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Structure and rheology of binary mixtures in shear flow
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Results are presented for the phase separation process of a binary mixture subject to a uniform shear flow
quenched from a disordered to a homogeneous ordered phase. The kinetics of the process is described in the
context of the time-dependent Ginzburg-Landau equation with an external velocity term. The large-n approxi-
mation is used to study the evolution of the model in the presence of a stationary flow and in the case of an
oscillating shear. For stationary flow we show that the structure factor obeys a generalized dynamical scaling.
The domains grow with different typical length scalesRx and R' , respectively, in the flow direction and
perpendicularly to it. In the scaling regimeR';ta' andRx;gtax ~with logarithmic corrections!, g being the
shear rate, withax55/4 anda'51/4. The excess viscosityDh after reaching a maximum relaxes to zero as
g22t23/2. Dh and other observables exhibit logarithmic-time periodic oscillations which can be interpreted as
due to a growth mechanism where stretching and breakup of domains occur cyclically. In the case of an
oscillating shear a crossover phenomenon is observed: Initially the evolution is characterized by the same
growth exponents as for a stationary flow. For longer times the phase-separating structure cannot align with the
oscillating drift and a different regime is entered with an isotropic growth and the same exponents as in the
case without shear.

PACS number~s!: 47.20.Hw, 05.70.Ln, 83.50.Ax
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I. INTRODUCTION

The kinetics of phase separation of a disordered sys
quenched into a multiphase coexistence region has been
tensively studied in recent years@1#. The main features of the
process are well understood: After an early stage du
which ordered domains of the equilibrium phases
formed, the segregation proceeds in the late stage by co
ening of ordered regions according to the power law grow
R(t);ta for the average domain size. In binary liquids, t
existence of several regimes characterized by different ex
nentsa, due to the presence of various growth mechanis
is well established@2#. In these regimes the pair correlatio
function C(r ,t) follows a dynamical scaling law accordin
to which it can be written asC(r ,t). f (r /R), wheref (x) is
a scaling function@3#.

From the theoretical point of view the most releva
progress has been achieved in the framework of the cont
ous approach based on the Cahn-Hilliard equation wit
Ginzburg-Landau free energy functional, the time-depend
Ginzburg-Landau~TDGL! model. Within this approach
which neglects hydrodynamics, the properties of the pha
separation kinetics can be efficiently studied by means
numerical simulations or analytically in the context of a
proximate theories, among which is the so-called largn
limit ~one-loop approximation!. For a vectorial system with
an infinite number of componentsn, indeed, the TDGL
model is exactly soluble. The one-loop approximation
known to provide a mean-field picture of the phas
separation process which captures the essence of the
nomenon at a semiquantitative level@4#.
PRE 611063-651X/2000/61~6!/6621~11!/$15.00
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In this paper we study the process of phase separation
binary mixture subject to a uniform shear flow. When she
is applied to the system the time evolution is substantia
different from that of ordinary spinodal decomposition. W
consider both a stationary flow and an oscillating shear.

A stationary flow induces strong deformations of the d
mains formed after the quench@5–7#, which become aniso-
tropic and stretched along the flow direction. Consequen
the growth rate along the flow is larger than in the oth
directions. In some experiments a power law increase of
typical size of the domains is observed and a valueDa
5ax2a' is reported in the range 0.8–1 for the differen
between the exponents in the flow and in the shear direct
@8,9#. Two-dimensional molecular dynamic simulations fin
a slightly smaller value@10#. In other experimental realiza
tions, when the shear is strong enough, stringlike doma
have been observed to extend macroscopically in the di
tion of the flow @11#, preventing complete phase separatio
In general, the scaling behavior of sheared systems is
clearly understood and the very existence of a scaling reg
in different experimental systems is questionable.

In a previous paper@12# we have shown that the numer
cal solution of the one-loop approximation to the TDG
model for phase separation under shear exhibits a gen
ized scaling symmetry characterized byDa51. In the scal-
ing regime the structure factor and other observables exh
the interesting feature of an oscillatory pattern, which can
related to a mechanism of storing and dissipation of ela
energy where domains are stretched and broken cyclica
This effect has been shown to persist up to the longest av
able time of our computation and represents the hallmark
6621 ©2000 The American Physical Society
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6622 PRE 61F. CORBERI, G. GONNELLA, AND A. LAMURA
a complex dynamical pattern induced by the presence of
shear. In a recent paper Rapapa and Bray@13#, by solving the
one-loop equations asymptotically, confirmed analytica
the existence of a~multi!scaling symmetry; in the long-time
limit, however, they did not recover the cyclical pattern d
scribed previously and they infer ‘‘that the observed osci
tions are slowly decaying preasymptotic transients.’’ Sin
their solution is obtained in the infinite-time limit, then,
reference theory for the description of this remarkable p
nomenon is lacking.

