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Complex nonlinear behavior in optically excited nematic liquid crystals
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We present a study of the passage of a monochromatic, linearly polarized cw laser beam through a cell of
homeotropically aligned nematic liquid crystal at a slightly oblique angle. The light is polarized perpendicular
to the plane of incidence. Experiments in this geometry have revealed the existence of complex, time-
dependent dynamics of the director motion. We present a model for the director dynamics derived from the
basic equations that shows both periodic and chaotic behavior at different light intensities as observed in the
experiments. The model we derive exhibits a variety of complex behaviors, among them an uncommon route
to chaos via gluing bifurcations that has not yet been observed in any real physical system.

PACS numbgs): 42.70.Df, 05.45.Ac, 42.65.Sf

[. INTRODUCTION dynamics in good agreement with existing experimental ob-
servations. Thus they represent a good starting point for un-
Liquid crystals(LCs) are known to produce a great vari- derstanding some of these complex phenomena. The model
ety of interesting optic phenomena, in particular those assds found to exhibit various routes to chaos, among them a
ciated with the so-called light-induced director reorientation rather distinct one through a series of gluing bifurcations
LCs are optically anisotropic materials, and their local opti-[11-13. To our knowledge, this route to chaos has never
cal properties(the direction of the optical axisare deter- been experimentally observed in any real physical system. It
mined by the orientation of the director. This, on the otheris also suggested that the experimental system can be gener-
hand, is influenced by the electric field of a light wave. Thusalized slightly by using an additional static electric or mag-
an intense light wave can alter the optical properties of théetic field to produce an even larger variety of nonlinear
material it propagates through. This leads to a rich variety obehavior. Since the control parameters of the probide
nonlinear optical responses of the LC og@lee[1,2)). intensity of the laser, the angle of incidence, and the ampli-
In some configurations, a steady continuous wéwe)  tude of the additional static fieldcan be controlled accu-
illumination of the liquid crystal produces a persistent time-rately and easily, further study of this system should be in-
dependent behavior of the director. An example is the case deresting from the point of view of basic chaos theory.
circularly or elliptically polarized light incident at right ~ This paper is organized as follows. In the second section
angles to a cell of homeotropically aligned LC. Angular mo-we summarize the derivation of our equations and the most
mentum exchange between the light field and the LC causégportant assumptions made. We sketch the general form of
precession and nutation of the direcf8t. the equations obtained, the detailed calculations being pre-
Another, even more interesting configuration is that of asented in the Appendix. We show that the simplest model we
linearly polarized light wave incident upon a cell of homeo- can construct to describe the observed phenomena is a three-
tropically aligned nematic LC at a small anglg The direc-  variable model. In the third section we present results of the
tion of polarization is perpendicular to the plane of incidencenumerical solution of these equations and compare the re-
in this casdsee Fig. 1a)]. Early experiments with this ar- sults with published experimental findings. We show that the
rangement revealed periodic and irregular motion of the dimodel exhibits complex nonlinear behavior and various
rector[4,5]. There has been considerable experimental efforfoutes to chaos, among them a rather distinct route that has
to explore the properties of the irregular regime recentlynot yet been observed in an experimental system. In the
[6—9]. Observations show that the initial oscillations grow fourth section we show that refined versions of our model
more complex as the intensity of the incident laser beantsing more variables also possess the basic properties that
increases, eventually turning chaotic. While attempts at demake this particular scenario of transition to chaos possible.
riving a model for this complex behavior have bed@8iL(],
a proper theory derived from the basic equations that repro- LC

duces this chaotic behavior has not yet been developed. oOg
In this paper we report on the derivation of a set of ordi- g&g
nary differential equationSODES for the motion of the di- 2%
rector from the fundamental equations for LCs and electro- =S
magnetic waves. We solve these equations with a computer c&
and show that they indeed give rise to complex and chaotic = L

FIG. 1. (a) Geometry of the setup: a slightly oblique ordinary

*On leave from the Research Institute for Particle and Nucleawave incident upon a cell of nematic LC with homeotropic orien-

Physics of the Hungarian Academy of Sciences, Budapest, Hurtation. (b) Definition of the angles describing the orientation of the
gary. director.
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Finally, we generalize our model slightly with the inclusion formation S:{A;}—{—A;}, so that only odd powers of the
of additional static electric and magnetic fields and discus#\;’s can appear in the first set of equations and only even
the advantages of studying such a sytem. A short account gfowers in the second set. The linear coefficidrftsL® and
some of the results presented here has been published tine nonlinear one®”,Q*,RA,P® QB R® are functions ofs
[14]. =sq/+/e, (the angle of refraction of an ordinary wave in the
cell), e, =e,/e, (dielectric anisotropy paramejethe ratios
Il. MATHEMATICAL MODEL of the Frank constant; /K5, K,/Kj, the intensity param-

