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Viscous fingering in liquid crystals: Anisotropy and morphological transitions
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We show that a minimal model for viscous fingering with a nematic liquid crystal in which anisotropy is
considered to enter through two different viscosities in two perpendicular directions can be mapped to a
twofold anisotropy in the surface tension. We numerically integrate the dynamics of the resulting problem with
the phase-field approach to find and characterize a transition between tip splitting and side branching as a
function of both anisotropy and dimensionless surface tension. This anisotropy dependence could explain the
experimentally observe@eentrank transition as temperature and applied pressure are varied. Our observations
are also consistent with previous experimental evidence in viscous fingering within an etched cell and simu-
lations of solidification.

PACS numbds): 47.54:+r, 47.20.Hw, 61.30-v, 47.20.Ky

[. INTRODUCTION some other type of anisotropy to observe the transition to
side branching. On the other hand, some types of anisotropy
Interfacial instabilities arise in a wide variety of contexts, not directly acting on the surface tensifit8] seem to actu-
often of applied interest, such as dendritic growth, direclly control the transition in some systems, as is the case of
tional solidification, flows in porous media, flame propaga-auid crystal viscous fingering experiments, which varied
tion, electrodeposition, or bacterial growftt]. Notwith- mainly the anisotropy in the viscosity, as well as etched
standing this disparity, there has been a search for unifyin ells, where th? exa}ct effect of the grooves on thg free
common features concerning the more fundamental proble oundary equations Is ur_lclear. Therefore a connection be-
of their underlying nonequilibrium dynamics. One such fea- ween surface tension anisotrofseen to control the transi-

ture seems to be the role of anisotropy in determining théion in the solidification problem both experimentally and in
observed morphology simulations and other types of anisotropy is clearly lacking.

Thus, the finding that anisotropy is necessary for theHere we present such a connection for the case of a simple

needle crystal to solve the steady state solidification problerﬂ100Ie| o_f_a liquid crystal. . . e

(see e.g.[2]), and indeed a critical amount of it to stabilize SpeC|_f|caIIy, we S.hOW. that t\.N.O different viscosities m_two
its tip and(possibly generate side branches in related |0ca|{3erpend|c}ular (tjlrquonen gddmon todstometalr?alc(ijy an]iso-
models[3], motivated the inclusion of anisotropy in viscous ropic surtace tensigncan be mapped fo a twofold surtace
fingering experiments, either by engraving the pldts or tension anls_otropy(nmes the reS(;aIed qngmal anisotropic
by using a liquid crystal5—8]. In turn, these experiments in surface tgnsm)nthrough a convenient axis rescgllng. More-
anisotropic viscous fingering confirmed the existence of ver, we integrate the resulting problem to confirm the exis-

tip-splitting/side-branching transition controlled by anisot- _ence_of the m_orpholog|cal tran_smon also for _the viscous
ropy and driving force. Again, theoretical work on the solidi- fingering equations. The numerics use a prewously devel-
fication problem9] and numerical integration of itshonlo- o_ped[14]_ and.thoroughly testeflL5] phase-field model for
cal) dynamics[10] showed the anisotropy in the surface viscous fmgermg. " . .
tension to control the transition in this system together with We do find such a transition as a function of the anisot-

the dimensionless undercooling. To our knowledge, no ana~PY and the dimensionless surface tension itéet,, the

lytical or numerical work on anisotropic viscous fingering d_r “t/m% fq:ﬁe for f|?<ed stulrface ;cte:n§|¢r!The re?.ults are CO.?H
[11] has focused on this transition so far. sistent with experimental results in viscous fingering with a