Given that the one-loop approximation is a mean-fi
solution in spirit, the natural question of its accuracy for t
description of the original model arises. A numerical analy
of the exact TDGL model has been performed recently
@14#, where it is shown that the global picture of the one-lo
approximation is adequate. In particular, the oscillatory p
tern is recovered. The existence of a scaling symmetry
the determination of the related exponents, however, has
been clearly established numerically, mainly due to fin
size effects limitations. The actual value of the growth exp
nents can be inferred by scaling@13# or renormalization
group @14# arguments to bea'51/3, as in the case withou
shear~we stress the fact that hydrodynamic effects are
glected in this model!, andax54/3.

The shear also induces a peculiar rheological behav
The breakup of the stretched domains liberates an en
which gives rise to an increaseDh of the viscosity@15,16#.
Experiments and simulations show that the excess visco
Dh reaches a maximum att5tm and then relaxes to smalle
values. The maximum of the excess viscosity is expecte
occur at a fixedgt and to scale asDh(tm);g2n @6,8#.
Simple scaling arguments predictn52/3 @6#, but different
values have been reported@8#. All these features are alread
adequately described by the TDGL at the one-loop level

In this paper we present a complete scenario of the be
ior of the TDGL model for phase separation in a shear fl
in the framework of the large-n approximation. The behavio
of the system is studied along the whole time history, fro
the instant of the quench onward, both in the presence
steady flow and in the case of an oscillating shear wh
interesting effects are uncovered. Results are presente
two- and three-dimensional systems.

This paper is schematically divided as follows. In Sec
we specify the model and introduce the one-loop approxim
tion that will be studied thoroughly in the following section
Section III is devoted to the analysis of the behavior of
model subjected to a steady flow. In Sec. IV the dynamic
the presence of an oscillatory shear is considered. In Se
we present a discussion of the results, debate some
problems, and draw our conclusions.

II. THE MODEL

The binary mixture is described at equilibrium by
Ginzburg-Landau free energy

F$w%5E ddr H a

2
w21

b

4
w41

k

2
u¹wu2J , ~1!

wherew is the order parameter, which represents the conc
tration difference between the two components. The val
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of b,k are positive for any temperatureT of the fluid. The
parametera separates stable states of the blend witha
.ac(T) @ac(T)<0#, from the thermodynamically unstabl
states witha,ac(T) where the system phase separates. T
time evolution of the order parameter is given by t
convection-diffusion equation

]w

]t
1¹W •~wvW !5G¹2

dF
dw

1h, ~2!

where the Gaussian stochastic fieldh, with expectations

^h~rW,t !&50,

^h~rW,t !h~rW8,t8!&522TG¹2d~rW2rW8!d~ t2t8! ~3!

describes thermal fluctuations@5#. In Eq. ~2! G is a transport
coefficient and the symbol^•••& indicates the ensemble av
erage. The external velocity field considered here is of
form

vW 5gyeW x , ~4!

whereg is the spatially homogeneous shear rate@5#, which
may, however, depend on time, andeW x is a unit vector in the
flow direction. In the following we will consider a quenc
from an uncorrelated isotropic high-temperature initial co
dition at the critical composition, i.e., witĥw(rW,0)&50 and

^w(rW,0)w(rW8,0)&5Dd(rW2rW8). The main observable for the
description of the phase-separation kinetics is the struc
factor

C~kW ,t !5^w~kW ,t !w~2kW ,t !&, ~5!

where w(kW ,t) is the Fourier transform of the fieldw(rW,t)
solution of Eq.~2!. In the high-temperature initial state w
consider that one hasC(kW ,0)5D.

The cubic term in the derivativedF/dw prevents an exac
solution of Eq.~2!, as in the case without shear@2#. However
a soluble model is recovered in the one-loop approximati
which amounts to the factorization of the cubic term of E
~2! as

w3→^w2&w. ~6!

It is possible to show@17# that the substitution~6! becomes
exact in models with a vectorial order parameter when
number n of components becomes infinite. Since^w2&
5S(t) does not depend on space, due to translational inv
ance, the substitution~6! formally linearizes the theory. The
large-n limit is a well developed approximation scheme
statistical mechanics which have been applied to differ
contexts @18#: Its validity and limitations are nowaday
rather well understood@19#.

In the large-n approximation the dynamical equation fo
C(kW ,t) is

]C~kW ,t !

