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Viscous fingering in liquid crystals: Anisotropy and morphological transitions

R. Folch, J. Casademunt, and A. Herna´ndez-Machado
Departament d’Estructura i Constituents de la Mate`ria, Universitat de Barcelona, Avinguda Diagonal, 647, E-08028-Barcelona, Spa

~Received 16 December 1999!

We show that a minimal model for viscous fingering with a nematic liquid crystal in which anisotropy is
considered to enter through two different viscosities in two perpendicular directions can be mapped to a
twofold anisotropy in the surface tension. We numerically integrate the dynamics of the resulting problem with
the phase-field approach to find and characterize a transition between tip splitting and side branching as a
function of both anisotropy and dimensionless surface tension. This anisotropy dependence could explain the
experimentally observed~reentrant! transition as temperature and applied pressure are varied. Our observations
are also consistent with previous experimental evidence in viscous fingering within an etched cell and simu-
lations of solidification.

PACS number~s!: 47.54.1r, 47.20.Hw, 61.30.2v, 47.20.Ky
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I. INTRODUCTION

Interfacial instabilities arise in a wide variety of contex
often of applied interest, such as dendritic growth, dir
tional solidification, flows in porous media, flame propag
tion, electrodeposition, or bacterial growth@1#. Notwith-
standing this disparity, there has been a search for unify
common features concerning the more fundamental prob
of their underlying nonequilibrium dynamics. One such fe
ture seems to be the role of anisotropy in determining
observed morphology.

Thus, the finding that anisotropy is necessary for
needle crystal to solve the steady state solidification prob
~see e.g.,@2#!, and indeed a critical amount of it to stabiliz
its tip and~possibly! generate side branches in related lo
models@3#, motivated the inclusion of anisotropy in viscou
fingering experiments, either by engraving the plates@4#, or
by using a liquid crystal@5–8#. In turn, these experiments i
anisotropic viscous fingering confirmed the existence o
tip-splitting/side-branching transition controlled by aniso
ropy and driving force. Again, theoretical work on the solid
fication problem@9# and numerical integration of its~nonlo-
cal! dynamics @10# showed the anisotropy in the surfac
tension to control the transition in this system together w
the dimensionless undercooling. To our knowledge, no a
lytical or numerical work on anisotropic viscous fingerin
@11# has focused on this transition so far.

In this way, a picture that some kind of anisotropy c
control the tip-splitting or side-branching behavior of diffe
ent systems emerged. However, it is still not clear how d
ferent these anisotropies and systems can be. On the
hand, not all kinds of anisotropy seem to control the tran
tion. The channel walls in a viscous fingering experiment,
instance, are known to play the same role as surface ten
anisotropy in free dendritic growth as far as the existence
a single-finger steady-state solution with surface tensio
concerned. Moreover, even with isotropic surface tens
this steady finger is stable up to a certain critical amoun
noise@12#, but no side branching is observed, in contrast
free dendritic growth. Above this threshold the tip splits, b
again no side branching is observed, in spite of the ani
ropy due to the channel walls. It is necessary to introd
PRE 611063-651X/2000/61~6!/6632~7!/$15.00
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some other type of anisotropy to observe the transition
side branching. On the other hand, some types of anisotr
not directly acting on the surface tension@13# seem to actu-
ally control the transition in some systems, as is the cas
liquid crystal viscous fingering experiments, which vari
mainly the anisotropy in the viscosity, as well as etch
cells, where the exact effect of the grooves on the f
boundary equations is unclear. Therefore a connection
tween surface tension anisotropy~seen to control the transi
tion in the solidification problem both experimentally and
simulations! and other types of anisotropy is clearly lackin
Here we present such a connection for the case of a sim
model of a liquid crystal.

Specifically, we show that two different viscosities in tw
perpendicular directions~in addition to some already aniso
tropic surface tension! can be mapped to a twofold surfac
tension anisotropy~times the rescaled original anisotrop
surface tension! through a convenient axis rescaling. Mor
over, we integrate the resulting problem to confirm the ex
tence of the morphological transition also for the visco
fingering equations. The numerics use a previously de
oped @14# and thoroughly tested@15# phase-field model for
viscous fingering.