: . : : liquid crystal[5—8] and etched cellg4], and also with theory
In this way, a picture that some kind of anisotropy can . . e
control the tip-splitting or side-branching behavior of differ- and simulations for the solidification problei9,10]

ent systems emerged. However, it is still not clear how dif- The layout of the rest of the paper is as follows: in Sec. Il

ferent these anisotropies and systems can be. On the ol refer to th? special features of.liquid crystals concerning
hand, not all kinds of anisotropy seem to control the transi~/|SCOUS fingering and present a simple model for them. We

tion. The channel walls in a viscous fingering experiment, forthen map this model onto the basic Saffman-Taylor problem

instance, are known to play the same role as surface tensi jth a twofold anisotropy in the.surface tension. In Sec. Ill
anisotropy in free dendritic growth as far as the existence o e briefly describe the phase-field model used and present

a single-finger steady-state solution with surface tension i e numerical resulf[s. Fma!ly, n Sec_. v we _d|scuss their
concerned. Moreover, even with isotropic surface tensionCONSequences for viscous fingering with a liquid crystal and
this steady finger is stable up to a certain critical amount O]éon5|stency with related problems.

noise[12], but no side branching is observed, in contrast to
free dendritic growth. Above this threshold the tip splits, but
again no side branching is observed, in spite of the anisot- In the nematic phase of a liquid crystal its molecules are
ropy due to the channel walls. It is necessary to introducdocally oriented, giving rise to anisotropy in the viscosity and

Il. MODEL
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surface tension. The degree of orientation depends on the P1—Pr=0(P)k, (2.9
proximity of the other phags), namely the isotropi¢and for
some liquid crystals the smeckjci.e., it still depends on with o(¢) the (anisotropi¢ surface tension and the inter-
temperature, and so does the anisotropy, mainly in the visace curvature.
cosity [7]. Therefore one should be able to explain the tip- Due to Eqs(2.1) and(2.3), the flow can be described by
splitting/side-branching transition as a function of tempera-a scalar fieldy, the stream function, defined even on the
ture in the nematics by means of the anisotropy in thenterface byu,=d,#,u,=—d,¢ (see, e.g., Refd14,16).
viscosity alone. However, because of the different viscosities in xhendy

In a viscous fingering experiment, the director forms adirections, the problem is non-Laplaciéthere is vorticity
small angle with the velocity field, except maybe for thein the bulk:
neighborhood of the interface, where it might follow its nor- ..
mal direction. So, as a first approximation, one can consider V2= —|V xu|#0. (2.9
that there is flow alignment, and, therefore, a velocity- . }
dependent viscosity, which would make the flow non- TO circumvent this, we rescale theandy axes by a
Laplacian. However, in the vicinity of a finger tip we can d_|ffer(_ent factor. We also a_1d|men5|0nallze the resulting equa-
approximate the direction of the flow for that of the finger, sotions in the same way as in Refd4,16, so that they can be
that we can make a minimal model with only two different compared to those in thgse references,_ and especially to Ref.
viscosities: one in the direction parallel to the finger and ond14] in order to generalize the phase-field model described
in the perpendicular direction. More details can be found infhere to the case of anisotropic viscosity. Thus, we perform

Ref. [7]. the following change of variables:
Let us now review the formulation of the Saffman-Taylor ~
equations to account for those two different viscosities in X=ayX,
two perpendicular directions andy. We will do it for the ~
channel geometry, although the result also applies to the cir- y=ayy, (2.6)
cular cell used in the experiments of R¢7] with minor
changes(i.e., two different viscosities in the radial and tan- _Wo
gential directions would also map to the standard viscous t= It’

fingering equations and the same functional dependence for

the surface tension anisotropyFor the sake of generality, where tildes denote new variablea,,a, have units of
we consider both the displacét) and the injected2) fluid  length,U, is a velocity, andV the channel width. We find
to have a certain distinct viscositys(, ©»).