We consider the scenario depicted in Figa)l with a eterp defined as

linearly polarized plane wave incident upon a cell of homeo- | 72 c(s, +8,)K
tropically aligned nematic LC at a small anglg The direc- p=—, lg=—% oL el

tion of polarization is assumed to be perpendicular to the Ie L eaE

plane of incidence, i.e., the incident wave is an ordinary ) ) ) ) ,

wave. We assume strong anchoring of the nematic at thel 1S the laser intensityle is the threshold intensity of the
boundaries of the cell. We describe the time- and spacdight-induced Fredericksz transitioiLIFT) for perpendicu-
dependent orientation of the directufr, t) using two angles 1ar incidence{1,2]], and the parameter:

o(r,t) and ¢(r,t) [see Fig. )] and seek dynamical equa-

2
tions for their evolution. These equations will include terms o= L Soeako
that describe the torque exerted on the director by the electric T 2\e, (e, +&,)

field of the light wave as well as the elastic stresses that arise

in the LC as a response to deformations of the homogeneoyg, is the wave number of the incident light in vacuumr
alignment. The main difficulty is that the electric fietdgr,t) is (to a very good approximatigrthe phase shift between an
must be obtained from Maxwell's wave equations with theordinary and an extraordinary wavie latter is polarized in
r-dependent dielectric tensor given ey =¢, 6j;+&,n;in; the plane of incidengeat z=L in the case of undisturbed
(here g, is the dielectric permittivity perpendicular to, homeotropic alignment of the LC. The detailed derivation of

ea=¢|— ¢, the dielectric anisotropy the equations that yields the precise expressions for the vari-
To simplify the problem, we assume th@ the orienta- ous coefficients is presented in the Appendix.
tion of the director depends on tzecoordinate only andb) To consider the number of modes we must keep to be able

the angles are smal|q|,|¢|<1). This latter assumption al- to describe the observed phenomena, we examine the linear
lows us to expand all expressions as power series in thegerms of the equations. The general expressions for these
angles and drop all terms of higher than third order. It alsaerms in the limit?><1 when terms proportional t&* can
allows us to use perturbation theory when calculating thébe omitted are

electric field corresponding to the reoriented state of the LC.
To obtain a set of ODE’s for the time evolution of the angles,
we write them as a sum of sine functions that satisfy the
boundary conditions ¢(z,t) =2 ,A,(t)sin(h7z/L), 6(z,t)

2
K
U=~ M2 p+ 2 [14+2(~ 1),

=3B, (t)sin(h7z/L) (L is the thickness of the cgll and A 2(—1)M«?%p
project the original system of equations on these modes. Af- mnT " mn m#n, ()
ter truncating this system we have a finite number of ampli-
tudes A4, ..., A;,B1, ... ,By) and a set of coupled, first LB —_m2s
order, nonlinear ODE'’s for these variables that contain terms mn mn
up to third order. Their general form is (see the Appendix This limit is sufficient for our purposes
as by using parameters corresponzding to the experimental
A — An. A A A A setup of[6,7] (see[15]) we obtainx“~0.06. One can see
A 2 L”AJ+% P"kA'Bk+J%I Qi AiBS: that in the absence of incident light € 0) all the modes are
K=l damped proportionally tan?. This is simply due to the elas-
A tic stress that a sinusoidal reorientation induces in the LC. A
+,<zk<| Riji AJAA mode of higher order(i.e., shorter wavelengthinduces
greater stress. The incident light excites modes dfeori-
_ entation in they direction—the direction of polarizatigrbut
8= LIBj+ > PR AA+ D QR BAA not 6, so theB; amplitudes are always linearly stable. The
J I=k Lk first mode to become unstable in tgedirection is theA;
mode, and the threshold intensifthe intensity when the
B n electric excitation overcomes the elastic dampiisgp.=1
+js2ks| RijiaBiBiBr. +0(x?), only slightly increased by the nonzero angle of

incidence. The coupling between the differentmodes in-
wherer= yL?/ 2K 5 is the characteristic time of the director duced by the electric field is also proportional #6 so we
motion (y is the rotational viscosity of the LC ari€l; is the  anticipate that those modes that are very far from being lin-
elastic constant of with respect to bend deformations; seearly unstable are not excited significantly and can be ne-
[1,2]). The inversion symmetry with respect to tke plane  glected. The intensities we consider here lie in the region
implies that the equations must be invariant under the trans=1-2.5, so that only th&; mode becomes unstable and it is
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sufficient to take the first two modes in the direction
(A1,A,) and the first mode in th@ direction B,) to de-
scribe our system. The following two modés,B, have a
linear damping rate several times larger than these three in
this intensity region. Since we need at least three variables to
obtain chaotic behavior, this three-variable model with third
order nonlinearities is also the simplest one that can be ex-
pected to exhibit the complex behavior observed in the ex-
periments.

IlI. ROUTES TO CHAOS IN THE THREE-VARIABLE
MODEL

A. Transition to chaos via gluing bifurcations

The equations obtained for the three-variable model can
be solved numerically for various parameter values. We ex-
plored the behavior of the model using the light intengity
and the angle of incidenag as control parameters. All other
parameters were chosen to correspond to the setup used in
the experiment$6,7] (see[15]).

