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Numerical renormalization group of vortex aggregation in two-dimensional decaying turbulence:
The role of three-body interactions
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We introduce a numerical renormalization group procedure which permits long-time simulations of vortex
dynamics and coalescence in a two-dimensional turbulent decaying fluid. The number of vortices decreases as
N~t~¢ with £~1 instead of the valué=4/3 predicted by a rime kinetic theory. For short time, we find an
effective exponen€~0.7 consistent with previous simulations and experiments. We show that the mean
square displacement of surviving vortices growsx® ~t*¢2, Introducing effective dynamics for two- and
three-body collisions, we justify that only the latter become relevant at a small vortex area coverage. A kinetic
theory consistent with this mechanism leadsétel. We find that the theoretical relations between kinetic
parameters are all in good agreement with experiments.

PACS numbds): 47.10+g, 47.27—i

I. INTRODUCTION physical quantities listed above. In Sec. I, we show that the
surviving vortices have a hyperdiffusive motion with an ef-
In recent years, a great deal of work has been devoted tiective diffusion coefficienD~t¢2, and a flight time distri-
the study of two-dimensional turbulence. Two-dimensionalbution decaying with a power-law tail. We then consider a
turbulence is not only relevant to the study of geophysical‘naive” kinetic theory for the vortex decay dynamics pre-
and astrophysical flows, but it is also far more accessible télicting £=4/3. In Sec. I, we introduce a numerical renor-
modern computers and experiments, since the measuremehglization group(RG) procedure which permits very long
and the visualization of the velocity and vorticity fields are Simulation times. Although the numerical diffusion coeffi-
much easier than iB=3. In addition, two-dimensional tur- Cient is well described by the preceding kinetic theory, the
bulence has deep connections with other fields of physicdecay exponent is found to be significantly lower than ex-

such as electron plasmas in magnetic figld and stellar pecteq €~1 ins'tead of¢=4/3). In Sec. IV, we de_rive an
dynamics[2]. effective dynamics for two and for three neighboring vorti-

o . . . ces subjected to the effective noise due to far away vortices.
For the specific problem of two-dimensional decaying tur-., .. . ;
bulence, recent experimenti8—5] and theoretica[6—16] W|th|n these simple models, we re]ate the average merging
) . time to the decay exponegtfound in the RG simulations.
works have e'mpha5|zed' the |mportance of coherent vqrte ur main conclusion is that the lower than expected value
dyna_mlcs during the fluid d_ecay. .T.h.'s process ess_entlall¥or & could be explained by the fact that two-body collisions
co_nS|sts of thre_e stages: during an initial transient pe_nod, the e irrelevant at large time, whereas three-body collisions
fluid self-organizes and a net_work of coherent vort|c_es aPpredominate. In Sec. V, we present a simple kinetic theory
pears. Once the coherent vortices have emerged, vortices dl%king these three-body collisions into account and yielding
appear through mergings of like-sign vortices, such that theig= 1 The importance of three-body collisions in vortex dy-
numberN decreases and their average radiugreases, ina namics was previously pointed out by Novik§¥7], in a
process somewhat reminiscent of a coarsening dynamiGifierent context. Throughout this paper, we compare our
[16]. During this process, and in the limit of small viscosity, results to recent experimenf8-5] and find a very good
energy remains constant. When only one diptde very  overall agreement.
few) remains, it finally decays diffusively.
From the theoretical point of view, the *“coarsening”
stage is certainly the most interesting as, in principle, it can Il. KIRCHHOFF MODEL
extend on an arbitrary long time period. In this regime, the
main question arising concerns the existence of universal
features including the decay exponéntN~t~¢), and other As we are mainly concerned with the coherent vortex dy-
exponents which describe the time evolution of quantitiegi@mics and merging processes, it is natural to focus on the
such as the average vortex radius, the enstrophy or the kugffective behavior of the sole vortices, neglecting the inco-
tosis. herent background. The route to such an effective model
In this paper, we first describe an effective model for thestarts with the work of Kirchhoff{18] who obtained the
vortex dynamics and review the main experimental and nugquations of motion of pointlike vortices in the zero viscosity
merical results concerning the temporal evolution of thelimit. Vortices follow a Hamiltonian dynamics where the
vortex center coordinateg andy; are conjugate variables:

A. Generalities
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[—=——, 2 N(t)~ ———, )
Ldt o ax (t) (1+1/ty)¢
whereT’; is the circulation of vortex, and whereH denotes

