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Complex nonlinear behavior in optically excited nematic liquid crystals

G. Demeter*
Physikalisches Institut der Universita¨t Bayreuth, D-95440 Bayreuth, Germany

~Received 7 December 1999!

We present a study of the passage of a monochromatic, linearly polarized cw laser beam through a cell of
homeotropically aligned nematic liquid crystal at a slightly oblique angle. The light is polarized perpendicular
to the plane of incidence. Experiments in this geometry have revealed the existence of complex, time-
dependent dynamics of the director motion. We present a model for the director dynamics derived from the
basic equations that shows both periodic and chaotic behavior at different light intensities as observed in the
experiments. The model we derive exhibits a variety of complex behaviors, among them an uncommon route
to chaos via gluing bifurcations that has not yet been observed in any real physical system.

PACS number~s!: 42.70.Df, 05.45.Ac, 42.65.Sf
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I. INTRODUCTION

Liquid crystals~LCs! are known to produce a great var
ety of interesting optic phenomena, in particular those as
ciated with the so-called light-induced director reorientatio
LCs are optically anisotropic materials, and their local op
cal properties~the direction of the optical axis! are deter-
mined by the orientation of the director. This, on the oth
hand, is influenced by the electric field of a light wave. Th
an intense light wave can alter the optical properties of
material it propagates through. This leads to a rich variety
nonlinear optical responses of the LC cell~see@1,2#!.

In some configurations, a steady continuous wave~cw!
illumination of the liquid crystal produces a persistent tim
dependent behavior of the director. An example is the cas
circularly or elliptically polarized light incident at righ
angles to a cell of homeotropically aligned LC. Angular m
mentum exchange between the light field and the LC cau
precession and nutation of the director@3#.

Another, even more interesting configuration is that o
linearly polarized light wave incident upon a cell of home
tropically aligned nematic LC at a small angles0. The direc-
tion of polarization is perpendicular to the plane of inciden
in this case@see Fig. 1~a!#. Early experiments with this ar
rangement revealed periodic and irregular motion of the
rector@4,5#. There has been considerable experimental ef
to explore the properties of the irregular regime recen
@6–9#. Observations show that the initial oscillations gro
more complex as the intensity of the incident laser be
increases, eventually turning chaotic. While attempts at
riving a model for this complex behavior have begun@8,10#,
a proper theory derived from the basic equations that re
duces this chaotic behavior has not yet been developed.

In this paper we report on the derivation of a set of or
nary differential equations~ODEs! for the motion of the di-
rector from the fundamental equations for LCs and elec
magnetic waves. We solve these equations with a comp
and show that they indeed give rise to complex and cha
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dynamics in good agreement with existing experimental
servations. Thus they represent a good starting point for
derstanding some of these complex phenomena. The m
is found to exhibit various routes to chaos, among them
rather distinct one through a series of gluing bifurcatio
@11–13#. To our knowledge, this route to chaos has ne
been experimentally observed in any real physical system
is also suggested that the experimental system can be g
alized slightly by using an additional static electric or ma
netic field to produce an even larger variety of nonline
behavior. Since the control parameters of the problem~the
intensity of the laser, the angle of incidence, and the am
tude of the additional static field! can be controlled accu
rately and easily, further study of this system should be
teresting from the point of view of basic chaos theory.

This paper is organized as follows. In the second sec
we summarize the derivation of our equations and the m
important assumptions made. We sketch the general form
the equations obtained, the detailed calculations being
sented in the Appendix. We show that the simplest model
can construct to describe the observed phenomena is a t
variable model. In the third section we present results of
numerical solution of these equations and compare the
sults with published experimental findings. We show that
model exhibits complex nonlinear behavior and vario
routes to chaos, among them a rather distinct route that
not yet been observed in an experimental system. In
fourth section we show that refined versions of our mo
using more variables also possess the basic properties
make this particular scenario of transition to chaos possi

r
n-

FIG. 1. ~a! Geometry of the setup: a slightly oblique ordina
wave incident upon a cell of nematic LC with homeotropic orie
tation. ~b! Definition of the angles describing the orientation of t
director.
6678 ©2000 The American Physical Society
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Finally, we generalize our model slightly with the inclusio
of additional static electric and magnetic fields and disc
the advantages of studying such a sytem. A short accoun
some of the results presented here has been publishe
@14#.

II. MATHEMATICAL MODEL

We consider the scenario depicted in Fig. 1~a!, with a
linearly polarized plane wave incident upon a cell of home
tropically aligned nematic LC at a small angles0. The direc-
tion of polarization is assumed to be perpendicular to
plane of incidence, i.e., the incident wave is an ordin
wave. We assume strong anchoring of the nematic at
boundaries of the cell. We describe the time- and spa
dependent orientation of the directorn(r ,t) using two angles
u(r ,t) andw(r ,t) @see Fig. 1~b!# and seek dynamical equa
tions for their evolution. These equations will include term
that describe the torque exerted on the director by the ele
field of the light wave as well as the elastic stresses that a
in the LC as a response to deformations of the homogene
alignment. The main difficulty is that the electric fieldE(r ,t)
must be obtained from Maxwell’s wave equations with t
r -dependent dielectric tensor given bye i j 5«'d i j 1«aninj
~here «' is the dielectric permittivity perpendicular ton,
«a5« i2«' the dielectric anisotropy!.

