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Processes of microstructure coarsening at liquid phase sintering
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A different approach to the theoretical description of the classical theory of Ostwald ripening at liquid phase
sintering has been proposed. The model developed in the present approach is based on an equation describing
the growth kinetics of the particles, which is different from those used until now. The model developed here
accounts automatically for the influence of the initial volume fraction and predicts correctly: the time depen-
dence ofp at t—oc—p3(t)—p3(0)=Kt; the form of the distribution function after considerable coarsening
time; the experimentally observed values for the relatigp,/p; and the phenomena of “abnormal growth” at
liquid phase sintering.

PACS numbgs): 81.20.Ev, 81.10.Dn, 64.75g, 82.20.Wt

[. INTRODUCTION In the above system Edl) describes the growtffor
shrinkage kinetics of an isolated particle0]. Equationg2)

Ostwald ripening, or coarsening, is a common phenomand(3) describe respectively, the movement of the particles
enon occurring during the last stage of the liquid phase sinradii of the whole ensemble through tpedimension space
tering (LPS) [1-6,8—19 and at the microstructure formation and the mass conservation law.
of the new phase during bulk crystallizatigd—6,8—14. Although the LSW theory successfully predicted that as-
This process usually involves the flow of solute atoms fromymptotically the mean particles radii of the coarsening
the small particles to the larger ones, although more genesystem should obey the dependence
ally the flow may be a flux of enthalpy, or solvent atoms at
solid-liquid systems, or vacanci€goid coarsening[8,13]. P3(1)=p3(0)+Kt,

The fundamental driving force for the interparticle diffusion
is well understood and is caused by the chemical potentidt failed to explain the following experimentally observed
differences, due to the curvature of the particles surface. evidences:

The first major progress in the theoretical description of 1. The experimentally observed distribution functidns
the coarsening behavior of a system of spherical particles-f(p,t) are much broader than the ones predicted by the
dispersed in a solution with close chemical composition, was SW theory.
made by Lifshitz and SlyozoM,2], and separately by Wag- 2. According to LSW, the relation between the particle,
ner[3], referred to as LSW theory. These authors were thavith the maximal radiug ., and the mean particles radigs
first who formulated mathematically the fundamental equais equal top./p~1.5; the experimentally observed values
tions governing the coarsening process: for pmax/p Vary between 1.7 and 2[1.0,14.

3. In the case where the initial powder compact contains a
1) small cluster of large particles, it has been noticed that dur-
ing the coarsening process these particles grow preferably
leading as a consequence to a dramatic shift in the particle
of a(fv,) size distribution. This phenomenon is in contradiction with
= , (2)  the results of the LSW theory, and for this reason it was
termed “abnormal” grain growtt14,19.
The disagreements listed above between the theory and
the experiment prompted several authors to explain it from
4 . various points of view. A thorough discussion of these at-
o=A+ _Wf fp3dp. (3) tempts and the models that arose can be found in
3 Jo [12,14,18,21-2P A short discussion over the attempts in
guestion is given in Appendix A.
Here, p is the radius of the particles,, is its growth veloc- Concluding this section, it should be noted that during the
ity, p* is the so-called critical radiusl—4], I' is a constant last decade several theoretical approaches have been at-
equal tol'=0V,/RT, o is the surface tensionT is the tempted to improve the classical theory of LSW
temperaturey,, is the molar volumeR is the universal gas [12,14,18,21-2P Beyond any doubt significant progress
constantD is the diffusion coefficientf=f(p,t) is the dis- was achieved in the understanding of the coarsening kinetics
tribution function of the particles radji into thep-dimension  since the publication of the classical works of Lifshitz, Slyo-
space,A is the current super-saturatio, is the initial ~ zov, and Wagner. Nevertheless, there still exist problems
super-saturation plus the initial volume fraction of the solidwhich cannot be successfully explained by the existing the-
phase, and is the time. oretical model$10,14,15. The aim of the present paper is to
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develop an equation describing the growth kinetics of theeadily shown that belowp= 0.3 the coarsening mechanism
particles involved in the coarsening process, which conseis diffusion controlled and that above=0.7 it is reaction
quently will be applied to study of the coarsening behaviorcontrolled.

of an ensemble of particles in general and at LPS in particu-

lar. 1. Diffusion controlled growth (dissolution)

The mathematical description of the diffusion problem for
ll. THEORETICAL APPROACH a spherical particle is given by the second Fick’s equation,