]t
2gkx

]C~kW ,t !

]ky
52k2@k21S~ t !21#C~kW ,t !1k2T,

~7!
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where the functionS(t) is self-consistently given by

S~ t !5E
ukW u,q

dkW

~2p!d
C~kW ,t ! ~8!

andq is a high-momentum phenomenological cutoff. Noti
that in Eq.~7! the parameters of the free energy~1! and the
mobility G have been eliminated by a redefinition of th
time, space, and field scales. The rheological propertie
the mixture are described in terms of the shear stress@5#

sxy~ t !52E
ukW u,q

dkW

~2p!d
kxkyC~kW ,t ! ~9!

and of the first and second normal stress differences@5#

DN15E
ukW u,q

dkW

~2p!d
~ky

22kx
2!C~kW ,t ! ~10!

and

DN25E
ukW u,q

dkW

~2p!d
~kz

22ky
2!C~kW ,t !. ~11!

For vectorial systems withn.d (d is the spatial dimension
ality! topological defects are not stable@2#. For large n,
therefore, domains of the equilibrium phases are, stri
speaking, absent. Nevertheless, since from the solution o
one-loop equations presented below it is possible to iden
characteristic growing lengthsRx(t) and R'(t) in the flow
and in the other directions, it is natural to interpret the
quantities as thetrace of the domain size after the one-loo
approximation procedure has been performed. In the follo
ing we will always use the worddomainsin this broad sense

III. STEADY SHEAR

In this section we consider the case of a constant sh
rateg. Equation~7! can be formally integrated, yielding

C~kW ,t !5De2*0
t K 2(u)[K 2(u)1S(t2u)21]du

1TE
0

t

K 2~u!e2*0
uK 2(s)[K 2(s)1S(t2s)21]dsdu,

~12!

where

KW ~u!5kW1gkxueW y ~13!

andeW y is the unit vector in the shear direction normal to t
flow. For steady flow it is usual to define the excess visco
as

Dh~ t !5
sxy~ t !

g
. ~14!
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A. Analytic solution in the short- and long-time limits

The consistency condition~8! cannot be worked out along
the whole time history of the system. For this reason in
following sections the model equations will be solved n
merically in bothd52 andd53. However, the model can
be solved in the short- and long-time limits.

1. Short times

For short times the linearized theory developed origina
by Cahn and Hilliard@20# for the situation withg50 can be
extended to the present case. This amounts to neglecting
quartic term in the local part of the free energy~1! since in
the initial high-temperature state the order parameter
small. With this approximation the solution of Eq.~2! reads

C~kW ,t !5De2*0
t K 2(z)[K 2(z)21]dz

1TE
0

t

K 2~z!e2*0
zK 2(s)[K 2(s)21]dsdz. ~15!

This approach applies to the original model and to the lar
n approximation as well because nonlinear terms are
glected. It is well known that the linear theory describes
initial transient of the phase-separation process, when
mains are still forming. In this time domain the behavior
the system in the presence of the flow is more interes
than in the simple case of an immobile fluid. A plot of th
structure factor~15! is presented for a two-dimensional sy
tem in Fig. 1 for the caseg51 andT50. Initially, when
domains are forming but the shear flow has not yet produ
sensible effects, the structure factor evolves assuming
typical structure of a circular volcano, similarly to what ha
pens in the case without shear. Atgt.0.5 the anisotropy
induced by the shear produces a deformation in the profil
the edge of the volcano from a ringlike geometry into
ellipse, whose major axis forms with the positive direction
the ky axis an angle of approximatively 45°~see Fig. 1!. At
the same time small dips start to develop in the edge at
ends of the axes of the ellipse and four peaks can be cle
observed atgt.2. As time goes by, the angle formed by th
major axis of the ellipse with theky direction decreases an
the dips in the profile ofC(kW ,t) along the major axis develop
until C(kW ,t) almost consists of two separated foils, atgt
.4, when two peaks prevail. The same initial pattern is a
observed@14# by numerically solving the full model equatio
~2!. At later times, however, the presence of the nonlin

FIG. 1. The evolution of the structure factor in the linear a
proximation forg51. The range ofkx andky varies from22 to 2.
At gt54 the highest peaks are located at (kx ,ky).(0.0,60.75),
the other two at (kx ,ky).(70.38,60.80).
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terms becomes fundamental and the linear theory bre
down, as in the case without shear. It is important to str
the fact that the presence of four peaks in the structure fa
is already exhibited at the linear theory level of approxim
tion. We will see in the following sections that the ve
existence of a multiply peakedC(kW ,t) produces a rich dy-
namical pattern causing an oscillatory phenomenon.