First we discuss the casg=7°, which is the angle of
incidence used in the experiments. At this angle, the basic
state &;=A,=B;=0) loses stability atp,~1.065. It be-
comes a saddle point and two symmetry degenerate off-
origin fixed points are produced, which corresponds to a sta-
tionary reorientation of the LELIFT). The symmetryS is FIG. 2. (a) Simple limit cycles in three-dimensional phase space
broken spontaneously. Not too far abgyethe amplituded; ~ spanned byA;, A,, andB; atsy=7° andp=1.78.(b) The limit
dominates, which corresponds to a simple sinusoidal reoricycle atp=1.80875 at the first gluing bifurcation where it is com-
entation in they direction. At higher intensities the nonlinear Posed of two homoclinic trajectories with infinite periods) The
interaction between the modes becomes important, leading fpuble-length limit cycle ap=1.85.
the growth ofA, andB;.

The stationary reoriented state becomes unstable in fom a line spectruniwhere all lines are integer multiples of
Hopf bifurcation atpg~1.71 and two simple limit cycles the same fundamental frequeidy a continuous spectrum.
appear in phase space which are mutual images Ubfe e emphasize once more that, while this route to chaos in-
Fig. 2a)]. The period of these limit cycles 5~13.5 s at yglves the creation otlouble-lengthlimit cycles at a se-
p=1.72 just above the bifurcation and grows with increasingyyence of points, it is very different from the usual period-
p- As the light intensity increases, the radius of the limit 4o pjing scheme, as the stable homoclinic limit cycle at the
cycles grows and ai; ~1.808 75 the two limit cycles merge i rcation has an infinite period. This quite distinct route to
in a gluing bifurcation at the origin. A4, the limit cycles are chaos was analyzed in a series of pagiéfs-13, but to our

homoclinic trajectories that Ie_ave the origin in the A, knowledge has never been observed in an experiment before.
plane (very close to theA, axis) and return along tha@, Figure 4 shows the Lorenz-like strange attractorpat

direction. Figure &) shows this situation. Slightly aboyg _ N : :

one s a g doulefngth it cyilg. 0] wrich  _21% T vt phase soace o rganied around e

is symmetric unde& This is not a period-doubling bifurca- ddl . pt t th ° syste 't bilit d the t

tion, however, as the homoclinic trajectoriespathave an saddie point at the primary Instability WC) an € wo.
fixed points formed in this primary instability that lost their

infinite period. Lo . .
At a certain intensityp,> p;, the symmetric limit cycle stability in the secondaryHopf) bifurcation atp,. These

loses stability and two asymmetric limit cycles are formedpo'_m_S are so-called type ”_ saddl_e fo_C|—they are unstable
that are mutual images undsiFig. 3a)]. These merge in a foci in a plgne and s_tab_le in a direction transverse to that
second gluing bifurcation ap,~1.9474, where the limit _pla_ne. A trajectory splra_llng outward from one saddle focus
cycles are again homoclinic trajectories with an infinite pe-IN its unstable plane will be attracted to the other saddle
riod [Fig. 3(b)]. The symmetric quadruple-length limit cycle focus along that point's stable direction. Reaching the un-
that is stable just abovp, is shown in Fig. &). This se- stable plane of that fixed point, it begins spiraling outward,
quence of splitting and remerging of the limit cycle contin- eventually being attracted back to the first saddle focus. The
ues and the set of valugs converge to a valug.,~1.98. largest Lyapunov exponent at this intensity.js=0.087 st
Beyond this point the motion is chaotic. The system exhibits At around p=2.5 the Lorenz-like symmetric attractor
typical signatures of low-dimensional deterministic chaosgives way to two asymmetric attracting sets, again mutual
such as great sensitivity to initial conditions and a positiveimages undeB. They are of the form of a Muaius strip and
Lyapunov exponent. The frequency spectrum of the modéhe scenario is similar to that occuring in the Shimizu-
amplitudes also shows this transition to chaos by changin§ylorioka model13]. As the intensity is increased, the system
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ation of limit cycles in the secondary Hopf bifurcation. As
the intensity increases and the system nears the first gluing
bifurcation, the limit cycles pass close to each other near the
origin, and this makes it possible for the system to make
random jumps between the limit cycles due to noise. There-
fore a stochastic regime is observed in the vicinity of the
gluing bifurcation. This is followed by periodic behavior
again in the regime where the double-length limit cycle no
longer passes very close to the origifig. 2(c)]. This se-
quence of stochastic behavior in the vicinity of a gluing bi-
furcation followed by periodic behavior between two bifur-
cations should continue, but the intensity steps used in the
experiments are too large to resolve any further bifurcations.
Hence at higher intensities chaotic behavior was observed.
The above interpretation is further supported by the observa-
tion of two modes of regular oscillation competing at a cer-
tain intensity value if8,9], which could be the random jump
between the two limit cycles close to the first gluing bifur-
cation.

A quantitative comparison is hampered by the fact that
the spot size in the experiments is not larger than the width
of the sample and one cannot assume the light to be a plane
wave even in the middle of the beam, The threshold intensity
of the onset of periodic behaviorp €& 1.71) is, however,
quite near to the experimental valugg. The system was
observed to be already in the oscillatory regimg=at1.86 in
[6], with the period of the oscillations being~12.5 s. Our
model exhibits sizable oscillations at=1.73 with periodT
~14 s. The predicted increase of the period of the oscilla-

FIG. 3. (a) p=1.94, two asymmetric limit cycles that are mutual tions with p in the first oscillatory regimebefore the first
images unde8&. (b) The homoclinic limit cycles at the second glu- gluing bifurcation is also in agreement with observations.
ing bifurcation atp=1.9474.(c) p=1.96, symmetric limit cycle The largest Lyapunov exponent of the attractor in the chaotic
created in the second gluing bifurcation. regime found in the experimeritg] (0.1+0.015 s 1) is con-

sistent with that found in our simulatior®.087 s* at p
returns to simple periodic behavior via an inverse period—=2.18).
doubling cascade.