A. Formulation of the problem which in spherical coordinates reads

As mentioned in the Introduction the problem of Ostwald
ripening includes two separate problems. The first one is the §: D i i rza_c (5)
particle growth(decay, immersed in media with changing at r2aor\ gr2)’
chemical compositior(in our case, this is the meltThe
second is the movement of the particle radii of the WhoIeThe initial and the boundary conditions are
ensemble through the-dimension space.
Two mechanisms of the growtfshrinkage kinetics can
be distinguished: diffusion and reaction controlled growth t=0:C(r,1)=Co(0), p=po,
(shrinkage. By the first mechanism the slowest process is
the diffusion and the rate of the ripening process is deter-
mined by the mass transfer inside the system. For the seconéi=p:C(r,t)=C(p,t)=C", -D i v,(Ct—C9);

mechanism the limiting process is the crystallizat{disso- r=p
lution) taking place at the particle surfaces. Therefore, one
needs a criterion in order to distinguish which of the two r—o:C(r,t)=Cy(t).

mechanisms is operative in the ripening system at a given

moment. HereC! andCS are the solute concentration of the liquid and

Let us consider a system of solid particles with a meary,jig phase on the particle’s interfage, is the initial radius
radiusp dispersed into a melt. It can easily be shown thaiyt the studied particler is the polar coordinate measured
between whole volum¥, of the system and the mean dis- om the center of the particle ar@(t) is the solute con-

tance between the particles the following dependence is centration of the liquid phase at distances bigger than the

valid: particles dimensions, i.e., atp. Note thatC", C5, andw,
4 3 are unknown and therefore additional equations are needed
—aN|p+=| =V,. in order to account for these quantities.
3 2 In the present approach the solute redistribution at the

particles interface is described with the aid of a recently de-

Here, N denotes the number of the particles in the systemye|oped theory of solute redistribution at crystal groan]:
Taking into account that the initial volume fraction of the

solid phase ip=47Np%/3V,, for the mean distance be-

S L
tween the particles the following is obtained: M_GS: 'M_GL( _Ye , (6)
JC JC Vo
e E- L
=pl - v JAG 20V
pl3 AGL—AGS+RTIn(1——p + —(C5-CchH= iy
Vo &C
On the other hand, the distance at which the changes of the @)

solute concentration are equalized after a time petibdue )
to the diffusion is described by the expressiér DAt.  Actually, vy is not a constant, but a Scomplex
Actually, At is not an independent parameter. It is connectecf“”CTt'O” of the temperature T an_ C> wo
with the growth(dissolution velocity through the following = ¥ 0 ©XH —(Q/RT)lexH —(AGYRT)]. Here »g is a constant
expressiomt=Ap/v,. HereAp is the change of the mean Whlch depends or_lly on the mlcrosc_ale characterlstlcs of the
particle radius due to the growthissolution process. Thus con_S|der.ed materla_IQ is the _potentlal barrier, which also
dividing d by & and substituting\t with its equal gives us Varies with the studied materig81,32, andAG® andAG-
the criterion that we are looking for, are the Gibbs free energies of the solid and the liquid phases.
A brief discussion of the assumptions, the way of deriving
gzzgw | Ve i—l) ) (4)  Appendix B.
o DAp |\ pt® Generally the free energ§G® depends ol andCS and
so does als@,. Since in the present case the supersaturation
sion controlled and al/ <1, it is reaction controlled. Intro- stant, it can be assumed as a good approximation ithat
ducing some reasonable values for the involved parametersconst. Equations(5)—(7) thus determine explicitly the
(D=10°m?s, Aplv,=0.5s, anp=3x10 ° m) itcan be  growth phenomena of a spherical particle at fi%eandC.

Egs.(6) and(7) and the physical meaning @f, are given in
It is obvious that atl/ 6>1 the growth mechanism is diffu- A=C§—C0(t) is very small and the temperatufeis con-
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2. Reaction controlled growth (dissolution) and also the boundary conditions to

At the reaction controlled mechanism the limiting process
is the crystallization(dissolutior), taking place on the par- u=z= p_. d_C ——y \/E(CL_CS) c=ct
ticles surfaces. Therefore, the ripening kinetics is determined 2Dt duf, _, PND ’ '
only from Egs.(6) and (7).

