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Colloidal aggregation with mobile impurities
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The structure and aggregation kinetics of diffusion-limited cluster-cluster three-dimensional monomeric
aggregates and gels is investigated as a function of the molar fraction of two types of impurities. In one case
the impurities are allowed to aggregate among themselves whereas in the other the impurities are mobile
monomers that remain as such during the whole aggregation process. Computer simulations are performed on
a simple cubic lattice for which the functionality of the aggregating particles is effectively 6. The first type of
impurity shows a decrease in the fractal dimension when compared to that of a one component system at the
same concentration. As a consequence of this decrease, the gelation concentration is lowered. At higher
concentrations a gelling to nongelling transition was observed. In the nongelling regime the colloidal aggre-
gates are kept apart by the impurity clusters, developing a local ordering. For the monomeric type of impurity,
at large impurity molar fractions, a nonstructured nongelling phase appears at high enough concentration, in
which the colloidal aggregates are kept apart by the sea of mobile impurities that inhibits the formation of a
gel. Smaller molar fractions of mobile monomeric impurities strongly affect both the fractal dimension and the
kinetics of the aggregating colloid.

PACS numbgs): 61.43.Hv, 82.70.Dd, 82.70.Gg, 05.10.Ln

I. INTRODUCTION gregation(DLCA). An epidemic Eden cluster on squafe]

The effects of impurities, filler, or secondary particles onand cubic lattice$11] grows in a liquid phase containing a
the properties of aggregating systems have been investigatedolar fractionx of mobile impurities. The impurities are
experimentally for a variety of systems. For example, poly-pushed by the advancing front due to repulsive forces. This
electrolytes were found to play the role of impurities in crys-system exhibits a percolationlike transitionxat, displaying
tallizing systemg[1], affecting the nucleation, growth and a continuous nonstopping growth belewand finite clusters
aggregation, and phase transformations. Macromolecular indue to a complete hindrance of growth aboye The value
purities affect protein solubility and crystallizability. Even a of x, is larger in three dimension8D) than in(2D) and is
small amount of protein impurity can impede growth steplarger than the critical molar fraction found for the corre-
propagation and these impurities play a role in the formatiorsponding epidemic model with static impurities. Rt the
of structural/compositional inhomogeneitigg—4]. Impuri-  clusters and internal patterns are found to have a fractal pe-
ties were also found to affect the dynamics of micellizationrimeter with the same dimension as that of classical percola-
[5], rheology of gelg6], and morphology of phospholipid tion [12].
monolayerq7]. Recently [13], we have modified the diffusion-limited

Several studies have been performed to correlate thesguster-cluster aggregation algorithm to take into account the
structural and kinetic changes with both the concentration oéxistence of two types of colloidal particles interacting at-
impurities and the type of interactions between them and thé&actively in the aggregating system. There are two aggrega-
host particles. Experiments by van VIig8] show that the tion regimes depending on the molar fractioof one type of
interaction of emulsion droplets with casein micelles resultgarticles. Wherx<<0.2 a nongelling regime is attained and
in an increase in the storage modulus of the gel. Howevetthe simulation ends with a sol composed of saturated oligo-
when the droplets did not interact, the storage modulus demers. Asx decreases from 0.5 to 0.2, the system shows a
creased monotonically with the concentration of filler par-crossover from DLCA aggregates equivalent to those of the
ticles. A recent experimental study on gold/silica 8]  one-monomer system at that concentrafib4] to aggregates
shows no significant change in the structure of the silica gebbtained in reaction-limited cluster-cluster aggregation.
due to the presence of a low molar fraction of small colloidal In this paper we study the effect of mobile impurities on
gold particles and a decrease in the average pore size of thiee structure, kinetics, and gelation of a colloidal system per-
silica gel when the gold colloidal particles are large. forming a diffusion-limited cluster-cluster aggregation. Im-