We do find such a transition as a function of the anis
ropy and the dimensionless surface tension itself~i.e., the
driving force for fixed surface tension!. The results are con
sistent with experimental results in viscous fingering with
liquid crystal@5–8# and etched cells@4#, and also with theory
and simulations for the solidification problem@9,10#.

The layout of the rest of the paper is as follows: in Sec
we refer to the special features of liquid crystals concern
viscous fingering and present a simple model for them.
then map this model onto the basic Saffman-Taylor probl
with a twofold anisotropy in the surface tension. In Sec.
we briefly describe the phase-field model used and pre
the numerical results. Finally, in Sec. IV we discuss th
consequences for viscous fingering with a liquid crystal a
consistency with related problems.

II. MODEL

In the nematic phase of a liquid crystal its molecules
locally oriented, giving rise to anisotropy in the viscosity a
6632 ©2000 The American Physical Society



t

vi
ip
ra
th

a
he
r-

id
ty
n
n
so
nt
n
i

or
i

c

n-
ou

,

e

g

i-

lo
u

to

y
he

ua-

Ref.
ed
rm

e a

te

id
the
d
he
he

PRE 61 6633VISCOUS FINGERING IN LIQUID CRYSTALS: . . .
surface tension. The degree of orientation depends on
proximity of the other phase~s!, namely the isotropic~and for
some liquid crystals the smectic!, i.e., it still depends on
temperature, and so does the anisotropy, mainly in the
cosity @7#. Therefore one should be able to explain the t
splitting/side-branching transition as a function of tempe
ture in the nematics by means of the anisotropy in
viscosity alone.

In a viscous fingering experiment, the director forms
small angle with the velocity field, except maybe for t
neighborhood of the interface, where it might follow its no
mal direction. So, as a first approximation, one can cons
that there is flow alignment, and, therefore, a veloci
dependent viscosity, which would make the flow no
Laplacian. However, in the vicinity of a finger tip we ca
approximate the direction of the flow for that of the finger,
that we can make a minimal model with only two differe
viscosities: one in the direction parallel to the finger and o
in the perpendicular direction. More details can be found
Ref. @7#.

Let us now review the formulation of the Saffman-Tayl
equations to account for those two different viscosities
two perpendicular directionsx and y. We will do it for the
channel geometry, although the result also applies to the
cular cell used in the experiments of Ref.@7# with minor
changes.~i.e., two different viscosities in the radial and ta
gential directions would also map to the standard visc
fingering equations and the same functional dependence
the surface tension anisotropy!. For the sake of generality
we consider both the displaced~1! and the injected~2! fluid
to have a certain distinct viscosity (m1 ,m2).

As in the usual Saffman-Taylor problem, in each bulk w
assume the flow to be incompressible,

¹W •uW 50 ~2.1!

~whereuW is the fluid velocity in the reference frame movin
with the mean interface atV` , the injection velocity!, and
also Darcy’s law to hold, but now for two different viscos
ties mx,i ,my,i ,

ux52
1

hx,i
]xp, ~2.2!

uy52
1

hy,i
~]yp1r ige f f!2V` ,

wherei 51,2 stand for each fluid,ux ,uy are thex,y compo-
nents ofuW , p is the pressure,hx,i5(12/b2)mx,i is an inverse
mobility in thex direction,hy,i5(12/b2)my,i , in they direc-
tion, r i , the density, andge f f , the effective gravity in the
plane of the channel. Also as in the usual Saffman-Tay
problem, on the interface the normal velocity is continuo
and equals that of the interface,

r̂ •uW 15 r̂ •uW 25vn ~2.3!

~where r is a coordinate perpendicular to it increasing
wards fluid 1 andvn its normal velocity!, and the pressure
has a jump given by Laplace’s law,
he
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p12p25s~f!k, ~2.4!

with s(f) the ~anisotropic! surface tension andk the inter-
face curvature.