A qualitative comparison of our simulations and the ex- B. Other routes to chaos
perimental observation shows that our model exhibits peri- Th io depicted ab . t th | 0 b
odic oscillations and a transition to chaos just as observed in_, . € scenario depicted above 1S not the only one 10 be
some of the experiment$,8,d. In these experiments peri- exhibited by this sytem. This can be seen already from linear

odic behavior is followed by a stochastic regime, after whichfStab”iny ar]aly.:,;ls c;f the bg:g: stagég], Whicrllz ca(nl)beTpr)]er—
the motion of the director is periodic again. This periodic ormed using the two modes,; andA, [see Eqs(1)]. The

behavior is followed by transition to chaos. In light of our gnalysis shows that the primary instability of the basic state

model, this sequence can be interpreted as follows: The olls @ stationary bifurcation only for small values of the phase

servation of the first periodic regime corresponds to the cre§h'_ft K a_nd a Hopf t_)|furcat|on for Iarger yalues &f(Fig. 5)'.
(With given material parameters is simply a quadratic

function of the angle of incidencs,.) The codimension-2
point (the Takens-Bogdanov poinivhere the linear part of
the equations possesses a double zero eigenvalue is the point
where the stationary primary instability that gives rise to two
symmetry-degenerate fixed points becomes a Hopf instabil-
ity that gives rise to a limit cycle. The secondary Hopf bi-
furcation that gives rise to two symmetry-degenerate limit
cycles and the gluing bifurcation where these merge exist
only below the Takens-Bogdanov poirfg=2/\/13. Forx
> k1g there is only periodic oscillation of the director above
a certain threshold intensity and there is no chaos. Slightly
below «+g the series of gluing bifurcations does not continue
to the accumulation point, the behavior returns to a simple
FIG. 4. Motion on the Lorenz-like strange attractorpat 2.18.  limit cycle after a finite number of bifurcations. The number
The largest Lyapunov exponent of the attractokjs=0.087 s 2. of these decreases as we approagh.




6682 G. DEMETER PRE 61

FIG. 5. Stability diagram of the homogeneous state onpthe
plane.p is the dimensionless intensity parametes; is the phase
shift between an ordinary and an extraordinary wave=at. in
radians(see the tejt In the region of instabilitfgray) the complex
growth rate of perturbations has a positive real part. The line of
stationary instability(solid line) joins the line of Hopf instability
(dashed ling in the Takens-Bogdanov pointk{z=2/\/13, prg
=13/5). The line of secondary Hopf instabilitgdash-dotted ling
also terminates at this point.

By varying the angle of incidence around 7° we find that
the route the system takes to chaos changes as the light in-
tensity increases. As an example, we will consisigr 4.5°.

The scenario is at first very similar to the case discussed
previously. First a stationary reorientation takes place, then
this state loses stability in a Hopf bifurcation, the resulting
limit cycles merge in a gluing bifurcation, and after the cre-
ation of the asymmetric limit cycles there is a second gluing
bifurcation that gives rise to a symmetric limit cycle just like
the one shown in Fig.(8). After this, however, we have an  FIG. 6. (a) Asymmetric limit cycle ats,=4.5° andp=1.85.(b)
inverse gluing bifurcation ap~1.847 that results in two Period-doubled asymmetric limit cycle at=1.88.(c) Asymmetric
asymmetric limit cycles again, which are mutual images un-Strange attractor gi=1.905.

der S These asymmetric limit cycles then undergo a period- . . -
doubling cascade to produce two asymmetric strange attradarous ord_ers, and sometimes several attractors and limit
tors. As the intensity increases, the strange attractors Wide?}/des coexist at certain parameter values.
and collide to merge into a symmetric strange attractor very
similar to the one shown in Fig. 4. Figure 6 illustrates some
steps in this sequence. The chaotic behavior is occasionally The fact that our model exhibits the scenario of transition
interrupted by periodic windows; a limit cycle that belongs to chaos via gluing bifurcations and agrees well with existing
to such a window is shown in Fig. 7. At still higher intensi- experimental observations is significant because it suggests
ties, the system returns to simple periodic behavior. that this scenario may be studied experimentally. However,

The scenario is again very differentst=3.5°. Here we
have observed the two routes to chaos to coexist. First there
is a period doubling route to chaos assgt4.5°, but then
two homoclinic trajectories are created and coexist with the
strange attractor. These homoclinic cycles then glue together
and as the intensity is increased we again get a strange at-
tractor[Fig. 8@)] which coexists with the other strange at-
tractor that was formed via the period-doubling casdédig.

8(b)]. The existence of this latter is interrupted by a periodic
window betweerp=1.884 and 1.888Fig. 8(c)]. At higher
intensities the two strange attractors unite to form one very
similar to that shown in Fig. 4.