Concerning numerical investigation of the effect of impu- purities are defined as particles that may or may not interact
rities, studies of the effect of mobile impurities on an ad-with themselves but do not interact with the colloidal system
vancing solidification fronf10,11 are available. The growth except through excluded volume interactions. We consider
model in these studies is local and does not have the kinetiwvo types of impurities: aggregating impurities that could
component included in diffusion-limited cluster-cluster ag-form fractal clustersmodel ) and unreactive monomeric

impurities (model 2. In both cases the impurity particles do

not react with the aggregating colloid. The two types of im-
*Electronic address: eblaiste@gmu.edu purities belong to different classes of obstadlactal and
TElectronic address: agus@fis.unam.mx nonfracta] that have shown different behavior in
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lateral diffusion measurements of submicroscopic domairio computational boxes of side= 360, 250 and 210, respec-
structures[15]. In fact, it is not only the geometry of the tively.
impurity particles that affects the aggregation process, but Initially the simulation box contains unaggregated par-
also their size and mobility. We study here the aggregatéicles of typeA and typeB. The time counter starts by ran-
morphology and kinetics as a function of the molar fractiondomly picking a particle, incrementing the time by the in-
of impuritiesx and look for a critical molar fractior, where  verse of the number of clusters in the systéemhich at the
a blocking transition occurgsimilar to that found in the dy- beginning isN.=N4z+ Ng), and moving at random the se-
namic Eden moddl10,11]). A comparison of results to those lected particle by one unit cell. The motion of the particles is
of DLCA of a one-monomer systefi4] is given for the two  a random walk simulating their Brownian motion caused by
models. the thermal fluctuations in the solvent. If a partickttempts
This paper is organized as follows. A detailed descriptionto occupy the position of a nearest-neighbor partjciden
of the models and the computer algorithm is given in Sec. llthe two particles stickor not with probability Pij=1 or 0.
The dependence on the total concentration of the sygiem |n model 1,P;;=1 if i andj are either two colloidal particles
and on the relative concentration of the impurities of theor two impurities, whereaB;; =0 if one particle is a colloi-
structure and kinetics is presented in Secs. lll and IV, respegyg| particle and the other is an impurity. In model R,
tively. Section V d_escrlbes the effeqt of the |mpur|t|es on the_ 1 only if i andj are two colloidal particles and equals zero
threshold to gelation and the gelation properties of the sysgianwise.

tem. Concluding remarks close this work in Sec. V1. At intermediate times the system contains clusters of dif-
ferent sizes and the aggregation continues by selecting at
random a cluster of typA or B and sizes. A size-dependent
Il. MODEL AND METHODS diffusion coefficient of the selected cluster is calculated as

Two models of DLCA with impurities are described in P(8) ~1/Rq, whereR, is the radius of gyration of that clus-
this section. TheB particles are colloidal DLC aggregating t€r- The time is then incremented byNY/, whereN, is the
monomers that diffuse in a medium containing impurities”umber of cluste_rs in the system at_that partlcular_ time. The
represented by particles. The colloidal particles and the selected cluster is allowed to move in a random direction by
impurities are assumed to be of equal size. Both the Bost On€ lattice unit only if a random numb#runiformly distrib-
particles and the impurities diffuse on a 3D cubic lattice;uted in the range @X<1 satisfies the conditionX
thus their functionality isf=6 (number of nearest neigh- <D(S)/D(1). Themove will take place if no particle in the
bors. The host particles perform irreversible cluster-clusterSelected cluster overlaps cells occupied by another cluster. |f
aggregation with sticking probabilitieBgz=1 and do not it does, then_ thg two clqsters either stick permgnentl?ijlf
interact with the impurities such th&z=0. In model 1 the =1 Or remain side by side i;; =0, wherei andj refer to
impurities also diffuse under DLCA with sticking probability the type of particles at contact. For the stru_ctural and kinetic
Paa=1, indicating that impurity particles are allowed to in- calculafuons the aggregation process terminates whgn a floc
teract attractively with each othéheir functionality is also ~ forms, just before gelation where a spanning cluster is about
f=6). As the impurity clusters grow in size, obstacles arel© form. To determine the percolation threshotd gelation
formed that affect the growth of the host clusters of te threshold, the simulation is continued until no change in the
This structural effect will have an impact on the kinetics "umber of cluster&\. occurs for a specified length of time.
especially when the average distance between the clustersAs9el is obtained when a cluster spans the computational