A second set of equations describes the dynamics of the o
whole ensemble of particles. The first equation is Ej, u—w: C=Cqy, z=z5= .
which gives the change of the particles distribution function 2\Dt

f(p.t) over time, The solution of this equation, taking into account the listed

ot dfwy) . above boundary conditions j85]
" % Ct—Cy(t
ct—cs é( ):%[1—\/;ZGX|:(ZZ)erfc(z)]. (10

At t=0 the distribution functionf(p,t) and the particles

radii p should obey the following conditions: Here erfcg)=1—erf(2), erf(z2) is the error function and

t=0:p=po; f(p,)=F(po,0). z=p/2yDt.
The Gibbs free energ G of an ideal solution is given by
The second equation is the mass balance equation in thhe following equatiori33,34:

coarsening system,
AG=(1-C)AG%+CAG}
dA

4 (=
E:_V_jo Csf(p,t)vp(p,t)pzdp. 9 +RT[CINC+(1-C)In(1-C)].
0

Here AG) and AGY denote the Gibbs free energies of the
pure components.
A _ . _ Substituting this expression into Eq®) and (7), after
t=0:p=po; f(p,t)=1(po,0); A(t)=A(0). 9 P

p=po (P =1(po0) ® ©) uncomplicated transformations, one obtains

The initial conditions for this equation are

In Egs.(8) and(9) fy(pg,0) is the initial distribution of the

particles radii in the-dimension space. The set of E¢S)— c (v y AGR —AGP® o — 2r 1D
(9) gives the mathematical description of the coarsening pro- ct Vo € RT € p )’
cess.
1-cS v, AGR-—AGY® 2r
B. Solution of the problem =l1-——|exp ———==—/exp — —|.
1-ct vo RT p
In order to make the problem easily tractable the follow- (12)

ing assumptions are made:

A. The growth velocitiesy, of all particles in the en- At a fixed temperatur&, and atv,—0 andp—, the above

p

semble are much smaller thag, i.e., v,/vy<l. equations are simplified to
B. At the diffusion controlled mechanism, the solute con-
centration of the liquid phasgy(t) changes much slower cs AGI—AGYS
thanC(t) and CS(t). oL X ?) =kg
C. For the sake of simplicity in the present analysis, the e €
case that the solid and the liquid phases are ideal solutions j
discussed. It should be noted that the obtained results are
valid also for real solutions. In case that real solutions are 1-cS AGOL_ AGOS
considered in Eqs6) and (7) the Gibbs energieAG® and e:ex% A A )=kA,
AG" should be expressed as a functions of the thermody- 1-C% RTe
namic activities instead of the concentratio@S and C*
[33,34. i.e., to expressions which determine the equilibrium concen-

D. For the sake of simplicity it is assumed ti@f in Eq.  trations of the solidu€? and the liquidusCy at T, and the
(7) is equal to the equilibrium solidus Concentraﬂ@g equilibrium partition coefficientkg andk, for this tempera-

[1-6]. ture[10,35.
Since in the discussed cade<1 andv,/vy<1, it can be
1. Diffusion controlled growth (dissociation) assumed thaT~T, for the temperaturd on the particle

surface. This allows us to rewrite the set of E¢kl) and
(12) in a more compact form, using the equilibrium partition
coefficientsk, andkg (these are easily obtained by the equi-
librium phase diagram

The first of the system of equations, E§), can be solved
using the Laplace variabler=r/2\/Dt insteadr andt. This
reduces Eq(5) to an ordinary differential equation,

d?C . 2(u?+1) dC

2r
i By S_ L _Y _ '
du2 u du C C kB( 1 Vo) eX[{ o ) s (11)
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2r
—) . (12))

Solving Egs.(11') and(12') with respect taCS and substituting the obtained result o} into Eq. (10), one obtains for the

growth velocity of a spherical particle with radigs

v, (vp 2

2 r
o
Vo \Po p

—)—kB—kA

%[1_ Jmzexp z?)erfe(z)]— Z‘Zﬂzex%%> s

with B=Kka+ (kg— kA)(CIé—A). Taking into account that,/vo<1, after uncomplicated transformations, the above equation

is rewritten in a more simple form,

_dp

o

E)_
|8

14

TR Vop

o5 1~ Jmzexpz?)erfa(z)]

2. Reaction controlled growth (dissolution)

The equation governing the reaction growtlissolutior)
process can be obtained from EG3) taking into account
that the influence of the diffusion is negligible. This is simi-
lar to the case when the diffusion coefficient in E§3)
tends to infinity. Taking into account that aD
— 0 Vop/ZD[l—\/;Z exp@)erfc(z)]—0, the following re-
action controlled growtlidissolution equation is obtained:

vy
B—ex p
Vo= ot VOT (14

Note the difference between the results obtained by substitu-

tion of D—co into Egs.(1) and(13).
We remind one that Eq€13) and (14) are valid only for

small undercoolings, small supersaturations, and ideal sol
tions. In cases where these conditions are not fulfilled, on

should solve directly Eq¥6), (7), and(10) or rework Egs.
(6) and(7) using the thermodynamic activity formalism.

