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Colloidal aggregation with mobile impurities
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The structure and aggregation kinetics of diffusion-limited cluster-cluster three-dimensional monomeric
aggregates and gels is investigated as a function of the molar fraction of two types of impurities. In one case
the impurities are allowed to aggregate among themselves whereas in the other the impurities are mobile
monomers that remain as such during the whole aggregation process. Computer simulations are performed on
a simple cubic lattice for which the functionality of the aggregating particles is effectively 6. The first type of
impurity shows a decrease in the fractal dimension when compared to that of a one component system at the
same concentration. As a consequence of this decrease, the gelation concentration is lowered. At higher
concentrations a gelling to nongelling transition was observed. In the nongelling regime the colloidal aggre-
gates are kept apart by the impurity clusters, developing a local ordering. For the monomeric type of impurity,
at large impurity molar fractions, a nonstructured nongelling phase appears at high enough concentration, in
which the colloidal aggregates are kept apart by the sea of mobile impurities that inhibits the formation of a
gel. Smaller molar fractions of mobile monomeric impurities strongly affect both the fractal dimension and the
kinetics of the aggregating colloid.

PACS number~s!: 61.43.Hv, 82.70.Dd, 82.70.Gg, 05.10.Ln
on
a
ly
s
d
im
a
ep
io

on

e
o

th

lt
ve
d

ar

g
a
f

u-
d

e
g

a

his

e-

pe-
ola-

the
at-
ga-

d
go-
s a
the

n
er-
-

ract
m

der
ld

c
o

-

n

I. INTRODUCTION

The effects of impurities, filler, or secondary particles
the properties of aggregating systems have been investig
experimentally for a variety of systems. For example, po
electrolytes were found to play the role of impurities in cry
tallizing systems@1#, affecting the nucleation, growth an
aggregation, and phase transformations. Macromolecular
purities affect protein solubility and crystallizability. Even
small amount of protein impurity can impede growth st
propagation and these impurities play a role in the format
of structural/compositional inhomogeneities@2–4#. Impuri-
ties were also found to affect the dynamics of micellizati
@5#, rheology of gels@6#, and morphology of phospholipid
monolayers@7#.

Several studies have been performed to correlate th
structural and kinetic changes with both the concentration
impurities and the type of interactions between them and
host particles. Experiments by van Vliet@8# show that the
interaction of emulsion droplets with casein micelles resu
in an increase in the storage modulus of the gel. Howe
when the droplets did not interact, the storage modulus
creased monotonically with the concentration of filler p
ticles. A recent experimental study on gold/silica gel@9#
shows no significant change in the structure of the silica
due to the presence of a low molar fraction of small colloid
gold particles and a decrease in the average pore size o
silica gel when the gold colloidal particles are large.

Concerning numerical investigation of the effect of imp
rities, studies of the effect of mobile impurities on an a
vancing solidification front@10,11# are available. The growth
model in these studies is local and does not have the kin
component included in diffusion-limited cluster-cluster a
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gregation~DLCA!. An epidemic Eden cluster on square@10#
and cubic lattices@11# grows in a liquid phase containing
molar fraction x of mobile impurities. The impurities are
pushed by the advancing front due to repulsive forces. T
system exhibits a percolationlike transition atxc , displaying
a continuous nonstopping growth belowxc and finite clusters
due to a complete hindrance of growth abovexc . The value
of xc is larger in three dimensions~3D! than in ~2D! and is
larger than the critical molar fraction found for the corr
sponding epidemic model with static impurities. Atxc the
clusters and internal patterns are found to have a fractal
rimeter with the same dimension as that of classical perc
tion @12#.

Recently @13#, we have modified the diffusion-limited
cluster-cluster aggregation algorithm to take into account
existence of two types of colloidal particles interacting
tractively in the aggregating system. There are two aggre
tion regimes depending on the molar fractionx of one type of
particles. Whenx,0.2 a nongelling regime is attained an
the simulation ends with a sol composed of saturated oli
mers. Asx decreases from 0.5 to 0.2, the system show
crossover from DLCA aggregates equivalent to those of
one-monomer system at that concentration@14# to aggregates
obtained in reaction-limited cluster-cluster aggregation.

