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Processes of microstructure coarsening at liquid phase sintering

L. Anestiev and L. Froyen
Fakulteit Toegepaste Wetenschappen, Departement MTM, Metaalkunde en Toegepaste Materiaalkunde de Croylaan 2,

B-3001 Heverlee, Belgium
~Received 9 November 1999!

A different approach to the theoretical description of the classical theory of Ostwald ripening at liquid phase
sintering has been proposed. The model developed in the present approach is based on an equation describing
the growth kinetics of the particles, which is different from those used until now. The model developed here
accounts automatically for the influence of the initial volume fraction and predicts correctly: the time depen-
dence ofr̄ at t→`2 r̄3(t)2 r̄3(0)5Kt; the form of the distribution function after considerable coarsening
time; the experimentally observed values for the relationrmax/r̄; and the phenomena of ‘‘abnormal growth’’ at
liquid phase sintering.

PACS number~s!: 81.20.Ev, 81.10.Dn, 64.75.1g, 82.20.Wt
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I. INTRODUCTION

Ostwald ripening, or coarsening, is a common pheno
enon occurring during the last stage of the liquid phase
tering ~LPS! @1–6,8–19# and at the microstructure formatio
of the new phase during bulk crystallization@1–6,8–14#.
This process usually involves the flow of solute atoms fr
the small particles to the larger ones, although more ge
ally the flow may be a flux of enthalpy, or solvent atoms
solid-liquid systems, or vacancies~void coarsening! @8,13#.
The fundamental driving force for the interparticle diffusio
is well understood and is caused by the chemical poten
differences, due to the curvature of the particles surface

The first major progress in the theoretical description
the coarsening behavior of a system of spherical parti
dispersed in a solution with close chemical composition, w
made by Lifshitz and Slyozov@1,2#, and separately by Wag
ner @3#, referred to as LSW theory. These authors were
first who formulated mathematically the fundamental eq
tions governing the coarsening process:

dr

dt
5nr52

GD

r S 1

r*
2

1

r D , ~1!

] f

]t
52

]~ f nr!

]r
, ~2!

and

Q05D1
4

3
pE

0

`

f r3dr . ~3!

Here,r is the radius of the particles,nr is its growth veloc-
ity, r* is the so-called critical radius@1–4#, G is a constant
equal to G5sVm /RT, s is the surface tension,T is the
temperature,Vm is the molar volume,R is the universal gas
constant,D is the diffusion coefficient,f 5 f (r,t) is the dis-
tribution function of the particles radiir into ther-dimension
space,D is the current super-saturation,Q0 is the initial
super-saturation plus the initial volume fraction of the so
phase, andt is the time.
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In the above system Eq.~1! describes the growth~or
shrinkage! kinetics of an isolated particle@20#. Equations~2!
and ~3! describe respectively, the movement of the partic
radii of the whole ensemble through ther-dimension space
and the mass conservation law.

Although the LSW theory successfully predicted that a
ymptotically the mean particles radiir̄ of the coarsening
system should obey the dependence

r̄3~ t !5 r̄3~0!1Kt ,

it failed to explain the following experimentally observe
evidences:

1. The experimentally observed distribution functionsf
5 f (r,t) are much broader than the ones predicted by
LSW theory.

2. According to LSW, the relation between the partic
with the maximal radiusrmax and the mean particles radiusr̄
is equal tormax/r̄'1.5; the experimentally observed value
for rmax/r̄ vary between 1.7 and 2.1@10,14#.

3. In the case where the initial powder compact contain
small cluster of large particles, it has been noticed that d
ing the coarsening process these particles grow prefer
leading as a consequence to a dramatic shift in the par
size distribution. This phenomenon is in contradiction w
the results of the LSW theory, and for this reason it w
termed ‘‘abnormal’’ grain growth@14,19#.

The disagreements listed above between the theory
the experiment prompted several authors to explain it fr
various points of view. A thorough discussion of these
tempts and the models that arose can be found
@12,14,18,21–29#. A short discussion over the attempts
question is given in Appendix A.

Concluding this section, it should be noted that during
last decade several theoretical approaches have bee
tempted to improve the classical theory of LS
@12,14,18,21–29#. Beyond any doubt significant progres
was achieved in the understanding of the coarsening kine
since the publication of the classical works of Lifshitz, Sly
zov, and Wagner. Nevertheless, there still exist proble
which cannot be successfully explained by the existing t
oretical models@10,14,15#. The aim of the present paper is t
6721 ©2000 The American Physical Society
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6722 PRE 61L. ANESTIEV AND L. FROYEN
develop an equation describing the growth kinetics of
particles involved in the coarsening process, which con
quently will be applied to study of the coarsening behav
of an ensemble of particles in general and at LPS in part
lar.