2. Long times

The self-consistency condition~8! has been worked ou
explicitly in the long-time domain in@13#. It is found that the
model has a multiscaling symmetry, as in the case with
shear@21#, characterized by the growth of the characteris
length scales as

Rx;gS t5

ln t D
1/4

~16!

and

R';S t

ln t D
1/4

~17!

in the direction of the flow and perpendicular to it, respe
tively. The excess viscosity and the normal stress differen
behave as

Dh~ t !;g22S ln t

t3 D 1/2

, ~18!

DN1;DN2;S ln t

t D 1/2

. ~19!

The same behavior~apart from logarithmic corrections! is
obtained in@12# by means of a scaling ansatz.

B. Numerical solution

We present in this section the results of the numer
integration of the large-n equation~7! which allows us to
follow the whole time history of the phase-separation p
cess. We restrict ourselves to the case withT50. An Euler
first order discretization scheme has been implementedd
52 and d53 on d-dimensional lattices with 201 mes
points per each direction. For long times the structure fac
is strongly peaked around typical wave vectors which mo
toward zero as time goes on~see Fig. 2!. Given that the
support ofC(kW ,t) also shrinks to zero it is possible to great
improve the quality of the numerical computation by using
self-adaptive mesh algorithm that follows the evolution
the support of the structure factor. We have solved Eq.~7!
for various values of the shear rateg in the range
@1024,1022#. We found that the qualitative behavior is th
same for all the values ofg considered. From the knowledg
of the structure factor we compute the characteristic leng
R(t) as

Rx~ t !5
1

Akx
2

, ~20!
ks
s
or
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where

kx
25

E dkW kx
2C~kW ,t !

E dkW C~kW ,t !

, ~21!

and the same for the other directions.

1. dÄ2

The behavior ofC(kW ,t) is shown in Fig. 2 forg50.001.
Initially the evolution of the structure factor resembles t
one observed in Fig. 1 where the linear theory forC(kW ,t)
was plotted. Later on, however, the linear theory fails b
cause the nonlinearities become relevant, and the long-
regime is entered. This is characterized by the shrinking
the support ofC(kW ,t) toward the origin with different rates
for the shear and the flow directions so that the tilt ang
namely, the direction along whichC is aligned, decreases i
time. The structure factor is divided into two separated fo
which are symmetric due to the propertyC(kW ,t)5C(2kW ,t).
In each foil two distinct peaks can be observed located
(kx1

,ky1
) and (kx2

,ky2
) with ukx1

u.2ukx2
u and uky1

u.2uky2
u.

FIG. 2. The evolution of the structure factor from the numeric
solution of Eq.~7! in d52 for g50.001 andT50. The range ofkx

and ky varies, at increasing times, as20.6<kx ,ky<0.6 at gt
50.05,1; 20.15<kx<0.15 and 20.6<ky<0.6 at gt56,8;
20.075<kx<0.075 and 20.6<ky<0.6 at gt510; 20.018 75
<kx<0.018 75 and20.3<ky<0.3 atgt545.
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Their heights change in time. The first peak to prevail is t
located at (kx1

,ky1
), while the other peak dominates later. A

time elapses the two peaks are observed to prevail a
nately. This oscillatory behavior continues up to the long
times of our computations.

In Fig. 3 the quantities (g ln t)1/4Rx(t) and (g ln t)1/4Ry(t)
are plotted against the straingt @22#. According to Eqs.~16!
and ~17! for long times these quantities should collapse,
different values of the shear, on two power law mas
curves with exponents 5/4 and 1/4, respectively. Here
observe that the collapse is indeed good, but the predi
power-law behavior is modulated by an oscillatory patte
These oscillations are observed to be periodic on a loga
mic time axis and persist up to the limit of the computation
time.

We now consider the rheological behavior of the mixtu
by plotting in Fig. 4 the quantity (g/ ln t)1/2Dh(t) against the
strain. This quantity reaches a maximum atgt.3.5 and then
decreases, as also found in experiments@8#. For long times
Eq. ~18! would predict a data collapse for differentg on a
single power law master curve with exponent23/2. Here the
situation is similar to the previous figure, in that the pr
dicted behavior is modulated by logarithmic-time period
oscillations. On the basis of simple scaling arguments
maximum of the excess viscosityDh(tm) is expected to oc-
cur at a fixedgt and to scale asDh(tm);g2n, with n
52/3 @6,8#. These arguments do not directly apply to t
one-loop approximation since, due to the mean-field nat
the exponents are different. The asymptotic solution~18! is
not adequate to this early-stage effect. Theg dependence o
Dh(tm) is plotted in the inset of Fig. 4, showing that a pow
law behavior withn.0.6 is obeyed, in partial agreeme
with the aforementioned scaling arguments.