In this paper we study the effect of mobile impurities o
the structure, kinetics, and gelation of a colloidal system p
forming a diffusion-limited cluster-cluster aggregation. Im
purities are defined as particles that may or may not inte
with themselves but do not interact with the colloidal syste
except through excluded volume interactions. We consi
two types of impurities: aggregating impurities that cou
form fractal clusters~model 1! and unreactive monomeri
impurities~model 2!. In both cases the impurity particles d
not react with the aggregating colloid. The two types of im
purities belong to different classes of obstacles~fractal and
nonfractal! that have shown different behavior i
6781 ©2000 The American Physical Society
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6782 PRE 61A. ALSUNAIDI et al.
lateral diffusion measurements of submicroscopic dom
structures@15#. In fact, it is not only the geometry of th
impurity particles that affects the aggregation process,
also their size and mobility. We study here the aggreg
morphology and kinetics as a function of the molar fracti
of impuritiesx and look for a critical molar fractionxc where
a blocking transition occurs~similar to that found in the dy-
namic Eden model@10,11#!. A comparison of results to thos
of DLCA of a one-monomer system@14# is given for the two
models.

This paper is organized as follows. A detailed descript
of the models and the computer algorithm is given in Sec
The dependence on the total concentration of the systef
and on the relative concentration of the impurities of t
structure and kinetics is presented in Secs. III and IV, resp
tively. Section V describes the effect of the impurities on t
threshold to gelation and the gelation properties of the s
tem. Concluding remarks close this work in Sec. VI.

II. MODEL AND METHODS

Two models of DLCA with impurities are described
this section. TheB particles are colloidal DLC aggregatin
monomers that diffuse in a medium containing impurit
represented by particlesA. The colloidal particles and the
impurities are assumed to be of equal size. Both the hoB
particles and the impurities diffuse on a 3D cubic lattic
thus their functionality isf 56 ~number of nearest neigh
bors!. The host particles perform irreversible cluster-clus
aggregation with sticking probabilitiesPBB51 and do not
interact with the impurities such thatPAB50. In model 1 the
impurities also diffuse under DLCA with sticking probabilit
PAA51, indicating that impurity particles are allowed to in
teract attractively with each other~their functionality is also
f 56). As the impurity clusters grow in size, obstacles a
formed that affect the growth of the host clusters of typeB.
This structural effect will have an impact on the kineti
especially when the average distance between the cluste
short. In model 2 the impurities diffuse without aggregati
andPAA50. In this model impurities are unreactive particl
whose size does not change with time. Therefore, as the
B clusters grow larger, the kinetics is dominated by t
movement of the light impurity particles. This fact not on
slows down the growth of theB clusters, but also restrict
their available growth space. As a consequence the struc
of the B clusters is affected.

All simulations are carried out in cubic computation
boxes of lengthL and periodic boundary conditions are use
When the simulation is started, the system is a mixture o
molar fractionx ~or NA) of impurity particles and (12x) ~or
NB) of colloidal host particles, either one of them occupyi
random cells of the cubic lattice. The molar fraction of t
impurities is x5NA /(NA1NB). The number of occupied
cells is determined by the volume fraction~concentration!
f5(NA1NB)/V, whereV5L3 is the volume of the compu
tational box. The concentrationf and molar fractionx are
related through the relative concentrationsfB5(12x)f
5NB /V andfA5xf5NA /V. The total number of particles
N5NA1NB is '470 000 for all simulations at three differ
ent concentrations:f50.01, 0.03, and 0.05, correspondin
in
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to computational boxes of sideL5360, 250 and 210, respec
tively.