2r
ex 7 _kB_kA+ kBkAeX -

(13

ol

u
e

plane front of solidification: yp|p_,w—>vo(,8—1/,8). Ac-
cording to Egs.(13) and (14) the growth velocity tends to
zerov—0, only atA—0 andp— .

From Eqs.(13) and(14) it follows that the particle radius
varies with time viaA(t) and p(t). These quantities deter-
mine also the sign of thdp/dt derivative and therefore the
growth status of every particle at a fixed moment. At
dp/dt>0 the particle grows and atp/dt<0 it dissolves.
The situation at whichlp/dt is equal to zerap/dt=0, de-
termines the value of the critical radiys (t). Substituting
dp/dt=0 in Egs.(13) and (14) and solving the obtained
equation with respect tp one obtains for the critical radius

oor
~In(B)”

It is interesting to note that Kampmann and Kahlwéit,
using a different approach to this problem from the one de-

*

p* (1)

scribed here, obtained a quite similar result for the critical
radius in a two component system

2r

The equations so obtained differ considerably from these
used until now[1-6,8—-14,20,21-239 Compared to Eq(l),
it can be seen that at—o, the growth velocity does not with IT=C"/C, [5].
tend to zero, as it does in the some of the cited cases, but Equation(15) allows us to excludgs from Eqgs.(13) and
tends, as should be expected, to the growth velocity of &14) and to rewrite it in a more compact form,

p*(t)=—m(H),

1 2r 2F>
d *
, =3P _ P L1®)
Poodt Vop 2r ) 2r 2r
BT R e [1- Jmzexpzd)erfoz)]| ex " —kg— K+ Kgkaex Y
do_ [, oT 2T 14/
VP_E_VO —eX 7—1)—* . ( )

It is worth noting that Eq(14’) reduces at P[(1/p) — (1/p*)]<1 to
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dp ( 1 1 The integral at the right hand side of this equation can be
14 Vo -

= =Tyl — , rewritten as
Podt p* p

S oo
which is identical with the kinetic equation used by Marque- % =_ ALCE 03 |2 — fo afv, p3dp

see and Ross to account for the reaction controlled growth dt 3Vo ap
(decay in their analysidsee Eq(2.11) in [21]]. o

The solution of Eq.(8) is of crucial importance to the 12King into account that(0t) =0 andf(=,t)=0, and that
description of the coarsening process, since the latter prd(fv,)/dp=—at/at [see Eq.(8)], after application of the
vides the value of (p,t), which on its side, determines the Leibnitz rule_ to the mtegral at the right-hand side of the
change of theA(t) quantity, respectivelyp* (t) with the aPOvVe equation one obtains

time. Regretfully, this first order partial differential equation d 47CS [
cannot be solved with the method developed by Lifshitz and + i f fp3dp|=0.
Slyozov for obvious reasons namely the differences between dt 3Vo Jo

Eqg. (1) and Eqgs(13) and(14). In the present paper E) is . ) o . ) )
solved using the classical procedure developed for solutiofi N integration of this differential equation yields

of such equations, known as the method of characteristics A47CS [
[36. . o A(t)+ ef f(p,t)p3dp
Following the ideas of the characteristics method, the 3Vo Jo
continuity equation o 477C§f°°f .
of of v, (0) 3V, Jo 0(p0,0)pgdpo
—+v,—=—f—
at  Pap dp

Rearranging the members of the above equation and taking

is reduced to a system of two ordinary differential equations!nto account that the initial volume fraction of the solid

phasep is defined asp=477/3V0f§f0(p0,0)p8dp0, one fi-
dp df nally obtains
dt=—-=

v, f(av,ldp)”

’ Jof(p.t)p3dp

T . A 34
Rearranging the members in the above expression one ob- Jofo(p0,0)pgdpo

tai .
ains Equations(13) [or (14)], (15) and (16) form a set of equa-
dp df v tions which explicitly solve the problem formulated in the
— f —

qi v and qi i present paper.