= with £€~0.70-0.75, much smaller than the exponent pre-
the Hamiltonian

dicted by Batchelor theoryé=2) [20]. The conservation of
the total energy and mean peak vorticity leads to the occur-
H=-> I In(ry), (3)  rence of only one independent exponent for the time evolu-
1#] tion of physical quantitie§7,9]:

wherer;; stands for the distance between vorticeand j. N(t)~R2~t"¢, r~t, 8
These equations of motion can be more explicitly written:
Z~t" 2 K~tf? 9)
dx; 2 Yij 4 ) . . ]
E——j#i Jr—z (4 whereR is the typical distance between vortices, aZ'ld_
] ~Nu?r? andK~(Nr?) ! are the entrophy and the kurtosis,
respectively. The exponeitand the predicted scaling laws
%: F-ﬁ (5) are consistent with experimenit3—5|] and direct numerical
dt = ! rizj ' simulations[9] of Navier-Stokes equatiofusing a hypervis-

cous dissipation terin
These equations are strictly valid for pointlike vortices and
cannot describe vortex mergings. This should be accounted B. Limitation of numerical simulations
by hand by definingad hocmerging rules as introduced in
Refs.[7,9,13. The authors of Ref.9] determined a criterion
for the merging of two like-sign vortices of radij andr,,
within the elliptical-moment mode19]. They found that,
for ry<r,, collapse can be observed for an initial vortex
separatiod<r.=ar,+ brf/rz, wherea andb are numerical
constant of order 1g~2.59,b~0.61[9]). Usingr,;<r, and
a>3hb, one easily obtains

The Kirchhoff simulations and actual experiments cited
above were only carried out for very short time. In Ré&X|
(as well as in experiment3-5]), the number of vortices
decays by less than a factor 4 at the maximal accessible time
tmax- Raw data show significant curvature on a log-log plot,
hence the introduction of an extra fitting paramegein Ref.

[9] [see Eq(7)]. Sincety~ta/3, the simulation time is of
the order of the transient timg, and the scaling regime for

a+b t>t, is probably not reached. In R€f9], the authors ob-

—(rtry=sre=ari+ry), (6) tainedty~5%10 2, to be compared ty+ to~19x 10 2

as expressed in their time units. In this time range, the den-

which shows that . is of the order of the mean radius. In SItY typically decays by a factor of order 2.6. As a matter of
Ref. [13], the authors in fact used.=a’(r;+r,) (&’ f_act, f[he actual equne@t_obta_med by measuring the _Ioga—
~1.7). Thus, if one considers a collection of vortices of thelthmic slope at the final time is of ordgr~0.6, as obtained
same typical size, it is clear that choosing the same criticalPy Benzi and cg-worke_rBlS,M] (also see Sec. ”!B
distance for all mergings, equal to the average radifsthe It would be interesting to explore the domain of lower
population of vortices, cannot drastically affect the modelVO"teX densityn, as in all S|mulat|ons_perfo_rmed S0 far the
properties. This was actually verified in REL6]. Now that ~Mean free patfiof the order of the typical distance between
the merging criterion has been given, the properties of th¥rtices[11,21) remains of the same order as the radius size.
vortex resulting from the merging of two like-sign vortices In other words, the fraction of area occupied by the vortices,
must be specified. Motivated by experimefs-5] and nu- N2 (2
merical simulationd9,12,13, the authors of R.efs[:lz,l?g g= =n7rr2=7r(—) , (10)
and[7,9] assumed that the average peak vortieitys con- L? R
served throughout the merging process, as well as the energy
since the inviscid limit is considered. As the total energyremains quite large in the early time of the dynamics. Be-
scales aE~Nw?r* (with a possible IIN correction, this  cause of the scaling laws of E@), R grows faster than the
shows thalNr* should be conserved, or, equivalently, that amean radius, such that vortices become effectively more
vortex of radiusﬁ’:(ri-kr%)lﬂl results from the merging of and more pOintlike, a regime which seems to be out of nu-
two vortices of radiir; andr,. Note that this conservation merical reach, and which should develop fert,. The uni-
law is consistent with the observed slow enstrophy dissipaversal features of the vortex dynamics should only appear in
tion [12]. The Kirchhoff Hamiltonian dynamics and the this regimes<1.
above merging rules finally define the “Kirchhoff model,”
also called “punctuated Hamiltonian dynamics of point vor- C. Kinetic theory for the Kirchhoff model
tices” in the literature.

Numerical simulations of this model, starting from a
population of vortices having the same typical radius, results In the absence of mergings, the chaotic Kirchhoff dynam-
in a narrow radius distribution at all subsequent tiff&46]. ics is known to lead to an effective diffusive motion of the
Moreover, it is observed that the number of vortices decaysortices[16,11,2]. The diffusion coefficient can be calcu-
as a power law, lated by computing the fluctuation timg(v) for a given

1. Diffusion coefficient
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vortex velocityv and averaging the quantity’T(v)/4 over  The flight time between two deflections or large velocity

the velocity distribution. This calculation was extensively fluctuations is directly related to the fluctuation timéntro-

described in Ref.21], and here we present a simple heuristicduced above.

argument leading more directly to the same result. Let us assume that this distribution presents the natural
Using Eqgs.(4) and(5), the average velocity squared is  scaling form

T

CREDY F_ZJZ 11 P(T*t):<T>_1f(m)~<T>"“_17_”, for 7+,
Torh 15

where we have neglected the contribution of off-diagonalyith x>2, such that the average fluctuation tiwe ~t¢/2
terms obtained when squaring £4) and Eq(5). If we as-  exists. Then, after a time=3",7;~m(7) (m deflections,

sume the vortices to be uniformly distributed on average, an@nd using thatv?) is essentially constant, the mean square
the circulations to be equal up to their sign, we then obtaingjsplacement reads

