PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Structure and rheology of binary mixtures in shear flow
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Results are presented for the phase separation process of a binary mixture subject to a uniform shear flow
guenched from a disordered to a homogeneous ordered phase. The kinetics of the process is described in the
context of the time-dependent Ginzburg-Landau equation with an external velocity term. Tha kEpgesxi-
mation is used to study the evolution of the model in the presence of a stationary flow and in the case of an
oscillating shear. For stationary flow we show that the structure factor obeys a generalized dynamical scaling.
The domains grow with different typical length scaleg and R, , respectively, in the flow direction and
perpendicularly to it. In the scaling reginig ~t*t andR,~ yt*x (with logarithmic corrections y being the
shear rate, withv,=5/4 anda, = 1/4. The excess viscosity » after reaching a maximum relaxes to zero as
v~2t%2 A5 and other observables exhibit logarithmic-time periodic oscillations which can be interpreted as
due to a growth mechanism where stretching and breakup of domains occur cyclically. In the case of an
oscillating shear a crossover phenomenon is observed: Initially the evolution is characterized by the same
growth exponents as for a stationary flow. For longer times the phase-separating structure cannot align with the
oscillating drift and a different regime is entered with an isotropic growth and the same exponents as in the
case without shear.

PACS numbd(s): 47.20.Hw, 05.70.Ln, 83.50.Ax

I. INTRODUCTION In this paper we study the process of phase separation in a
binary mixture subject to a uniform shear flow. When shear
The kinetics of phase separation of a disordered systerns applied to the system the time evolution is substantially
guenched into a multiphase coexistence region has been edifferent from that of ordinary spinodal decomposition. We
tensively studied in recent yedrk|. The main features of the consider both a stationary flow and an oscillating shear.
process are well understood: After an early stage during A stationary flow induces strong deformations of the do-
which ordered domains of the equilibrium phases aremains formed after the quen¢b—7], which become aniso-
formed, the segregation proceeds in the late stage by coargepic and stretched along the flow direction. Consequently
ening of ordered regions according to the power law growtithe growth rate along the flow is larger than in the other
R(t)~t* for the average domain size. In binary liquids, thedirections. In some experiments a power law increase of the
existence of several regimes characterized by different expaypical size of the domains is observed and a value
nentsa, due to the presence of various growth mechanisms= a,,— «, is reported in the range 0.8-1 for the difference
is well established2]. In these regimes the pair correlation between the exponents in the flow and in the shear directions
function C(r,t) follows a dynamical scaling law according [8,9]. Two-dimensional molecular dynamic simulations find
to which it can be written a€(r,t)=f(r/R), wheref(x) is  a slightly smaller valug¢10]. In other experimental realiza-
a scaling functior 3]. tions, when the shear is strong enough, stringlike domains
From the theoretical point of view the most relevanthave been observed to extend macroscopically in the direc-
progress has been achieved in the framework of the contindion of the flow[11], preventing complete phase separation.
ous approach based on the Cahn-Hilliard equation with én general, the scaling behavior of sheared systems is not
Ginzburg-Landau free energy functional, the time-dependentlearly understood and the very existence of a scaling regime
Ginzburg-Landau(TDGL) model. Within this approach, in different experimental systems is questionable.
which neglects hydrodynamics, the properties of the phase- In a previous pap€frl2] we have shown that the numeri-
separation kinetics can be efficiently studied by means o€al solution of the one-loop approximation to the TDGL
numerical simulations or analytically in the context of ap- model for phase separation under shear exhibits a general-
proximate theories, among which is the so-called large- ized scaling symmetry characterized hyw=1. In the scal-
limit (one-loop approximation For a vectorial system with ing regime the structure factor and other observables exhibit
an infinite number of components, indeed, the TDGL the interesting feature of an oscillatory pattern, which can be
model is exactly soluble. The one-loop approximation isrelated to a mechanism of storing and dissipation of elastic
known to provide a mean-field picture of the phase-energy where domains are stretched and broken cyclically.
separation process which captures the essence of the phEhis effect has been shown to persist up to the longest avail-
nomenon at a semiquantitative leyél. able time of our computation and represents the hallmark of
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a complex dynamical pattern induced by the presence of thef b, « are positive for any temperatufeof the fluid. The
shear. In a recent paper Rapapa and Bi&, by solvingthe  arametera separates stable states of the blend wdth
one—lqop equations asymptotlcally, conflrmed analy'g|cally>ac(-r) [a,(T)=0], from the thermodynamically unstable
the existence of émulti)scaling symmetry; in the long-time  gates witha<a (T) where the system phase separates. The