Initially the simulation box contains unaggregated p
ticles of typeA and typeB. The time counter starts by ran
domly picking a particle, incrementing the time by the i
verse of the number of clusters in the system~which at the
beginning isNc5NA1NB), and moving at random the se
lected particle by one unit cell. The motion of the particles
a random walk simulating their Brownian motion caused
the thermal fluctuations in the solvent. If a particlei attempts
to occupy the position of a nearest-neighbor particlej, then
the two particles stick~or not! with probability Pi j 51 or 0.
In model 1,Pi j 51 if i andj are either two colloidal particles
or two impurities, whereasPi j 50 if one particle is a colloi-
dal particle and the other is an impurity. In model 2,Pi j

51 only if i andj are two colloidal particles and equals ze
otherwise.

At intermediate times the system contains clusters of
ferent sizes and the aggregation continues by selectin
random a cluster of typeA or B and sizes. A size-dependent
diffusion coefficient of the selected cluster is calculated
D(s);1/Rg , whereRg is the radius of gyration of that clus
ter. The time is then incremented by 1/Nc , whereNc is the
number of clusters in the system at that particular time. T
selected cluster is allowed to move in a random direction
one lattice unit only if a random numberX uniformly distrib-
uted in the range 0,X,1 satisfies the conditionX
,D(s)/D(1). Themove will take place if no particle in the
selected cluster overlaps cells occupied by another cluste
it does, then the two clusters either stick permanently ifPi j
51 or remain side by side ifPi j 50, wherei and j refer to
the type of particles at contact. For the structural and kine
calculations the aggregation process terminates when a
forms, just before gelation where a spanning cluster is ab
to form. To determine the percolation threshold~or gelation
threshold!, the simulation is continued until no change in th
number of clustersNc occurs for a specified length of time
A gel is obtained when a cluster spans the computatio
box. This cluster is then fixed.

Several quantities are calculated during the aggrega
process. For the purpose of calculating the fractal dimens
df , the cluster radii of gyration,Rg

25(1/s)( i(r i2r 0)2, are
calculated every time a new cluster is formed during
aggregation process. Here,s is the number of monomers in
the cluster~mass!, r i is the position of thei th monomer, and
r 0 is the cluster center of mass. Other monitored quanti
are the moments of the cluster distribution functionNs(t),
such as the mean number of clustersNc(t)5(sNs(t) and the
weight-average cluster sizeSw(t)5(ss

2Ns(t)/(ssNs(t),
where the sums run over finite~nonspanning! clusters.
Whenever a gel is formed, the gel fractionG is calculated as

G5
~number of particles belonging to the spanning cluste!

~ total number of particles!
.

~1!

These properties are averaged over 50 simulations. Dista
and time are reported in dimensionless units.
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TABLE I. Slopes of the logsp vs logsq plots for different values ofp andq at f50.01 and 0.05 for mode
1 and atf50.01 for model 2. Only clusters containing more than 20 monomers were considered.

Model 1 Model 2
f50.01 f50.05 f50.01

p q x50.3 x50.7 x50.3 x50.7 x50.1 x50.5

3 2 1.4860.02 1.4960.01 1.4960.02 1.5260.02 1.5060.02 1.4760.03
4 2 1.9660.04 1.9760.03 1.9760.04 2.0460.04 2.0160.03 1.9260.07
5 2 2.4460.08 2.4660.04 2.4460.08 2.5660.06 2.5260.06 2.3860.11
4 3 1.3260.02 1.3360.01 1.3360.01 1.3460.01 1.3460.02 1.3160.02
5 3 1.6560.03 1.6660.01 1.6560.03 1.6960.02 1.6860.02 1.6360.02
5 4 1.2460.01 1.2560.01 1.2560.01 1.2460.01 1.2660.01 1.2460.01
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III. FRACTAL DIMENSION

The degree of compactness or ramification of a stat
cally self-similar cluster is measured by its fractal dimens
df . To study the self-similarity of the clusters, the meth
based on the moments of the distribution of the cluster r
of gyration@16–18# was used. In this method the distributio
of the cluster radii of gyration is generated for clusters
sizes larger thans520 collected from the 50 simulations a
each value off and each value ofx. The moments of this
distribution are defined as

sp~Rgi
!5

1

ni
(
s51

ni

uRgi s
2^Rg&up, ~2!