Investigations with different angles and sample widths re-
veal that the system can exhibit a rich variety of different 0.2
behaviors where gluing bifurcations, period-doubling bifur-  FIG. 7. Limit cycle in a periodic window as,=4.5° andp
cations, chaotic attractors, and periodic windows alternate ir-2.1.

IV. REFINEMENTS OF THE MODEL
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the set of equations must be invariant under the inversion of
R® centered at the saddle point. The two eigenvalugand

N\, must belong tdR® andfR", respectively. Finally, we must
have\ ;< —\, for the homoclinic cycles to be stable, which
is also necessary for the observation of the gluing scenario.

It is not hard to see from the linear coefficients of our
equationgEqgs.(1)] that aroundp~1-2 all of these require-
ments are fulfilled. The saddle point is the origin where all
amplitudes are zero and there is no reorientation of the LC.
The symmetry propertys of the equations is precisely the
symmetry condition required, the two-dimensional subspace
spanned by A&, ,A,) corresponds t&k®, and the subspace of
B, corresponds t&R". The largest and only positive eigen-
value is close tol_’i\l, with the corresponding eigenvector
being in theA, ,A, plane and lying close to th&; direction.
[The reason for this is that we assumed<1. Relaxing this
condition does not change the fact that the eigenvector be-
longs to the A;,A,) plane] \, is justL®=—1. Aroundp
~1-2 we also have ;< —\,.

It is easy to see that taking more modes into account does
not change this situation. The symme®ystill fulfills our
requirements) , remains the same, and only will be per-
turbed slightly by the addition of furthek; modes. The cor-
responding eigenvector will also lie in the subspace spanned
by the A’'s and close to theA; direction. Continuing the
series expansions to higher order has no effect on the linear
terms, so we can conclude that the above mentioned proper-
ties are retained by any refined model containing more
modes and/or higher-order terms.

V. ADDITIONAL STATIC FIELDS

The precise values of the two largest eigenvaluesh ,
also play an important role in the gluing bifurcation scenario.
The so-called saddle index of the saddle pdivdre the ori-
gin) defined asy=1+\,/\; (which must be negative for
the homoclinic cycles to be stablgoverns the asymptotic
convergence rate of the series of bifurcation pomis This
convergence rate is defined as

S(v) = li Pn~ Pn-1 2
FIG. 8. (a) A strange attractor formed via gluing bifurcations (V)_n[r;pnﬂ—pn @
and (b) one formed via period-doubling cascade that coexistat
=3.5° andp=1.88.(c).A periodic limit cycle that coexists with the  gnq plays the same role as the famous Feigenba@im
strange attractor dfe) in the rangep=1.884-1.888. =4.662 . . . for theconvergence rate of the period-doubling
scenario. We mention that the famous Lorenz model exhibits
our model can be further refined by adding more termshe same symmetry properties as our system of equations,
and/or higher-order nonlinearities. We can suggest that thbut there the saddle index is positive for the parameters
gluing scenario may be experimentally observed on thisvhere chaotic behavior develops. Thus the homoclinic orbits
physical system only if any such refined model can also exare unstable and chaos appears in a discontinuous manner.
hibit the gluing scenario. We now consider slight extensions of our model with ad-
From previous work on this scenario of transition to chaoditional static electric or magnetic fields. One motivation for
[11,12, we know that there are several necessary conditionthis is the role the linear eigenvalues at the origin play in
for a set of dynamical equations to be able to exhibit thedetermining the routes to chaos that this system may take.
gluing scenario. First of all, there must exist a saddle point inThese eigenvalues, and hence the saddle index, depemd on
phase space such that all but one of the eigenvalues of ttend«. The dependence anis weak, however, and since we
Jacobian at this point have negative real parts. We denote tfemnsider only small angles of incidence we can vamnly
single postive eigenvalue by;. Furthermore, the eigenvalue slightly usings,. If we want to investigate how the transition
\, with the second largesgkeast negativereal part must also  to chaos withp depends on the saddle index, we may add
be real. Second, the phase sp&tenust consist of two sub- some static fields to the system. It is easy to see that a ho-
spacesR® and RY with dim(:R%)=2 and dim{r")=1, and mogeneous static field along any of the coordinate axis of
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be observed a&,=7°, »=0.84, andp=0.8.

Finally we mention that, as a practical advantage, one
may use the additional static fields that help destabilize the
homeotropic alignment of the LC to shift the region of inter-
esting nonlinear behavior toward lower light intensities to
facilitate the study of the system. This occurs, for example, if
we add a stabilizing field in thg direction which helps the
light field turn the director away from theaxis. [This cor-
responds to removingy from the third equation in Eq3).]

In this case the nonlinear behavior is similar to the case of
purely light-induced reorientation, but the threshold intensi-
ties are reduced.