Due to Eqs.~2.1! and~2.3!, the flow can be described b
a scalar fieldc, the stream function, defined even on t
interface byux5]yc,uy52]xc ~see, e.g., Refs.@14,16#!.
However, because of the different viscosities in thex andy
directions, the problem is non-Laplacian~there is vorticity!
in the bulk:

¹2c52u¹W 3uW uÞ0. ~2.5!

To circumvent this, we rescale thex and y axes by a
different factor. We also adimensionalize the resulting eq
tions in the same way as in Refs.@14,16#, so that they can be
compared to those in these references, and especially to
@14# in order to generalize the phase-field model describ
there to the case of anisotropic viscosity. Thus, we perfo
the following change of variables:

x5axx̃,

y5ayỹ, ~2.6!

t5
W

U*
t̃ ,

where tildes denote new variables,ax ,ay have units of
length,U* is a velocity, andW the channel width. We find

¹W •uW 5
U*
W

¹W̃ •uW̃ 50, ~2.7!

so that the flow is still incompressible and we can defin
new stream functionc̃5(W/U* )@c/(axay)#, which will be
Laplacian in the bulk if and only if@see Eq.~2.5!# the veloc-
ity field is potential in each fluid,

uW̃ 52
W

U*
F 1

W2h̃ i

~¹W̃ p1ayr igŷ!1
V`

ay
ŷG , ~2.8!

which is now the case as long as we chooseax ,ay to be such
that

ax
2hx,i5ay

2hy,i[W2h̃ i . ~2.9!

On the interface, Eq.~2.3! will be formally unchanged as
long as the choice ofax ,ay is the same at both sides. No
that, according to Eq.~2.9!, this implies that the ratiom
[hx /hy must be the same for both fluids. In an air-liqu
crystal experiment, this is obviously not the case, but, in
limit in which the viscosity of the air is negligible compare
to that of the liquid crystal, the anisotropic character of t
air viscosity in our model becomes irrelevant. In terms of t
stream function, Eq.~2.3! for the new variables then reads

] s̃c̃15] s̃c̃252 ṽn , ~2.10!

wheres is the arc length along the interface such thatŝ3 r̂

5 x̂3 ŷ.
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As for ] r̃ c̃, the boundary condition for it will be given by

ũs̃[ ŝ
˜
•uW̃ . Indeed, it will have a jump on the interface due

the fact thatuW̃ is not potential on the very interface@see Eq.
~2.8!# because of the jump inh̃ i , which gives rise to a sin-
gular vorticity:

~ h̃11h̃2!~ ũs̃,12ũs̃,2!1~ h̃12h̃2!~ ũs̃,11ũs̃,2!

2

5h̃1ũs̃,12h̃2ũs̃,2

52
W

U*
H 1

W2
] s̃~p12p2!1F ay

W2
g~r12r2!

1
~ h̃12h̃2!V`

ay
G ŷ• ŝ

˜J ~2.11!

and therefore, making use of Eq.~2.4!,

] r̃ c̃12] r̃ c̃25ũs̃,12ũs̃,2

52
2

U*
H 1

W2~ h̃11h̃2!
] s̃@s~f!Wk#

1Fay

W

g~r12r2!

~ h̃11h̃2!
1

W

ay
cV`G ŷ• ŝ

˜J
2c~] r̃ c̃11] r̃ c̃2!, ~2.12!

wherec[(h̃12h̃2)/(h̃11h̃2). Now choosingay /ax
251/W,

Eq. ~2.9! yields m5ay /W, and defining U* [cV` /m
1@mg(r12r2)#/(h̃11h̃2) we recover the usual result fo
viscous fingering in a channel~see Refs.@14,16#!,

] r̃ c̃12] r̃ c̃2522] s̃@B~f!Wk#22ŷ• s̃̂2c~] r̃ c̃11] r̃ c̃2!,
~2.13!