II. THEORETICAL APPROACH

A. Formulation of the problem

As mentioned in the Introduction the problem of Ostwa
ripening includes two separate problems. The first one is
particle growth~decay!, immersed in media with changin
chemical composition~in our case, this is the melt!. The
second is the movement of the particle radii of the wh
ensemble through ther-dimension space.

Two mechanisms of the growth~shrinkage! kinetics can
be distinguished: diffusion and reaction controlled grow
~shrinkage!. By the first mechanism the slowest process
the diffusion and the rate of the ripening process is de
mined by the mass transfer inside the system. For the se
mechanism the limiting process is the crystallization~disso-
lution! taking place at the particle surfaces. Therefore, o
needs a criterion in order to distinguish which of the tw
mechanisms is operative in the ripening system at a gi
moment.

Let us consider a system of solid particles with a me
radius r̄ dispersed into a melt. It can easily be shown th
between whole volumeV0 of the system and the mean di
tance between the particlesd, the following dependence i
valid:

4

3
pNS r̄1

d

2D 3

5V0 .

Here, N denotes the number of the particles in the syste
Taking into account that the initial volume fraction of th
solid phase isp54pNr̄3/3V0 , for the mean distanced be-
tween the particles the following is obtained:

d52r̄S 1

p1/3
21D .

On the other hand, the distance at which the changes o
solute concentration are equalized after a time periodDt due
to the diffusion is described by the expressiond'ADDt.
Actually, Dt is not an independent parameter. It is connec
with the growth~dissolution! velocity through the following
expressionDt5Dr̄/nr . HereDr̄ is the change of the mea
particle radius due to the growth~dissolution! process. Thus
dividing d by d and substitutingDt with its equal gives us
the criterion that we are looking for,

d

d
52r̄A nr

DDr S 1

p1/3
21D . ~4!

It is obvious that atd/d@1 the growth mechanism is diffu
sion controlled and atd/d!1, it is reaction controlled. Intro-
ducing some reasonable values for the involved parame
(D51029 m2/s, Dr̄/nr50.5 s, andr̄5331025 m) it can be
e
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readily shown that belowp50.3 the coarsening mechanis
is diffusion controlled and that abovep50.7 it is reaction
controlled.

1. Diffusion controlled growth (dissolution)

The mathematical description of the diffusion problem f
a spherical particle is given by the second Fick’s equati
which in spherical coordinates reads

]C

]t
5D

1

r 2

]

]r S r 2
]C

]r 2D . ~5!

The initial and the boundary conditions are

t50:C~r ,t !5C0~0!, r5r0 ,

r 5r:C~r ,t !5C~r,t !5CL, 2D
]C

]r U
r 5r

5nr~CL2CS!;

r→`:C~r ,t !5C0~ t ! .

HereCL andCS are the solute concentration of the liquid an
solid phase on the particle’s interface,r0 is the initial radius
of the studied particle,r is the polar coordinate measure
from the center of the particle andC0(t) is the solute con-
centration of the liquid phase at distances bigger than
particles dimensions, i.e., atr @r. Note thatCL, CS, andnr

are unknown and therefore additional equations are nee
in order to account for these quantities.

In the present approach the solute redistribution at
particles interface is described with the aid of a recently
veloped theory of solute redistribution at crystal growth@30#:

]DGS

]CS 5
]DGL

]CL S 12
nr

n0
D , ~6!

DGL2DGS1RT lnS 12
nr

n0
D1

]DGL

]CL ~CS2CL!5
2sVm

r
.

~7!

Actually, n0 is not a constant, but a comple
function of the temperature T and CS: n0

5n 0
T exp@2(Q/RT)#exp@2(DGS/RT)#. Here n0

T is a constant
which depends only on the microscale characteristics of
considered material,Q is the potential barrier, which also
varies with the studied materials@31,32#, andDGS andDGL

are the Gibbs free energies of the solid and the liquid pha
A brief discussion of the assumptions, the way of derivi
Eqs.~6! and~7! and the physical meaning ofn0 are given in
Appendix B.

Generally the free energyDGS depends onT andCS and
so does alson0 . Since in the present case the supersatura
D5Ce

L2C0(t) is very small and the temperatureT is con-
stant, it can be assumed as a good approximation than0
5const. Equations~5!–~7! thus determine explicitly the
growth phenomena of a spherical particle at fixedT andC0 .
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2. Reaction controlled growth (dissolution)

At the reaction controlled mechanism the limiting proce
is the crystallization~dissolution!, taking place on the par
ticles surfaces. Therefore, the ripening kinetics is determi
only from Eqs.~6! and ~7!.

A second set of equations describes the dynamics of
whole ensemble of particles. The first equation is Eq.~2!,
which gives the change of the particles distribution funct
f (r,t) over time,

] f

]t
52

]~ f nr!