As in the usual Saffman-Taylor problem, in each bulk we V.= U_*%_EZO 2.7)
assume the flow to be incompressible, w ' '
V.u=0 (2.1) so that the flow is still incompressible and we can define a

new stream functiony=(W/U,,)[ #/(a,a,)], which will be
(whered is the fluid velocity in the reference frame moving L@placian in the bulk if and only ifsee Eq(2.5)] the veloc-

with the mean interface af.., the injection velocity, and %Y field is potential in each fluid,
also Darcy’s law to hold, but now for two different viscosi-

. ~ W 1 = V
tes puy ity I=— —| ——(Vp+aywgy) + —v
u u, Wz—;?i (Vp ayp|gy) ayy ) (2.9
1
Uy=— . P, (22 which is now the case as long as we choagga, to be such
’ that
1 ~
uy=—T(ayp+pigeff)—V9@, gy i=a;my, i =W7;. 2.9
Y.l

On the interface, Eq2.3) will be formally unchanged as
wherei = 1,2 stand for each fluidjy,uy are thex,y compo-  |ong as the choice od,,a, is the same at both sides. Note
nents ofu, p is the pressurez]X,i=(12/02)Mx,i is an inverse that, according to EQq(2.9), this implies that the ration
mobility in the x direction,ny,i=(12/b2),uyyi, in they direc- = 7,/7, must be the same for both fluids. In an air-liquid
tion, p;, the density, and.¢;, the effective gravity in the crystal experiment, this is obviously not the case, but, in the
plane of the channel. Also as in the usual Saffman-Taylotimit in which the viscosity of the air is negligible compared
problem, on the interface the normal velocity is continuousto that of the liquid crystal, the anisotropic character of the
and equals that of the interface, air viscosity in our model becomes irrelevant. In terms of the

stream function, Eq(2.3) for the new variables then reads
rUp=r-U=v, (2.3 -
Ish1=0ds¢hp=—vn, (2.10
(wherer is a coordinate perpendicular to it increasing to- A
wards fluid 1 andv,, its normal velocity, and the pressure Wheres is the arc length along the interface such thatr
has a jump given by Laplace’s law, =XXVy.
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As for d; ¢, the boundary condition for it will be given by where is the angle fronx tof.

Uz=s-U. Indeed, it will have a jump on the interface due to

the fact thatu is not potential on the very interfagsee Eq.

(2.8)] because of the jump ify;, which gives rise to a sin-
gular vorticity:

(714 72) (aE,l_a”s,z) + (11— 12) (a"s,l"'ﬁ”s,z)
2

= M1Ug 1~ M2Us 2

Wil 1 ay
:_E Wﬁg(pl_pZ)_F Wg(Pl_Pz)

=7 Vol|a =
+(771 72) ;s (2.11
ay
and therefore, making use of EQ.4),
ﬂFTﬁl—ﬂ?Tﬁzzaal_trs,z
2 [ I o(P)Wk]
=\ V== g K
Ui [W2(70+72) °
a — W Az
-+ V—\jw+—cvm y~s]
(m+mn) &
—C(Fr g+ i), (2.12

wherec=(7,— 7,)/(171+ 7,). Now choosinga, /a;= 1/,
Eq. (2.9 yields m=a,/W, and definingU,=cV../m

+[mg(p1—p2)1/(71+7,) we recover the usual result for

viscous fingering in a channéee Refs[14,16),

Tl — W= — 2L B($)Wk]— 25 - S—c(Fr i+ T5h2),

with B(p)=o($)/[W?(77,+ 77,)U, ], except for them fac-
tors in the definition olJ, —and therefore iB(¢)— and
the fact thatWx and o(¢) are still in the original variables
and must be rescaled:

_dZy (dy)Z —3/2
Kk=——|1+|—
dX2 dx
a, dz; (ay d‘g/)Z —3/2
=_ZTZ +| = —=
a; dx ay dx
1 dzg/' d“y 27-3/2
_W@ m(E) s (2.14)
so that we obtain
_[ 1+ (dyrdx? 177 P
K—K PR = poy y
1+m(dy/dx)? [1+(m—1)coS¢]%?