2 (L xdx m t
<v2>~NF2FJ —2~2nF2In(L/r)~nF2In N, (X2>~(vz)< 2 Ti2>~m<7')“lf s P e
rooX i=1

(12 (17)

where we have introduced the vortex typical radiuas a where we have used the relatior m(7). By definition, we
natural cutoff. This expression already obtained in Re6]  also know that
was qualitatively checked in Ref11], and is confirmed by
our simulations of Sec. Ill B. (x)~Dt~(v?)}(n)t, (18)
It is then natural to assume that the mean free pattof A Lo
orderR, the typical distance between vortices, as proved inWhICh finally implies that
Ref.[21]. We then obtain the expressions for the mean free w=3. (19)
time 7 and the diffusion coefficient,
| 2 This result is in perfect agreement with the statement made
1 in Ref.[11] that vortex dynamics can be represented by mar-
=R, aiwad U VInN) DN?NFM' ginal Levy flights, at the border between Gaussian random
(13)  walkers (u>3, such that the second momentroéxisty and
true Levy flights (w<3). Itis very satisfactory that the value
in agreement with our more sophisticated treatnj2at. found for u is independent from the dynamical exponént
Now, if we include merging events, these different quan-indeed, at a given timg and as(7)<t, the instantaneous
tities are expected to vary with time as both the densi@yd  flight time distribution should not be sensitive to parameters
the typical circulationl” do. If we drop logarithmic correc- Jike ¢ describing the evolution, and should be the same as

tions for now, we obtain that observed in a system for which mergings are frozen out,
12 I ” as in Ref.[11].
I~t%%, r~t% v~const, D~t% (19 However, in the experiment of Reff5], an exponeniu

_ ) - o =2.6=0.2 has been observed, slightly lower than our value

Note that this expression for the diffusion coefficiéndif- =3 The authors of Ref;5] implicitly assumed that r)
fers from that obtained in Ref5] (D~t*"). Indeed, the was constant in their experiment, although the inset of their
authors of Ref[5] used the merging timeneq to compute  Fig. 16 clearly shows that the flight time distribution in the
D, instead of the fluctuation or mean free time which is rel-tjme periodt=5-10 s is shifted toward larger values
evant here{?l,l]]. A naive estimate of this merging time is compared to that measured in the intertal2—5 s (we
addressed in Sec. Il C 2. _ predict that this shift should be by a factor of ordéb

Finally, we predict that the mean square displacement of. 10)/(2+5)]é2~1.3, in agreement with Fig. 16 of Ref.
surviving vortices(or test particlesin the decaying fluid [5)) 'we can now reproduce the above calculation with the
should behave g21] new assumption that

~ M +
(O ~t" with v=1+ 5 Pin)y~r# for =, 20

5 (15

with u>2, such that the average fluctuation time is now

In Ref. [5], the authors found~0.7, which leads tor  time independent. Then, after a tirhe =% ; 7~m(7)~m,
~1.35, using Eq(15). This must be compared with the ex- the mean square displacement now reads
perimental valuesy~1.3 for vortices andv~1.4 for test m .
particles moving along the current lines of the fluid. Equa- N2 2\ 2o h—p v
tion (15) is also in good agreement with our simulations of )~ ><i21 Ti> mJ Tttt (2)
Sec. I B.

Note that this hyperdiffusive behavior can be interpretedThis shows that within this interpretation=4— u, or using
by invoking a power-law decreasing flight time distribution. our result forv, that
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(22

¢ ll. NUMERICAL RENORMALIZATION GROUP  (RG)
n=3-3

A. Implementation of the numerical RG

In this section, we address the problem of performing
Using é~0.7, we findu~2.65, now in very good agreement long-time simulations, allowing for low vortex densignd
with the experimental valug=2.6+0.2 measured in Ref. total vortex area coverage. Direct simulations of Kirchhoff
[5]. However, let us insist again on the fact that the correcequations are doomed to failure since each evaluation of a
form for the flight time distribution is definitely the one in- vortex velocity involves the sum ovét terms[see Eqs(4)
troduced in Eq(16), and that if vortices were actually dis- and (5)]. To access very low densities, one must therefore
playing a true Ley particle behavior, it should have been start out with a very large initial number of vortices, which
seen in simulations where mergings are frozen[&at. In-  yesults in a very slow early dynamics.
stead, our conclusion is that vortices are marginalyljear- The idea of the approach that we introduce in this section
ticles, with an exponent = 3, independent of the decay ex- is to work with aconstantumber of vortices in a reasonable
ponenté. Note that this could induce logarithmic corrections range (N~ 10— 160), and progressively increase the domain
for various dynamical quantities includimg(t), which could  sjze L by a procedure detailed below. For simplicity, we
strongly affect the precise determination of dynamical expowork with vortices of identical radii at all times and thus of
nents like ¢, at least in rather short time simulations/ equal circulation up to a sign. This is probably a reasonable

experimentgsee Ref[16]). approximation, as previous short-time simulations and ex-
periments showed that the radius and circulation distribu-
2. Naive kinetic theory tions remain narrow at all timg®,16,27. Indeed, it is very