with B(f)[s(f)/@W2(h̃11h̃2)U* #, except for them fac-
tors in the definition ofU* —and therefore inB(f)— and
the fact thatWk ands(f) are still in the original variables
and must be rescaled:

k[
d2y

dx2 F11S dy

dxD
2G23/2

5
ay

ax
2

d2ỹ

dx̃2 F11S ay

ax

dỹ

dx̃
D 2G23/2

5
1

W

d2ỹ

dx̃2 F11mS dỹ

dx̃
D 2G23/2

, ~2.14!

so that we obtain

Wk5k̃F 11~dỹ/dx̃!2

11m~dỹ/dx̃!2G 3/2

5
k̃

@11~m21!cos2f̃#3/2
,

~2.15!
wheref̃ is the angle fromx̂ to r̃
ˆ .

To summarize, we recover the usual viscous finger
equations, including Eq.~2.13!, which finally reads

] r̃ c̃12] r̃ c̃2522] s̃@B̃~f̃ !k̃#22ŷ• ŝ
˜

2c~] r̃ c̃11] r̃ c̃2!,
~2.16!

but now with an anisotropic dimensionless surface tension
the form

B̃~f̃ !5B̃0S̃~f̃ !F 1

11~m21!cos2f̃
G 3/2

, ~2.17!

where B̃0 is the dimensionless surface tension of isotro
viscous fingering

B̃0[
s0

W2@~ h̃12h̃2!V` /m1mg~r12r2!#
~2.18!

except for them factors, withs(f)[s0S(f). This means
that, even with an originally isotropic surface tension, t
rescaled problem has a twofold anisotropy with a very s
cific form given by the last~third! factor on the right-hand
side of Eq.~2.17!. On the other hand, the possible origin
anisotropy in the surface tension will change its function
form in the rescaled problem according to

S̃~f̃ !5S~f!5S@arctan~Amtanf̃ !#, ~2.19!

and the rescaled problem will have the twofold anisotropy
the mentioned last factor superimposed to the transform
anisotropy of Eq.~2.19! @second factor on the RHS of Eq
~2.17!#. A similar result was found in a different contex
namely, for the nematic-smecticB transition, where two dif-
ferent heat diffusivities in two perpendicular directions cou
be mapped to the same type of anisotropy in the surf
tension and the same type of transformation in the origi
anisotropy@17#. However, note that here the assumption
that the growth is in the direction of lowest viscosity~be-
cause of flow alignment of the director!, which results in
growth in the direction of largest surface tension (f̃5p/2),
whereas in Ref.@17# the situation is just the opposite: growt
was found to be in the direction of lowest diffusivity becau
that is the direction of lowest capillary length. Also for iso
tropic diffusivities it is known that steady needle crystals c
only grow in the direction of minimal capillary length@2#,
although there the anisotropy is assumed to be fourfold.

Finally, for the described minimal model the original a
isotropy in the surface tension would be twofold, e.g.,

S~f!512a cos2S f2
p

2 D , ~2.20!

so that the transformed anisotropy would read

S̃~f̃ !512
ma cos2~f̃2p/2!

11~m21!cos2f̃
. ~2.21!
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III. NUMERICAL INTEGRATION

We now integrate the rescaled problem, namely,
Laplace equation for the stream function with the bound
conditions Eqs.~2.10! and ~2.16!. In principle, given an ini-
tial condition, we should rescale it, evolve it using the re
caled dynamics, and translate the resulting interface bac
the original variables, but we will not perform any rescalin
since the initial condition is free, and the tip-splitting or sid
branching character of the result is unaffected by the fi
translation into the original variables. Instead, we will co
sider the rescaled problem on its own, and simulate it
means of the following phase-field model:

ẽ
]c

]t
5¹2c1c¹W •~u¹W c!1

1

e

1

2A2
g~u!~12u2!,

~3.1!

e2
]u

]t
5 f ~u!1e2¹2u1e2k~u!u¹W uu1e2ẑ•~¹W c3¹W u!,

~3.2!