Iimi_t, howeve_:r, they did not recover the cyclical pattern _de'time evolution of the order parameter is given by the
scribed previously and they infer “that the observed oscilla-;onyection-diffusion equation

tions are slowly decaying preasymptotic transients.” Since

their solution is obtained in the infinite-time limit, then, a dp - R ,0F

reference theory for the description of this remarkable phe- ot TV (ev)=I'V 5_<P+ 7, 2
nomenon is lacking.

Given that the one-loop approximation is a mean-fieldwhere the Gaussian stochastic fiejdwith expectations
solution in spirit, the natural question of its accuracy for the

description of the original model arises. A numerical analysis (n(r,1))=0,
of the exact TDGL model has been performed recently in
[14], where it is shown that the global picture of the one-loop (n( F.t) 7](;, ))=— 2TIV25(r—1")8(t—t') (3

approximation is adequate. In particular, the oscillatory pat-

tern is recovered. The existence of a scaling symmetry angascripes thermal fluctuatiofis]. In Eq. (2) T is a transport
the determination of the related exponents, however, has n@befficient and the symbadl - - ) indicates the ensemble av-

been clearly established numerically, mainly due to finitegrage The external velocity field considered here is of the
size effects limitations. The actual value of the growth expo+,rm

nents can be inferred by scalifd3] or renormalization
group[14] arguments to bex, =1/3, as in the case without 0= yy8, @)
shear(we stress the fact that hydrodynamic effects are ne- ’

glected in this mod¢) anda,=4/3. _ ~ wherey is the spatially homogeneous shear fig which
The shear also induces a peculiar rheological behawormay however, depend on time aédis a unit vector in the

T?f r?re_akup_of the st_retche;jbdorpar:ns _Ilbera}teslgri ENeTPow direction. In the following we will consider a quench

which gIves rise to_an Increases o the viscosity[15, Q from an uncorrelated isotropic high-temperature initial con-

Experiments and simulations show that the excess wscosﬂa/.t. t the critical it ) itho(F O =0 and

A 5 reaches a maximum &at=t,, and then relaxes to smaller ition at the critical composition, i.e., withp(r,0))=0 an

values. The maximum of the excess viscosity is expected t6@(r,0)¢(r',0))=A3(r—r’). The main observable for the
occur at a fixedyt and to scale as\ 5(t,))~vy~ " [6,8]. description of the phase-separation kinetics is the structure
Simple scaling arguments prediet=2/3 [6], but different ~ factor
values have been reportg8l. All these features are already . R .
adequately described by the TDGL at the one-loop level. Ck,t)=(e(k,t)p(=K,1)), (5
In this paper we present a complete scenario of the behav- R .
ior of the TDGL model for phase separation in a shear flowwhere ¢(k,t) is the Fourier transform of the fielg(r,t)
in the framework of the large-approximation. The behavior solution of Eq.(2). In the high-temperature initial state we
of the system is studied along the whole time history, fromconsider that one ha@(IZ,O)=A.
the instant of the quench onward, both in the presence of a The cubic term in the derivativeF/ 5¢ prevents an exact
steady flow and in the case of an oscillating shear whergolution of Eq.(2), as in the case without she&]. However
interesting effects are uncovered. Results are presented farsoluble model is recovered in the one-loop approximation,
two- and three-dimensional systems. which amounts to the factorization of the cubic term of Eq.
This paper is schematically divided as follows. In Sec. 11(2) as
we specify the model and introduce the one-loop approxima-
tion that will be studied thoroughly in the following sections. e*— (%) 0. (6)
Section Il is devoted to the analysis of the behavior of the _ o
model subjected to a steady flow. In Sec. IV the dynamics irlt is possible to show17] that the substitutiori6) becomes
the presence of an oscillatory shear is considered. In Sec. §Xact in models with a vectorial order parameter when the