In Fig. 5 we report the numerical results for the first no

FIG. 3. Data collapse~scaling plot! for the domain radii ind
52. The quantities (g ln t)1/4Rx(t) and (g ln t)1/4Ry(t) are plotted
against the straingt for different values of the shear rate: (n)g
50.0001, (s)g50.001, (d)g50.01. The two straight lines hav
slopes 5/4 and 1/4.
t

r-
t

r
r
e
ed
.
h-
l

-

e

e,

-

mal stress by plotting (g ln t)21/2DN1 against gt with g
50.01. We find thatDN1(t) scales asymptotically as pre
dicted by Eq.~19!, again modulated by an oscillatory patter

The periodic oscillations observed in all the physical o
servables are due to the competition between the diffe
peaks ofC(kW ,t). Let us refer to the behavior of the exce

FIG. 4. Data collapse~scaling plot! for the excess viscosity in
d52. The quantity (g/ ln t)1/2Dh(t) is plotted against the straingt
for different values of the shear rate: (n)g50.0001, (s)g
50.001, (!)g50.005, (d)g50.01. The straight line has slop
23/2. The inset shows the maxima ofDh as a function ofg. The
slope of the straight line is 0.6.

FIG. 5. The first normal stressDN1 multiplied by (g ln t)21/2 as
a function ofgt. The value ofg is 0.01. The slope of the straigh
line is 21/2.
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viscosity to understand how this competition affects
rheological quantities, using the features of the structure
tor to obtain information about the domains evolution und
the action of shear.Dh reaches its first maximum when th
shape ofC(kW ,t) is such that the peak located at (kx1

,ky1
)

prevails and the difference between the heights of the
peaks is maximal. At this time the domains are elongated
the flow and there is a prevalence of thin domains in
system. As these stringlike domains are stretched furt
they eventually break up into two or more domains, dissip
ing the stored energy. This has two effects: the excess
cosity decreases and, on the other hand, the thick dom
which have not yet been broken, prevail. In this situation
other peak ofC(kW ,t) @which is located at (kx2

,ky2
) and rep-

resents the smaller features# grows faster until it prevails and
Dh reaches a minimum. This behavior is reproduced wit
characteristic frequency in logarithmic time. Recently,
similar behavior has been observed in the numerical sim
tion of the full model, Eq.~2! @14#.

2. dÄ3

In this section we report the result of the numerical so
tion of Eq. ~7! in d53. In Fig. 6 the time evolution of the
structure factor in the special planeskx50, ky50, andkz

50 is shown forg50.001. In the planekz50 C(kW ,t) be-
haves analogously to the previously discussed tw
dimensional case. The structure factor on the planeky50
gives information relative to the observation of the syst
along the shear direction: No velocity gradient is presen
the plane perpendicular to this orientation, but there are
ferent velocities in thex andz directions. This allows us to
explain the observed behavior, which is rather different fr
that observed atkz50. The structure factor initially develop
a circular volcano, as without shear. The edge of the volc
is progressively deformed by the shear into an ellipse w
the major axis along thekz direction. Dips in the edge of the
volcano at values ofkx.0 develop with time so that, atgt

.1, C(kW ,t) is made of two foils but these are not complete
separated. During the time evolution the axes of the elli
shrink; the decrease is faster along thekx direction. The two
foils are never completely separated and the angle form
with thekz direction is zero, as observed in experiments@9#.
At gt.5 two well formed peaks start to develop and gro
on each foil of C(kW ,t). These four peaks have the sam
height and their relative heights do not change in time, as
be seen atgt520 in the picture, differently from the situa
tion on thekz50 plane.

In the kx50 plane the shear has no effect at all and
structure factor remains circular during its evolution.

The computed behavior ofRx(t) and Ry(t) is similar to
that of the two-dimensional case. We also findRz(t)
;Ry(t), as expected.

We report in Fig. 7 the plots of (g/ ln t)1/2Dh(t),
(g ln t)21/2DN1(t), and2(g ln t)21/2DN2(t) as functions of
gt. It appears that the rheological quantities still have am
tudes which are modulated by logarithmic-time oscillatio
which are in phase among them. The origin of such osci
tions has to be found again in the oscillations of the peak
the structure factor in the planekz50. Since the support o
e
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C(kW ,t) shrinks toward the origin faster in thekz than in the
ky direction, the second normal stress differenceDN2(t) is
negative. This is in accordance with general experimen
experience@23#.