common in aggregation models that the particle size distri-
atPution does not influence the value of the density decay ex-
onent ¢, provided that this distribution remains narrow.
onversely, when the scaling size distribution presents slow
power-law tails,¢ may depend continuously on the exponent
involved in the distribution(see Ref[23] for exact results
within Smoluchowski approximation Physically, it is in-
Tmerg™ (NUT) . (23)  deed natural to expect that when the typical ragixistsand
is much smaller than the average inter-particle distance, the
particle dispersion becomes irrelevant as far as dynamical
quantities are concerned. In vortex simulations, it is found
(see Refs[9] and[16]) that the maximum vortex radius is
typically twice as large as the average radius. The distribu-
dn n n tion itself seems to be nonuniversal, and could slightly de-
at §f~ - 2 Tmerg. (24) pend on the precise form for the merging distangcédiffer-
ent in Ref.[9], compared to Refd.13,1€ and the present
papei. Thus the radius distribution can be definitely quali-
Using the scaling equatior(8) and (14), and the above ex- fied as narrow or monodisperse. In the present system, it is

The merging timery,qq is the typical time between two
merging events involving the same vortex. If we assume th
vortex mergings occur whenever two like-sign vortices stan
at a distance less than~r, a classical cross-section argu-
ment leads to

If we assume a scaling regime wher@) decays as a power
law, 7merg Must behave linearly with tim@2] since

pression forrye.q, we finally obtain thus natural to expect that dispersion effects are irrelevant
although this point should require further studi2g]. More-
o LtEE (3¢ (25) over, keeping such constant distributions in time should
Tmerg ™~V 3

minimize transient time effects due to the fact that the scal-
ing distributions are not yet reachéalthough this problem
neglecting logarithmic corrections iw. The constraint is partly taken into account by the clever procedure intro-
Tmerg™t then leads t@&=4/3, well above the measured value duced in Ref[9]).
£~0.7. Note that our argument is fully consistent with a We thus consideN vortices of radiug and circulation
direct simulation performed by Trizaf22], who found¢  TI'=+wnr? (N/2 vortices of each signin a box of initial
~0.7, in a ballistic system obeying the same conservatiotinear sizelL, such that the initial density is,=N/L?2. Peri-
laws as in the vortex model, but for which the typical veloc-odic boundary conditions are considered, and Kirchhoff
ity decreases as~t~%4" instead of being constant. Using equations of motion are adapted to this situafi®y9]. Com-
Eq.(25), we indeed predict a decay expone#it1(1 pared to Eqs(4) and(5), the velocity induced by a vortgx
—0.47)~0.707, in perfect agreement with the observed deon a vortexi is only significantly different for vortices at a
cay exponent. Note that the similarity with the value of thedistance of ordetL, so that the physics is not modified par-
decay exponent observed in vortex dynamics is then purelticularly for vortices at a typical distande/ N or less.
incidental. Vortices do obey Kirchhoff dynamics until two like-sign
In the experimen{5], the authors obtainedmerg~t°'6, vortices meet, i.e., their distance is less thas 2r (see the
which strongly indicates that they had not yet reached theliscussion of Sec. Il A Both vortices are merged, and all
scaling regime, which is not too surprising as the experimentadii and circulations are updated to
was performed on less than a time decade. As mentioned in
Sec. I B, this should raise some doubts about the validity of o (L
the apparent exponeit=0.7. N—1

1/4
r, T'=+xwnr'? (26)
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The density is updated accordingly:
n'=———n. (27

A new vortex of the same sign as the vortex which just <
disappeared is then introduced in the box at a random posi- LE/ 18
tion and has radius’ and circulationI'’. The number of 10 (N=100)
vortices in the box is then restored to its initial valNeAll

the distances are then scaled by a fagtt(N—1)]% 10°4 " g
§ %o 5.0x10° 1.0x10°
N 1/2 N 1/2 10 T ; T ) T ; T " T -
L/ = m) L, riz(m) . (28) 10 10 4 10 10 10

. L . FIG. 1. Numerical RG simulations fd¥= 10, 20, 40, 60, 80,
This renormalization procedure ensures that the new densityyg and 160 sampld@50, 150, 30, 20, 15, 15, 5 samples, respec-

takes the correct value tively), shown from bottom to top, and the best fit of the

=60-160 curves to the functional fom{t)/ny=(1+t/ty) ~¢ (with
N N-1N N-1 £=0.985 and,=70.2; top curve For clarity, the curves have been
L2 N |2 N n, (29 offset by an arbitrary factor 2. The tinteis expressed in units of
o~ 1, and the initial total area coverage is 10%, as for most simu-
N 4 . lations presented in this paper. The inset showsnan(t) —1 is
and that the quantitp'r’“=nr" is conserved, ensuring the perfectly linear with time Kl=100), which is consistent with an
conservation of the energy per area unif\lis large enough,  exponente~1.