whereni is the number of clusters in thei th bin and^Rg& is
the mean radius of gyration in that bin. Note thatsp

;Ni
p/df if Rgi s

;Ni s

1/df . Therefore, if the system is characte

ized by one fractal dimension, then the ratio of ln(sp) to
ln(sq) should be equal top/q for all bins. A deviation from
this value indicates multifractality. Our results for the tw
models are shown in Table I for different mole fractionsx.
As seen from the table, the calculated ratios ln(sp)/ln(sq) are
indeed equal top/q. The uncertainties listed in the tab
correspond to twice the standard deviation. From this an
sis we conclude that the clusters are self-similar at the c
centrations considered in this study.

Once it is proved that the clusters in the two models
self-similar, the fractal dimensiondf is obtained from the
mass-size relationshipN;Rg

df . To avoid large fluctuations
and in order to take the asymptotic limit of large cluste
only clusters containing more than 20 monomers in the
simulations were retained in the determination ofdf . In
model 1, where the impurities aggregate, the dependenc
the fractal dimension of the colloidal clustersB on their rela-
tive concentrationfB and for three different concentration
of the whole systemf is shown in Fig. 1. Each point at
given concentration in Fig. 1~a! corresponds to a differen
value of x, the molar fraction of impurities present in th
bath: 0.05, 0.1, 0.2, . . . ,0.9. For comparison, the dotted lin
corresponds to the dependence of the fractal dimension
concentration in the one-component system~OCS! @14#: df
51.79710.913f0.507. Notice that for thef50.01 case, the
fractal dimension of model 1 follows the OCS closely exce
at high x. For f50.03 and 0.05, the fractal dimension a
proaches the OCS value asx→1 and x→0. In Fig. 1~b!
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these results are presented differently, indicating the dep
dence ofdf on the amount of impurities present,x. It is clear
that at the same molar fraction of impurities there is an
crease indf with total concentration due to an interpenetr
tion of the colliding clusters@14#. There is a trend shown in

FIG. 1. Model 1. Fractal dimension at three concentrationsf
50.01 ~circles!, 0.03 ~squares!, and 0.05~triangles!, ~a! as a func-
tion of the relative concentrationfB ; ~b! as a function of the im-
purity molar fractionx. The dotted line refers to the one compone
system.
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6784 PRE 61A. ALSUNAIDI et al.
Fig. 1~a!, however, indicating that for more concentrated s
tems the fractal dimension of the colloidal particles
smaller than in the equivalent OCS. As the concentrat
increases the growing impurity clusters act as obstacle
the colloidal clusters, preventing the large colloidal clust
from growing homogeneously in space. Because the ac
tion of the large clusters in this model is not homogeneo
slightly more elongated and therefore less compact clus
than in the OCS are produced. The maximum obstruc
occurs when the colloidal particles are minority (x.0.5).

In model 2 the impurities are mobile monomeric particle
In this case the growth kinetics is significantly slowed dow
resulting in extremely long simulations. For this reason
have done calculations for only one concentration,f
50.01, for molar fractionsx50.1,0.2,0.3, and 0.5, and th
results are averaged over 50, 15, 10, and 6 simulations
spectively. The fractal dimension of the colloidalB clusters
for this model is plotted as a function of the relative conce
tration fB in Fig. 2~a! ~asterisks!. Also plotted is the OCS
~dotted line! and results for model 1 atf50.01 ~circles!.
Figure 2~b! shows the dependence ofdf on the molar frac-
tion of impurities and a comparison to results in model
The fractal dimension is significantly lower than in both t

FIG. 2. Model 2. Fractal dimension atf50.01 ~asterisks! as
compared to that of model 1~circles!, ~a! as a function of the
relative concentrationfB ; ~b! as a function of the impurity mola
fraction x. The dotted line refers to the one-component system.
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OCS and model 1. This can be explained by the fact that
unaggregated fast mobile impurities develop a largeeffective
volume that cannot be reached by the colloidal aggregat