IV. OSCILLATING SHEAR

In this section we consider the case of a time-depend
shear rate with

g~ t !5g0 cosvt. ~22!

This situation is of great experimental relevance expecia
for probing the viscoelastic properties of a phase-separa
binary mixture.

We solved Eq.~7! numerically in d52 using the same
numerical scheme as in the case of steady shear, for diffe
values ofg0 and v. We will describe below the caseg0
51023, t52p/v563103. The time evolution of the struc
ture factor in the first cycle ofg(t) is shown in Fig. 8. The
dynamical pattern is analogous to the one withg5const for
times t,t/4 as can be seen atg0t51.5. Then the time-
dependent velocity field modifies the behavior of the mixtu

FIG. 6. The structure factor from the numerical solution of E
~7! in d53 at consecutive times forg50.001 andT50. From top
to bottom the sectionskx50, ky50, and kz50 of the structure
factor are shown. The range ofkx , ky , and kz varies as20.6
<kx ,ky ,kz<0.6 atgt51; 20.0375<kx<0.0375,20.3<ky<0.3,
and20.3<kz<0.3 atgt520.
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with respect to the case of a steady flow. In particular, at
end of the first oscillation, the four peaks ofC(kW ,t) are lo-
cated at comparable distances from the origin ofk space,
differently from what is observed in Fig. 2 atgt56. The two
highest maxima atg0t56 in Fig. 8 are characterized b
ukyu@ukxu. During the later time evolution these peaks gro

FIG. 7. (g/ ln t)1/2Dh(t) (*), ( g ln t)21/2DN1(t) (s), and
2(g ln t)21/2DN2(t) (d) as functions of the straingt. The straight
lines have slopes23/2 and21/2.

FIG. 8. The structure factor at each quarter of the firstg(t)
oscillation. The range ofkx and ky varies, at increasing times, a
20.6<kx ,ky<0.6 atgt51.5; 20.3<kx<0.3 and20.6<ky<0.6
at gt53,4.5; 20.3<kx ,ky<0.3 atgt56.
e
and move toward the origin. The position in thek plane of
the other peaks rotates back and forth cyclically along
approximately circular path. The radius of this trajecto
shrinks toward the origin at a rate comparable with that
the position of the other peaks. In the asymptotic regime
four peaks have approximately the same height and the
clical rotation of the peak position persists. This is shown
Fig. 9, where the configurations of the structure factor
shown at each quarter of oscillation of the shear rate in
asymptotic stage.

In Fig. 10 the evolution of the characteristic lengthsRx(t)
and Ry(t) is plotted againstg0t. We also plot, in the inset
the time average of these quantities over a periodt, in order
to smooth out the superimposed oscillations. Here we
serve, for timest,t, growth laws analogous to that of th
steady shear case, namely,Rx(t);t5/4 and Ry(t);t1/4. The
growth exponent ofRx changes smoothly, fromt.t onward,
from 5/4 to the asymptotic value 1/4, which is reached
g0t;80 when all four peaks of the structure factor have
same height. The gradual crossover ofax from 5/4 to 1/4 can
be better observed for larger values oft, since the regime
with ax55/4 persists for a longer time. This is shown in Fi
11, where the evolution ofRx(t) andRy(t) is plotted against
g0t for t553105. For small t, instead,Rx and Ry grow
with the same exponent 1/4 from the beginning.

These observations suggest the following physical in
pretation. Fort,t/2, sinceg does not change sign, the evo
lution of the mixture is comparable to the case with a co
stant shear rate. In particular, ift is sufficiently large to
exceed the initial stage when domains are forming,
power growth laws described in Sec. III forRx and R' are
observed withax55/4 anda'51/4. On time scales much
longer thent, however, the network of larger domains ca
not be efficiently tilted along the flow orientation, whic

FIG. 9. The structure factor at each quarter of a single osc
tion in the asymptotic stage. The range ofkx and ky is 20.15
<kx ,ky<0.15 at each time.
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changes its sign periodically. This is confirmed by the beh
ior of the two peaks withukyu@ukxu whose position in thek
plane moves toward the origin but does not cross thekx50
plane, as would be the case if the orientation of the doma
corresponding to these peaks were reversed. In this situa
the differenceDa51 between the exponents in the flow a

FIG. 10. The sizes of the domains in thex ~upper curve! andy
~lower curve! directions are plotted againstg0t for t563103. In
the inset the same quantities (* andd for the x and y directions,
respectively! averaged over every single period of oscillation a
plotted at times (m21/2)g0t, with m51,2, . . . ,againstg0t. The
two straight lines have slope 1/4.