To simplify the problem, we assume that~a! the orienta-
tion of the director depends on thez coordinate only and~b!
the angles are small (uuu,uwu!1). This latter assumption al
lows us to expand all expressions as power series in th
angles and drop all terms of higher than third order. It a
allows us to use perturbation theory when calculating
electric field corresponding to the reoriented state of the
To obtain a set of ODE’s for the time evolution of the angle
we write them as a sum of sine functions that satisfy
boundary conditionsw(z,t)5(nAn(t)sin(npz/L), u(z,t)
5(nBn(t)sin(npz/L) (L is the thickness of the cell!, and
project the original system of equations on these modes.
ter truncating this system we have a finite number of am
tudes (A1 , . . . ,An ,B1 , . . . ,Bm) and a set of coupled, firs
order, nonlinear ODE’s for these variables that contain te
up to third order. Their general form is

tȦi5(
j

L i j
AAj1(

j ,k
Pi jk

A AjBk1(
j ,k,l
k< l

Qi jkl
A AjBkBl

1 (
j <k< l

Ri jkl
A AjAkAl ,

tḂi5(
j

L i j
BBj1(

j <k
Pi jk

B AjAk1(
j ,k,l
k< l

Qi jkl
B BjAkAl

1 (
j <k< l

Ri jkl
B BjBkBl ,

wheret5gL2/p2K3 is the characteristic time of the directo
motion (g is the rotational viscosity of the LC andK3 is the
elastic constant of with respect to bend deformations;
@1,2#!. The inversion symmetry with respect to thex-z plane
implies that the equations must be invariant under the tra
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formation S:$Ai%→$2Ai%, so that only odd powers of the
Ai ’s can appear in the first set of equations and only e
powers in the second set. The linear coefficientsLA,LB and
the nonlinear onesPA,QA,RA,PB,QB,RB are functions ofs
5s0 /A«' ~the angle of refraction of an ordinary wave in th
cell!, «a85«a /«' ~dielectric anisotropy parameter!, the ratios
of the Frank constantsK1 /K3 , K2 /K3, the intensity param-
eterr defined as

r5
I

I F
, I F5

p2

L2

c~«'1«a!K3

«aA«'

@ I is the laser intensity,I F is the threshold intensity of the
light-induced Fre´edericksz transition~LIFT! for perpendicu-
lar incidence@1,2##, and the parameterk:

k5
L

p

s0
2«ak0

2A«'~«'1«a!

(k0 is the wave number of the incident light in vacuum!. kp
is ~to a very good approximation! the phase shift between a
ordinary and an extraordinary wave~the latter is polarized in
the plane of incidence! at z5L in the case of undisturbed
homeotropic alignment of the LC. The detailed derivation
the equations that yields the precise expressions for the v
ous coefficients is presented in the Appendix.

To consider the number of modes we must keep to be a
to describe the observed phenomena, we examine the li
terms of the equations. The general expressions for th
terms in the limitk2!1 when terms proportional tok4 can
be omitted are

Lmm
A 52m21r1

k2r

m2 @112~21!m#,

Lmn
A 5

2~21!mk2r

mn
, mÞn, ~1!

Lmn
B 52m2dmn

~see the Appendix!. This limit is sufficient for our purposes
as by using parameters corresponding to the experime
setup of@6,7# ~see@15#! we obtaink2'0.06. One can see
that in the absence of incident light (r50) all the modes are
damped proportionally tom2. This is simply due to the elas
tic stress that a sinusoidal reorientation induces in the LC
mode of higher order~i.e., shorter wavelength! induces
greater stress. The incident light excites modes ofw ~reori-
entation in they direction—the direction of polarization! but
not u, so theBi amplitudes are always linearly stable. Th
first mode to become unstable in thew direction is theA1
mode, and the threshold intensity~the intensity when the
electric excitation overcomes the elastic damping! is rc51
1O(k2), only slightly increased by the nonzero angle
incidence. The coupling between the differentw modes in-
duced by the electric field is also proportional tok2 so we
anticipate that those modes that are very far from being
early unstable are not excited significantly and can be
glected. The intensities we consider here lie in the regior
'1 –2.5, so that only theA1 mode becomes unstable and it
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6680 PRE 61G. DEMETER
sufficient to take the first two modes in thew direction
(A1 ,A2) and the first mode in theu direction (B1) to de-
scribe our system. The following two modesA3 ,B2 have a
linear damping rate several times larger than these thre
this intensity region. Since we need at least three variable
obtain chaotic behavior, this three-variable model with th
order nonlinearities is also the simplest one that can be
pected to exhibit the complex behavior observed in the
periments.

III. ROUTES TO CHAOS IN THE THREE-VARIABLE
MODEL

A. Transition to chaos via gluing bifurcations

The equations obtained for the three-variable model
be solved numerically for various parameter values. We
plored the behavior of the model using the light intensityr
and the angle of incidences0 as control parameters. All othe
parameters were chosen to correspond to the setup us
the experiments@6,7# ~see@15#!.

First we discuss the cases057°, which is the angle of
incidence used in the experiments. At this angle, the b
state (A15A25B150) loses stability atrc'1.065. It be-
comes a saddle point and two symmetry degenerate
origin fixed points are produced, which corresponds to a
tionary reorientation of the LC~LIFT!. The symmetryS is
broken spontaneously. Not too far aboverc the amplitudeA1
dominates, which corresponds to a simple sinusoidal re
entation in they direction. At higher intensities the nonlinea
interaction between the modes becomes important, leadin
the growth ofA2 andB1.