short. In model 2 the impurities diffuse without aggregatingP®X: This cluster is then fixed. , _
andP,,=0. In this model impurities are unreactive particles  S€veral quantities are calculated during the aggregation
whose size does not change with time. Therefore, as the hoBfoCcess. For the purpose of _caICLZJIatlng the fractal Slmensmn
B clusters grow larger, the kinetics is dominated by thedr, the cluster radii of gyrationRy=(1/5)Zi(ri—ro)*, are
movement of the light impurity particles. This fact not only calculated every time a new cluster is formed during the
slows down the growth of th® clusters, but also restricts aggregation process. Hergjs the number of monomers in
their available growth space. As a consequence the structutge clusterimass, r; is the position of theth monomer, and
of the B clusters is affected. ro is the cluster center of mass. Other monitored quantities
All simulations are carried out in cubic computational @re the moments of the cluster distribution functi¥g(t),
boxes of length. and periodic boundary conditions are used.such as the mean number of clustiiggt) = ZsNg(t) and the
When the simulation is started, the system is a mixture of aveight-average cluster size,(t) == ss?Ny(t)/ZSNy(t),
molar fractionx (or N,) of impurity particles and (+x) (or ~ Where the sums run over finitenonspanning clusters.
Ng) of colloidal host particles, either one of them occupyingWhenever a gel is formed, the gel fractiGns calculated as
random cells of the cubic lattice. The molar fraction of the
impurities is Xx=N/(Na+Ng). The number of occupied

cells is determined by the volume fractignoncentration _ (number of particles belonging to the spanning cluster
¢=(Np+Ng)/V, whereV=L2 is the volume of the compu- ~ (total number of particles '
tational box. The concentratiop and molar fractionx are D

related through the relative concentratiodg=(1—X) ¢

=Ng/V andp,=xd=N4/V. The total number of particles

N=N,+Ng is ~470 000 for all simulations at three differ- These properties are averaged over 50 simulations. Distances
ent concentrations¢p=0.01, 0.03, and 0.05, corresponding and time are reported in dimensionless units.
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TABLE I. Slopes of the logy, vs logo, plots for different values of andq at ¢=0.01 and 0.05 for model
1 and at¢=0.01 for model 2. Only clusters containing more than 20 monomers were considered.

Model 1 Model 2
¢=0.01 ¢=0.05 ¢=0.01
p q x=0.3 x=0.7 x=0.3 x=0.7 x=0.1 x=0.5
3 2 1.48£0.02 1.49:0.01 1.49-0.02 1.52£0.02 1.56:0.02 1.47-0.03
4 2 1.96:£0.04 1.97:0.03 1.97-0.04 2.04-0.04 2.01-0.03 1.92-0.07
5 2 2.44+0.08 2.46-0.04 2.440.08 2.56£0.06 2.52:0.06 2.38:0.11
4 3 1.32-0.02 1.33:0.01 1.33:0.01 1.34:0.01 1.34-0.02 1.310.02
5 3 1.65-0.03 1.66-0.01 1.65-0.03 1.69-0.02 1.68-0.02 1.63:0.02
5 4 1.24+0.01 1.25-0.01 1.25-0.01 1.24-0.01 1.26:0.01 1.24-0.01
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lll. FRACTAL DIMENSION these results are presented differently, indicating the depen-

The degree of compactness or ramification of a statistifjenCe ofd; on the amount of impurities preset, |t is clear

2= ; . ; .~ “that at the same molar fraction of impurities there is an in-
cally self-similar cluster is measured by its fractal dimension

d;. To study the self-similarity of the clusters, the method C'€2S€ ind; with total concentration due to an interpenetra-

based on the moments of the distribution of the cluster radi?Ion of the colliding cluster$14]. There is a trend shown in

of gyration[16—18 was used. In this method the distribution
of the cluster radii of gyration is generated for clusters of 2.00 |
sizes larger thas=20 collected from the 50 simulations at “;q?:fm /,1’
each value of¢ and each value ot. The moments of this [¢=003 -
distribution are defined as 4