. (10

A(t):A(0)+pc§{1—

The first of these ordinary differential equations is actually lll. RESULTS AND DISCUSSION

Eq. (13) [or Eq. (14)], which have been worked out above.  The theory developed here can be verified on the Cu-Ni
The second equation can be solved via separation of the variioy system, which forms ideal solutions both in the solid

ables, yielding as result and the liquid phas€g46,19,38. The used thermodynamical
g data for the Cu-Ni [,=1673 K,D=10"° m%s, I'=1.43
_ _ | %% X 1071 m) alloy system are taken frofi8].
fe.) fO(pO’O)eXF( jo dp dT) ' (A9 A self-consistent theory of the coarsening process at LPS

should solve the problems outlined in the Introduction sec-
Analyzing Eq. (15), the following conclusions may be tion, namely,
drawn:
(i) In the case when the growth velocity as functionpof . .
andt is known, Eq.(15) provides analytical solution of the radii versus the time.

coarsening problem. Unfortunately, this is not the case with 2'. It should predict t'he form of the distribution function
Egs.(13) and (14). obtained by the experiment and the correct value for the

relation pmax/ p, OF at least it should give values closer to the
experimental one.
3. It should explain the “abnormal” growth phenomenon.

1. It should predict the cube law for the mean particles

(i) In the case when the particles growth veloaityis a
function only of the timev,=v,(t) then from Eq.(15) it
follows that f(pg,0) does not change as a function of the

time, i.e.,f(p,t)="fy(po,0). This result is a particular case of Regretfully, the system of Eq€13)—(16) worked here

one of the basic concepts of the statistical physics, the LioUzannot be solved analytically and the results listed below
ville theorem(37]. have been obtained by its numerical solution. Although the
numerical experiments have been carried for coarsening in
ﬁquid phase, i.e., solid particles dispersed into the liquid
phase, it should be noted that the results are also applicable
for the processes of coarsening in supersaturated solid solu-
f(p,t)vp(p,t)pzdp. t@ons. In .this case.it can readily be shown that the ripening
0 time 74, is proportional torge~ 7iig(Djiq/Dso) . Here 7q is

The fourth assumption, listed in the beginning of the presen
section, allows us to rewrite E¢Q) in a more simple form,

dA 4wc§jw
dat VY,
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0.0035 - - 0.0055 TABLE I. Comparison of the calculated in the present paper and
(a) the experimentally measured values of the coarsening rate constant
L 0.005 K for different alloy systems.
| 0.0045 Alloy system p K [um¥/s] Reference
Ni-Cu 0.2 0.57 This work
_ 1 ) - 0.004 Co-Cu 0.2 1.5 Bender and Ratke5]
E, 0.003 - Co-Cu 0.2 0.17 Bender and RatKki5]
- + 0.0035 Co-Cu 0.34 0.29 Kang and Yoda7]
Ni-Cu 0.9 4.32 This work
’_p - 0.003 Co-Cu 0.71 25 Bender and Ratkeb]
Co-Cu 0.95 2.75 Kang and YodA2]
L 0.0025 Co-Sn 0.86 3.9 Hardy and Voorhefis]
Co-Sn 0.93 6.8 Hardy and Voorhefgs]
0.0025 ' ' 0.002 Fe-Cu 0.9 1.32 Kang and YodAZ2]
0.1 10 1000 100000
t[s] A. Determination of the growth rate of the mean particles
radii p(t) for both, diffusion and reaction controlled growth.
1.40 B. Determination of the distribution functiorfs=f(p,t)
10.00 | (b) for different coarsening regimes. _
' 1 . 1.20 C. Modeling of the “abnormal” particle growth.
& D. Comparison of the results obtained in points 1-3 with
5 the available experimental data.
B 800 - - 1.00 Typical time dependencies of the mean radiesp(t) for
x both diffusion =0.2) and reaction g=0.9) controlled
e | 0.80 coarsening processes are shown in Fig).1t is seen that
> y\ ' for the system Ni-Cu studied here, a steady growth pattern
& 6.00 - p°~t is established after a considerable coarsening tigne
= 2 L 0.60 >10* s. It is obvious that, is a function ofv, used in the
calculations. We want to remind one thgt depends on the
energetic barrieQ, which varies with the studied material.
4.00 ‘ r — 0.40 The plots ofp3(t) —p3(0) versus coarsening tinte for the
15000 20000 25000 30000 diffusion and the reaction controlled coarsening are shown in
t [s] Fig. 1(b). Unfortunately, the alloy system Ni-Cu modelled by

us has not been a subject of experimental interest so far. That
FIG. 1. (8 Plots ofp(t) vst for two ensemblegp=0.2(1) and  is why the values obtained from the plots in Figa)lof the
p=0.9 (2)] of particles with initial Gaussian distributiontfas.  coarsening rate constaktare compared with the available
=3X10"s, A(0)=10"° £=0.33). For the value ob, (vo=5 in the literature experimental dataee Table)l The values
x10~* m/s) used in the calculations the experimentally observedqr K as predicted by us lay within or are close to the ones
cubic law is reached after considerable coarsening timeQ*s. obtained experimentally.
(b) Plots of p(t) ~p*(0) vs coarsening time, for the diffusion As mentioned above, a successful theory should predict