whereu is the phase field,e,ẽ are model parameters, whic
must be small to recover the sharp-interface equations o
rescaled problem, and we have dropped the tildes of the
caled variables. We have definedf (u)[u(12u2), and
g(u)/2[ ŝ(u)•@¹W B(u)k(u)1 ŷ#, k(u)[2¹W • r̂ (u), with
r̂ (u)[¹W u/u¹W uu and ŝ(u)[ r̂ (u)3 ẑ. This model was intro-
duced for isotropic viscous fingering in Ref.@14# and exten-
sively tested in Ref.@15#. From this work we know that it
will yield converged results for the steady fingers~and, in
particular, for their widths! if both e<0.2AB0 and ẽ
<0.2(12c). The only change to be made for the anisotro
case is to setB(u) not merely equal to a constant, but to th
given by Eq.~2.17! taking f5f(u)5arccosx̂• r̂ (u). This
givesB(u)5B(f)1O(e3), which not only satisfies the de
sired sharp-interface limit, but also ensures that the introd
tion of anisotropy will not result in any extra first-order co
rection to the free boundary problem, so that the ab
conditions one,ẽ still hold.

The same phase-field equations could be used for the
cular geometry reinterpreting the parameters, since an an
rescaling yields formally the same result. However,
boundary conditions would change. For instance, injectio
the center of the cell should also be considered. Anyhow,
choose to simulate the well controlled situation in which
~unstable! steady finger propagates in a channel of widthW.
This representation is, of course, exact for single fingers
experiments carried out in the linear Hele-Shaw cell@8#, but
only a ~good! approximation for the vicinity of a finger in a
multifinger configuration~with many fingers! in the circular
geometry@7#.

We investigate the transition between the tip-splitting a
the side-branching event as both the dimensionless sur
tensionB0 and its anisotropym21 are varied. We are inter
ested mainly in the effect of the anisotropy coming from t
viscosity (m21), so we drop that in the original surfac
tension @s(f)5s0#. Since the value ofB0 below which
fingers destabilize is known to depend on the amount
noise present@12#, one expects the absolute values ofB0 and
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m21 at the transition to depend on that too. However, t
amount of noise is unknown both in the experiments and
our simulations, since only numerical noise is present.
order to be able to actually control it, one should keep n
merical noise at a low enough level and introduce the ph
cally relevant ones. This has been done for the solidificat
problem @18#, but no first-principle formulation of viscous
fingering with noise is available.

The runs use equal viscosities in both fluids,c50, for
reasons of numerical efficiency (ẽ50.2), but we do not ex-
pect the viscosity contrast to affect the stability of the tip f
similar reasons for which it does not play any role in t
~linear! stability of a flat interface. To check this conjectu
we ran simulations withB051023 both for c50 and c
50.8, two values of the viscosity contrast for which a dr
matic change in the competition dynamics was seen us
the same phase-field model@15#, and we found that the tran
sition lies in both cases betweenm52 andm52.25. These
c50.8 runs are indeed the ones shown in Figs. 1 and 2.

We usee5431023, so that we can simulate accurate
with values of the dimensionless surface tension down
B05431024. We first run a steady finger with a large, is
tropic dimensionless surface tensionB(f)5B051022, large
enough for the finger not to destabilize for the amount
noise we have and thus reach its steady width and veloc
Once this is achieved —see inner interface in Figs. 1~a! and

FIG. 1. Destabilization of the tip of a~stationary! finger after
instantly decreasingB0 to B051023 at the time of the first interface
shown. Successive interfaces are shown in the reference fr
moving with the mean interface at time intervals 0.11, forc50.8,

ẽ50.08. The latest interface is represented in bold.~a! Tip splitting
for m52. ~b! Side branching form52.25.
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1~b!—we perform a ‘‘quench’’ in surface tension, i.e., w
instantly reduce it to some lower value. Simultaneously,
also introduce some amount of anisotropym21.

The subsequent interface evolution forB051023 ~and c

50.8, ẽ50.08) is also shown within the reference fram
moving with the mean interface in Figs. 1~a! (m52) and
1~b! (m52.25) in the form of snapshots at time interva
0.11.~Simulations used only half of the channel and refle
ing boundary conditions at its centerx50, so that asymmet
ric instability modes are not studied!. The correspondingy
position of the interface at the center of the channel~also in
the frame of the mean interface! is plotted against time in
Fig. 2.