]r
. ~8!

At t50 the distribution functionf (r,t) and the particles
radii r should obey the following conditions:

t50:r5r0 ; f ~r,t !5 f ~r0,0! .

The second equation is the mass balance equation in
coarsening system,

dD

dt
52

4p

V0
E

0

`

CSf ~r,t !nr~r,t !r2dr . ~9!

The initial conditions for this equation are

t50:r5r0 ; f ~r,t !5 f ~r0,0!; D~ t !5D~0! .

In Eqs. ~8! and ~9! f 0(r0,0) is the initial distribution of the
particles radii in ther-dimension space. The set of Eqs.~5!–
~9! gives the mathematical description of the coarsening p
cess.

B. Solution of the problem

In order to make the problem easily tractable the follo
ing assumptions are made:

A. The growth velocitiesnr of all particles in the en-
semble are much smaller thann0 , i.e., nr /n0!1.

B. At the diffusion controlled mechanism, the solute co
centration of the liquid phase-C0(t) changes much slowe
thanCL(t) andCS(t).

C. For the sake of simplicity in the present analysis,
case that the solid and the liquid phases are ideal solutio
discussed. It should be noted that the obtained results
valid also for real solutions. In case that real solutions
considered in Eqs.~6! and ~7! the Gibbs energiesDGS and
DGL should be expressed as a functions of the thermo
namic activities instead of the concentrationsCS and CL

@33,34#.
D. For the sake of simplicity it is assumed thatCS in Eq.

~7! is equal to the equilibrium solidus concentrationCe
S

@1–6#.

1. Diffusion controlled growth (dissociation)

The first of the system of equations, Eq.~5!, can be solved
using the Laplace variable:u5r /2ADt insteadr and t. This
reduces Eq.~5! to an ordinary differential equation,

d2C

du2
1

2~u211!

u

dC

du
50
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and also the boundary conditions to

u5z5
r

2ADt
:

dC

duU
u5z

52nrA t

D
~CL2CS!, C5CL ,

u→`: C5C0 , z5z05
r0

2ADt
.

The solution of this equation, taking into account the list
above boundary conditions is@35#

CL2C0~ t !

CL2CS 5
nrr

2D
@12Apz exp~z2!erfc~z!# . ~10!

Here erfc(z)512erf(z), erf(z) is the error function and
z5r/2ADt.

The Gibbs free energyDG of an ideal solution is given by
the following equation@33,34#:

DG5~12C!DGA
01CDGB

0

1RT@C ln C1~12C!ln~12C!# .

Here DGA
0 and DGB

0 denote the Gibbs free energies of th
pure components.

Substituting this expression into Eqs.~6! and ~7!, after
uncomplicated transformations, one obtains

CS

CL
5S 12

nr

n0
DexpS DGB

0L2DGB
0S

RT DexpS 2
2G

r D , ~11!

12CS

12CL
5S 12

nr

n0
DexpS DGA

0L2DGA
0S

RT DexpS 2
2G

r D .

~12!

At a fixed temperatureTe and atnr→0 andr→`, the above
equations are simplified to

Ce
S

Ce
L
5expS DGB

0L2DGB
0S

RTe
D 5kB

and

12Ce
S

12Ce
L
5expS DGA

0L2DGA
0S

RTe
D 5kA ,

i.e., to expressions which determine the equilibrium conc
trations of the solidusCe

S and the liquidusCe
L at Te and the

equilibrium partition coefficientskB andkA for this tempera-
ture @10,35#.

Since in the discussed caseD!1 andnr /n0!1, it can be
assumed thatT'Te for the temperatureT on the particle
surface. This allows us to rewrite the set of Eqs.~11! and
~12! in a more compact form, using the equilibrium partitio
coefficientskA andkB ~these are easily obtained by the equ
librium phase diagram!,

CS5CLkBS 12
nr

n0
DexpS 2

2G

r D , ~118!



tion
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12CS5~12CL!kAS 12
nr

n0
DexpS 2

2G

r D . ~128!

Solving Eqs.~118! and ~128! with respect toCS and substituting the obtained result forCL into Eq. ~10!, one obtains for the
growth velocity of a spherical particle with radiusr

Fnr

n0
2S nr

n0
D 2GFexpS 2G

r D2kB2kAG n0r

2D
@12Apz exp~z2!erfc~z!#2

nr

n0
b5expS 2G

r D2b ,

with b5kA1(kB2kA)(Ce
L2D). Taking into account thatnr /n0!1, after uncomplicated transformations, the above equa

is rewritten in a more simple form,

nr5
dr

dt
5n0

expS 2G

r D2b

n0r

2D
@12Apz exp~z2!erfc~z!#FexpS 2G

r D2kB2kA1kBkAexpS 2
2G

r D G2b

. ~13!
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2. Reaction controlled growth (dissolution)

The equation governing the reaction growth~dissolution!
process can be obtained from Eq.~13! taking into account
that the influence of the diffusion is negligible. This is sim
lar to the case when the diffusion coefficient in Eq.~13!
tends to infinity. Taking into account that atD
→` n0r/2D@12Apz exp(z2)erfc(z)#→0, the following re-
action controlled growth~dissolution! equation is obtained:

nr5
dr

dt
5n0

b2expS 2G

r D
b

. ~14!