(2.19

To summarize, we recover the usual viscous fingering
equations, including Eq2.13, which finally reads

T — 0= — 20 B(B) %]~ 29 8- C(d Y+ FFha),

but now with an anisotropic dimensionless surface tension of
the form

32

B($)=Bo2() (2.17)

1+(m—1)cosd

where By is the dimensionless surface tension of isotropic
viscous fingering

0]

EOE o~ ~
W (11— 1)V Im+mg(p1—p2)]

(2.18

except for them factors, witha(¢)=o0p2(¢). This means
that, even with an originally isotropic surface tension, the
rescaled problem has a twofold anisotropy with a very spe-
cific form given by the lastthird) factor on the right-hand
side of Eq.(2.17). On the other hand, the possible original
anisotropy in the surface tension will change its functional
form in the rescaled problem according to

3($)=%(¢)=3[arctaymtand)],  (2.19
and the rescaled problem will have the twofold anisotropy of
the mentioned last factor superimposed to the transformed
anisotropy of Eq.2.19 [second factor on the RHS of Eq.
(2.17]. A similar result was found in a different context,
namely, for the nematic-smecti® transition, where two dif-
ferent heat diffusivities in two perpendicular directions could
be mapped to the same type of anisotropy in the surface
tension and the same type of transformation in the original
anisotropy[17]. However, note that here the assumption is
that the growth is in the direction of lowest viscositye-
cause of flow alignment of the direcjprwhich results in

growth in the direction of largest surface tensiap=( 7/2),
whereas in Ref[17] the situation is just the opposite: growth
was found to be in the direction of lowest diffusivity because
that is the direction of lowest capillary length. Also for iso-
tropic diffusivities it is known that steady needle crystals can
only grow in the direction of minimal capillary lengf],
although there the anisotropy is assumed to be fourfold.
Finally, for the described minimal model the original an-
isotropy in the surface tension would be twofold, e.g.,

r
2(¢)=1—aco§(¢— E)’ (2.20
so that the transformed anisotropy would read
~ Ma co(p— /2)
2(¢p)=1 (2.21

C1+(m-1)cogd
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IIl. NUMERICAL INTEGRATION 0.5

We now integrate the rescaled problem, namely, the
Laplace equation for the stream function with the boundary
conditions Eqgs(2.10 and(2.16). In principle, given an ini-
tial condition, we should rescale it, evolve it using the res-
caled dynamics, and translate the resulting interface back to X
the original variables, but we will not perform any rescaling,
since the initial condition is free, and the tip-splitting or side-
branching character of the result is unaffected by the final
translation into the original variables. Instead, we will con-
sider the rescaled problem on its own, and simulate it by (@)
means of the following phase-field model: -05

0.5

oy, o101 ,
egr = VAUHCY (Vi) + 2 = y(0)(1-6°),

22

(3.

36 R e
GZE=f(0)+62V20+62K(0)|V0|+622-(V1/1><V0), X
(3.2

where 6 is the phase fielde, e are model parameters, which
must be small to recover the sharp-interface equations of the (b)
rescaled problem, and we have dropped the tildes of the res- _g5 ‘
caled variables. We have definefld 8)=60(1— 62), and 2 3
¥(0)/2=5(0)-[VB(0)k(6)+y], «(6)=—-V-1(6), with y

r(6)=V6/|V6| ands(h)=r(6)xz. This model was intro- FIG. 1. Destabilization of the tip of éstationary finger after
duced for isotropic viscous fingering in R¢l4] and exten- instantly decreasing, to Bo=10"2 at the time of the first interface
sively tested in Ref[15]. From this work we know that it shown. Successive interfaces are shown in the reference frame
will yield converged results for the steady fingdesd, in ~ moving with the mean interface at time intervals 0.11, ¢er0.8,

particular, for their widths if both e<0.2yB, and e '€=0.08. The latest interface is represented in b@iTip splitting
<0.2(1-c). The only change to be made for the anisotropicfor m=2. (b) Side branching fom=2.25.
case is to seB(#) not merely equal to a constant, but to that

given by Eq.(2.17 taking ¢= ¢(6) =arccox-r(6). This m—1 at the transition to depend on that too. However, this
givesB(6) =B(¢)+O(€), which not only satisfies the de- amount of noise is unknown both in the experiments and in
sired sharp-interface limit, but also ensures that the introducsur simulations, since only numerical noise is present. In
tion of anisotropy will not result in any extra first-order cor- order to be able to actually control it, one should keep nu-
rection to the free boundary problem, so that the abovanerical noise at a low enough level and introduce the physi-
conditions one, € still hold. cally relevant ones. This has been done for the solidification