A$=0.05
1.95 | e 4

1 n; //’
O-P(Rgi): n_ 21 |R9i _<Rg>|pv (2) - @ {l
i s= ° d, 190} .

wheren; is the number of clusters in thi¢h bin and(R) is & {’ ¢ %
the mean radius of gyration in that bin. Note thaj, ¢ A
~ NP if Ry ~N/"%. Therefore, if the system is character- 1851 % %

ized by one fractal dimension, then the ratio ofd)( to
In(o) should be equal tp/q for all bins. A deviation from
this value indicates multifractality. Our results for the two
models are shown in Table | for different mole fractions
As seen from the table, the calculated ratiogrjin(o,,) are
indeed equal tgp/q. The uncertainties listed in the table
correspond to twice the standard deviation. From this analy
sis we conclude that the clusters are self-similar at the con
centrations considered in this study. A

Once it is proved that the clusters in the two models are A
self-similar, the fractal dimensiod; is obtained from the 195 r A
mass-size relationshipl~Rgf. To avoid large fluctuations 8 ; A
and in order to take the asymptotic limit of large clusters, &
only clusters containing more than 20 monomers in the 5(d, 1.90
simulations were retained in the determination df. In
model 1, where the impurities aggregate, the dependence ¢
the fractal dimension of the colloidal clusté8n their rela-
tive concentrationpg and for three different concentrations
of the whole systemp is shown in Fig. 1. Each point at a
given concentration in Fig. (&) corresponds to a different
value of x, the molar fraction of impurities present in the 1.80 . : . .
bath: 0.05, 0.1, 0,2 .. ,0.9. For comparison, the dotted line 0.0 0.2 0.4 0.6 0.8 1.0
corresponds to the dependence of the fractal dimension off

concentration in the one-component syst€dCS [14]: d; FIG. 1. Model 1. Fractal dimension at three concentratigns
=1.797+0.9135%°%". Notice that for the¢y=0.01 case, the —0.01 (circles, 0.03(squarel and 0.05(triangles, (a) as a func-
fractal dimension of model 1 follows the OCS closely excepttion of the relative concentratiosg ; (b) as a function of the im-
at highx. For ¢=0.03 and 0.05, the fractal dimension ap- purity molar fractionx. The dotted line refers to the one component
proaches the OCS value as-»1 andx—0. In Fig. 1b)  system.
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FIG. 2. Model 2. Fractal dimension at=0.01 (asterisk$ as
compared to that of model [circles, (a) as a function of the FIG. 3. Model 1:(a) Mean number of clusterd(t) as a func-
relative concentrationpg ; (b) as a function of the impurity molar  tion of time. (b) Weight-average cluster si&,(t) as a function of
fractionx. The dotted line refers to the one-component system. time. Both plots are forp=0.01 and impurity molar fractions

=0.2 (black dot$ andx=0.8 (circles.

Fig. 1(a), however, indicating that for more concentrated sys-
tems the fractal dimension of the colloidal particles isOCS and model 1. This can be explained by the fact that the
smaller than in the equivalent OCS. As the concentratioinaggregated fast mobile impurities develop a laffective
increases the growing impurity clusters act as obstacles tgolume that cannot be reached by the colloidal aggregates.
the colloidal clusters, preventing the large colloidal clusters
from growing homogeneously in space. Because the accre- IV. AGGREGATION KINETICS
tion of the large clusters in this model is not homogeneous, .
slightly more elongated and therefore less compact clusters Experimentally, the mean number of clustétg(t) and
than in the OCS are produced. The maximum obstructiodl€ weight-average cluster sig(t) give enough informa-
occurs when the colloidal particles are minorit0.5). tion on the kinetics of aggregation. Whenever these two