Note the difference between the results obtained by subs
tion of D→` into Eqs.~1! and ~13!.

We remind one that Eqs.~13! and ~14! are valid only for
small undercoolings, small supersaturations, and ideal s
tions. In cases where these conditions are not fulfilled,
should solve directly Eqs.~6!, ~7!, and ~10! or rework Eqs.
~6! and ~7! using the thermodynamic activity formalism.

The equations so obtained differ considerably from th
used until now@1–6,8–14,20,21–29#. Compared to Eq.~1!,
it can be seen that atr→`, the growth velocity does no
tend to zero, as it does in the some of the cited cases,
tends, as should be expected, to the growth velocity o
u-

u-
e

e

ut
a

plane front of solidification: nrur→`→n0(b21/b). Ac-
cording to Eqs.~13! and ~14! the growth velocity tends to
zerov→0, only atD→0 andr→`.

From Eqs.~13! and~14! it follows that the particle radius
varies with time viaD(t) and r(t). These quantities deter
mine also the sign of thedr/dt derivative and therefore the
growth status of every particle at a fixed moment.
dr/dt.0 the particle grows and atdr/dt,0 it dissolves.
The situation at whichdr/dt is equal to zerodr/dt50, de-
termines the value of the critical radiusr* (t). Substituting
dr/dt50 in Eqs. ~13! and ~14! and solving the obtained
equation with respect tor one obtains for the critical radiu

r* ~ t !5
2G

ln~b!
.

It is interesting to note that Kampmann and Kahlweit@5#,
using a different approach to this problem from the one
scribed here, obtained a quite similar result for the criti
radius in a two component system

r* ~ t !5
2G

ln~P!
,

with P5CL/C0 @5#.
Equation~15! allows us to excludeb from Eqs.~13! and

~14! and to rewrite it in a more compact form,
nr5
dr

dt
5n0

12expS 2G

r
2

2G

r* D
12

n0r

2D
expS 2

2G

r* D @12Apz exp~z2!erfc~z!#FexpS 2G

r D2kB2kA1kBkAexpS 2
2G

r D G , ~138!

nr5
dr

dt
5n0F12expS 2G

r
2

2G

r* D G . ~148!

It is worth noting that Eq.~148! reduces at 2G@(1/r)2(1/r* )#!1 to
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nr5
dr

dt
52Gn0S 1

r*
2

1

r D ,

which is identical with the kinetic equation used by Marqu
see and Ross to account for the reaction controlled gro
~decay! in their analysis@see Eq.~2.11! in @21##.

The solution of Eq.~8! is of crucial importance to the
description of the coarsening process, since the latter
vides the value off (r,t), which on its side, determines th
change of theD(t) quantity, respectivelyr* (t) with the
time. Regretfully, this first order partial differential equatio
cannot be solved with the method developed by Lifshitz a
Slyozov for obvious reasons namely the differences betw
Eq. ~1! and Eqs.~13! and~14!. In the present paper Eq.~8! is
solved using the classical procedure developed for solu
of such equations, known as the method of characteris
@36#.

Following the ideas of the characteristics method,
continuity equation

] f

]t
1nr

] f

]r
52 f

]nr

]r

is reduced to a system of two ordinary differential equatio

dt5
dr

nr
52

d f

f ~]nr/]r!
.

Rearranging the members in the above expression one
tains

dr

dt
5nr and

d f

dt
52 f

]nr

]r
.

The first of these ordinary differential equations is actua
Eq. ~13! @or Eq. ~14!#, which have been worked out abov
The second equation can be solved via separation of the
ables, yielding as result

f ~r,t !5 f 0~r0,0!expS 2E
0

t ]nr

]r
dt D . ~15!

Analyzing Eq. ~15!, the following conclusions may be
drawn:

~i! In the case when the growth velocity as function or
and t is known, Eq.~15! provides analytical solution of the
coarsening problem. Unfortunately, this is not the case w
Eqs.~13! and ~14!.

~ii ! In the case when the particles growth velocitynr is a
function only of the timenr5nr(t) then from Eq.~15! it
follows that f 0(r0,0) does not change as a function of t
time, i.e.,f (r,t)[ f 0(r0,0). This result is a particular case o
one of the basic concepts of the statistical physics, the L
ville theorem@37#.