IV. AGGREGATION KINETICS

Experimentally, the mean number of clustersNc(t) and
the weight-average cluster sizeSw(t) give enough informa-
tion on the kinetics of aggregation. Whenever these t
quantities show a power law behavior with time, then plo
of the cluster distribution functionNs(t) at different times
collapse onto one master curve following the scaling eq
tion Ns(t);Sw

22f (s/Sw) @19#. This scaling is also found in
numerical simulations of OCS DLCA@14#. In the scaling
regime two dynamical exponents define the temporal cha
of the above quantities:Nc(t);t2z8 andSw(t);tz.

For model 1 and model 2, Figs. 3 and 4 illustrate the ti
dependence ofNc(t) andSw(t) at f50.01 and at two values
of the molar fraction of impurities. For model 1 the pow
law behavior extends for a long period of time whereas
model 2 it is one to two decades shorter and decreases
ther when the impurity concentration changes fromx50.1 to

FIG. 3. Model 1:~a! Mean number of clustersNc(t) as a func-
tion of time. ~b! Weight-average cluster sizeSw(t) as a function of
time. Both plots are forf50.01 and impurity molar fractionsx
50.2 ~black dots! andx50.8 ~circles!.
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PRE 61 6785COLLOIDAL AGGREGATION WITH MOBILE IMPURITIES
x50.5. The dynamical exponentsz and z8 were calculated
from the slope of the linear time regime in the log-log plo
of Sw(t) andNc(t), respectively. Figures 5~a! and 5~b! show
the dependence of these exponents on the relative conce
tion of theB particles,fB5(12x)f. As a comparison, the
figure also displays the OCS results calculated fromz
51.06713.088f0.547 and z851.04513.413f0.465 @14#. At
low concentration, fractal impurities~model 1! have a slight
effect on the kinetics while monomeric particles~model 2!
dramatically affect the kinetics. Notice that for model 1,
fB increases,z8 becomes slightly smaller than the OC
value. This effect is a consequence of the decreasing siz
the impurity clusters with increasing concentration of t
aggregatingB particles. As a conclusion, the effect on th
kinetics of small impurity clusters is more pronounced.

In the time regime whereNc(t) andSw(t) follow a power
law, it was possible to define a scaling equation forNs(t) in
both models. Figure 6 illustrates the collapse onto one ma
curve of a typical case atf50.01 andx50.5.

V. GELATION AND PROPERTIES OF THE GEL

In the flocculation regime the system is composed of
gregates that are self-organized but still are not touch

FIG. 4. Model 2:~a! Mean number of clustersNc(t) as a func-
tion of time. ~b! Weight-average cluster sizeSw(t) as a function of
time. Both plots are forf50.01 and impurity molar fractionsx
50.1 ~circles! andx50.5 ~black dots!.
tra-

of

ter

-
g

themselves. The finite size of the computational box lead
two possible final stages once the flocculation regime is c
tinued in time. In one case the system terminates as one l
cluster that has accrued all the particles in the bath but d
not span the computational box. The second possibility
such that at the end of the simulation there is a spann
cluster, which we will refer to as the gel. A cluster spa
when it spreads from edge to edge along the computatio
box as in percolation theory@12# and the time at which the
cluster spans is calledtg or the gelation time. In the numeri
cal simulations there is then a characteristic system con
tration at which either one of the two cases is observed. T
concentration is defined as the gelation~or percolation!
thresholdfg . For the OCS its dependence on the syst
size was proposed to followfg;LD f /L3;L2(32D f ) @20#,
whereD f'1.8 is the effective dimensionality of the simu
lated gel at infinite dilution. In the thermodynamic limitL
→`, the gelation threshold goes to zero, meaning that
system gels as predicted in the past@21#.