FIG. 9. Strange attractor in phase spacsyat7°, »=0.84, and
p=028. VI. SUMMARY

Fig. 1. preserves the symmetry of the equations. These static We have studied theoretically the passage of a slightly
fields introduce new linear terms and therefore the lineaoblique incidence plane wave through a homeotropically
eigenvalues around the origin are changed. We can thus ealigned nematic LC with the direction of polarization normal
pect an even larger variety of nonlinear behavior to be obto the plane of incidence. We have derived a set of equations
served, and the possibility arises of investigating how theo describe the time-dependent director reorientation and
route to chaos changes as the saddle index is varied. found that at various intensities and angles of incidence the

As an example, we will consider adding a static electricdirector can show complex nonlinear behavior. We have dis-
field in thez direction, perpendicular to the plane of the cell. covered that at certain parameter values the system diplays a
We will assume the statidow-frequency dielectric anisot- route to chaos as yet unobserved in any experimental system.
ropy £5' to be negative, which means that this additional fieldAs predictions of our model agree well with existing experi-
will help to destabilize the homogenous homeotropic align-mental data, it seems likely that this distinct route to chaos
ment of the LC toward the-y plane, i.e., help the director could be experimentally realized in optically excited nemat-
turn away from thez axis. (Assuminge ,>0 for the light and  ics in the geometry described. We have also shown that the
£3'<0 for the static field is by no means contradictory; theProperties of our model that make this route to chaos pos-
dielectric anisotropy in LCs is strongly frequency dependengible are robust against refinements of the model. Finally, we
and a number of materials fulfill these requiremenhe  have shown that additional static fields may be used to gen-
insertion of the effects of such a field into the equations iseralize the system slightly and gain an even larger variety of
easily done and the linear coefficients can be written as  interesting nonlinear behavior.
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where 7 is a dimensionless parameter that is proportional to

the stength of the static electric field and is scaled such that
the destabilization of the first mode due completely to the
static field (the classical Fredericksz transitionoccurs at
n=1. Using this new control parameter, one can change the To derive equations of motion for the time-dependent re-
value of the saddle index at a fixed value of the incidencebrientation amplitudes we can use the equation for the direc-
angle and laser intensity. tor motion that can be derived from the usual orientational
Solution of the equationg=0.1 ands,=7° shows that free energy, which includes the dielectric contribution aver-
the pure gluing scenario observed in the absence of the stataged over the optical frequency oscillatidis2],
electric field(see Sec. Il A changes into a mixed scenario
where after the first two gluing bifurcations there is an in-
verse gluing bifurcation and then a period-doubling cascade.
The new scenario is similar to the scenaricgt 4.5° with-
out the static fieldsee Sec. Il B. Investigations show that _ %a
the gluing scenario is already replaced by the period- 167
doubling cascade for small negative values of the saddle in-
dex, not just positive ones. If the magnitude of the static fieldHereK, ,K,,K; are the Frank constants of the LC andis
is larger, the behavior of the system changes completely. Athe (optical frequency dielectric permittivity perpendicular
example is the strange attractor shown in Fig. 9, which cano n, e,=¢|—¢, the (optical frequency dielectric anisot-

APPENDIX: DERIVATION OF EQUATIONS
FOR THE REORIENTATION-MODE AMPLITUDES

K K K
F= 71(V-n)2+ 72(n-V><n)2+73(n><V><ﬂ)2

In-E|2. (A1)
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ropy. We consider solutions that depend on ztewordinate  to third order in the angles and insert it into E¢A3a) and
only. The equations of motion for the two angle$z,t), (A3b). Because we assumed onlyz dependence
0(z,t) that describe the orientation of the director through of the director, we can use the stratified medium
approach for the wave propagatid2] and write the
n=(sin #,cosé sin,cosé cose) (A2) fields as E(r,t)=3[E(zt)e00e “'+c.c], H(r,t)
=1/ H(z,t)e'sokXe T+ c.c]. (ko= w/c is the wave num-
[see Fig. 1b)] can be deduced using standard variationaber in vacuum. The slow time dependence of the functions
procedures with the dissipation functi® (y/2)n? Herey  E(z.1),H(zt) can be omitted in Maxwell's equations. We
is an effective rotational viscosity including the so-calledCan also neglect the magnetic anisotropy at optical frequen-
backflow effects to lowest ordésee, e.g.[17]). The calcu- ~ Cies, SO from the wave equations we get
lations are lengthy, but straightforward. Assuming
[16(z1)],|e(z,t)|<1], we can expand the expressions as a
power series in the angles and neglect all terms that are ) —
fourth order or higher. When counting orders of magnitude, a7~ kDY, (AS5)
we must remember that the incident light is polarized ini-
tially along they direction, and in the absence of director
reorientation its polarization remains unchanged. The genwhere
eration ofE, andE, is therefore due to the reorientation and
these components will be at least first order in the angles. To

further simplify matters, we get rid df; andK, by writing E.(2)
K1=2K3/3 andK,=K3/2, which approximately corresponds Hy(2)
to the properties of the materigl7 used in the experiments. V(z)= Y (A6)
With all these simplifications the equations of motion for the Ey(2)
angles become —H(2)
2 ¢* ¢ 3 2, 2Ks 2 . .
Yop=Kadzo| 1= 5 =& +F‘P0‘910+T¢(‘910) is a column vector with four elements and
3Ka00,00,0— 2 o(d,0)2+ |E|2i—£ .
3bo,pd; 3 (o, €alky 87 127 B €750 1_& _EyZSo 0
2 €27 €22 €27
€aP _ 1o ¢
- 87T|EZ| +8a(E§Ey+EzE;)(ﬁ— g) . _e)z(z _SaS _ Sayn
XX 6_ € Xy €
saﬁ . i} D(Z) — zz zz zz
+ 167 (EXEy+EXEY) (A3a) 0 0 0 1
2
€y7 € €750 €
2 2 Exy™ %yz _i; éyy_e_yz_sg 0
3,0=K30°6 1—0——(’1 +& 69> +%0(a )2 “ “ “
Yot 307 3 2 6 z® 3 z® (A7)