The stationary reoriented state becomes unstable
Hopf bifurcation atr0'1.71 and two simple limit cycles
appear in phase space which are mutual images underS @see
Fig. 2~a!#. The period of these limit cycles isT'13.5 s at
r51.72 just above the bifurcation and grows with increas
r. As the light intensity increases, the radius of the lim
cycles grows and atr1'1.808 75 the two limit cycles merg
in a gluing bifurcation at the origin. Atr1 the limit cycles are
homoclinic trajectories that leave the origin in theA1 ,A2
plane ~very close to theA1 axis! and return along theB1
direction. Figure 2~b! shows this situation. Slightly abover1
one has a single double-length limit cycle@Fig. 2~c!# which
is symmetric underS. This is not a period-doubling bifurca
tion, however, as the homoclinic trajectories atr1 have an
infinite period.

At a certain intensityr18.r1, the symmetric limit cycle
loses stability and two asymmetric limit cycles are form
that are mutual images underS @Fig. 3~a!#. These merge in a
second gluing bifurcation atr2'1.9474, where the limit
cycles are again homoclinic trajectories with an infinite p
riod @Fig. 3~b!#. The symmetric quadruple-length limit cycl
that is stable just abover2 is shown in Fig. 3~c!. This se-
quence of splitting and remerging of the limit cycle conti
ues and the set of valuesr i converge to a valuer`'1.98.
Beyond this point the motion is chaotic. The system exhib
typical signatures of low-dimensional deterministic cha
such as great sensitivity to initial conditions and a posit
Lyapunov exponent. The frequency spectrum of the m
amplitudes also shows this transition to chaos by chang
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from a line spectrum~where all lines are integer multiples o
the same fundamental frequency! to a continuous spectrum
We emphasize once more that, while this route to chaos
volves the creation ofdouble-lengthlimit cycles at a se-
quence of points, it is very different from the usual perio
doubling scheme, as the stable homoclinic limit cycle at
bifurcation has an infinite period. This quite distinct route
chaos was analyzed in a series of papers@11–13#, but to our
knowledge has never been observed in an experiment be

Figure 4 shows the Lorenz-like strange attractor atr
52.18. The evolution in phase space is organized around
three fixed points of the system; the origin~which became a
saddle point at the primary instability atrc) and the two
fixed points formed in this primary instability that lost the
stability in the secondary~Hopf! bifurcation at r0. These
points are so-called type II saddle foci—they are unsta
foci in a plane and stable in a direction transverse to t
plane. A trajectory spiraling outward from one saddle foc
in its unstable plane will be attracted to the other sad
focus along that point’s stable direction. Reaching the
stable plane of that fixed point, it begins spiraling outwa
eventually being attracted back to the first saddle focus.
largest Lyapunov exponent at this intensity islL50.087 s21.

At around r52.5 the Lorenz-like symmetric attracto
gives way to two asymmetric attracting sets, again mut
images underS. They are of the form of a Mo¨bius strip and
the scenario is similar to that occuring in the Shimiz
Morioka model@13#. As the intensity is increased, the syste

FIG. 2. ~a! Simple limit cycles in three-dimensional phase spa
spanned byA1 , A2, andB1 at s057° andr51.78. ~b! The limit
cycle atr51.808 75 at the first gluing bifurcation where it is com
posed of two homoclinic trajectories with infinite periods.~c! The
double-length limit cycle atr51.85.
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returns to simple periodic behavior via an inverse peri
doubling cascade.

A qualitative comparison of our simulations and the e
perimental observation shows that our model exhibits p
odic oscillations and a transition to chaos just as observe
some of the experiments@6,8,9#. In these experiments per
odic behavior is followed by a stochastic regime, after wh
the motion of the director is periodic again. This period
behavior is followed by transition to chaos. In light of o
model, this sequence can be interpreted as follows: The
servation of the first periodic regime corresponds to the c

FIG. 3. ~a! r51.94, two asymmetric limit cycles that are mutu
images underS. ~b! The homoclinic limit cycles at the second glu
ing bifurcation atr51.9474. ~c! r51.96, symmetric limit cycle
created in the second gluing bifurcation.

FIG. 4. Motion on the Lorenz-like strange attractor atr52.18.
The largest Lyapunov exponent of the attractor islL50.087 s21.
-

-
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in

h
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-

ation of limit cycles in the secondary Hopf bifurcation. A
the intensity increases and the system nears the first gl
bifurcation, the limit cycles pass close to each other near
origin, and this makes it possible for the system to ma
random jumps between the limit cycles due to noise. The
fore a stochastic regime is observed in the vicinity of t
gluing bifurcation. This is followed by periodic behavio
again in the regime where the double-length limit cycle
longer passes very close to the origin@Fig. 2~c!#. This se-
quence of stochastic behavior in the vicinity of a gluing b
furcation followed by periodic behavior between two bifu
cations should continue, but the intensity steps used in
experiments are too large to resolve any further bifurcatio
Hence at higher intensities chaotic behavior was observ
The above interpretation is further supported by the obse
tion of two modes of regular oscillation competing at a c
tain intensity value in@8,9#, which could be the random jump
between the two limit cycles close to the first gluing bifu
cation.

A quantitative comparison is hampered by the fact t
the spot size in the experiments is not larger than the w
of the sample and one cannot assume the light to be a p
wave even in the middle of the beam, The threshold inten
of the onset of periodic behavior (r51.71) is, however,
quite near to the experimental values@6#. The system was
observed to be already in the oscillatory regime atr'1.86 in
@6#, with the period of the oscillations beingT'12.5 s. Our
model exhibits sizable oscillations atr51.73 with periodT
'14 s. The predicted increase of the period of the osci
tions with r in the first oscillatory regime~before the first
gluing bifurcation! is also in agreement with observation
The largest Lyapunov exponent of the attractor in the cha
regime found in the experiments@7# (0.160.015 s21) is con-
sistent with that found in our simulations~0.087 s21 at r
52.18).