. . infini i 2
we present a discussion of the results, debate some op&ymber n of components becomes infinite. Singe®)
problems, and draw our conclusions. =9S(t) does not depend on space, due to translational invari-

ance, the substitutio(6) formally linearizes the theory. The
largen limit is a well developed approximation scheme in
statistical mechanics which have been applied to different

The binary mixture is described at equilibrium by a contexts[18]: Its validity and limitations are nowadays

Il. THE MODEL

Ginzburg-Landau free energy rather well understoofi19].
In the largen approximation the dynamical equation for
a b K C(k.t) is
7:{90}:f ddr[TPZ*‘ Z(’D4+ §|V<P|2 : 1) ()
C (k) k kY _ k2[k?+S(t) = 1]1C(K,t) + KT
whereg is the order parameter, which represents the concen- dt Vi aky B [ S(O=1]C(kY) '

tration difference between the two components. The values (7)
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where the functior§(t) is self-consistently given by

dk .
S(t)= f C(k,t) 8
K<a(2)¢

andq is a high-momentum phenomenological cutoff. Notice
that in Eq.(7) the parameters of the free ener@y and the

mobility I" have been eliminated by a redefinition of the ) ) )
time, space, and field scales. The rheological properties of FIG. 1. The evolution of the structure factor in the linear ap-

the mixture are described in terms of the shear sii&ks proximation fory=1. The range ok, andk, varies from—2 to 2.
At yt=4 the highest peaks are located & (k,)=(0.0£0.75),

the other two atK, ,k,)=(+0.38=0.80).

dk N
t)=— —kk,C(k,t 9
ny( ) f||2|<q(277)d Y (k) © A. Analytic solution in the short- and long-time limits
_ _ The consistency conditiof8) cannot be worked out along
and of the first and second normal stress differeribés the whole time history of the system. For this reason in the
following sections the model equations will be solved nu-
merically in bothd=2 andd=3. However, the model can

k .

— 2 2

Ni= f 3 (Ky=KIC(k,t) (10" pe solved in the short- and long-time limits.
kl<a(2r)

g 1. Short times
an
For short times the linearized theory developed originally

dK by Cahn and Hilliard 20] for the situation withy=0 can be
N,= f ———(K2=K3)C(K,1). (11)  extended to the present case. This amounts to neglecting the
K<q(2md * 7 quartic term in the local part of the free ener@y since in
the initial high-temperature state the order parameter is
For vectorial systems with>d (d is the spatial dimension- small. With this approximation the solution of E@®) reads
ality) topological defects are not stabJ@]. For largen,
therefore, domains of the equilibrium phases are, strictly C(IZt):AeffB/CZ(z)[ICZ(Z)fl]dz
speaking, absent. Nevertheless, since from the solution of the '
one-loop equations presented below it is possible to identify t 22 2
characteristic growing lengthR,(t) andR, (t) in the flow +TL’C2(Z)G OIStz (15)
and in the other directions, it is natural to interpret these
guantities as thérace of the domain size after the one-loop
approximation procedure has been performed. In the follow
ing we will always use the wordomainsin this broad sense.

This approach applies to the original model and to the large-
n approximation as well because nonlinear terms are ne-
glected. It is well known that the linear theory describes the
initial transient of the phase-separation process, when do-
lll. STEADY SHEAR mains are still forming. In this time domain the behavior of

In this section we consider the case of a constant sheéEe system in the presence of the flow is more interesting

: ; g than in the simple case of an immobile fluid. A plot of the
te y. Equation(7 fi [ly int t I ) . .
rate y. Bquation(7) can be formally integrated, yielding structure factol15) is presented for a two-dimensional sys-