The fourth assumption, listed in the beginning of the pres
section, allows us to rewrite Eq.~9! in a more simple form,

dD

dt
52

4pCe
S

V0
E

0

`

f ~r,t !nr~r,t !r2dr .
-
th

o-

d
n

n
cs

e

,
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The integral at the right hand side of this equation can
rewritten as

dD

dt
52

4pCe
S

3V0
Fr3f nru0

`2E
0

` ] f nr

]r
r3drG .

Taking into account thatf (0,t)50 and f (`,t)50, and that
]( f nr)/]r52] f /]t @see Eq.~8!#, after application of the
Leibnitz rule to the integral at the right-hand side of t
above equation one obtains

d

dt FD1
4pCe

S

3V0
E

0

`

f r3drG50 .

The integration of this differential equation yields

D~ t !1
4pCe

S

3V0
E

0

`

f ~r,t !r3dr

5D~0!1
4pCe

S

3V0
E

0

`

f 0~r0,0!r0
3dr0 .

Rearranging the members of the above equation and ta
into account that the initial volume fraction of the sol
phaser is defined asp54p/3V0*0

` f 0(r0,0)r0
3dr0 , one fi-

nally obtains

D~ t !5D~0!1pCe
SF12

*0
` f ~r,t !r3dr

*0
` f 0~r0,0!r0

3dr0
G . ~16!

Equations~13! @or ~14!#, ~15! and ~16! form a set of equa-
tions which explicitly solve the problem formulated in th
present paper.

III. RESULTS AND DISCUSSION

The theory developed here can be verified on the Cu
alloy system, which forms ideal solutions both in the so
and the liquid phases@16,19,38#. The used thermodynamica
data for the Cu-Ni (Te51673 K, D51029 m2/s, G51.43
310210 m! alloy system are taken from@38#.

A self-consistent theory of the coarsening process at L
should solve the problems outlined in the Introduction s
tion, namely,

1. It should predict the cube law for the mean partic
radii versus the time.

2. It should predict the form of the distribution functio
obtained by the experiment and the correct value for
relationrmax/ r̄, or at least it should give values closer to th
experimental one.

3. It should explain the ‘‘abnormal’’ growth phenomeno

Regretfully, the system of Eqs.~13!–~16! worked here
cannot be solved analytically and the results listed be
have been obtained by its numerical solution. Although
numerical experiments have been carried for coarsenin
liquid phase, i.e., solid particles dispersed into the liqu
phase, it should be noted that the results are also applic
for the processes of coarsening in supersaturated solid s
tions. In this case it can readily be shown that the ripen
time tsol is proportional totsol't liq(D liq /Dsol). Heret liq is
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6726 PRE 61L. ANESTIEV AND L. FROYEN
the ripening time in the liquid phase andDsol andD liq are the
diffusion coefficients of the solute in the solid and the liqu
phases. In the numerical simulations performed below
Gauss function was used as the initial distribution functi
e.g.,

f 0~r0,0!5expF2
1

2S r02 r̄0

«r̄0
D 2G ,

because it is assumed that the initial radii of the particles
the experiments, with which our results are compared,
Gaussian ones. Here« is a parameter, which determines th
width of the Gauss curve~e.g., the dispersion!.

The following objectives have been pursued in the n
merical simulations carried below:

FIG. 1. ~a! Plots ofr̄(t) vs t for two ensembles@p50.2 ~1! and
p50.9 ~2!# of particles with initial Gaussian distribution (tcoars.

533104 s, D(0)51023, «50.33). For the value ofv0 (v055
31024 m/s) used in the calculations the experimentally obser
cubic law is reached after considerable coarsening timet.104 s.
~b! Plots of r̄3(t)2 r̄3(0) vs coarsening timet, for the diffusion
@p50.2, (1)# and the reaction@p50.9 (2)# controlled coarsening
The reaction constantsK, which are obtained from these plots, a
compared with the available experimental data in Table I.
a
,

n
re

-

A. Determination of the growth rate of the mean particl
radii r̄(t) for both, diffusion and reaction controlled growth

B. Determination of the distribution functionsf 5 f (r,t)
for different coarsening regimes.

C. Modeling of the ‘‘abnormal’’ particle growth.
D. Comparison of the results obtained in points 1–3 w

the available experimental data.
Typical time dependencies of the mean radiusr̄5 r̄(t) for

both diffusion (p50.2) and reaction (p50.9) controlled
coarsening processes are shown in Fig. 1~a!. It is seen that
for the system Ni-Cu studied here, a steady growth patt
r̄3't is established after a considerable coarsening timet0
.104 s. It is obvious thatt0 is a function ofn0 used in the
calculations. We want to remind one thatn0 depends on the
energetic barrierQ, which varies with the studied materia
The plots ofr̄3(t)2 r̄3(0) versus coarsening timet, for the
diffusion and the reaction controlled coarsening are show
Fig. 1~b!. Unfortunately, the alloy system Ni-Cu modelled b
us has not been a subject of experimental interest so far.
is why the values obtained from the plots in Fig. 1~a! of the
coarsening rate constantK are compared with the availabl
in the literature experimental data~see Table I!. The values
for K as predicted by us lay within or are close to the on
obtained experimentally.