B. Other routes to chaos

The scenario depicted above is not the only one to
exhibited by this sytem. This can be seen already from lin
stability analysis of the basic state@10#, which can be per-
formed using the two modesA1 andA2 @see Eqs.~1!#. The
analysis shows that the primary instability of the basic st
is a stationary bifurcation only for small values of the pha
shift k and a Hopf bifurcation for larger values ofk ~Fig. 5!.
~With given material parameters,k is simply a quadratic
function of the angle of incidences0.! The codimension-2
point ~the Takens-Bogdanov point! where the linear part of
the equations possesses a double zero eigenvalue is the
where the stationary primary instability that gives rise to tw
symmetry-degenerate fixed points becomes a Hopf insta
ity that gives rise to a limit cycle. The secondary Hopf b
furcation that gives rise to two symmetry-degenerate lim
cycles and the gluing bifurcation where these merge e
only below the Takens-Bogdanov pointkTB52/A13. Fork
.kTB there is only periodic oscillation of the director abov
a certain threshold intensity and there is no chaos. Slig
belowkTB the series of gluing bifurcations does not contin
to the accumulation point, the behavior returns to a sim
limit cycle after a finite number of bifurcations. The numb
of these decreases as we approachkTB .
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6682 PRE 61G. DEMETER
By varying the angle of incidence around 7° we find th
the route the system takes to chaos changes as the ligh
tensity increases. As an example, we will considers054.5°.
The scenario is at first very similar to the case discus
previously. First a stationary reorientation takes place, t
this state loses stability in a Hopf bifurcation, the resulti
limit cycles merge in a gluing bifurcation, and after the cr
ation of the asymmetric limit cycles there is a second glu
bifurcation that gives rise to a symmetric limit cycle just lik
the one shown in Fig. 3~c!. After this, however, we have a
inverse gluing bifurcation atr'1.847 that results in two
asymmetric limit cycles again, which are mutual images
der S. These asymmetric limit cycles then undergo a peri
doubling cascade to produce two asymmetric strange at
tors. As the intensity increases, the strange attractors w
and collide to merge into a symmetric strange attractor v
similar to the one shown in Fig. 4. Figure 6 illustrates so
steps in this sequence. The chaotic behavior is occasion
interrupted by periodic windows; a limit cycle that belon
to such a window is shown in Fig. 7. At still higher intens
ties, the system returns to simple periodic behavior.

The scenario is again very different ats053.5°. Here we
have observed the two routes to chaos to coexist. First t
is a period doubling route to chaos as ats054.5°, but then
two homoclinic trajectories are created and coexist with
strange attractor. These homoclinic cycles then glue toge
and as the intensity is increased we again get a strang
tractor @Fig. 8~a!# which coexists with the other strange a
tractor that was formed via the period-doubling cascade@Fig.
8~b!#. The existence of this latter is interrupted by a perio
window betweenr51.884 and 1.888@Fig. 8~c!#. At higher
intensities the two strange attractors unite to form one v
similar to that shown in Fig. 4.

Investigations with different angles and sample widths
veal that the system can exhibit a rich variety of differe
behaviors where gluing bifurcations, period-doubling bifu
cations, chaotic attractors, and periodic windows alternat

FIG. 5. Stability diagram of the homogeneous state on ther-k
plane.r is the dimensionless intensity parameter,kp is the phase
shift between an ordinary and an extraordinary wave atz5L in
radians~see the text!. In the region of instability~gray! the complex
growth rate of perturbations has a positive real part. The line
stationary instability~solid line! joins the line of Hopf instability
~dashed line! in the Takens-Bogdanov point (kTB52/A13, rTB

513/5). The line of secondary Hopf instability~dash-dotted line!
also terminates at this point.
t
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various orders, and sometimes several attractors and
cycles coexist at certain parameter values.

IV. REFINEMENTS OF THE MODEL

The fact that our model exhibits the scenario of transit
to chaos via gluing bifurcations and agrees well with exist
experimental observations is significant because it sugg
that this scenario may be studied experimentally. Howev

f

FIG. 6. ~a! Asymmetric limit cycle ats054.5° andr51.85.~b!
Period-doubled asymmetric limit cycle atr51.88.~c! Asymmetric
strange attractor atr51.905.

FIG. 7. Limit cycle in a periodic window ats054.5° andr
52.1.
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our model can be further refined by adding more ter
and/or higher-order nonlinearities. We can suggest that
gluing scenario may be experimentally observed on
physical system only if any such refined model can also
hibit the gluing scenario.

From previous work on this scenario of transition to cha
@11,12#, we know that there are several necessary conditi
for a set of dynamical equations to be able to exhibit
gluing scenario. First of all, there must exist a saddle poin
phase space such that all but one of the eigenvalues o
Jacobian at this point have negative real parts. We denote
single postive eigenvalue byl1. Furthermore, the eigenvalu
l2 with the second largest~least negative! real part must also
be real. Second, the phase spaceR must consist of two sub
spacesRs and Ru with dim(Rs)>2 and dim(Ru)>1, and

FIG. 8. ~a! A strange attractor formed via gluing bifurcation
and ~b! one formed via period-doubling cascade that coexist as0

53.5° andr51.88.~c! A periodic limit cycle that coexists with the
strange attractor of~a! in the ranger51.884–1.888.
s
e

is
-

s
s

e
n
he
he

the set of equations must be invariant under the inversion
Rs centered at the saddle point. The two eigenvaluesl1 and
l2 must belong toRs andRu, respectively. Finally, we mus
havel1,2l2 for the homoclinic cycles to be stable, whic
is also necessary for the observation of the gluing scena

It is not hard to see from the linear coefficients of o
equations@Eqs.~1!# that aroundr'1 –2 all of these require-
ments are fulfilled. The saddle point is the origin where
amplitudes are zero and there is no reorientation of the
The symmetry propertyS of the equations is precisely th
symmetry condition required, the two-dimensional subsp
spanned by (A1 ,A2) corresponds toRs, and the subspace o
B1 corresponds toRu. The largest and only positive eigen
value is close toL11

A , with the corresponding eigenvecto
being in theA1 ,A2 plane and lying close to theA1 direction.
@The reason for this is that we assumedk2!1. Relaxing this
condition does not change the fact that the eigenvector
longs to the (A1 ,A2) plane.# l2 is just L11

B 521. Aroundr
'1 –2 we also havel1,2l2.