For this value ofB0 the finger clearly destabilizes: Firs
its tip widens and flattens~see Fig. 1! and therefore slows
down ~see Fig. 2! for any value of the anisotropy.~Note that
for t,0 the tip position would be a straight line in time
since the finger was steady, and, in particular, its veloci!.
Then, form52 the tip continues to flatten and slow dow
until its curvature@Fig. 1~a!# and eventually its velocity in
the frame of the mean interface~lower curve in Fig. 2! re-
verse their signs. Finally, the velocity of the interface at
center of the channel seems to reach some negative con
value ~again, in the frame moving with the mean interfac!
corresponding to the growth of two parallel fingers at ea
side. We identify this reversal of the curvature sign at
center of the finger and this always convex tip position
time plot with the tip-splitting event.

In contrast, form52.25 the reversal of the curvature sig
takes place at some distance from the center of the chan
while at the center the curvature increases again@Fig. 1~b!#
and makes it possible for the tip to speed up again as w
giving rise to a change of concavity in the tip position
time plot~upper curve in Fig. 2!. We will call this reversal of
the curvature sign at a distance from the center of the ch
nel and this change of concavity in the tip position vs tim
plot the side-branching event, because the tip, although
stationary, survives, with lateral ramifications as those s
in the experiments@4,7#.

FIG. 2. y coordinate of the interface at the center of the chan
(x50) in the reference frame of the mean interface as a functio
time corresponding to Figs. 1~a! ~lower curve! and 1~b! ~upper
curve!. t50(0.88) corresponds to the first~last! interface shown
there.
e
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e
s
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n-
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In this way we systematically explore values of the d
mensionless surface tensionB0 ranging fromB51022 down
to B5431024. For each value ofB0 we simulate with sev-
eral values of the anisotropym21, and we find that there is
a relatively sharp transition between the tip-splitting and
side-branching event. In Fig. 3 we show for each value ofB0

(x axis! the two closest values ofm21 (y axis! for which
the two different events took place, namely, tip splittin
~circles! and side branching~triangles!. Thus we know that
the transition line must lie somewhere between the circ
and the triangles, and that above~larger values ofm21) and
left of ~lower values ofB0) that transition line the observe
event is side branching, and below and right of it, tip sp
ting. This means the critical anisotropym21, above which
side branching replaces tip splitting, decreases with decr
ing dimensionless surface tensionB0.

In fact, this critical anisotropy vanishes atB0;531024,
and below this value only side branching is observed, eve
one uses negative anisotropies down tom21520.9, which
correspond to a viscosity larger in the direction of growth
the finger than in the perpendicular one, and which is not
case of the liquid-crystal experiments that motivated t
study @m21.21 to keep the two viscosities and therefo
B(f50) finite and positive#. Of course, the specific value o
B0 for which the critical anisotropy vanishes could be a
fected by the fact that a residual~fourfold! grid anisotropy
remains, but it seems unavoidable that there is such a~finite!
value of B0, since the transition line curves down asB0 is
decreased, and for large enough values ofB0 or the anisot-
ropy m21, the grid spacingDx5e5431023 is far too fine
to affect the effective anisotropy.

On the other hand, forB0>1.431023 and for the time
elapsed in our runs, no clear side branching is actually
served above the transition line extrapolated from lower v
ues ofB0, whereas tip splitting still occurs below that line
For even larger values ofB0, namely, B0;231023, not
even tip splitting is observed again within the time elaps
although the steady finger still destabilizes through the w
ening and flattening of its tip. Finally, forB>1022 the finger
is completely stable for the amount of noise we have, as
pointed out before.

l
of

FIG. 3. Transition between tip-splitting~circles! and side-
branching~triangles! as a function of the surface tension anisotro
m21 and the dimensionless surface tensionB0.
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IV. DISCUSSION AND CONCLUSIONS

We have shown that viscous fingering with two differe
viscosities in two perpendicular directions maps to the st
dard viscous fingering equations~i.e., for isotropic viscosity!
with an extra twofold anisotropy in the surface tension su
that, together with the hypothesis of flow alignment of t
director, it leads to growth in the direction of maximal su
face tension. We have simulated the resulting problem us
a previously developed phase-field model@14,15#, and we
have found that there is a transition from the tip-splitting
the side-branching event as either the anisotropy in the
face tension is increased or the dimensionless surface ten
is decreased. We now draw the connection with the liqu
crystal experiments of Ref.@7#.