one may expect that the introduction of a new uncorrelated
vortex after each merging should not affect the dynamics, L(t)
especially at large times for which the merging time is much (v?)~nI? In(—) ~In(t). (30)
larger than the mean free time. In this regime, the newly r(t)
introduced vortex which has only a probabilty * of being
involved in the next collision has plenty of time to get “ran- This behavior is confirmed by our RG numerical simulations,
domized” astye T as shown in Fig. 4.
We have also performed RG simulations introducing a
distance cutoff in Kirchhoff equation®) and(5), replacing
. . . ri by (rf+r?). Indeed, although like-sign vortices cannot
We have performed long-time RG simulations With  5550ach each other closer than a distance(@herwise
=10, 20, 40, 60, 80, 1094’ and 160 vortices, reaching finajhey merge opposite-sign vortices can, which is quite un-
densities as low as’210 "no. Except for the cas®l=10  ppysical as it generates very fast traveling dipoles. Introduc-
which seems to decay faster, the different density plots arg this cutoff results in a physical upper cutoff of orddfr
essentially independent from the actual number of vorticegy, the maximum velocity of these dipoles. The number of
involved in the RG(see Fig. 1 The long-time decay expo- qrtices initially decays slightly more slowly, although the

nent is estimated to bg=0.99+0.01, significantly higher 5ng.time decay exponent remains fully compatible wdth
than the expected value~0.7 but still well below the naive 1~

estimateé = 4/3 obtained in Sec. IIC.

We have also measured the average mean square dis-
placement of surviving vortices. The motion is found to be 1o°
hyperdiffusive with a diffusion exponent consistent with
the prediction of Sec. IIC and Ref21]. Indeed, we findv
=1.50+0.01, to be compared witlv=3/2, admitting the
valueé=1. This is illustrated in Fig. 2. Note that according A 1¢°
to Sec. I1C 2, we thus predict a flight time distribution be- “s¢
having asP(7)~ 7~ °?, for large r. \VATS

In the rangen/ny=0.8-0.2, corresponding to the range of
density obtained in previous experimef®-5] and simula- 10
tions[6,9,13,16, we indeed obtain an apparent exponent of
orderé~0.7. In Fig. 3, we compare the direct simulations of 10
Refs.[9,16], where vortices were allowed to develop a scal-
ing radius distribution. After fitting an arbitrary time scale, it
appears that our RG simulations are in good agreement with
these previous works, although our RG simulations extend to F|G. 2. Mean square displacement of surviving vortices as mea-
almost three more decades in time. sured inN=40 RG simulations(x?)~t*, with »=1.50+0.01, in

We have also measured the mean square vortex velocitperfect agreement with our predictior= 1+ £/2 of Eq.(15), when
which is expected to behave as taking é=1.

B. Numerical results

5

10
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ey e N=40 (RG)
] — N=2000
1074
o
< <
~—~ S
—~ el
z T, .2
< 1073
10°4
¥ T ¥ T ¥ T 1 AR | T ML AL | M MR | T MR | M ML |
0 100 t 200 300 10' 10° 10° 10* 10°
t
FIG. 3. We compare short time RG simulatidished curves, FIG. 5. Direct simulations maintaining all radii equaN (

N=60 and 20 Samplé,SWIth pl’eViOUS direct simulations inCIUding :500, 1000, and 2000) are Compared to RG simulatioNs (
a polydisperse population of vorticéor which the time unit has  =40). The saturation to the minimum reachable density,
been scaled to that of the RG simulatipriBhe agreement is good, =2/N is clearly seen. However, the direct simulations follow the
and the apparent decay exponent is of orgtei0.64 (extrapolated  RG simulations on a longer time domain Bsincreases, up to a
to {~0.72-0.75). However, the data display a strong curvature in gime t, for which some samples have already reached the mini-
log-log plot(see top inset If one plots the density as a function of mum density. The long time apparent exponentNor 2000 is of
t+ty (with a suitablety) instead oft, then a much better scaling orderg~1.1.
(bottom insek is obtained for allt with an effective exponent of
order ¢~0.75(this procedure was also used in R¢8] and[16).  pox sizel remains constant. In this case, it slowly decreases
as
It is interesting to compare our results to new direct simu-

lations where the radii and modulus of circulation are main- t,
tained equal for all surviving vortices. Even starting from (v2>~nF2|n<W)~|n(T). (32)
N=2000, it is hard to reach low densities in a reliable way.
As exemplified in Fig. 5, these direct simulations follow our up to a time of ordett, ~ty. Note that this subdominant
RG calculations before decaying faster beyond a breakingjgerence between RG and direct simulations could be re-
time ty, as the density approaches the minimum reachablg,nsiple for a slight discrepancy in the apparent decay ex-
densityn/nyg=2/N. We observe that the breakdown 0CCUrS honent observed in both kinds of simulations.
sooner for samples with a decreasing initial number of vor-
tices.ty is in fact of the order of the minimum time after
which some samples had reached the minimum possible den-
sity (only two opposite vortices left Still, Fig. 5 lends cre-
dence to the claim that the Iargdalimit finaIIy reproduces A. General form of the merging time
the RG results. Note finally that for these direct simulations, . . . .