It is easy to see that taking more modes into account d
not change this situation. The symmetryS still fulfills our
requirements,l2 remains the same, and onlyl1 will be per-
turbed slightly by the addition of furtherAi modes. The cor-
responding eigenvector will also lie in the subspace span
by the A’s and close to theA1 direction. Continuing the
series expansions to higher order has no effect on the lin
terms, so we can conclude that the above mentioned pro
ties are retained by any refined model containing m
modes and/or higher-order terms.

V. ADDITIONAL STATIC FIELDS

The precise values of the two largest eigenvaluesl1 ,l2
also play an important role in the gluing bifurcation scenar
The so-called saddle index of the saddle point~here the ori-
gin! defined asn511l2 /l1 ~which must be negative fo
the homoclinic cycles to be stable! governs the asymptotic
convergence rate of the series of bifurcation pointsrn . This
convergence rate is defined as

d~n!5 lim
n→`

rn2rn21

rn112rn
~2!

and plays the same role as the famous FeigenbaumdF
54.6692 . . . for theconvergence rate of the period-doublin
scenario. We mention that the famous Lorenz model exhi
the same symmetry properties as our system of equati
but there the saddle index is positive for the parame
where chaotic behavior develops. Thus the homoclinic or
are unstable and chaos appears in a discontinuous man

We now consider slight extensions of our model with a
ditional static electric or magnetic fields. One motivation f
this is the role the linear eigenvalues at the origin play
determining the routes to chaos that this system may ta
These eigenvalues, and hence the saddle index, dependr
andk. The dependence onk is weak, however, and since w
consider only small angles of incidence we can varyn only
slightly usings0. If we want to investigate how the transitio
to chaos withr depends on the saddle index, we may a
some static fields to the system. It is easy to see that a
mogeneous static field along any of the coordinate axis
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Fig. 1. preserves the symmetry of the equations. These s
fields introduce new linear terms and therefore the lin
eigenvalues around the origin are changed. We can thus
pect an even larger variety of nonlinear behavior to be
served, and the possibility arises of investigating how
route to chaos changes as the saddle index is varied.

As an example, we will consider adding a static elect
field in thez direction, perpendicular to the plane of the ce
We will assume the static~low-frequency! dielectric anisot-
ropy «a

st to be negative, which means that this additional fie
will help to destabilize the homogenous homeotropic alig
ment of the LC toward thex-y plane, i.e., help the directo
turn away from thez axis.~Assuming«a.0 for the light and
«a

st,0 for the static field is by no means contradictory; t
dielectric anisotropy in LCs is strongly frequency depend
and a number of materials fulfill these requirements.! The
insertion of the effects of such a field into the equations
easily done and the linear coefficients can be written as

Lmm
A 52m21h1r1

k2r

m2 @112~21!m#,

Lmn
A 5

2~21!mk2r

mn
, mÞn, ~3!

Lmn
B 52m2dmn1h,

whereh is a dimensionless parameter that is proportiona
the stength of the static electric field and is scaled such
the destabilization of the first mode due completely to
static field ~the classical Fre´edericksz transition! occurs at
h51. Using this new control parameter, one can change
value of the saddle index at a fixed value of the inciden
angle and laser intensity.

Solution of the equationsh50.1 ands057° shows that
the pure gluing scenario observed in the absence of the s
electric field~see Sec. III A! changes into a mixed scenar
where after the first two gluing bifurcations there is an
verse gluing bifurcation and then a period-doubling casca
The new scenario is similar to the scenario ats054.5° with-
out the static field~see Sec. III B!. Investigations show tha
the gluing scenario is already replaced by the peri
doubling cascade for small negative values of the saddle
dex, not just positive ones. If the magnitude of the static fi
is larger, the behavior of the system changes completely
example is the strange attractor shown in Fig. 9, which

FIG. 9. Strange attractor in phase space ats057°, h50.84, and
r50.8.
tic
r
x-
-
e

c

-

t

s

o
at
e

e
e

tic

-
e.

-
n-
d
n
n

be observed ats057°, h50.84, andr50.8.
Finally we mention that, as a practical advantage, o

may use the additional static fields that help destabilize
homeotropic alignment of the LC to shift the region of inte
esting nonlinear behavior toward lower light intensities
facilitate the study of the system. This occurs, for example
we add a stabilizing field in they direction which helps the
light field turn the director away from thez axis. @This cor-
responds to removingh from the third equation in Eq.~3!.#
In this case the nonlinear behavior is similar to the case
purely light-induced reorientation, but the threshold inten
ties are reduced.