FIG. 11. The sizes of the domains in thex ~upper curve! andy
~lower curve! directions in the caset553105. The two straight
lines have slopes 5/4 and 1/4.
-

s
on

shear directions cannot be sustained, because the large
mains are not directed along the flow orientation at all tim
and a growth law with the same exponent 1/4 in all dire
tions is obeyed. It is interesting to notice that the other pea
which represent smaller domains formed by the breakup
the larger ones, cross theky50 plane during their rotation
every half period ofg. This suggests that these features a
tilted by the oscillating shear and follow the flow orientatio
Thus we expect to observe in a real mixture two type
domains which respond differently to the oscillations of t
flow: a network of large and elongated structures wh
maintain the orientation imposed during the first half peri
of g and a multitude of more isotropic features, generated
the breakup of strained regions, which oscillate following t
flow.

For studying rheological properties it is customary@24# to
introduce a complex viscosityh* [h82 ih9 which is related
to the shear stress by

sxy~ t !5g0~h8cosvt1h9sinvt ! ~23!

when Eq.~22! holds. It is also useful to consider@25# another
representation of the shear stress given by

sxy~ t !5C sin~vt1f!. ~24!

The connection between Eqs.~23! and ~24! is given by

C5g0Ah821h92 ~25!

and

tanf5
h8

h9
. ~26!

By definingg* (t)5g0eivt, we can write Eq.~23! as

sxy~ t !5Re@h* g* ~ t !#. ~27!

In order to relate the real and imaginary parts of the visco
to physical quantities, Eq.~23! can be cast as

sxy~ t !5hg~ t !1GE
0

t

g~ t8!dt8, ~28!

where h5h8, G5vh9, and the identity sinvt
5v*0

t cosvt8dt8 has been used.
The coefficienth in the right-hand side of Eq.~28! mul-

tiplies the portion of the shear stress in phase with the sh
rate and represents the viscosity of a viscoelastic fluid. T
integral of the second term of the right-hand side of Eq.~28!
can be identified with the shear strain present in the mixt
at time t. The coefficientG is therefore the effective elasti
shear modulus of the fluid. Pure viscous behavior cor
sponds toG50 (f5p/2), pure elastic behavior toh50
(f50) @25#.

In order to computeh andG during phase separation w
calculated the shear stress by numerical integration usin
general definition~9!. By writing

sxy~ t !5A cosvt1B sinvt ~29!
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it follows that h5A(t)/g0 andG5vB(t)/g0. In general,A
and B depend on time. During a single shear oscillatio
however, we expect that Eq.~29! will hold as a good ap-
proximation with constant values forA and B. In this way,
sxy(t) is expressed in terms of the first two coefficients in
Fourier series expansion over an interval of scaled time
duration 2p. The values we obtain may be referred to t
time that locates the middle of the interval. Thus we get

h„~m2 1
2 !t…5

1

g0pE(m21)32p

m32p

sxy~ t/v!cost dt, ~30!

G„~m2 1
2 !t…5

v

g0pE(m21)32p

m32p

sxy~ t/v!sint dt, ~31!

wherem51,2, . . . .
In Fig. 12 we report the plots ofh andG againstg0t. The

viscosity shows a crossover between a power law decay
exponent23/2 at short times and an asymptotic behav
whose exponent is21/2. This can be explained by observin
that, for the steady shear case, the dynamic viscosityh co-
incides with the excess viscosity, which scales with the
verse of the domains volumeV. When an oscillatory shear i
applied,V crosses over from an initial power law increa
V;t3/2, similar to the one for the case with steady shear~see
Fig. 3!, to a slower growthV;t1/2, as already discusse
above forRx(t), producing a corresponding crossover inh.

From the computed values ofh andG we estimated the
phase anglef, which, according to Eqs.~26! and ~28!, is
given by f5arctan@(h/G)v#. In Fig. 13 we report the time
evolution of f as a function ofg0t. It can be seen thatf
decreases with time to reach an asymptotic value whic
approximately 0.016. Accordingly, the system we are inv

FIG. 12. The viscosityh (*) and the elastic shear modulusG
(d) for t563103 at times (m21/2)g0t with m51,2, . . . . The
straight lines have slopes23/2 and21/2.
,

f

th
r

-

is
-

tigating shows in the asymptotic stage a behavior tha
essentially elastic. The experimental data of@26# confirm this
behavior.