As mentioned above, a successful theory should pre
the form of the distribution functionf 5 f (r,t). In Figs. 2~a!
and 2~b! distribution functionsf (r,t) as calculated in the
present paper are compared with two experimentally
tained ones@13,39#. It is seen that the theoretical and th
experimental results correlate favorably with each other
that the model proposed by us predicts correctly the exp
mentally observed values for the relationrmax/r̄ and the
place of the maximum of the distribution functionf (r,t) on
the r/ r̄ axis. The differences in the scales of bothy axes of
the calculated and the experimental results in Figs. 2~a! and
2~b!, are due to the different way of normalization of the
distribution functions in the present and in the cited expe
mental works. It should be noted that in Figs. 2~a! and 2~b!
the observed correlation between the theory and the exp
ment is only a qualitative one. In order to model the ripeni
process for a definite alloy it is necessary to solve Eqs.~4!,
~5!, ~8!, ~12!, and ~13! for a certain initial distribution
f 0(r0,0), temperatureTe , supersaturationD~0! and particles
volume fractionr.

d

TABLE I. Comparison of the calculated in the present paper a
the experimentally measured values of the coarsening rate con
K for different alloy systems.

Alloy system p K @mm3/s# Reference

Ni-Cu 0.2 0.57 This work
Co-Cu 0.2 1.5 Bender and Ratke@15#

Co-Cu 0.2 0.17 Bender and Ratke@15#

Co-Cu 0.34 0.29 Kang and Yoon@17#

Ni-Cu 0.9 4.32 This work
Co-Cu 0.71 2.5 Bender and Ratke@15#

Co-Cu 0.95 2.75 Kang and Yoon@42#

Co-Sn 0.86 3.9 Hardy and Voorhees@16#

Co-Sn 0.93 6.8 Hardy and Voorhees@16#

Fe-Cu 0.9 1.32 Kang and Yoon@42#
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FIG. 2. ~a! Comparison of the calculated distribution functionf calc.(r/ r̄) ~the solid line! @D(0)51023, p50.32, «50.33, tcoars.53
3104 s)], with an experimentally obtained distribution functionf exp(r/ r̄) ~histogram! for Ni3Al precipitates in an alloy of Ni with 22 at%
Co and 13 at% Al (p50.32) @13#. ~b! Comparison of the calculated distribution functionf calc(r/ r̄) ~the solid line! @D(0)51023, p
50.05, «50.4, tcoars533104 s)], with an experimentally obtained distribution functionf exp(r/ r̄) ~histogram! for FeSi precipitates in pure
Fe at 973 °K@ tcoars5312 h (1.12323106 s), p→0] @39#. ~c! Comparison between the calculated distribution function with the aid of
present model distribution functionf calc(r/ r̄) ~1! @D(0)51023, p50.32, «50.33, tcoars533104 s)], and the LSW distribution function
~2! @1–3#. Note that the resultant distribution obtained with the present model is sensitive to the used initial distributionf 0(r0,0).
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As mentioned in the Introduction the ‘‘abnormal growth
behavior at the coarsening has not been explained so
Here we used the developed model to study this interes
phenomena. For this purpose a complex function compo
from two Gauss functions, i.e.,

f 0~r0,0!5expF2
1

2S r02 r̄0

«r̄0
D 2G10.18 expF2

1

2S r02 r̄1

«1r̄1
D 2G

@see Fig. 3~a!#, was used as the initial distribution. The ev
lution of this distribution function with time is shown in
Figs. 3~b!–3~d!. It can be seen that the results obtained h
confirm the ones obtained experimentally, i.e., that a sm
cluster of big particles should grow preferably at the expe
of the smaller ones. These results therefore show that
problem of ‘‘abnormal growth’’ is merely due to the kinet
equations used up to now for the description of the grow
~decay! of the particles.
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As the volume of the solid fraction increases it is gen
ally agreed that the distribution function should gro
broader@14#. In order to test the substantiality of this a
sumption and the validity of our model, in Fig. 4 we com
pared the resultant distribution functions of two systems w
a different solid fractionp50.2 andp50.9 after 33104 s
coarsening time. It can be seen that the distribution funct
for p50.9 is much broader than thep50.2 are, as is ex-
pected. Taking these results into account, one may conc
that the model presented here accurately describes the
perimental evidence.

