt!ng runs. St_artmg samples were obtalngd from
transition line thus obtained is not strictly the equilibrium Solids equilibrated at high temperatures. The cooling rate
melting line, since with periodic boundary conditions the WaskgdT/e=0.002 per time step. Similarly to melting, the
sample has no surface at which melting could start and #€ezing transition is delayed, now because critical nuclei
two-phase coexistence is not possible because the sampkgist first be formed, and subsequent large-scale reordering
are too small. The solid-fluid transition lines differ only of atoms may be necessary.
slightly for the bcc andr phases. The fcc crystal melts at  We find that the phase nucleating at pressures above
somewhat higher temperatures. At high pressures, howevePo®/e=5 always has bcc symmetry. If the temperature is
the o phase becomes unstable at considerably lower temewered to aboukgT/e=0.7-1.0, the bcc structure becomes
peratures than the bcc and fcc structures. unstable relative to fcc at pressures ab®e®/ e=20. Al-

The transition to the fluid can also be determined by exthough a complete transition to fcc cannot be achieved with
panding a solid at constant temperature starting from higlour simulation method, we observe a clear indication that fcc
densities. The transition line obtained in this way for bccis the preferred structure. In the radial distribution function
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[Fig. 5(@)] we observe the emergence and growth of a new

peak between the first and the second peaks at aljput

times the nearest-neighbor distance, which signals the forma-

tion of regular squares in the close-packed crystal structures.
Below Po®/e=5 we do not observe a typical freezing

transition with a jump in potential energy, but only a sharp

kink, reminiscent of a glass transition. The nucleating struc- 47

tures are partially ordered and possess features typical of the

tcp structure, namely, layering, ringlike structures, and the

Frank-Kasper polyhedi@ee Fig. 7c)]. In the following, we \ ‘

refer to such structures as the tcp phase. Although sometimes 08 310 11

dodecagonal, the tcp structures often do not have a perfect po

symmetry, and thus may have varying degrees of crystallin- G, 10. Free energy per volume vs density, in reduced units,

Ity. for the reference hard-sphere solid, computed from Egjs.(9),
Because of the maximum in the potential, it was not posand (12). Curves have the same meaning as in Fig).&Circular

sible in general to obtain perfect samples. If the pressure isand square symbols are Monte Carlo simulation data, from Ref.

too low, there is insufficient cohesion to compactify the[19], for hard-sphere bce and fcc crystals, respectively.

samples. This is clearly seen by comparing runs with differ-

ent cooling rates. However, if equilibrated for a longer time,at the onset of nucleation the frozen domains have a higher

the samples eventually become much denser. density than the liquid. The rigidity of the solid prevents the
The density ranges for stability have been obtained bysimulation box from contracting fast enough. With the meth-

cooling at constant volume. For the 500-atom sample weds described in Sec. Il C, we can show that the free volumes

obtain the boundary between the formation of the bcc andh the ordered phases are mostly vacancies.

the tcp phases ato®=0.87, independent of the cooling rate  If the simulation samples are quenchedTte0 and P

up to kgéT/e=0.0005 per time step. For the 1024-atom =0, and the vacancies are filled with atoms, we find that the

sample, however, the boundary is shiftedpi@®=0.84 and  density of the bcc phase rises tpo®=0.864+0.005,

is observed at the first time fd;6T/e=0.00025 per time  whereas the densities of the tcp phase remain at ghotit

step. This is remarkable, since the minimum of thghase =0.847+0.005. Although the densities of the bcc samples

lies at aboutpo>=0.9. are close to the ideal value of 0.8638, the densities of the tcp
The formation of the crystalline structures also dependphase are far lower than the ideal value at the potential en-

on the sample sizes and the cooling rates. A sample with 256rgy minimum po°=0.881).