VI. SUMMARY

We have studied theoretically the passage of a sligh
oblique incidence plane wave through a homeotropica
aligned nematic LC with the direction of polarization norm
to the plane of incidence. We have derived a set of equat
to describe the time-dependent director reorientation
found that at various intensities and angles of incidence
director can show complex nonlinear behavior. We have d
covered that at certain parameter values the system dipla
route to chaos as yet unobserved in any experimental sys
As predictions of our model agree well with existing expe
mental data, it seems likely that this distinct route to cha
could be experimentally realized in optically excited nem
ics in the geometry described. We have also shown that
properties of our model that make this route to chaos p
sible are robust against refinements of the model. Finally,
have shown that additional static fields may be used to g
eralize the system slightly and gain an even larger variety
interesting nonlinear behavior.

ACKNOWLEDGMENTS

The author wishes to thank L. Kramer, P. Coullet, and
A. Zaks for helpful discussions. The author is also gratefu
G. Cipparrone for having communicated new experimen
results prior to publication. The hospitality of the Ma
Planck Institute for the Physics of Complex Systems in Dr
den, Germany, where part of this research was carried ou
also gratefully acknowledged.

APPENDIX: DERIVATION OF EQUATIONS
FOR THE REORIENTATION-MODE AMPLITUDES

To derive equations of motion for the time-dependent
orientation amplitudes we can use the equation for the di
tor motion that can be derived from the usual orientatio
free energy, which includes the dielectric contribution av
aged over the optical frequency oscillations@1,2#,

F5
K1

2
~“•n!21

K2

2
~n•“3n!21

K3

2
~n3“3n!2

2
«a

16p
un•Eu2. ~A1!

HereK1 ,K2 ,K3 are the Frank constants of the LC and«' is
the ~optical frequency! dielectric permittivity perpendicular
to n, «a5« i2«' the ~optical frequency! dielectric anisot-



h

na

ed

ng

a
de
ni
or
e
d

. T

s
.
he

om
om
-

n
ec

m

ns
e
en-

t

by
the

n-

ms
te

PRE 61 6685COMPLEX NONLINEAR BEHAVIOR IN OPTICALLY . . .
ropy. We consider solutions that depend on thez coordinate
only. The equations of motion for the two anglesw(z,t),
u(z,t) that describe the orientation of the director throug

n5~sinu,cosu sinw,cosu cosw! ~A2!

@see Fig. 1~b!# can be deduced using standard variatio
procedures with the dissipation functionR5(g/2)ṅ2. Hereg
is an effective rotational viscosity including the so-call
backflow effects to lowest order~see, e.g.,@17#!. The calcu-
lations are lengthy, but straightforward. Assumi
@ uu(z,t)u,uw(z,t)u!1#, we can expand the expressions as
power series in the angles and neglect all terms that
fourth order or higher. When counting orders of magnitu
we must remember that the incident light is polarized i
tially along they direction, and in the absence of direct
reorientation its polarization remains unchanged. The g
eration ofEx andEz is therefore due to the reorientation an
these components will be at least first order in the angles
further simplify matters, we get rid ofK1 andK2 by writing
K152K3/3 andK25K3/2, which approximately correspond
to the properties of the materialE7 used in the experiments
With all these simplifications the equations of motion for t
angles become

g] tw5K3]z
2wS 12

w2

3
2

u2

2 D1
K3

6
wu]z

2u1
2K3

3
w~]zu!2

23K3u]zw]zu2
K3

3
w~]zw!21«auEyu2S w

8p
2

w3

12p D
2

«aw

8p
uEzu21«a~Ez* Ey1EzEy* !S 1

16p
2

w2

8p D
1

«au

16p
~Ex* Ey1ExEy* ! ~A3a!

g] tu5K3]z
2uS 12

u2

3
2

w2

2 D1
K3

6
wu]z

2w1
5K3

3
u~]zw!2

2K3w]zw]zu2
K3

3
u~]zu!21

«au

8p
~ uExu22uEzu2!

2
«auw2

8p
uEyu21

«a

16p
~Ex* Ez1ExEz* !

1
«aw

16p
~Ex* Ey1ExEy* !2

«awu

8p
~Ey* Ez1EyEz* !.

~A3b!

The explicit t and z dependence ofw, u, and Ei has been
suppressed here for brevity. The main difficulty comes fr
the fact that the field components must be obtained fr
Maxwell’s equations, which contain then-dependent dielec
tric tensor

e i j ~z,t !5«'d i j 1«aninj . ~A4!

Thus the field components will depend on the angles i
nontrivial way. We must find an expression for them corr
l

a
re
,

-

n-

o

a
t

to third order in the angles and insert it into Eqs.~A3a! and
~A3b!. Because we assumed onlyz dependence
of the director, we can use the stratified mediu
approach for the wave propagation@2# and write the
fields as E(r ,t)5 1

2 @E(z,t)eis0k0xe2 ivt1c.c.#, H(r ,t)
51/2@H(z,t)eis0k0xe2 ivt1c.c.#. (k05v/c is the wave num-
ber in vacuum.! The slow time dependence of the functio
E(z,t),H(z,t) can be omitted in Maxwell’s equations. W
can also neglect the magnetic anisotropy at optical frequ
cies, so from the wave equations we get

dC̄

dz
5 ik0DC̄, ~A5!

where

C̄~z!5S Ex~z!

Hy~z!

Ey~z!

2Hx~z!

D ~A6!

is a column vector with four elements and

D~z!5S 2
exzs0

ezz
12

s0
2

ezz
2

eyz s0

ezz
0

exx2
exz

2

ezz
2

exz s0

ezz
exy2

exz eyz

ezz
0

0 0 0 1

exy2
exz eyz

ezz
2

eyz s0

ezz
eyy2

eyz
2

ezz
2s0

2 0

D .

~A7!

The third component of the electric field is given by

Ez~z!52
s0

ezz
Hy~z!2

exz

ezz
Ex~z!2

eyz

ezz
Ey~z!. ~A8!