IV. CONCLUSIONS

An investigation of the way in which in a supersaturat
solution an ensemble of particles with different radii grow
~or dissolves! as a result of the diffusion and kinetic pro
cesses, has been made. Comparing the model presented
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FIG. 3. Evolution with time of
an ensemble of particles with
small cluster of big particles~the
right-hand side of the distribution
function!. As seen from~b!–~d!
the existence of this cluster lead
to dramatic shift of the particles
distribution as the coarsening pro
ceeds with the time.
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with those published previously@1–6,8–14,18,21–29# al-
lows us to distinguish the following considerable differenc

~i! The present model is based on an equation descri
the growth kinetics of a spherical particle different from t
ones used up until now~Eq. ~1!, Ref. @20# and its variations
@1–6,8–14,18,21,22,24#!. A criterion is worked out that de
termines which process is controlling the coarsening kine
at a certain moment. On the basis of this criterion, two m
kinetic mechanisms of coarsening are distinguished a
function of the solid fractionp, namely, diffusion or reaction
controlled coarsening. The equations obtained here, gov
ing these two mechanisms@Eqs.~13! and~14!#, are based on
the exact solution of the diffusion problem and a recen
developed theory of solute redistribution at crystal grow
@30#. This allows one to account for the solute redistributi
as a function of the growth~dissolution! velocity of the par-
ticles and to eliminate the main disadvantage following fro
the application of Eq.~1! @20# ~see Figs. 1–3!.

~ii ! The set of equations which is obtained here accou
for the influence of the solid fractionp automatically.

~iii ! In contrast with most theoretical investigations ca
ried out until now@1–6,8–14,18,21#, in the present approac
the ripening process can be followed from its beginnin
This feature of the present model is very useful for the m
eling of short time processes taking place simultaneou
with the microstructure coarsening. As for example pore c
:

g

s
n
a

rn-

y

ts

-

.
-
ly
-

lescence at liquid phase sintering and especially the b
component dissolution and microstructure development d
ing the selective laser sintering.

~iv! The developed model allows the study of the coa
ening process in multicomponent systems@30#. This is a very
useful feature, from practical point of view, since the s
tered systems are rarely composed only of two chem
components.

~v! The proposed equations allow to model the ‘‘abnorm
growth’’ phenomena and to explain it successfully.
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APPENDIX A

In summarizing the attempts to explain the discrepan
between theory and experiment, it should be noted that
major part of them are restricted to proposing different ad
tions to Eq. ~1! @18#. Analysis of Eqs.~1!–~3!, however,
leads to the conclusion, that probably the discrepancy
tween the theory and the experiment is mainly due to
following: the Eq.~1! describing the growth kinetics of th



re
t

ld
le
t

te

r

em
fu

-
u
a

d
be
ss

ni

-
le
ha
e
s
s
th

ily
qua-
ion
ly
g

are

m-
he

-

e
om-

ons,

-

-

he
the
l-

put

me,

wo
l
he

d

PRE 61 6729PROCESSES OF MICROSTRUCTURE COARSENING AT . . .
particles, used until now, does not describe correctly the
kinetics of the growth process. For example, according
Eq. ~1! it follows that atr→`, vr→0, i.e., the growth ve-
locity of the particles with relatively large radius, shou
tend to zero. This automatically excludes the bigger partic
from the coarsening process and explains the steep fron
the distribution functionf 5 f (r,t) at t→`, as predicted by
the LSW theory. On the other hand, it should be expec
that at r→`, vr→vplane ~here with vplane is denoted the
growth velocity of a plane solidification front!, whereas ac-
cording to Eq.~1! it tends tovr→0 @compare this behavio
with the predictions of the present model, e.g., Eqs.~138! and
~148!#. According to Eq.~1! this (vr→0 at r→`) is valid
even at considerable undercooling below the solidus t
perature imposed on the coarsening system. Another con
ing moment is that atD→` the growth velocityvr of the
particles independently of their radii should tend tovr→`.
Therefore, from Eq.~1! follows that the crystal growth pro
cess is governed by the solute transport. This is most
likely since it is well known that the solute transport arises
a consequence of the changes on the particle surface an
vice versa. In other words the transport processes can
limiting, but not governing factor of the coarsening proce
In order to avoid these difficulties several authors@12,21–29#
developed a new approach to the problem, known as fi
volume fraction analysis. The main idea of this approach
to reduce the diffusion equation~i.e., the second Fick equa
tion! to a more simple equation, which can be easily hand
from mathematical point of view. Thus, they assumed t
the solute distribution around the particles changes v
slowly with time that the problem may be considered a
quasistationary one~see the cited above papers for detail!.
Unfortunately, this assumption narrows the application of

FIG. 4. Comparison between the distribution functions of t
ensembles of particles after 33104 s coarsening time. The initia
distribution functions and the initial conditions were equal for t
both ensembles@Gaussian distribution,«50.33, D(0)51023], but
the solid fractions and the coarsening mechanisms have been
ferent: ~1! diffusion controlled;~2! reaction controlled.
al
o

s
of

d

-
s-

n-
s
not

a
.

te
is

d
t

ry
a

e

finite volume fraction analysis considerably. It can be eas
checked that the coarsening system can be considered
sistationary one only in the case when the solute diffus
coefficient is a very large quantity. This condition is rare
fulfilled at liquid-solid and never at solid-solid coarsenin
systems.