In model 2 the impurities are mobile monomeric particles.duantities show a power law behavior with time, then plots
In this case the growth kinetics is significantly slowed down,0f the cluster distribution functiois(t) at different times
resulting in extremely long simulations. For this reason wecollapse onto one master curve following the scaling equa-
have done calculations for only one concentratiah, tion Ng(t)~S,?f(s/S,) [19]. This scaling is also found in
=0.01, for molar fractions=0.1,0.2,0.3, and 0.5, and the humerical simulations of OCS DLCA14]. In the scaling
results are averaged over 50, 15, 10, and 6 simulations, réegime two dynamical exponents define the temporal change
spectively. The fractal dimension of the colloidalclusters  of the above quantitiesrslc(t)~t‘z/ andS,(t)~t~
for this model is plotted as a function of the relative concen- For model 1 and model 2, Figs. 3 and 4 illustrate the time
tration ¢g in Fig. 2@ (asterisks Also plotted is the OCS dependence dfi.(t) andS,(t) at $=0.01 and at two values
(dotted line and results for model 1 ap=0.01 (circles. of the molar fraction of impurities. For model 1 the power
Figure 2b) shows the dependence df on the molar frac- law behavior extends for a long period of time whereas in
tion of impurities and a comparison to results in model 1.model 2 it is one to two decades shorter and decreases fur-
The fractal dimension is significantly lower than in both thether when the impurity concentration changes from0.1 to
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FIG. 4. Model 2:(a) Mean number of clusterd (t) as a func- FIG. 5. (a) Exponentz’ and(b) exponentz as a function of the

tion of time. (b) Weight-average cluster siZ,(t) as a function of  relative concentration of the colloidal particles for model 1 and 2 at
time. Both plots are forp=0.01 and impurity molar fractions ¢=0.01.
=0.1 (circles andx= 0.5 (black dots.

x=0.5. The dynamical exponentsandz’ were calculated themselves. The finite size of the computational box leads to
from the slope of the linear time regime in the log-log plots WO Possible final stages once the flocculation regime is con-
of S,(t) andN,(t), respectively. Figures(8) and 5b) show tinued in time. In one case the system terminates as one large
the dependence of these exponents on the relative concentfduster that has accrued all the particles in the bath but does
tion of the B particles,g=(1—xX)¢. As a comparison, the NOt span the computational box. The second possibility is
figure also displays the OCS results calculated fram such that at the end of the simulation there is a spanning
=1.067+3.0885%5%7 and z' = 1.045+ 3.4135°4%5 [14]. At  cluster, which we will refer to as the gel. A cluster spans
low concentration, fractal impuritiegnodel 1 have a slight when it spreads from edge to edge along the computational
effect on the kinetics while monomeric particlésodel 2 ~ box as in percolation theorjd 2] and the time at which the
dramatically affect the kinetics. Notice that for model 1, ascluster spans is callegj or the gelation time. In the numeri-
¢g increasesz’ becomes slightly smaller than the OCS cal simulations there is then a characteristic system concen-
value. This effect is a consequence of the decreasing size ¢fation at which either one of the two cases is observed. This
the impurity clusters with increasing concentration of theconcentration is defined as the gelatiéor percolation
aggregatingB particles. As a conclusion, the effect on the threshold¢,. For the OCS its dependence on the system
kinetics of small impurity clusters is more pronounced. size was proposed to f0||0\,¢g~|_Df/|_3~|_—(3—Df) [20],

In the time regime wherbl (t) andS,(t) follow a power  \yhereD;~1.8 is the effective dimensionality of the simu-
law, it was possible to define a scaling equationNQ(t) in  |ated gel at infinite dilution. In the thermodynamic lintit
both models. Figure 6 illustrates the collapse onto one master, . the gelation threshold goes to zero, meaning that the
curve of a typical case ab=0.01 andx=0.5. system gels as predicted in the pEat].