atoms and a constant density 3= 0.865 froze to the bcc

structure at a cooling rate &&6T/e=0.001. For 500 atoms 3. Compression simulations

we had to reduce the cooling rate by a factor of one-half, and ¢ the structures are compressed at fixed temperature, the
for 1024 atoms a cooling rate &5T/e=0.00025 pertime pee srycture destabilizes first. One might therefore expect
step was necessary to obtain a perfect bce phase, althougly pec structure to be stable only at relatively low tempera-
partial bce ordering was already observed at twice this ratey,res However, this would contradict the cooling simula-
_Itis easier to obtain the tcp phase in a constant volumgiong (sec, v C 2, which yield a bec structure. A full picture
simulation(as Dzugutov digirather than in a constant pres- .an pe obtained only by calculating the Gibbs free energy,

sure ensemble. To some extent, the nucleated structures cgpqe it may be kinetically favorable for the system to nucle-
be annealed also at constant volume. However, most of thgi pee crystallites.

defects, especially different domains, cannot be so removed. a¢ high pressures the stable structure is clearly fcc, which

Annealing at constant pressure also turns out to be ineffegias the lowest energy and enthalpy. Upon compression, this
tual. close-packed structure remains stable, and radial distribution

The transition from fluid to solid may also be observed bygn ions of the decaying bec angtphase structures show
compressing the fluid at a constant pressure gradient gfg,, peaks characteristic of fcc ordering.
S5Po®le==*0.1. The transition curve is the same as for cool-

ing [Fig. 9a)], the collapsed structures being again bcc, at , .
least forkgT/e=0.6, 0.8, 1.0, 1.5, and 2.5. D. Theoretical predictions

Between the melting and freezing curves we observe a For comparison with the MD simulation data, we have
broad hysteresis region, within which the thermodynamicapplied the perturbation theory described in Sec. Il to pre-
phase transition should occur. The reason for the broad hyslict the thermodynamic phase behavior of the Dzugutov-
teresis region is the peculiar form of the potential. The maxifpotential system. For the fluid phase and selected solid struc-
mum strongly inhibits freezing and collapsing of the struc-tures, free energies were calculated and a coexistence
ture, as intended, indeed, by Dzugu{®0]. analysis performed. Our choice of structures was dictated by

The structures generated by cooling the samples contaite structures actually observed in the simulations. Figure 10
free volumes even if the density or pressure during nucleeompares the HS part of the free energy for the fcc, bcc, and
ation is high. In the case of constant volume cooling theo-phase structures. Also shown, for comparison, are corre-
reason is obvious, since the volume of the nucleating regionsponding Monte Carlo simulation data from REf9]. From
shrinks with temperature. However, constant pressure coothe maximum HS volume fractions of these structures—
ing also generates free volumes, even at high pressures, sin@spectively 0.74, 0.68, and 0.53—stability of the HS solid is
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1.5 ‘ ‘ ' ‘ , or pressure. It is also obtained by compressing the fluid.
Below Pa®/e=5 or pa®=0.85, tcp structures, including the
dodecagonal quasicrystal, are formed. The cooling scenario
may be summarized as follows.
10t FLUID ] (1) At high cooling rates a glass is formed, which may be
transformed into tcp or bcc solids by annealingkgl/ e
=0.4-0.5.
FCC (2) At lower rates the fluid has sufficient time to reorder
locally and crystallizes into a bcc crystal. The bcc structure
05T ‘ ‘ . ‘ . ] being relatively simple, the samples are in most cases perfect
04 05 06 07, 08 09 10 except for vacancies.
po (3) At sufficiently low density or pressure, a tcp structure
o . ] _is generated. Characterized by layered symmetry, the tcp
FIG. _11. Pre_dlctlons of perturbation theory for the fluid-solid phase can be formed for a wide variety of coordination poly-
phase diagram in the temperature-densilyp) plane. ForksT/e hoqra and many energetically similar configurations.
>0.5, theory predicts the fcc crystal to be the only stable solid (4) If the bee crystal is cooled at high pressures or com-
phase. pressed at low temperatures, it transforms, at least partially,
; ; L into the fcc structure.
seen to be strongly influenced by packing efficiency. There The stability of the lowest-energy tcp phase, namely, the

fore, at high temperatures and pressures, where entropy h lati h h | .
dominates the free energy and the system behaves as an &tPhase, relative to the bce phase, could not be determined