To get an expression forD in terms of the angles we mus
substitute the expression for the director~A2! into Eq. ~A4!
and then the elements of the dielectric tensor into Eq.~A7!.
The complicated expression we get can be simplified
dropping all fourth and higher order terms with respect to
angles. We also introduce the notations5s0 /A«' ~the angle
of refraction of an ordinary wave in the absence of reorie
tation!, and«a85«a /«' ~anisotropy parameter!. Furthermore,
we splitD into two parts; one contains the zeroth order ter
~i.e., the part ofD that belongs to the reorientationless sta
of the LC and is therefore not dependent onz) and the other
contains the rest,D(z)5D01D1(z):
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D05S 0 12
s2

11«a8
0 0

«' 0 0 0

0 0 0 1

0 0 «'~12s2! 0

D .

The nonzero elements ofD1 are

~D1!115~D1!2252
s«a8A«'u

11«a8
1

s~22«a8!«a8A«'u3

3~11«a8!2

1
s~«a821!«a8A«'uw2

2~11«a8!2
,

~D1!1252
s2«a8~u21w2!

~11«a8!2 ,

~D1!135~D1!4252
s«a8A«'w

11«a8
1

s~22«a8!«a8A«'w3

3~11«a8!2

1
s«a8A«'u2w

~11«a8!2
,

~D1!215
«a8«'u2

11«a8
, ~D1!235~D1!415

«a8«'uw

11«a8
,

~D1!435
«a8«'w2

11«a8
.

It is now convenient to use the formalism of Oldano@18#
and transform to a representation whereD0 is diagonal. To
do this, we define the eigenvalues and eigenvectors:D0ā i

5aia ī where

a152a252A«'A12s2,

a352a452A«'A12
s2

11«a8
,

and

ā1,25S 0

0

7
1

A«'A12s2

1

D ,
ā3,45S 7
1

A«'

A12
s2

11«a8

1

0

0

D , ~A9!

and use the metric tensor

M5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D
for the scalar product of these vectors. With this metric,
eigenvectors are orthogonal to one another,ā i

TMā j5d i j Ni ,

with Ni being the ‘‘norm’’ of ā i ~which, however, can now
be negative!, and ā i

T denotes a row vector. The identit

( i(ai /Ni)ā i ā i
T5D0 can easily be proved. The eigenvecto

and eigenvalues ofD0 give the polarization and index o
refraction of the four ‘‘proper’’ waves, i.e., waves tha
propagate without changing their state of polarization in
medium in the absence of director reorientation. There
two forward and two backward propagating modes, with
modesā1 ,ā2 being the ordinary waves andā3 ,ā4 being the
extraordinary ones. From Eqs.~A6! and ~A9! it is obvious
that the ordinary waves haveEyÞ0 andEx5Hy50, while
the extraordinary waves haveEy50 andExÞ0, HyÞ0.

Writing the state vector in the form C̄(z)
5(bk(z)exp(ik0akz)āk , we may transform Eq.~A5! into in-
tegral equations for the variablesbk(z),

bk~z!5bk~0!1E
0

zik0

Nk
( Pk j~z8!bj~z8!e2 ik0(ak2aj )z8dz8,

~A10!

wherePk j(z)5āk
TMD1(z)a j̄ are the matrix elements ofD1

between the eigenvectors. We expect the director orienta
and the field components to change very little on the spa
scale of the light wavelength, so the functionsbj andPk j will
be almost constant on this scale, and the rapid oscillation
the exponential term in the integrand will average out tho
terms from the sum where the two eigenvaluesak ,aj are of
opposite sign. Thus modes traveling in opposite directio
are not coupled by Eq.~A10!. The physical meaning of this
is that in the absence of dielectric boundaries~where the
dielectric properties do change considerably on the spa
scale of the wavelength! there is no reflection.

As we have assumed strong anchoring at the bounda
the initial conditionbk(0) in Eq. ~A10! in the present situa-
tion is a forward propagating ordinary wave atz50 inside
the medium. We therefore writeb(0)5(0,A0,0,0), the am-
plitudeA0 being proportional to they component of the elec
tric field at z50. By virtue of the argument made in th
previous paragraph~and neglecting reflection from the othe
boundary!, we may drop the two backward propagatin
modesā1 andā3, as these will not play a role, and we ma
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reduce the problem to two variables. The four elements
the matrixPk j that we will actually need, expressed to thi
order in the angles and with the coefficients of the vario
terms slightly simplified usings2!1, are

P225
«a8 w2

11«a8
,

P245P4252
s«a8w

11«a8
1

«a8uw

11«a8
1

s«a8u
2w

~11«a8!2

2
s~221«a8!«a8w

3

3~11«a8!2 ,

P4452
2s«a8u

11«a8
1

«a8u
2

11«a8
2

2s~221«a8!«a8u
3

3~11«a8!2

2
s2«a8w

2

~11«a8!22
s~211«a8!«a8uw2

~11«a8!2 .

The only expression appearing in the exponent within
integral in Eq.~A10! will be the difference of the two eigen
valuesk0(a22a4). We may expand this too as a power s
ries in the small quantitys and drop those terms that do n
cause a significant phase shift at the upper limit of the
main of integrationL. Since L'102l – 103l, one can see
that with typical material parameters only the first te
~which is quadratic ins) is needed and the second o
~which is proportional tos4) is not. Thus we define

k5
L

p
k0~a42a2!'