The observed anisotropy dependence is consistent
the experimental finding that there is a transition from
splitting to side branching and back to tip splitting with tem
perature in the nematic phase, since close to the other ph
the director alignment, and consequently the anisotro
weaken@7#. The transition is found to be also reentrant w
injection pressure@7#, which is explained there with the hy
pothesis that too low pressures do not achieve flow ali
ment, whereas too large ones break down the Hele-S
approximation because of the importance of inertial terms
the hydrodynamic equations, which then destroy the fl
alignment again. This anisotropy dependence is also con
tent with simulations of the boundary layer model@3# and the
full solidification problem@10#, as well as with analytica
approaches to solidification@9#.

As for the dimensionless surface tensionB0 dependence
one first needs to relate the values ofB0 used in the channe
simulations to the experimental parameters in the circu
geometry. To do this we consider a virtual channel who
walls are placed at half the distance between a finger an
nearest neighbors. The channel widthW is given by this
distance between adjacent finger tips, whereas the effec
injection velocityV` turns out to be the ratio between th
injection pressure andR, the mean distance between a tip a
the injection point. Then, the following dynamic picture of
typical experiment in the circular cell emerges: Initial
some fingers develop. If the anisotropy,m21, is strong
enough, their tips are stable~which corresponds to a poin
above the transition line in Fig. 3, where the observed ev
is side branching!. As these fingers grow radially,W in-
creases asR, whereas the effective driving force, (h1
2h2)V` , decreases as 1/R, so that the dimensionless su
face tensionB0 they experience is found to decrease as 1R.
Thus, the corresponding point in Fig. 3 moves to the
S

t
-

h

g

r-
ion
-

ith

ses
y,

-
w
n

is-

r
e
its

ve

nt

t

~lower values ofB0), and the side-branching behavior is pr
served.

In contrast, if the anisotropym21 is not strong enough
the tips split~the corresponding point is below the transitio
line in Fig. 3, where the observed event is tip splitting!. As a
result the number of fingers increases, which then comp
sates for the growth of the distance between finger tips aR
in such a way that the effective dimensionless surface
sion B0 keeps roughly steady during the pattern develo
ment, so that the corresponding point in Fig. 3 basically d
not move. Thus the transition line is not crossed and
tip-splitting behavior is also preserved.

In this way we can see that the tip-splitting and sid
branching events are the elementary dynamical proce
through which the respective morphologies arise. Con
quently, the transition between single events in our simu
tion setup implies a transition between morphologies as
served in the experiments. However, the latter is seen to
more diffuse due to irregularities associated with the eff
of noise and the initial conditions. Such irregularities and
unknown amount of noise both in the simulations and
experiments also prevent the comparison of the absolute
ues ofB0 and m21 in the experiments and in the simula
tions, whereas the qualitative dependence of the value of
anisotropy at the transition on the driving force should
correct, and has actually been seen in viscous finge
within an etched cell@4#. However, we find the critical
amount of anisotropy for side branching to replace tip sp
ting to vanish at a finite value ofB0. Below this value we
only observe side branching.

A more realistic model of viscous fingering in a liqui
crystal should include a velocity-dependent viscosity. In g
eral the resulting non-Laplacian character of the probl
could not be avoided, but in principle it would still be po
sible to simulate the dynamics by means of a phase-fi
model.
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1527 ~1987!; Á. Buka, P. Palffy-Muhoray, and Z. Ra´cz, ibid.
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@7# Á. Buka, inPattern Formation in Liquid Crystalsedited by Á.
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