Impurities could also affect the gelation threshold and
other properties of the gel, especially at finite concentrations

In the flocculation regime the system is composed of agwhere we have seen large deviationsdgffrom that of the
gregates that are self-organized but still are not touchingne-component system. For model 1, the dependendfg, of

V. GELATION AND PROPERTIES OF THE GEL
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FIG. 7. Model 1: Phase portrait indicating the concentration
FIG. 6. Scaling of the cluster size distributidly(t) in model 1 boundary between the gelling and non-gelling regirtteiangles
(top) and in model ZAbottom at ¢=0.01 andx=0.5. for x=0.5. Also shown is the size dependence of the percolation
threshold (diamond$. The size dependence of the percolation
threshold in the one component system is given for comparison
on the system siz& for a symmetric systenx=0.5 was  purposegblack dot3.
considered for size& =80, 100, 125, 140, 160, 200, and
240. For each., the concentration is varied and 50 indepen-
dent simulations for each concentratigh are performed. The obstruction to aggregation of tBecolloidal particles
The threshold to gelatiog, is defined as the concentration was further investigated with the aid of the pair correlation
at which half of these simulations end up with a gel. Figurefunction:
7 is a log-log plot showing the dependencegdgfon L (dia- _ o
monds. We performed a similar study for the OCS and re- _ [density of BB pairsin (r,r+or)]
sults are shown in the same figul#ack dot$. It is clear that 9es(r )= (averge density ofBB pairg
the impurities(at x=0.5) have a somewhat lower threshold
to gelation than the OCS and the slopes are not exactlyhis pair correlation function was calculated at three differ-
equal. For the OCS, the slope of the data points-i5.13  ent aggregation times for a system inside the gelling regime
+0.06 whereas in the impure system the slope-i$.22  zone of the phase portrait in Fig. 2€0.01, L=100) and
+0.05. Using the relation betwees and L of Ref. [20]  for another system in the nongelling regime&=0.1, L
yields two effective dimensionalities of the simulated gel: =100). Equation(3) is the pair correlation function oB
D;~1.87 for the OCS and;=1.78 for the impure system particles belonging to nonspanning clusters. Typical results
(model 1 withx=0.5). This is in agreement with our previ- for ggg(r,t) at x=0.5 are plotted in Fig. 8 for these two
ous results: fractal impurities reduce the fractal dimension. concentrations. Figure(8 illustrates the temporal behavior
To have a complete picture of the effect of impurities onof the pair correlation function at a concentration in the gel-
gelation properties for model 1, additional higher concentraling region of ¢=0.01 forx=0.5. The position of the mini-
tion cases were considered. We believe that in this modehum of this function gives a rough estimate of the average
there is a terminal finite concentration at which the impuritylinear cluster siz¢18]. As time proceeds the colloidal clus-
clusters fully inhibit the long range diffusion and growth of ters grow more extended and the linear cluster size increases,
the colloidal clusters. In fact, ab=0.05 andx= 0.5 the sys- until the gel is formed. At this point the structure@fg(r,t)
tem does not gel for values bflarger than 150. Calculations is lost since one spanning cluster is present and the linear
similar to those described in the determination of the gelatioreluster size diverges. A similar behavior was observed at an
threshold were used to identify this non-gelling region. Forimpurity mole fraction ofx=0.8. Figure 8b) illustrates the
system sizes =100, 120, 140, 160, 200, and 240, the con-temporal change o0fgg(r,t) in the nongelling region ¢
centration is changed ar@l the gel fraction oB patrticles, is  =0.1), showing that the linear cluster size reaches a satura-
calculated from Eq(1). Averages ofG over 40 independent tion value after a characteristic time. Small oscillations in
simulations are calculated for eaghat a givenL. Subse- ggg(r,t) are present, reflecting the incipient appearance of a
quently these averages as a function of increagiraye fit-  local ordering of clusters which prevents the formation of a
ted by an exponential function to extract the limitiggat  gel. Forx=0.8, we have found that the impurities form a gel
which G=0. This process is repeated for evdryand the and the colloidal clusters are trapped in this gel exhibiting a
results are plotted in Fig. @riangles. As clearly seen, inthe local orderingla second peak iggg(r,t)].
regime of finite concentrations there is a gelling to nongel- We have also studied the effect of monomeric impurities
ling transition. Figure 7 represents a phase portrait of then gelation(model 2. For one system of size=100, sev-
system showing regions of gelation and nongelation for theeral values of the relative concentratigg of the B colloidal
aggregating system with mobile aggregating impurities, at garticles were chosen: 0.005, 0.01, 0.02, 0.03, and 0.04. For
molar fractionx=0.5. each¢g value the number of impuritied 4 is increased until