K3 2 8a0 2 2
~Kagdpd0— 5 0(9,0)"+ g - (|EJ*=[E) The third component of the electric field is given by

e 0(p2 e
- g |E/*+ 1o (EXE,+EE})
So €xz €yz
Ez(z):__Hy(z)__Ex(z __Ey(z)- (A8)
€20 L. Eapl . €227 €27 €72
+E(EX Ey+EEY)— e (EY E,+E/E7).

(A3p)  To get an expression fdD in terms of the angles we must

substitute the expression for the directé2) into Eq. (A4)
The explicitt and z dependence op, 6, andE; has been and then the elements of the dielectric tensor into @&q).
suppressed here for brevity. The main difficulty comes fromThe complicated expression we get can be simplified by
the fact that the field components must be obtained frondropping all fourth and higher order terms with respect to the
Maxwell’s equations, which contain thedependent dielec- angles. We also introduce the notatins, /=, (the angle
tric tensor of refraction of an ordinary wave in the absence of reorien-

tation), ande,=¢,/¢, (anisotropy parameterFurthermore,

€ij(z,t)=e, 8;+e,nin;. (Ad) we splitD into two parts; one contains the zeroth order terms

(i.e., the part oD that belongs to the reorientationless state
Thus the field components will depend on the angles in af the LC and is therefore not dependentz)rand the other
nontrivial way. We must find an expression for them correctcontains the resf(z) =Dy+ D;(2):
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It is now convenient to use the formalism of Oldari@]
and transform to a representation wh&gis diagonal. To

do thj we define the eigenvalues and eigenvectiogs:;
=a;a; where

Ve V1=

2

S
az=—a,=—e, \/1-—,
3 4 L 1+e)

: —az_

and

g 2=

_ 1
e 1=

for the scalar product of these vectors. With this metric, the
eigenvectors are orthogonal to one anot@rlvlaJ GijN;i,

with N; being the “norm” ofaI (which, however, can now
be negativi andE}r denotes a row vector. The identity
PHEY /Ni)aiEiTz D, can easily be proved. The eigenvectors
and eigenvalues oD, give the polarization and index of
refraction of the four “proper” waves, i.e., waves that
propagate without changing their state of polarization in the
medium in the absence of director reorientation. There are
two forward and two backward propagatmg modes with the

mOdeSal,az being the ordinary waves an@ ay, being the
extraordinary ones. From Eq6A6) and (A9) it is obvious
that the ordinary waves havg,#0 andE,=H,=0, while
the extraordinary waves haeg,=0 andE,#0, H,#0.

Writing the state vector in the form \f(z)
=>b(z2)exp(koa) ay, we may transform EqA5) into in-
tegral equations for the variablég(z),

zik , ,
bk(Z):bk(O)"r‘f N_OE ij(Z’)bj(z’)e_'ko(ak‘aj)z dz’,
0 Nk
(A10)

where ij(Z)=;IMD1(Z)aj are the matrix elements @,
between the eigenvectors. We expect the director orientation
and the field components to change very little on the spatial
scale of the light wavelength, so the functidnsandP,; will

be almost constant on this scale, and the rapid oscillation of
the exponential term in the integrand will average out those
terms from the sum where the two eigenvalagsa; are of
opposite sign. Thus modes traveling in opposite directions
are not coupled by EqA10). The physical meaning of this

is that in the absence of dielectric boundarigghere the
dielectric properties do change considerably on the spatial
scale of the wavelengthhere is no reflection.

As we have assumed strong anchoring at the boundaries,
the initial conditionb,(0) in Eq.(A10) in the present situa-
tion is a forward propagating ordinary wave zt 0 inside
the medium. We therefore write(0)=(0,A,0,0), the am-
plitude Ay being proportional to thg component of the elec-
tric field at z=0. By virtue of the argument made in the
previous paragraptand neglecting reflection from the other
boundary we may drop the two backward propagating

modesa; andas, as these will not play a role, and we may
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reduce the problem to two variables. The four elements ofhe phase shift between the ordinary and extraordinary waves
the matrixPy; that we will actually need, expressed to third at the far edge of the layee{L) in the absence of reorien-
order in the angles and with the coefficients of the varioudation divided bysr. Herek=Kkq/z, is the wave vector in the
terms slightly simplified using?<1, are medium. Introducing the scaled coordinate=2z/L, ¢
€[0,1], we can now write Eq(A10) for b,(g) andb,(g) as