fective HS system, the structures that are more efficienthPr€CiSely by our simulations. Heating at low pressure shows
packed are favored. As temperature and pressure decreald@t the energy and enthalpy of the bcc are always lower than
internal energy makes an increasing contributon to the frel10S€ of thea phase. Comparing the two phases at higher
energy. As illustrated by the neighbor distance histogram@reSsures and temperatures shows that the difference in en-
(Fig. 1) and the corresponding hard-sphere RIDFg. 5(c)], thalpy is no longer significant, but the energy qf theghase

the first few coordination shells of the bcc amephase struc-  Pecomes lower than that of the bee phase at higher pressures

tures are more commensurate with the attractive part of th@d temperatures. Furthermore, upon compression the bcc
Dzugutov potential than those of the fcc crystal, favoringPh@se becomes unstable at lower pressure thaw ilease.

these more loosely packed structures over the close-packdd'® detailed topology of the phase diagram in Figa) 9s
fcc. still not completely clear, and further simulations are neces-

Constructing Maxwell common tangents to curves of freeSa1y (0 compute the phase boundaries exactly. At low tem-
energy per volume vs density, thus ensuring equality oP€ratures the bce phase appearswaer pressures than the
chemical potentials and pressures in coexisting phases, W¥1ase, whereas in the cooling simulations it is formed at
have mapped out the phase diagram of the system. projeelgherpressures compared to the tcp structures. It may be, as
tions onto theP-T and T-p planes are shown in Figs(t9 speculated by Dzugutd\?], that entropy lowers the free en-
and 11, respectively. As anticipated, the stable solid at higl§"9Y Of thes phase, and especially of the quasicrystal, thus
pressures is the fcc crystal, while the bce crystal is om))eadmg to a stable tcp or quasicrystalline state at higher tem-
metastable relative to fcdong-dashed curve in Fig.(§)]. ~ Peratures. _ _ .
Aside from fcc, bee, ands phases, we have also considered Our theoretical calculations for a selection of perfect solid
several tcp structures observed in the simulations and ratiGitructures suggest that the thermodynamically stable solid
nal approximants to layered dodecagonal quasicrystals. TH1ases of the Dzugutov-potential system are limited to fcc
tcp and quasicrystal structures, however, were found to be &"d bec crystals. Lattice sum calculationsTat0 show that
best only metastable relative to the crystal structuresT At the o phase is almost degenerate with, though of slightly
—0, lattice sum calculations of ground-state energfeig.  higher energy than, the bcc crystal. At high temperatures
8(a)] show that the bce structure is the stable structure fofKsT>€), where the attractive well in the potential plays
Po3/€<2.66. From this known limit, we postulate that bee O @ minor role, packing efficiency strongly disfavors the
is also the stable solid structure at IéWfor small but finite @ Phase relative to both fcc and bec crystals. At intermediate
temperatures. The perturbation theory being of uncertain ademperatureskgT=¢), perturbation theory predicts fcc and
curacy forkgT/€<0.5, we further postulate an extrapolation P€C Crystals to be always more stable than the relatively
of the fluid-fcc phase boundary to zero pressure. This conl00Sely packedr phase. Thus the: phase appears nowhere
fines the stable bce phase to a small pocket in the lower leff! the P-T phase diagram and the bcc crystal appears only at

corner of theP-T diagram. low P andT. . .
It may be, of course, that first-order perturbation theory

lacks sufficient accuracy to conclusively resolve the relative
stabilities of such closely competing phases. In particular,
The pressure-temperature phase diagram of the Dzugutdluctuations in the total perturbation energy, being stronger
potential obtained by MD simulation is surprisingly rich. At for a disordered fluid than for ordered solids, render the
low pressures and temperatures, the bcc phase is stable, ftiheory inherently less accurate for the fluid phase. Moreover,
lowed, with increasing pressure, by tle and fcc phases the mean-field neglect of next-nearest-neighbor correlations
[Fig. 9@)]. The bcc crystal is nucleated from the fluid for in the HS RDF is less justifiable for more open structures,
sufficiently slow cooling rates and sufficiently high density such as the bcc and phases, than it is for the close-packed

k,T/e

VI. DISCUSSION AND CONCLUSIONS
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fcc crystal. Such correlations, if significant, would tend to attempts to modify the relative stabilities of the tcp phases
lower the free energies of the open structures and might posind dodecagonal quasicrystals.
sibly influence the order of stabilities.