[p=0.2, (1)] and the reactiop=0.9 (2)] controlled coarsening. e form of the distribution functiohi=f(p,t). In Figs. 2a)
The reaction constants, which are obtained from these plots, are

. ; . . and 2b) distribution functionsf(p,t) as calculated in the
compared with the available experimental data in Table I. present paper are compared with two experimentally ob-

o . tained oneqd13,39. It is seen that the theoretical and the
the ripening time in the liquid phase abd, andDjq are the  experimental results correlate favorably with each other and
diffusion coefficients of the solute in the solid and the liquid {5t the model proposed by us predicts correctly the experi-

phases. In the numerical simulations performed below, gnentally observed values for the relatign,./p and the
Gauss function was used as the initial distribution funct|on,p|ace of the maximum of the distribution functiéfp,t) on

e.g. the p/p axis. The differences in the scales of bgthxes of

— 2 the calculated and the experimental results in Figs). &nd
_ %_}( Po™ Po } 2(b), are due to the different way of normalization of these
fo(po,o) ex — . . . . . . . .
2\ epg distribution functions in the present and in the cited experi-
mental works. It should be noted that in Fig$a)2and 2b)
because it is assumed that the initial radii of the particles irthe observed correlation between the theory and the experi-
the experiments, with which our results are compared, arenent is only a qualitative one. In order to model the ripening
Gaussian ones. Heeeis a parameter, which determines the process for a definite alloy it is necessary to solve Edk.
width of the Gauss curvée.g., the dispersion (5), (8), (12), and (13) for a certain initial distribution
The following objectives have been pursued in the nu-fy(pg,0), temperaturd ., supersaturatio(0) and particles
merical simulations carried below: volume fractionp.
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FIG. 2. (a) Comparison of the calculated distribution functibg,.(p/p) (the solid ling [A(0)=10"3, p=0.32, £=0.33, teoss=3
x10* s)], with an experimentally obtained distribution functibgp/p) (histogram for NizAl precipitates in an alloy of Ni with 22 at%
Co and 13 at% Al p=0.32) [13]. (b) Comparison of the calculated distribution functibg,dp/p) (the solid ling [A(0)=10"3, p
=0.05, £=0.4, tgoue=3X10* s)], with an experimentally obtained distribution functitigp/p) (histogram for FeSi precipitates in pure
Fe at 973 °K[toare=312 h (1.123X 10° s), p—0] [39]. (c) Comparison between the calculated distribution function with the aid of the
present model distribution functiofyydp/p) (1) [A(0)=10"2, p=0.32, £=0.33, to,=3X10* s)], and the LSW distribution function
(2) [1-3]. Note that the resultant distribution obtained with the present model is sensitive to the used initial distfipitipD).

As mentioned in the Introduction the “abnormal growth”  As the volume of the solid fraction increases it is gener-
behavior at the coarsening has not been explained so faally agreed that the distribution function should grow
Here we used the developed model to study this interestingroader[14]. In order to test the substantiality of this as-
phenomena. For this purpose a complex function composesumption and the validity of our model, in Fig. 4 we com-

from two Gauss functions, i.e., pared the resultant distribution functions of two systems with
— — a differe_nt s_olid fractionp=0.2 andp=0.9_aft_er :_§<104 s

fo( po,0) = exp — E( PO__PO) 10.18 ext— }(Po‘_ﬂl) coarsening time. It can be seen that the distribution function
otPo: 2\ epo ' 2\ e.p; for p=0.9 is much broader than the=0.2 are, as is ex-

) o pected. Taking these results into account, one may conclude
[see Fig. 8a)], was used as the initial distribution. The evo- that the model presented here accurately describes the ex-
lution of this distribution function with time is shown in perimental evidence.
Figs. 3b)—3(d). It can be seen that the results obtained here
confirm the_ ones.obtalned experimentally, i.e., that a small V. CONCLUSIONS
cluster of big particles should grow preferably at the expense
of the smaller ones. These results therefore show that the An investigation of the way in which in a supersaturated
problem of “abnormal growth” is merely due to the kinetic solution an ensemble of particles with different radii grows
equations used up to now for the description of the growthor dissolveg as a result of the diffusion and kinetic pro-
(decay of the particles. cesses, has been made. Comparing the model presented here
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0 05 4 15 2 25 0 05 1 15 2 an ensemble of particles with a
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P/Prmean P/Pmean right-hand side of the distribution
function. As seen from(b)—(d)
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0.16 i i
042 | ceeds with the time.
~ 0.12 o~
& £ 008
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with those published previousljl1-6,8—14,18,21—-239al- lescence at liquid phase sintering and especially the basic

lows us to distinguish the following considerable differences:component dissolution and microstructure development dur-
ing the selective laser sintering.