APPENDIX B

A detailed derivation of Eqs.~6! and~7! is given in@30#.
In the following, the basic concepts and the main results
outlined.

Let us consider a metastable phaseb and phasea growing
into theb matrix. We assume that the both phases are co
posed ofk components. At phase transition, a part of t
accumulated in theb phase free energy,DGba, is used for
the formation of the new phasea ~phase volume, solute re
distribution, etc.!, DGE

ba , and the rest of it,DGn
ba , as driv-

ing force of the growth process,

DGba5DGn
ba1DGE

ba . ~B1!

The accumulated free energyDGba is easily obtained
DGba5DGb2DGa, e.g., this is the difference between th
Gibbs energies at a certain temperature and chemical c
position of thea and theb phases. The growth velocityn
can also be evaluated using some of the kinetic equati
combining together the free energy andn. In our case the
classic Turnbull equation is used for this purpose@7,40–42#,

DGn
ba52RT lnF12

n

n0
G , ~B2!

with

n05n0
T expS 2

Q

RTDexpS 2
DGa

RT D .

Thus, the problem is to work out a criterion which will de
termine how the accumulated free energyDGba is distrib-
uted betweenDGE

ba and DGn
ba and consequently to deter

mine the growth velocity via Eq.~B2!.
Let us consider a small volume including fractions of t

growing phase, the matrix, and the phase boundary. For
total energyw used for the formation of the new phase, so
ute redistribution, etc., one can write

w5 f DGE
a1~12 f !DGE

b1sVmS. ~B3!

For the conservation of mass inside the volume one can
forward

f xi
a1~12 f !xi

b5xi
0 ~ i 51 . . .k! . ~B4!

HereS is the phase boundary surface,Vm is the molar vol-
ume,s is the surface tension,f is the transformed part of the
volume,xi

a andxi
b are the molar parts of theith component

in the a and b phases,xi
0 is the molar part of theith com-

ponent in the whole volume, andDGE
a andDGE

b are the parts
of the free energy used for the formation new phase volu
boundary, solute redistribution, etc.

if-
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In order to determine the distribution of the accumula
energy betweenDGE

ba andDGn
ba the following assumption

is used: the part of the total free energyw utilized by the
system for the formation of the new phase volume a
boundary, solute redistribution, etc. is minimal during t
whole time of the phase transition. In other words, for t
metastable system it is most important to transform int
more stable phase rather to spend energy for formation
excess boundaries and solute redistribution. The prob
thus, is reduced to determination of a conditional extrem
of thew function. A detailed description of this procedure
given in @30#. The final result is

]DGa

]xi
a 5

]DGb

]xi
b S 12

n

n0
D ~ i 51 . . .k! , ~B5!

DGba1RT lnS 12
n

n0
D1(

i 51

k
]DGb

]xi
b ~xi

a2xi
b!5sVmC ,

~B6!

with C as curvature of the phase boundary.
It can be easily shown that in some special cases

above equations reduce to what is well known in the phys
expressions. For example,
m

-

c

d

d

a
of

,

e
s

1. At C50 and n/n050, these equations reduce to th
Gibbs equations, describing the phase equilibrium betw
the b anda phases.

2. At n/n050, xi
a50, and xi

b50, they reduce to the
Gibbs-Thomson equation.

3. At xi
a50 andxi

b50, they reduce to the Machlin equa
tion, which was obtained with the aid of the irreversible the
modynamics@40#.

4. At n/n050, they reduce to the Thomson-Freundlic
equation.

The physical meaning ofn0 ~remember that n0

5n0
T exp@2(Q/RT)#exp@2(DGa/RT)# can be derived from

Eqs. ~B5! and ~B6!. Indeed substitutingn with n0 in these
equations, one obtains]DGa/]xi

a50 and DGba50, e.g.,
this is the velocity at which no energy is spent for solu
redistribution between thea and the b phases. In other
words, it is the maximal growth velocity possible for a ce
tain temperature and phase composition. As seen from
expression n05n0

T exp@2(Q/RT)#exp@2(DGa/RT)#, n0 is
complex function of different physico-chemical paramete
of the transforming system. Therefore, one should exp
that this quantity vary with the different substances.
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