The same phase-field equations could be used for the ciRroblem[18], but no first-principle formulation of viscous
cular geometry reinterpreting the parameters, since an analdtjgering with noise is available. _
rescaling yields formally the same result. However, the The runs use equal viscosities in both fluids; 0, for
boundary conditions would change. For instance, injection ateasons of numerical efficience€0.2), but we do not ex-
the center of the cell should also be considered. Anyhow, w@ect the viscosity contrast to affect the stability of the tip for
choose to simulate the well controlled situation in which ansimilar reasons for which it does not play any role in the
(unstable steady finger propagates in a channel of width  (linean stability of a flat interface. To check this conjecture
This representation is, of course, exact for single fingers inve ran simulations withB,=10"2 both for c=0 and ¢
experiments carried out in the linear Hele-Shaw f&]) but  =0.8, two values of the viscosity contrast for which a dra-
only a(good approximation for the vicinity of a finger in a matic change in the competition dynamics was seen using
multifinger configurationwith many fingerg in the circular  the same phase-field modéls], and we found that the tran-
geometry[7]. sition lies in both cases between=2 andm=2.25. These

We investigate the transition between the tip-splitting andc=0.8 runs are indeed the ones shown in Figs. 1 and 2.
the side-branching event as both the dimensionless surface We usee=4x10"3, so that we can simulate accurately
tensionB, and its anisotropyn—1 are varied. We are inter- with values of the dimensionless surface tension down to
ested mainly in the effect of the anisotropy coming from theB,=4x10"%. We first run a steady finger with a large, iso-
viscosity (m—1), so we drop that in the original surface tropic dimensionless surface tensiBfip) =Bo=10"2, large
tension[o(¢)=0gy]. Since the value oBy below which  enough for the finger not to destabilize for the amount of
fingers destabilize is known to depend on the amount ohoise we have and thus reach its steady width and velocity.
noise presertl2], one expects the absolute valueBgfand  Once this is achieved —see inner interface in Figa) and
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FIG. 2.y coordinate of the interface at the center of the channel FIG. 3. Transition between tip-splittingcircles and side-
(x=0) in the reference frame of the mean interface as a function obranching(triangles as a function of the surface tension anisotropy
time corresponding to Figs.(d (lower curvd and Xb) (upper ~M—1 and the dimensionless surface tensiy
curve. t=0(0.88) corresponds to the firglas) interface shown

there. In this way we systematically explore values of the di-

mensionless surface tensiBg ranging fromB =102 down
1(b)—we perform a “quench” in surface tension, i.e., we to B=4x10*. For each value oB, we simulate with sev-
instantly reduce it to some lower value. Simultaneously, weeral values of the anisotropy— 1, and we find that there is
also introduce some amount of anisotrapy-1. a relatively sharp transition between the tip-splitting and the
The subsequent interface evolution B5=103 (andc  side-branching event. In Fig. 3 we show for each valuBpf

=0.8, €=0.08) is also shown within the reference frame (X axig) the two closest values ah—1 (y axis) for which
moving with the mean interface in Figs(al (m=2) and the two different events took place, namely, tip splitting
1(b) (m=2.25) in the form of snapshots at time intervals (circles and side branchingtriangles. Thus we know that
0.11.(Simulations used only half of the channel and reflect-the transition line must lie somewhere between the circles
ing boundary conditions at its center 0, so that asymmet- and the triangles, and that aboy@rger values om—1) and

ric instability modes are not studiedThe corresponding  l€ft of (lower values ofB,) that transition line the observed
position of the interface at the center of the charfaédo in  €vent is side branching, and below and right of it, tip split-
the frame of the mean interfaces plotted against time in ting. This means the critical anisotropy— 1, above which