In this section, we are concerned with an alternative way

the actual logarithmic correction in the mean square velocit 8 ) . .
9 d Yo evaluating the merging time .4 as a function of the

behaves differently from that in the RG simulations, as thephysical parameters, 1. T . .. . On thebasis of simple di-

mensional analysisimerq Can be expected to be proportional

IV. MERGING TIME IN EFFECTIVE TWO- AND
THREE-BODY DYNAMICS

to the mean free time multiplied by an arbitrary function of
0.25 4 the only dimensionless parameter’. Expecting power-law
' behaviors for these quantities, a natural ansatz is
T
0.20 1 ~—_—
NQ Tmerg (nrz)“’ (32
\"
0.15 wherea is an exponent to be determined. Dropping logarith-
mic corrections inr [see Eq(13)], we obtain
o104 " 2yay-1_  ~1(np2)—(1+a)
; . ; . Tmerg™ (NC(Nr) %) "~ o™ 3(nr°) . (33
10° 10° 10* 10°
t Imposing thatr,e; must be proportional to the actual time

(see Sec. Il ¢ and using the scaling equatiofisg. (8)], we

FIG. 4. The plot ofv?)(t) (RG simulations wittN=80 and 15 .
plot ofw”)(1) ( find the relation between the decay exponémind «:

samples; the sampling time ist=40 "1, with no time averaging
displays a slow variation of this quantity fully compatible with the

logarithmic correction obtained in E¢30). The thick line is a log- = 2 (34)
linear fit of the scatter plot. 1+a’
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Note that the naive expression gf40btained in Sec. IC  whereu=uvgyy, 74, andw, are independent-correlated

can also be written in this form: white noises. Such a Langevin equation was recently intro-
duced to describe velocity fluctuations in Rgff1], with rea-
Tmerg= (M) " 1~w~1(nr?)732 (35  sonable success.
. We are now ready to construct an effective two-body sys-
corresponding tar=1/2 and thusf=4/3. tem in order to study the merging time. We consider two
like-sign vortices of identical circulation in a square box of
B. Theory of the effective two-body dynamics size R with periodic boundary conditions. These vortices are

We now consider the effective dynamics of twearby submitted to their mutual advection and to the effective noise
like-sign vortices, assuming that the-2 other vortices are nduced by the other vortices at a distance greater Ridh
at a distancat least of order RThe velocity induced by the W€ definex=x;—x;, y=y;—y,, and d=yx“+y*, from
other vortices on one of these two vortices can be written a&irchhoff equations and Eqg38) and(39) we obtain
the sum of the velocity induced on the center of mpats

ro=(ry+r,)/2] plus a small correction: dx y
T ¥+X77a+y77by (43
Yij
vi=— 2 T, (36)
1712y dy _ x
a—rgﬂﬁlb—)’ﬂa (44)

2 2
2X0;Yoj Yoj — Xoj
_ 10 0j "0j
—v0x+5><12 Iy —3 +5y1_2 Iy ———, . ) )
j#1,2 ro; j#1.2 roj as the average induced velocity cancels out. After expressing

(37)  time in units of 7 (t—t/7) and distance in units oR (x
—x/R, y—Yy/R), and noting tha'~ R?/ 7, we end up with a

=voxt X1 mat 6Y1 7y, (38)  dimensionless equation of motion as anticipated in Sec.
IVA:
where we have neglected other corrections involving higher
powers of 6x,1=X;— Xy and dy;=y1—Y,. After a straight- dx y
forward calculation, we obtain a similar equation fo, : FTa ¥+xna+y775, (45
V1y=Uoyt+ OX17p— 6Y17a- (39
dy x

Note the antisymmetric structure of Eq88) and (39), re-

sulting from the Hamiltonian nature of the dynamics.
We will now assume that oy, voy, 74, and»n, can be ) i .

considered as random Gaussian variables. Their second m@here 7.,z are independent Langevin random variables, of

dtzg—'_xnﬁ_y,’]a! (46)

ments are unit mean square average and correlation time.
Both vortices are initially randomly placed in the unit box
5 5 (v? , at a mutual distancel>0.4R and their relative distance
<UOX>:<UOX>:T~nF : (400 evolves according to Eqg45) and (46), until d becomes

smaller than the scaled dimensionless paramater2r/R
respectively, up to a logarithmic ter(see Sec. Il C and Refs. =2Vnr®, which defines the merging time. As anticipated
[16,11,2]), and above, the average merging time in unitsrofan only be a
function of this parameted., leading to Eq(32).
1 [Lx?

2,2
(p2)=(nd)=NI? &y ~NI'2— [ —xdx~nZl2
r8 L2Jr xB C. Absence of strictly two-body collisions

(42) Numerical simulations of Eq445) and (46) lead to the

We have usedR as the lower cutoff since the other vortices following surprising result: both vortices remain at a relative

were assumed to be at a distance at least of qdiote that ~ diStance greater than a constapy,, which slightly depends

7a have the dimension of an inverse time and are simply o1 th€ actual numerical constants in EG&5) and (46) [t20
order 7~ *~nT. It is natural to assume thaf, , have the SMPlify, we have assumed the coefficients ofy)/d",

2 . .
same correlation time as the velocity, namely the mean fre&”a,0)» @nd the correlation time of, , to be exactly equal to
time 7. 1]. A typical long-time trajectory is shown in Fig. 6, and

Assuming thab,, , and 7, , are Gaussian noises of cor- perfectly illustrates the absence of collisions when the vortex
relation timer leads us to write a simplified effective Lange- SiZ€ iS below a certain threshold. Note that if there were no

vin equation describing the dynamics of these four quanti-”Oise due to the other vortices, both vortices would strictly
remain at the same distance, hence producing a circular tra-

ties, .
jectory.
du u (2 _ Of. course, our result does not prove the absence of colli-
TR /—Wu. (42) sion in the actuaN-body system, but strongly suggests that
dt T T the main assumption according to which all other vortices
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the direct interaction with a third vortex, and not solely by
the background noise.