(i) The present model is based on an equation describing (iv) The developed model allows the study of the coars-
the growth kinetics of a spherical particle different from the €ning process in multicomponent systei88]. This is a very
ones used up until nodEq. (1), Ref.[20] and its variations useful feature, from practical point of view, since the sin-
[1-6,8—14,18,21,22,24 A criterion is worked out that de- tered systems are rarely composed only of two chemical
termines which process is controlling the coarsening kinetic€omponents.
at a certain moment. On the basis of this criterion, two main (V) The proposed equations allow to model the “abnormal
kinetic mechanisms of coarsening are distinguished as @rowth” phenomena and to explain it successfully.
function of the solid fractiomp, namely, diffusion or reaction
pontrolled coarsening._ The equations obtained here, govern- ACKNOWLEDGMENT
ing these two mechanisnjgEqgs.(13) and(14)], are based on
the exact solution of the diffusion problem and a recently Dr. L. Anestiev would like to thank the Science Policy
developed theory of solute redistribution at crystal growthOffice of the Belgium Prime Minister for the financial sup-
[30]. This allows one to account for the solute redistributionport of his stay in KU Leuven in the framework of the [UAP
as a function of the growttdissolution velocity of the par- P4/33 action and the PRODEX program.
ticles and to eliminate the main disadvantage following from

the application of Eq(1) [20] (see Figs. 1-8 APPENDIX A
(ii) The set of equations which is obtained here accounts
for the influence of the solid fractiop automatically. In summarizing the attempts to explain the discrepancy

(iii) In contrast with most theoretical investigations car-between theory and experiment, it should be noted that the
ried out until now{1-6,8—14,18,2]1 in the present approach major part of them are restricted to proposing different addi-
the ripening process can be followed from its beginningtions to Eq.(1) [18]. Analysis of Egs.(1)—(3), however,
This feature of the present model is very useful for the modieads to the conclusion, that probably the discrepancy be-
eling of short time processes taking place simultaneouslyween the theory and the experiment is mainly due to the
with the microstructure coarsening. As for example pore coafollowing: the Eqg.(1) describing the growth kinetics of the
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05 i finite volume fraction analysis considerably. It can be easily
checked that the coarsening system can be considered qua-
sistationary one only in the case when the solute diffusion
coefficient is a very large quantity. This condition is rarely
fulfilled at liquid-solid and never at solid-solid coarsening
systems.

0.4

APPENDIX B

c
[
[
§- A detailed derivation of Eq96) and(7) is given in[30].
§ 02 - In the following, the basic concepts and the main results are
outlined.
Let us consider a metastable phgsand phaser growing
into the 8 matrix. We assume that the both phases are com-
posed ofk components. At phase transition, a part of the
accumulated in theg phase free energyyG#?, is used for
the formation of the new phase (phase volume, solute re-
0 . . . . distribution, etd, AGE®, and the rest of itAGA*, as driv-
0 05 1 1.5 2 25 ing force of the growth process,

0.1 - 2

P/Pmean AG'BD‘:AGfQ—G—AGEa. (B1)

FIG. 4. Comparison between the distribution functions of two

ensembles of particles afterxd0* s coarsening time. The initial Ba_ B_ o o .
distribution functions and the initial conditions were equal for theAG =AGP-AG*, e.g., this is the difference between the

both ensembleEGaussian distribution; = 0.33, A(0)=10"3], but Gibbs energies at a certain temperature and chemical com-

the solid fractions and the coarsening mechanisms have been d?—os't'on of thea and the,B_phases. The growth Ye'OC'W .
ferent: (1) diffusion controlled;(2) reaction controlled. can also be evaluated using some of the kinetic equations,

combining together the free energy and In our case the
aqlassic Turnbull equation is used for this purpdggl0—-43,

The accumulated free energg&G#® is easily obtained

particles, used until now, does not describe correctly the re
kinetics of the growth process. For example, according to

Eq. (1) it follows that atp—, v,—0, i.e., the growth ve- AG/,f“= —RTIn
locity of the particles with relatively large radius, should

tend to zero. This automatically excludes the bigger particles .