Fig. 2. side branching replaces tip splitting, decreases with decreas-
For this value ofB, the finger clearly destabilizes: First ing dimensionless surface tensiBg.
its tip widens and flattenésee Fig. 1 and therefore slows In fact, this critical anisotropy vanishes Bg~5x10"4,

down (see Fig. 2 for any value of the anisotropyNote that and below this value only side branching is observed, even if
for t<0 the tip position would be a straight line in time, one uses negative anisotropies dowmte 1= —0.9, which
since the finger was steady, and, in particular, its velpcity correspond to a viscosity larger in the direction of growth of
Then, form=2 the tip continues to flatten and slow down the finger than in the perpendicular one, and which is not the
until its curvature[Fig. 1(a)] and eventually its velocity in case of the liquid-crystal experiments that motivated this
the frame of the mean interfadkower curve in Fig. 2re-  study[m—1>—1 to keep the two viscosities and therefore
verse their signs. Finally, the velocity of the interface at theB(¢=0) finite and positivg Of course, the specific value of
center of the channel seems to reach some negative constddy for which the critical anisotropy vanishes could be af-
value (again, in the frame moving with the mean interface fected by the fact that a residuédburfold) grid anisotropy
corresponding to the growth of two parallel fingers at eacemains, but it seems unavoidable that there is su€inite)
side. We identify this reversal of the curvature sign at thevalue of By, since the transition line curves down Bg is
center of the finger and this always convex tip position vsdecreased, and for large enough value8gfor the anisot-
time plot with the tip-splitting event. ropy m—1, the grid spacindx=e=4x 102 is far too fine

In contrast, foom=2.25 the reversal of the curvature sign to affect the effective anisotropy.
takes place at some distance from the center of the channel, On the other hand, foB,=1.4x10"2 and for the time
while at the center the curvature increases ag@ig. 1(b)]  elapsed in our runs, no clear side branching is actually ob-
and makes it possible for the tip to speed up again as welkerved above the transition line extrapolated from lower val-
giving rise to a change of concavity in the tip position vsues ofBg, whereas tip splitting still occurs below that line.
time plot(upper curve in Fig. 2 We will call this reversal of ~For even larger values dB,, namely, B,~2x10 3, not
the curvature sign at a distance from the center of the chareven tip splitting is observed again within the time elapsed,
nel and this change of concavity in the tip position vs timealthough the steady finger still destabilizes through the wid-
plot the side-branching event, because the tip, although naning and flattening of its tip. Finally, f@=10"2 the finger
stationary, survives, with lateral ramifications as those seeis completely stable for the amount of noise we have, as was
in the experiment$4,7]. pointed out before.
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IV. DISCUSSION AND CONCLUSIONS (lower values oB,), and the side-branching behavior is pre-

We have shown that viscous fingering with two different served.

. e . L2 In contrast, if the anisotropyn—1 is not strong enough,
viscosities in two perpendicular directions maps to the stan,,_ .. ! : o -
) . ) o ; S . the tips split(the corresponding point is below the transition
dard viscous fingering equatiofise., for isotropic viscosity

with an extra twofold anisotropy in the surface tension SuchIIne In Fig. 3, where the observed event s tip splitlings a

. : ; result the number of fingers increases, which then compen-
that, toggther with the hyppthe3|s .Of ﬂ(.)W allgnmgnt of thesates for the growth of t%e distance between finger tipR gs
director, it leads to growth in the direction of maximal sur- ; : ) .