The results of this section suggest that strictly two-body
interactions are not sufficient to generate collisions. It is thus
natural to study the equivalent three-body problem, which is
the subject of Sec. IV D.

R

D. Merging time of a three-body system

Using Eqs(38) and(39), we can generalize our preceding
approach to the case of three test vortices submitted to the
effective noise induced by far away vortices. For the first
vortex, the effective equations of motion now read

dxy Y12 Y13
Gt~ L2z “lag T umat dyimtuo, (48
EY) s
FIG. 6. We show typical long-time relative trajectory within the dy;

X12 X13
effective two-body dynamics of Sec. IV B. For clarity, the final time dt Lo +ls5 + Xy = 8Y17matvoy, (49

is only t,.,=200w 1, although we have checked that the vortices
never reach a distance less thif,~0.24R, up 10t~ 10w L.
The anisotropy of thésquarelik¢ trajectory is due to the use of a
Kirchhoff interaction adapted to periodic boundary conditions. As
the distanced between vortices always remains of ordegrthese

effects are visible, although they should disappear wdheR (see ; - . .
the discussion in Sec. Il A Still, note that when vortices are close As in Sec. IVC, these effective equations of motion can

to each other, their relative quasicircular trajectory is not reallybe_rescaled by expressmg_dlstance_s '_n unit3 afd tlmes_, n
affected by the noise due to other vortices, as explained in SedNits of 7. In these new units, a collision between vortices 1
IVC. and 2 occurs when the distance between them is less than the
scaled dimensionless parameter 2r/R.

The sign of the third vortex plays a significant role. When
it is the same as that of the other two, a phenomenon remi-
niscent of that which was found for two-body collisions oc-
curs: vortices do not collide below a certain radius, at least

Mo Ms

with similar equations for the two other test vortices. As we
are studying the merging time of like-sign vortices, we take
vortex 1 and 2 to be of circulationr I", whereas vortex 3 is
left unspecified, with circulatior=T".

are at a distance greater th&prevents both test vortices
from colliding.

Let us now give a physical interpretation of our result. If
both test vortices were at the same point, their distanc

Id not i th locity induced by the oth %uring numerically observable times.
would not vary since the velocity induced by the other vor- Conversely, when this third vortex is of the opposite sign,
tices would be exactly the same for both vortices. Thus

L ~we observe a smooth dependence of the merging time as a
when they are close to each other, the effective induced noi P ding

is reduced linearly with their distana® as shown by Egs.
(45) and (46). In addition, as the vortices get closer to each
other d~r), their relative position describes a circle, mov-
ing at angular velocity of order

Stinction ofd,, which is fully compatible with the functional
form (see Fig. 7

-
Tmerg ™ m ) (50)

r
~ -1 _wr 1~
Qv xr r X @ (47 that is,a=1, and thus£=1 using the results of Sec. IV A.

This result is in agreement with our RG calculation, for
which we also found~1. Note that for large /R, corre-
Because of this fast rotation, the effective fluctuation time ofsponding to the early stage of the actual dynamics, the ap-
the noise, as seen in the moving frame, becomeés<r  parent value ofx is of ordera~ 2, which is compatible with
instead ofr. Hence, not only is the driving noise reduced duean apparent decay exponent in the rafigeé.6— 0.7 (see the
to the proximity of the test vortices, but it is also averagedinset of Fig. 7.
out due to their fast rotation. Such a short effective fluctua-
tion time was in fact introduced in R€f16]. Another way of
interpreting the effect of the fast vortex rotation is to note
that due to the large difference between the system natural The present study strongly suggests that for small surface
frequencyw and that of the noise perturbatiom(~7"!),  coverage (/R<1), the relevant collision mechanism in-
the adiabatic theorem ensures that the effective perturbatiovolves three vortices, one having an opposite circulation
is reduced by a factor of order expCw7), whereC is a  from the other two. A naive picture would be that of a
constant of order unity24]. (+TI',—T) dipole moving at the typical velocitl/r encoun-
Conversely, if both vortices start at a distardce d i, tering an isolated vortex of any sign. The importance of these
this fast rotating pair remains stable for a very long time,fast traveling pairs was already suggested in Re&dl.1]. It
probably infinite. Such pairs can thus only be destroyed bys likely that the three-body collision processes need not to