L

p

s2«a8k

2~11«a8!
,

f

s

e

-

-

the phase shift between the ordinary and extraordinary wa
at the far edge of the layer (z5L) in the absence of reorien
tation divided byp. Herek5k0A«' is the wave vector in the
medium. Introducing the scaled coordinateg5z/L, g
P@0,1#, we can now write Eq.~A10! for b2(g) andb4(g) as

b2~g!5A01
ik0L

N2
E

0

g

@P22~g8!b2~g8!

1P24~g8!b4~g8!eipkg8#dg8,

b4~g!5
ik0L

N4
E

0

g

@P44~g8!b4~g8!

1P42~g8!b2~g8!e2 ipkg8#dg8. ~A11!

This equation can be solved using successive iterations
b2

(0)5A0 , b4
(0)50. To get the coefficientsbk to third order in

the angles, we must iterate three times. The expressions
involve multiple integrals of the still unknown function
u(g),w(g) in a complicated way. They can be simplifie
slightly usings2!1, and used to calculate the state vect
from which the fields can be obtained via Eqs.~A6! and
~A8!. These can then be used in Eqs.~A3a! and ~A3b! to
obtain an equation of motion for the angles. The equati
can be simplified significantly if we restrict ourselves to t
k2!1 case. Since using parameters that correspond to
experiments@6,7# gives usk2;0.06 ~see @15#!, we drop
terms proportional tok4 or higher~there are no odd power
of k in the expressions!. In this case it is actually enough t
iterate Eq.~A11! twice, because all terms that come from t
third iteration are proportional tok4 or higher. It is also
convenient to multiply Eqs.~A3a! and ~A3b! by L2/K3p2

and introduce the notationt5gL2/p2K3 on the left hand
side. The equations of motion now become
t] tw5]g
2w

1

p2 S 12
w2

3
2

u2

2 D1
1

6p2 wu]g
2u1

2

3p2 w~]gu!22
3

p2 u]gw]gu2
1

3p2 w~]gw!21rw1
«a8ru2w

11«a8

1
2~2112«a8!rw3

3~11«a8!
2p2k2r@2L (1)~gw!1gL (1)~w!#1

p2k2r

s
$2L (1)~guw!1gL (1)~uw!12L (2)~w,u!

1@2L (1)~gw!1gL (1)~w!#u%1
p2k2r

s2 $22L (2)~w,u!u2L (2)~w,u2!22L (2)~wu,u!

1@L (1)~gwu!2gL (1)~wu!#u1L (1)~w!L (1)~w2!22L (2)~w,w!w2L (2)~w2,w!%, ~A12a!

t] tu5]g
2u

1

p2 S 12
u2

3
2

w2

2 D1
1

6p2 wu]g
2w1

5

3p2 u~]gw!22
1

p2 w]gw]gu2
1

3p2 u~]gu!22
ruw2

11«a8
1

p2k2r

s

3$2L (1)~w!21@2L (1)~gw!1gL (1)~w!#w%1
p2k2r

s2 $2L (1)~uw!L (1)~w!1L (1)~w!2u

1@L (1)~guw!2gL (1)~uw!#w22L (2)~w,u!w%, ~A12b!

where we have introduced the two integral operators

L (1)
„x~g!…5E

0

g

x~g8!dg8, L (2)
„x~g!,y~g!…5E

0

g

y~g8!E
0

g8
x~g9!dg9dg8 ~A13!
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that operate upon functions of the scaled lengthg. At this point it is straightforward to write the angles as a series of s
functionsw(g,t)5(nAn(t)sin(npg), u(g,t)5(nBn(t)sin(npg), carry out the integrations, and project the result on the vari
modes to get a set of nonlinear ODE’s for the mode amplitudes. For the minimal model of three variables$A1 ,A2 ,B1% these
equations become

tȦ1~ t !5A1~ t !~212k2r1r!2A2~ t !k2r1A1~ t !B1~ t !
pk2r

s
1A2~ t !B1~ t !

~25619p2!k2r

36sp

1A1~ t !B1~ t !2S 2
1

3
1

3«a8r

4~11«a8!
2

~14114p2!k2r

48s2 D 1A1~ t !3
1

6 S 12
3~22«a811!r

~11«a8!
2

3k2r

s2 D 2A2~ t !B1~ t !2
127k2r

36s2

1A1~ t !A2~ t !2S 5

6
1

~2«a821!r

~11«a8!
1

7k2r

8s2 D 1A1~ t !2A2~ t !
k2r

4s21A2~ t !3
k2r

2s2 , ~A14a!

tȦ2~ t !5A2~ t !S 241
3k2r

4
1r D1A1~ t !k2r2A1~ t !B1~ t !

~25619p2!k2r

36sp
2A2~ t !B1~ t !

64k2r

9sp

1A2~ t !B1~ t !2S 5

4
1

«a8r

2~11«a8!
1

185k2r

72s2 D 1A1~ t !B1~ t !2
127k2r

36s2 1A1~ t !2A2~ t !S 5

6
1

~2«a821!r

~11«a8!
2

9k2r

8s2 D
1A2~ t !3S 2

3
2

~22«a811!r

2~11«a8!
2

5k2r

8s2 D 1A1~ t !3
k2r

4s22A1~ t !A2~ t !2
3k2r

2s2 , ~A14b!

tḂ1~ t !52B1~ t !1A1~ t !2
~2161p2!k2r

2sp
2A2~ t !2

32k2r

9sp
1A1~ t !A2~ t !

~225619p2!k2r

36sp

1A1~ t !2B1~ t !
1

48S 202
36r

11«a8
1

~14724p2!k2r

s2 D 1
B1~ t !3

6
1A2~ t !2B1~ t !S 13

4
2

r

2~11«a8!
1

185k2r

72s2 D
1A1~ t !A2~ t !B1~ t !

7k2r

2s2 . ~A14c!
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