Nevertheless, it should be emphasized that the predicted ACKNOWLEDGMENTS
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lations, are regarded asetastablewith respect to the fcc .rystal structures and some of the square-triangle crystal

structure. Conceivably, for kinetic reasons, t_he supercoolegtructures_ A.R.D. gratefully acknowledges the Forschung-
fluid first nucleates a metastable bcc crystallite, which upony,antrum Jlich for use of its computing facilities.

growth transforms into a stable fcc crystal. In fact, such be-

havior has been predicted from a general density-wave insta- APPENDIX
bility argumen{31], and has been observed in simulations of o . ) .
a supercooled Lennard-Jones fluiB2]. Furthermore, The following lists contain the structures investigated as

whereas the theory has been applied to perfect structures, tRessible ground states in the MD simulations. The notation is
simulations often result in solids replete with defects. Weas found in Ref[5].

may conjecture, therefore, that the defects in ¢hand tcp Stacking variants of fcgbc): hcp(ab), abcach
phases observed in the simulations serve to improve th@bcbch

packing efficienciege.g., by increasing nearest-neighbor dis-  Frank-Kasper phasesAl5 or g-W (cP8 Cr;Si), Z
tance$, while approximately preserving the average coordi-(NP7 Zr3Al,), o phase orB-U (tP30 CieFess), H, J,
nation distances, thereby conferring energetic advantage over  K', C15(cF24 MgCw), T [cl1162 Mg(ZnAl) 4],

the fcc structure. w (hR13 FeWe), D(VeFesSisg).

After examining a wide variety of solid structures as can- Square-triangle phase#, H, Z, o phase,J, F, K',
didates for stable phases of the Dzugutov potential, we ar@flations of A andZ, doubling of the tiles of ther phase, a
drawn to conclude that only such simple structures as bcc dPhase witha and h sites mixed, tetragonal approximants of
fcc are competitive. A possible exception is thephase, a the quasicrystal with 23, 36, 172, and 836 tiles.
tetrahedrally close-packed structure, although one of the sim- Vacancy-ordered phases derived from bc®1, cl10
plest examples of its class. These results appear to place tifeHgsPt, cF12 Cah, tCl4 AsPdTI, cl52 CuZng,
Dzugutov potential in line with the Yukawa, generalizedcF120 Pd_,Te, cF120 Sg,lr,, cF116 MnyThs, cF88
Lennard-Jones, rubidium, and Morse potentials, all of whichBizCu,Mn3, cl1112 GaNis.
favor bcc, fcc, or hep crystals, supporting the general prin- The other structures a@P12 Cq,Si, 0P16 AlDy, oC8
ciple that simple pair potentials tend to favor simple struc-BCr, 0C10 AlFe,B,, 0C12 GeTh, 0C12 SipZr, 0C16
tures. Nevertheless, it remains conceivable that quasicrystaBCMo,, 0C16 GaPt, 0C16 HgNa, oC28 AlgMn, ol10
and other complex structures, suchAk5, Z, or H, might  B,CoW,, ol12 GdSi;, ol16 BMo, ol20 Al,U, oF24
gain stability through modifications of the Dzugutov poten-Si,Ti, 0F48 CuMg, tP14 HgMn,, tP20 Al,Gd;, tP30
tial. Indeed, previous work has identified somewhat relatedhINb,, t112 Al,Cu, tI12 SpTh, tI116 BMo, t128 MnUg,
pair potentials for simple metals—albeit with no counterpartt| 32 SgWs, hP3 Cd,Ce, hP3 AIB,, hP5 Al3Ni,, hP6
in the periodic table—for which stable icosahedral quasicrysinNi,, hP6 Calrp,, hR7 BsMo,, cP8 FeSi, cP20 Mn,
tals have been predictd®3,34]. Future work along these cP39 Mg,Zn;;, cP138 AlyMn,Si;;, cP140 (AlSi)sgMn;,,
lines could examine variations of the Dzugutov potential inc112 Ga,c126 Al;,W, cI158 Mn, ¢176 CusSis, cF96 NiTis.
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