V. PHYSICAL PICTURE
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wl?
4004 . Tmerg™ g - (55)
»
300 4 . This relation is particularly well obeyed in the experiment
o . described in Refl5], left- and right-hand side terms being
; P
\o'a 1t (n,?)" .t
g i - 2 +-015:0.04
PGE’ 200 P 1057012 ang wl® it —_055:0.14
9 nE t—0.70:0.1
100+ i (56)
.,-" respectively. Thus, althoughye, does not behave linearly
0| . . . . with time in the experiment, which is probably due to the
0 500 1000 , , 1500 2000 fact that the scaling regime was not reached, all the relations
(nr) found between physical quantitigdD~n"2 p=1+¢/2

o ) ) andu=3—¢/2 in Sec. Il C, and the above relation E§5)]
FIG. 7. We plot the average merging timgeqin units of the are fully consistent with our kinetic theory.

mean free time as a function of the dimensionless parameter .
(R/r)?=(nr?)~1, as obtained within the effective three-body dy- Note that Eq(53) was obtained by Pomedd5] and by

namics of Sec. IVD. We find a good linear behavior for a smallON€ of ug16], but with the use O_f highly que_stionable p_hysi-
enough surface coverage. As explained in the text, this is consistef@l arguments. In Ref15], the kinetic equation was written
with a decay exponent= 1. For large surface coveraggee inset  IN the form

a log-log plot leads to an apparent exponent 1.8, which is com- dn

patible with a decay expone#gt-0.7, in the language of Sec. IV A. Ta ~—nxnr?, (57)
strictly occur in the simple way described above, although _ _ o _
this does provide an evocative physical picture from whichPy arguing that after a time of orderthe collision probabil-

to construct an effective kinetic theory. ity is simply the geometrical overlapping probabilityr?,
Following the interpretation presented above, the collisiordlthough a cross-section argument is definitely requisee
rate is Sec. I Q. This argument boils down to the assumption that
after a timer, the vortex positions can be considered to be
dn randomly generated, and collisions occur if two vortices
gt~ Naip NV gipf (51)  overlap. In Ref[16], inspired by the theory of diffusive ag-

gregation[25,26], the kinetic equation was written in the

whereng;, anduv 4, are the dipole density and typical veloc- form
ity, and the last term is the probability per unit time for a

dipole to collide with an isolated vortex. In a simple mean- @N —Dn2 (58)
field approach, dipoles of typical sizeare formed with den- dt ’
sit
Y but with an incorrect expression for the diffusion coefficient
Neip™~NX nr2, (52 D (found constant in Refl16]). In Ref.[16], the fact that
(v?) is essentially constant was correctly used, but the fluc-
their velocity being of ordev 4,~I'/r. Finally, we obtain tuation time was taken as ! instead ofr. As we have seen
in Sec. IVC, it happens that just before a collision, the ef-
dn - fective fluctuation time in fact becomes equakio?®, which
gr XL (53)  makes the agreement of Eq58) and (53) rather incidental.
which corresponds to a merging time VI. CONCLUSION
In this paper, we have introduced a numerical RG proce-
Tmerg~ (NINr2) "1 - (54  dure which permits very long-time simulations of the vortex
nr? Kirchhoff dynamics in a two-dimensional decaying fluid. Al-

though we recover a short-time regime compatible with a
which in the language of Sec. |l C leadsde-1, and then to  decay exponent of orde€r~0.7 when the vortex surface cov-
&¢=1 (up to logarithmic corrections erage is still large and/ny=0.2, we ultimately find a long-

This simple interpretation reconciles the paradoxical obtime asymptotic decay witl§~1. None of these results can
servation that although vortices angperdiffusive(see Secs. be explained by the simple kinetic theory of Sec. Il C based
[IC 1 and Ill B) the observed decay exponghis lowerthan  on the occurrence of two-body collisions which prediéts
that found for diffusive aggregatidri6,25,26 (see also Sec. =4/3. The failure of this “naive” kinetic theory could be
[IC 2). The dynamics is slowed down by the requirement ofexplained by our claim that strictly two-body collisions are
three close vortices for an actual merging to occur, at leastrelevant for small enough vortex surface coveragec.
for small area coverage. Note that using &) and energy IV C). For collision processes involving two like-sign vorti-
conservation, we can also write ces and a third opposite-sign vortex, we found an average
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merging time erg™ 7/(nr?), fully consistent with a decay Of the radius distribution and/or the initial conditiof2¥], in
exponent=1 (Sec. IV Q. A simple kinetic theory based on order to verify its possible universality. Thus, it is a motivat-
this collision mechanism also leadsge 1 and predicts that ing challenge to generalize our RG approach to the case of a
rmerg~wL2/n E, in agreement with the experiment describedpolydisperse assembly of vortices. A crucial point would be
in Ref. [5]. Our prediction[21] that the mean square dis- to correctly specify the radius of the new vortex reinjected
placement of surviving vortices goes &&)~t1*¥? is in  after each merging event. This and the study of the effective
good agreement with our RG simulations and with experithree-body dynamics of different size and/or circulation vor-
ments. Moreover, the exponent describing the decay of théices should be the subject of a future stydg.

flight time distribution isu=3, showing that vortices are

marginal Levy particles. If the flight time time dependence is

not properly taken into account, one should find an apparent ACKNOWLEDGMENTS

pn=3—¢&/2, in perfect agreement with experiment.
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