Impurities could also affect the gelation threshold a
other properties of the gel, especially at finite concentrati
where we have seen large deviations ofdf from that of the
one-component system. For model 1, the dependence ofg

FIG. 5. ~a! Exponentz8 and~b! exponentz as a function of the
relative concentration of the colloidal particles for model 1 and 2
f50.01.
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6786 PRE 61A. ALSUNAIDI et al.
on the system sizeL for a symmetric systemx50.5 was
considered for sizesL580, 100, 125, 140, 160, 200, an
240. For eachL, the concentration is varied and 50 indepe
dent simulations for each concentrationf are performed.
The threshold to gelationfg is defined as the concentratio
at which half of these simulations end up with a gel. Figu
7 is a log-log plot showing the dependence offg on L ~dia-
monds!. We performed a similar study for the OCS and r
sults are shown in the same figure~black dots!. It is clear that
the impurities~at x50.5) have a somewhat lower thresho
to gelation than the OCS and the slopes are not exa
equal. For the OCS, the slope of the data points is21.13
60.06 whereas in the impure system the slope is21.22
60.05. Using the relation betweenf and L of Ref. @20#
yields two effective dimensionalities of the simulated g
D f'1.87 for the OCS andD f51.78 for the impure system
~model 1 withx50.5). This is in agreement with our prev
ous results: fractal impurities reduce the fractal dimensio

To have a complete picture of the effect of impurities
gelation properties for model 1, additional higher concen
tion cases were considered. We believe that in this mo
there is a terminal finite concentration at which the impur
clusters fully inhibit the long range diffusion and growth
the colloidal clusters. In fact, atf50.05 andx50.5 the sys-
tem does not gel for values ofL larger than 150. Calculation
similar to those described in the determination of the gela
threshold were used to identify this non-gelling region. F
system sizesL5100, 120, 140, 160, 200, and 240, the co
centration is changed andG, the gel fraction ofB particles, is
calculated from Eq.~1!. Averages ofG over 40 independen
simulations are calculated for eachf at a givenL. Subse-
quently these averages as a function of increasingf are fit-
ted by an exponential function to extract the limitingf at
which G50. This process is repeated for everyL and the
results are plotted in Fig. 7~triangles!. As clearly seen, in the
regime of finite concentrations there is a gelling to nong
ling transition. Figure 7 represents a phase portrait of
system showing regions of gelation and nongelation for
aggregating system with mobile aggregating impurities, a
molar fractionx50.5.

FIG. 6. Scaling of the cluster size distributionNs(t) in model 1
~top! and in model 2~bottom! at f50.01 andx50.5.
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The obstruction to aggregation of theB colloidal particles
was further investigated with the aid of the pair correlati
function:

gBB~r ,t !5
@density of BB pairs in ~r ,r 1dr !#

~averge density ofBB pairs!
. ~3!

This pair correlation function was calculated at three diff
ent aggregation times for a system inside the gelling reg
zone of the phase portrait in Fig. 7 (f50.01, L5100) and
for another system in the nongelling regime (f50.1, L
5100). Equation~3! is the pair correlation function ofB
particles belonging to nonspanning clusters. Typical res
for gBB(r ,t) at x50.5 are plotted in Fig. 8 for these tw
concentrations. Figure 8~a! illustrates the temporal behavio
of the pair correlation function at a concentration in the g
ling region off50.01 forx50.5. The position of the mini-
mum of this function gives a rough estimate of the avera
linear cluster size@18#. As time proceeds the colloidal clus
ters grow more extended and the linear cluster size increa
until the gel is formed. At this point the structure ofgBB(r ,t)
is lost since one spanning cluster is present and the lin
cluster size diverges. A similar behavior was observed a
impurity mole fraction ofx50.8. Figure 8~b! illustrates the
temporal change ofgBB(r ,t) in the nongelling region (f
50.1), showing that the linear cluster size reaches a sat
tion value after a characteristic time. Small oscillations
gBB(r ,t) are present, reflecting the incipient appearance o
local ordering of clusters which prevents the formation o
gel. Forx50.8, we have found that the impurities form a g
and the colloidal clusters are trapped in this gel exhibitin
local ordering@a second peak ingBB(r ,t)].