()
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Hl
il
! i
i move more frequently than the colloidal clusters and occupy
‘:k\ a larger effective volume, such that the colloidal particles are
';\\ constrained to form elongated aggregates and therefore their
g (1,010 g 2 \ fractal dimension decreases. This is in agreement with the
BB Yy experimental resulf8] that the storage modulus decreases
N monotonically when unreactive fillers are present. The ag-
| D
‘-/’ gregation kinetics in this impure system is dramatically
&, slowed down, since the number of small obstacles prevents
i”‘"jizigjgg the large colloidal clusters from moving to form larger clus-
A —-alog()=125 ters. Furthermore, for a finite system there is indication that,
0.8 : - - with increasing concentration of the colloidal particles, there
©) 0 10 20 30 40 is a molar fraction of impuritiex, above which gelation is
r

fully inhibited.

FIG. 8. Model 1:(a) Pair correlation function at three different N the case of reacting impuritigsnodel 1, their aggre-
times: In¢)=6.5 (circles, 9.5 (diamonds, and 11.7(triangles fora ~ 9ated structure makes them less effective in blocking the
system in the gelling regime @=0.01 andx=0.5. (b) The same  agdgregation of the colloidal particles and only at relatively
function but now for the times It}=5.0 (circles, 6.5 (diamonds, large concentrations do they reduce the fractal dimension of
and 12.5(triangles for a system in the nongelling regime &  the colloidal aggregates. In this process the kinetics is closer
=0.1 andx=0.5. to that of the one-component system at equivalent concentra-

tions. However, a nongelling region appears at high concen-
the system stops gelling. Results yield the phase portrairations, where the impurity aggregates block the diffusion of
shown in Fig. 9 where points forp, = 0.0041, 0.0073, the colloidal clusters, thus preventing further growth. The
0.0115, 0.0185, and 0.0225 are at the boundary between tipgir correlation function shows that the impurities keep the
gelling and nongelling behavior. Due to the extremely longcolloidal clusters apart, displaying a spatial local ordering. A
computational time involved in this type of simulation, only word of caution should be said when trying to extrapolate
one run was performed for each case, taking a total of 5this result to a system of clusters diffusing in the continuum,
hours of CPU time in a dedicated R10000 195 MHz proceswith the additional possibility of rotational diffusion. As we
sor for the full simulation. It is apparent from Fig. 9 that understand it, this hindrance to gelation occurs because the
there is a boundary in the plane([,¢g) between the gel- impurity clusters block the diffusion of the colloidal clusters
ling and nongelling regions. This portrait indicates that,that, in our model, occurs only by translational diffusion and
when the relative concentration of tH® particles is in- by steps of one lattice spacing, which is of the order of the
creased, there is a value @f,, consistent with a molar particle diameter. It might be possible that in an experimen-
fraction of impuritiesx,, above which gelation is fully tal system, with shorter step lengths and with the possibility
blocked. of rotational diffusion by short angular steps, the clusters

may disentangle and escape from the cages where they are

VI. CONCLUSION trapped (formed by the impurity clustefsIn this case, a

disentangled cluster may find another one of the same spe-
We have shown in two different lattice models that mo-cies, and further growth would continue above the gelation

bile impurities affect the structure and the kinetics of a col-point. A definitive proof of this scenario has to wait for the
loidal DLCA system. This effect is very strong when the execution of very sophisticated computer simulations or for
impurities are unreactivémodel 2 because these particles experimental results with the above features.
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