from the coarsening process and explains the steep front gt

the distribution functionf=f(p,t) att—o, as predicted by o
the LSW theory. On the other hand, it should be expected Vo:Vg ex% _g) exp( _AG ) )
that at p—, v,—0pjane (N€re With vyane is denoted the RT RT
growth velocity of a plane solidification frontwhereas ac- ) o . )
Cording to Eq(l) it tends t0vp_>0 [Compare this behavior ThUS-, the problem is to work out a criterion Wh|Ch- W|” de-
with the predictions of the present model, e.g., E48/) and  termine how the accumulated free eney&” is distrib-
(14)]. According to Eq.(1) this (v,—0 at p—) is valid uted betweem\ GE* and AGP* and consequently to deter-
even at considerable undercooling below the solidus temmine the growth velocity via E(B2).

perature imposed on the coarsening system. Another confus- Let us consider a small volume including fractions of the
ing moment is that ab— the growth velocityv, of the ~ growing phase, the matrix, and the phase boundary. For the
particles independently of their radii should tendutp—. ~ total energye used for the formation of the new phase, sol-
Therefore, from Eq(1) follows that the crystal growth pro- ute redistribution, etc., one can write

cess is governed by the solute transport. This is most un-

likely since it is well known that the solute transport arises as ¢=fAGE+(1-f)AGE+0VS. (B3)

a consequence of the changes on the particle surface and not ) o

vice versa. In other words the transport processes can beRPr the conservation of mass inside the volume one can put
limiting, but not governing factor of the coarsening processforward

In order to avoid these difficulties several authidr,21—-29 N 8.0

developed a new approach to the problem, known as finite X'+ (1-F)xP=x7 (i=1...k). (B4)
volume fraction analysis. The main idea of this approach is ) )

to reduce the diffusion equatidie., the second Fick equa- HereSis the phase boundary surfadéy is the molar vol-
tion) to a more simple equation, which can be easily handledM€,0 IS the surface tensioffijs the transformed part of the
from mathematical point of view. Thus, they assumed thavolume,x{ andx/ are the molar parts of thi¢h component

the solute distribution around the particles changes verjn the « and 8 phasesx; is the molar part of théth com-
slowly with time that the problem may be considered as gponent in the whole volume, ankiGg andAGg are the parts
guasistationary onésee the cited above papers for defails of the free energy used for the formation new phase volume,
Unfortunately, this assumption narrows the application of theboundary, solute redistribution, etc.

1- 1} , (B2)
Vo
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In order to determine the distribution of the accumulated 1. At C=0 and »/vy=0, these equations reduce to the
energy betweenAG’é“ andAGf“ the following assumption Gibbs equations, describing the phase equilibrium between
is used: the part of the total free energyutilized by the the 8 and « phases.
system for the formation of the new phase volume and 2. At v/vy=0, x{=0, and xiﬁ':O, they reduce to the
boundary, solute redistribution, etc. is minimal during theGibbs-Thomson equation.
whole time of the phase transition. In other words, for the 3 At x“=0 andxf=0, they reduce to the Machlin equa-
metastable system it is most important to transform into g \yhich was obtained with the aid of the irreversible ther-
more stable phase rather to spend energy for formation %odynamics[40]
excess boundaries and solute redistribution. The problem, ,~ \; vve=0, they reduce to the Thomson-Freundlich
thus, is reduced to determination of a conditional extremum

X . S ) ._equation.
of the ¢ function. A detailed description of this procedure is . .
given in[30]. The final result is The physical meaning ofy, (remember that v

=} exd —(Q/RT)lexd —(AGYRT)] can be derived from
JIAG” aAGB( v) ( Egs. (B5) and (B6). Indeed substituting’ with v, in these
= i

oxt  oxP

=1...k), (BS) equations, one obtaingAG*/dx*=0 and AGP*=0, e.g.,
this is the velocity at which no energy is spent for solute
K JAG redistribution between ther and the 8 phases. In other
+> W(Xfx—xiﬁ):UVmC, words, it is the maximal growth velocity possible for a cer-
=t ! (B6) tain temperature and phase composition. As seen from the
expression vy= Vg exd —(Q/RT)]exd —(AGYRT)], vy Iis
with C as curvature of the phase boundary. complex function of different physico-chemical parameters
It can be easily shown that in some special cases thef the transforming system. Therefore, one should expect
above equations reduce to what is well known in the physicshat this quantity vary with the different substances.
expressions. For example,

Yo

14
AGPe+ RTIn(l——

Vo
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