. . . .in such a way that the effective dimensionless surface ten-
face te_nsmln. sze r}avej,lmhulate? tlr:je resgalat;lngaproblgm USiNgion B, keeps roughly steady during the pattern develop-
a previously developed phase-field modlg#,15, and we . T .
have found that there is a transition from the tip-splitting toment, S0 that the corresponding point in Fig. 3 basically does

. . . . . not move. Thus the transition line is not crossed and the
the side-branching event as either the anisotropy in the sug -splitting behavior is also preserved
face tension is increased or the dimensionless surface tensi R P 9 P :

is decreased. We now draw the connection with the quuid—br;::c:;f V\(Ia?/)(lar:ltvse gfen tﬁgeetlgﬁetr?tzrtlpészlgmgaﬁn?oifses_es
crystal experiments of Ref7]. 9 y dy p

The observed anisotropy dependence is consistent WitWJgrl:th]h mzlﬁ:]arﬁietziorr?sb%?\?\};veen r:igrﬁ’goelgg:iz iiniﬁf s?r%ﬁ?ae
the experimental finding that there is a transition from tipq Y, 9

splitting to side branching and back to tip splitting with tem- tlornvggt?np tlr?;pclalise&rli;:ngétloﬁoazt\%ie?hz?;ﬁgfli(; géiir?stoog;a
perature in the nematic phase, since close to the other phas%es ; penm L P .
ore diffuse due to irregularities associated with the effect

the director alignment, and consequently the anisotrop . S - . "
weaken[7]. The transition is found to be also reentrant with 6f noise and the initial cqndltlons.'Such |rregular|t|es and the
unknown amount of noise both in the simulations and the

injection pressuré7], which is explained there with the hy- experiments also prevent the comparison of the absolute val-
pothesis that too low pressures do not achieve flow align- P pre P . .
es of B, andm—1 in the experiments and in the simula-

ment, whereas too large ones break down the Hele-Sha lons, whereas the qualitative dependence of the value of the
approximation because of the importance of inertial terms in ~. ™’ quairte P -
nisotropy at the transition on the driving force should be

the hydrodynamic equations, which then destroy the fIOWaorrect and has actually been seen in viscous fingerin
alignment again. This anisotropy dependence is also consié ’ y gering

tent with simulations of the boundary layer mofie] and the within an etc_hed cell 4] !—|owever, we find the cr_mcal_
full solidification problem[10], as well as with analytical amount of anisotropy for side branching to replace tip split-

approaches to solidificatiof®]. ting to vanish at a finite value d8,. Below this value we

As for the dimensionless surface tensiBgp dependence, only observe side branching.

one first needs to relate the valuesByf used in the channel . étggaiﬁﬂlfctlﬁ dg]gd\/eellgéit\/ '_S;gu:ngggf\r)g%dgita :Ir?ufn-
simulations to the experimental parameters in the circulaf"Y y-dep y-Ing

geometry. To do this we consider a virtual channel whoseeral the resultmg non-Lap_Iamam _char_acter of the problem
ould not be avoided, but in principle it would still be pos-

walls are placed at half the distance between a finger and if:sbI to simulate the d ics b f h feld
nearest neighbors. The channel width is given by this S| g IO simulate the dynamics by means of a phase-ie
distance between adjacent finger tips, whereas the effectiv8 04"
injection velocity V., turns out to be the ratio between the
injection pressure anld, the mean distance between a tip and i
the injection point. Then, the following dynamic picture of a  We are grateful to ABuka and T. Tth-Katona for draw-
typical experiment in the circular cell emerges: Initially ing our attention to this problem and for helpful discussions.
some fingers develop. If the anisotropy—1, is strong We acknowledge financial support from the DirécciBen-
enough, their tips are stablevhich corresponds to a point eral de Ensemnza Superior(Spain, Project Nos. PB96-
above the transition line in Fig. 3, where the observed event001-C02-02 and PB96-0378-C02-01, and the European
is side branching As these fingers grow radiallyV in- Commission Project No. ERB FMRX-CT96-0085. Simula-
creases asR, whereas the effective driving force,p{ tions have been carried out using the resources at CESCA
—1,)V.., decreases asR/ so that the dimensionless sur- and CEPBA, coordinated by“CR.F. also acknowledges a
face tensiorB, they experience is found to decrease &8.1/ grant from the Comissionat per a Universitats i Recerca
Thus, the corresponding point in Fig. 3 moves to the left(Generalitat de Catalunya
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