We have also studied the effect of monomeric impurit
on gelation~model 2!. For one system of sizeL5100, sev-
eral values of the relative concentrationfB of theB colloidal
particles were chosen: 0.005, 0.01, 0.02, 0.03, and 0.04.
eachfB value the number of impuritiesNA is increased until

FIG. 7. Model 1: Phase portrait indicating the concentrat
boundary between the gelling and non-gelling regimes~triangles!
for x50.5. Also shown is the size dependence of the percola
threshold ~diamonds!. The size dependence of the percolati
threshold in the one component system is given for compari
purposes~black dots!.
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PRE 61 6787COLLOIDAL AGGREGATION WITH MOBILE IMPURITIES
the system stops gelling. Results yield the phase por
shown in Fig. 9 where points forfA 5 0.0041, 0.0073,
0.0115, 0.0185, and 0.0225 are at the boundary between
gelling and nongelling behavior. Due to the extremely lo
computational time involved in this type of simulation, on
one run was performed for each case, taking a total of
hours of CPU time in a dedicated R10000 195 MHz proc
sor for the full simulation. It is apparent from Fig. 9 th
there is a boundary in the plane (fA ,fB) between the gel-
ling and nongelling regions. This portrait indicates th
when the relative concentration of theB particles is in-
creased, there is a value offA , consistent with a molar
fraction of impurities xc , above which gelation is fully
blocked.

VI. CONCLUSION

We have shown in two different lattice models that m
bile impurities affect the structure and the kinetics of a c
loidal DLCA system. This effect is very strong when th
impurities are unreactive~model 2! because these particle

FIG. 8. Model 1:~a! Pair correlation function at three differen
times: ln(t)56.5 ~circles!, 9.5 ~diamonds!, and 11.7~triangles! for a
system in the gelling regime atf50.01 andx50.5. ~b! The same
function but now for the times ln(t)55.0 ~circles!, 6.5 ~diamonds!,
and 12.5~triangles! for a system in the nongelling regime atf
50.1 andx50.5.
it
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move more frequently than the colloidal clusters and occu
a larger effective volume, such that the colloidal particles
constrained to form elongated aggregates and therefore
fractal dimension decreases. This is in agreement with
experimental result@8# that the storage modulus decreas
monotonically when unreactive fillers are present. The
gregation kinetics in this impure system is dramatica
slowed down, since the number of small obstacles preve
the large colloidal clusters from moving to form larger clu
ters. Furthermore, for a finite system there is indication th
with increasing concentration of the colloidal particles, the
is a molar fraction of impuritiesxc above which gelation is
fully inhibited.

In the case of reacting impurities~model 1!, their aggre-
gated structure makes them less effective in blocking
aggregation of the colloidal particles and only at relative
large concentrations do they reduce the fractal dimensio
the colloidal aggregates. In this process the kinetics is clo
to that of the one-component system at equivalent concen
tions. However, a nongelling region appears at high conc
trations, where the impurity aggregates block the diffusion
the colloidal clusters, thus preventing further growth. T
pair correlation function shows that the impurities keep
colloidal clusters apart, displaying a spatial local ordering
word of caution should be said when trying to extrapola
this result to a system of clusters diffusing in the continuu
with the additional possibility of rotational diffusion. As w
understand it, this hindrance to gelation occurs because
impurity clusters block the diffusion of the colloidal cluste
that, in our model, occurs only by translational diffusion a
by steps of one lattice spacing, which is of the order of
particle diameter. It might be possible that in an experim
tal system, with shorter step lengths and with the possibi
of rotational diffusion by short angular steps, the clust
may disentangle and escape from the cages where they
trapped~formed by the impurity clusters!. In this case, a
disentangled cluster may find another one of the same
cies, and further growth would continue above the gelat
point. A definitive proof of this scenario has to wait for th
execution of very sophisticated computer simulations or
experimental results with the above features.

FIG. 9. Model 2: Phase portrait in the plane of the relati
concentrationsfA andfB , showing the gelling and nongelling re
gions.
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