V. SUMMARY AND DISCUSSION

In this paper we have studied the kinetics of a pha
separating binary fluid, in the presence of a shear flow,
means of the TDGL model. It is nowadays well establish
that the corresponding model withg50 accurately describe
the main features of the segregation process in binary all
where hydrodynamics can be neglected. In viscous flu
such as polymeric blends, the validity of the present
proach is limited to the early stage of spinodal decompo
tion; for longer times one should consider the full hydrod
namic description@2#.

When shear is applied to a fluid the behavior of the s
tem is profoundly changed in many respects and the pre
tive value of the proposed models is a matter of gene
debate. A discussion on the possible effects of hydrodyn
ics is presented in@3#. Moreover, the numerical solution o
the TDGL model with shear poses serious problems due
discretization limitations and finite size effects and, althou
some progress has recently been achieved@14#, a satisfactory
description is not yet available. In this scenario it is impo
tant to devise a simple analytical scheme providing the f
damental tools for the comprehension of the fluid dynam
A natural choice in the field of growth kinetics is the largen
approximation, which has been thoroughly studied in
case without shear, where it has proven to give a relia
description of the segregation process, although at amean-
field level.

In this paper the behavior of the TDGL model in th
one-loop approximation is studied in detail, and the wh
time evolution of the mixture is considered, from th
quenching instant onward; the cases of a stationary flow

FIG. 13. The time evolution of the phase anglef for t56
3103 at times (m21/2)g0t with m51,2, . . . .
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of an oscillating shear have been examined. In doing this
undercover a very rich dynamical pattern, where not o
some experimental findings are reproduced, but additio
predictions are allowed. After an early stage, which is ac
rately described by the linear theory of Cahn-Hilliard, t
presence of the velocity field produces an anisotropic po
law growth of the characteristic lengthsRx andR' , respec-
tively in the flow direction and perpendicularly to it. Th
value of the exponenta'51/4 in the direction perpendicula
to the flow is the same as in models with vectorial conser
order parameter without shear; although the actual valu
this exponent is not expected to be accurate for real flu
~since, even without shear, the exponent obtained at the s
level of approximation is known to correspond to t
Lifshitz-Slyozov exponenta51/3 for scalar fields!, a growth
exponenta' unaffected by the presence of shear has a
been obtained by scaling@13# and renormalization group
@14# arguments applied to the full model equations, and
also measured in experiments@8#. Moreover, a difference
Da51 between the flow and shear exponents is also
pected to be obtained by releasing the present approxima
@13,14# and is observed in some experiments. In the case
stationary flow the anisotropic growth governed by these
ponents is observed from the onset of the scaling reg
onward. The power law behavior of any observable is de
rated by logarithmic-time periodic oscillations. These osc
lations characterize the scaling regime up to the long
simulated time but they are not observed in the asympt
solution presented in@13#. Given that logarithmic-time peri-
odicity appears to be a rather common feature observed
well as in segregating fluids, during fracturing of heterog
neous solids@27,28# and in stock market indices@29# for
instance, it would be interesting to devise an analytical
proach to case light on the origin of this phenomenon,
least in the present model.

In experiments with real fluid systems carried out
Laufer et al. @30# and, successively, by Maniet al. @31# and
Migler et al. @32#, adouble overshootin the time behavior of
the viscosity and of the normal stress is observed and
interpretation in terms of breakup and recombination of
-
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domains network is proposed. On the basis of our results
plausible that this double overshoot represents the first
of a logarithmic-time periodic phenomenon which could p
haps be detected with a suitable experimental setup. In
model we have studied, the oscillatory behavior is due to
competition between the different maxima of a fourfo
peaked structure factor. The presence of these maxim
interpreted is Sec. III B as due to the existence of differ
types of domains and the recurrent prevalence of each p
is suggested to be caused by the interplay between t
kinds of regions. A structure factor with four maxima h
also been observed in polymer mixtures@32#; however, to
our knowledge the connection between the alternating do
nance of the peaks ofC(kW ,t) and the overshoots observed
the viscosity and in the stresses has never been discu
before, perhaps due to insufficient resolution, although
experimental confirmation of this hypothesis would be de
able.

When an oscillating shear is present, the anisotropic
gime discussed so far for the steady shear case crosses
to an isotropic growth when domains are fully developed.
this late stage, from analysis of the behavior of the struct
factor, we conjecture again the existence of two types
domains, responding differently to the flow oscillations: t
network of elongated structures keeps the orientation
sumed during its formation in the early stage, while sm
features generated by breakup of strained parts oscillat
phase with the flow. In this late stage the growth kinetics
regulated by the same exponents as without flow. We are
aware of experiments reporting these features; it would
interesting to devise an experimental setup for testing
prediction.
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