el @2 .
P22: . [ IkOL 9 ’ ’
1te, ba(9)=Ao+ N_zfo [P22(g")b2(g")
seap  ea0¢  ssi0¢ +P2i(9')by(g)e ™9 ]dg’,
P24: P42: - 1+e’ 1 ’ N2
ey ltel (1+e)) L
ikoL (9 , ,
s(—2+el)ele® b4(g)=—N4 fO[PM(g )b, (g")
3(1+el)? -
+Pa(g')by(g)e '™ ]dg". (Al
b _ 2se,0  £,0° 25(—2+s&})e,0° This equation can be solved using successive iterations with
M T e T 1tel | 3(1tsl)? b= Ao, b§”=0. To get the coefficients, to third orderin
the angles, we must iterate three times. The expressions will
S?el@?  s(—1+el)elfo? involve multiple integrals of the still unknown functions
- (1tc)2 (1+s.)2 : 0(9),¢(g) in a complicated way. They can be simplified
a a

slightly L_lsingsz<_1, and used to calculate the state vector,
The only expression appearing in the exponent within thdfom which the fields can be obtained via Eq46) and
integral in Eq.(A10) will be the difference of the two eigen- (A8). These can then be used in E¢83a) and (A3b) to
valuesky(a,—a,). We may expand this too as a power ge-obtain an equation of motion for the angles. The equations
ries in the small quantitg and drop those terms that do not €an be simplified significantly if we restrict ourselves to the

2 - .

cause a significant phase shift at the upper limit of the do#” <1 case. Since using parameters that correspond fo the
main of integrationL. SinceL~10°A—10°\, one can see EXPeriments(6,7] gives us«°~0.06 (see[15)), we drop
that with typical material parameters only the first termt€rms proportional toc” or higher(there are no odd powers

(which is quadratic ins) is needed and the second one of « in the expressionsin this case it is actually enough to
(which is proportional tes*) is not. Thus we define iterate Eq(A11) twice, because all terms that come from the

third iteration are proportional t&* or higher. It is also

L e’k convenient to multiply Eqs(A3a) and (A3b) by L%/Kgm?
k= —Ko(ay—a,)~ — S and introduce the notatiom= yL?/ 7K on the left hand
@ T 2(1+e,) side. The equations of motion now become

, 1 o* ) 1 , 2 , 3 1 5 eap e
Tﬁt(pzo"g(p? l—?—? +W¢60g0+ﬁq)(090) —?069(;9(999—?49(09@) +po+ 15e!
2(-142sp¢° (1) (1) m’p (1) (1) )
3(1+e)) T kpl = L5Nge) + gL (@) ]+ — {=L£(g00)+9L M (00)+2L (¢, 0)
a
772K2p
+[-LB(ge)+gLB(e) 16} + 2 {=2£@(,000—LD(¢,0°)-2LP(¢0,0)
+[LD(ged) —gLD(90)]10+ LD (@) LD (9?) 2L P (p,0)o— L (¢?,0)}, (A123)
1 6> @ 1 5 1 1 pOo?® wK?p
_ a2 2 2 2
T&ta—ﬂgﬁp(l—§—7)+Wgoeﬁg(p‘f'mg(ﬂg(p) —?(pﬂg(p(?gﬂ—ﬁﬁ(&gﬁ) — 1+8é S
7T2K2p
X{=LO(@)?+ [~ LDge) +9LD (@) ] e} + ——{2L D (0¢) LM (@) + LD()?0
+[£M(g0¢)—9L D (0¢) - 2L P e, 0) ¢}, (A120)

where we have introduced the two integral operators

LOx(g))= ffx(g')dg', £@(x(g),y(g))= ny(g') fog/x<g">dg"dg' (A13)
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that operate upon functions of the scaled lengtiAt this point it is straightforward to write the angles as a series of sine

functions¢(g,t) == ,A,(t)sin(hmg), 6(g,t)==,B,(t)sin(h7g), carry out the integrations, and project the result on the various

modes to get a set of nonlinear ODE'’s for the mode amplitudes. For the minimal model of three vdhahkes B,} these

equations become

2
As(t) = A1) (— 1= k2p+ p) — Ax(t) kZp+ Ag(H)By(t) b

+A,(1)B(t)

(256+972%) k%p
36s7

1 3elp (141+4772)K2p 1 3(—2e5+1)p 3k K°p 127x%p
2l _ = all 3=
+A(1)By(t) ( 3"'4(1_’_8(;) 2852 +A(t) 6 1- (1+s0) 2 —Ay(1)By(1)? 3652
5 (2¢) —1)p 7K%p Kp K%p
2[ 2 2 3
+ALDAL(D) (6 Tron e | AP gzt A 5 (AL43
. k2p ) (256+972)k%p 64x2p
TA(1) =Ax(t)| — Tp | +AL(D) K p—AL(t)By(1) 3657 Ax(t)By(t) 957
eLp ) ,127%p ) 5 (28;—1),3 9x%p
FAUDBID? Z 5y or e | FALDBID R g AP g o g
2 (—2e,+1l)p 5«%p K? 3k%p
3| 2 a 3K P 2
+A,(t) (3 2(1+eD) 82 +A1(t) —A(1)Ax(t) S (Al4b)
. (— 16+ 7)) k%p 32«%p (—256+972) k%p
- 2 _ 2
7B1(t) = —Ba(t) +A(t) Som Ax(t) 957 +AL(H)A(L) 3657
1 36p  (147-47%)Kk%p\ By(t)3 p 185«%p
2 _ + 2
FALD2B() 7 (20 Trer = gty ST
7x%p
+A1(t)A2(t)Bl(t)2_sz- (Al4c)
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