tem in Fig. 1 for the casey=1 and T=0. Initially, when
domains are forming but the shear flow has not yet produced
. sensible effects, the structure factor evolves assuming the
+ Tf ;CZ(U)effﬁ‘.lcz(s)llc2(s)+8(tfs)71]dsdu, typical structure of a circular volcano, similarly to what hap-
0 pens in the case without shear. At=0.5 the anisotropy
(12) induced by the shear produces a deformation in the profile of
the edge of the volcano from a ringlike geometry into an
ellipse, whose major axis forms with the positive direction of
thek, axis an angle of approximatively 43%ee Fig. 1 At
- - - the same time small dips start to develop in the edge at the
K(u)=k+ykue, (13 ends of the axes of the ellipse and four peaks can be clearly
R observed ayt=2. As time goes by, the angle formed by the
ande, is the unit vector in the shear direction normal to themajor axis of the ellipse with thi, direction decreases and

flow. For Steady flow it is usual to define the excess ViSCOSit){he d|ps in the prof”e OC(E,t) a|0ng the major axis deve|op

as until C(E,t) almost consists of two separated foils, #t
=4, when two peaks prevail. The same initial pattern is also
Aq(t) = Oxy(t) (14) observed14] by numerically solving the full model equation
' (2). At later times, however, the presence of the nonlinear

C(K,t)=Ae~ /oL XK AW+ S(t-u)~1]du

where
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terms becomes fundamental and the linear theory break vt =0.05
down, as in the case without shear. It is important to stress
the fact that the presence of four peaks in the structure facto

is already exhibited at the linear theory level of approxima- ;;*";f.l‘;mul';, !

tion. We will see in the following sections that the very "i"%l"'%"bl%;N“
\I\I I

existence of a multiply peakeﬁ(lz,t) produces a rich dy- i""l\""‘l‘ !"I“ \\m| \;n

) . ) i
namical pattern causing an oscillatory phenomenon. |l’lal“"||1:."ﬁ:.|l:|||!N\:\\ll‘lwl\l|l\||% b
Hm‘ i

\‘W

600

' a') 'I
’ﬁ o,
” i

i
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2. Long times

The self-consistency conditiof8) has been worked out
explicitly in the long-time domain if13]. It is found that the
model has a multiscaling symmetry, as in the case without
shear{21], characterized by the growth of the characteristic
length scales as

5000

b “‘w |
il i

If

|
Hﬂ‘ v
s i !ii il
Ry~ 7( Int) (16) d"h (!&‘GW‘ ﬂ“,‘uoﬂ"fr .
and
t 1/4
RlN(Int) (17) 10000 73000

in the direction of the flow and perpendicular to it, respec-
tively. The excess viscosity and the normal stress difference:
behave as

J\‘\\"\"n M‘M“ ‘”
\rw Uf} 4% wf{ I %fﬁ W

“ ‘J}l
0 .rw,M‘,w‘H )

’m’ Hd
S :

(18) ks

112
_,[Int
An(t)~y el I

s FIG. 2. The evolution of the structure factor from the numerical

Int solution of Eq.(7) in d=2 for y=0.001 andT=0. The range ok,
ANlNAN2N<t (19 and k, varies, at increasing times, as0.6<k,,k,<0.6 at yt
=0.05,1; —0.15sk,=<0.15 and —0.6sk,<0.6 at yt=6,8;
The same behaviofapart from logarithmic correctiongs ~ —0.075<k,<0.075 and —0.6<k,<0.6 at yt=10; —0.01875
obtained in[12] by means of a scaling ansatz. <k,=0.018 75 and-0.3<k,<0.3 atyt=45.
B. Numerical solution where
We present in this section the results of the numerical JdeZC Kt
integration of the larger equation(7) which allows us to — xC(k, 1)
follow the whole time history of the phase-separation pro- kx:f’ (21
cess. We restrict ourselves to the case WithO. An Euler J dk C(k,t)

first order discretization scheme has been implementet in

=2 and d=3 on d-dimensional lattices with 201 mesh g4 the same for the other directions.
points per each direction. For long times the structure factor

is strongly peaked around typical wave vectors which move 1. d=2
toward zero as time goes diee Fig. 2 Given that the

support ofC(IZ t) also shrinks to zero it is possible to greatly '_I'he behavior O.C(k’t) is shown in Fig. 2 fory=0.001.

improve the quality of the numerical computation by using aln|t|ally the evolution of the structure factor resembles the

self-adaptive mesh algorithm that follows the evolution ofone observed in Fig. 1 where the linear theory @fk,t)

the support of the structure factor. We have solved @y. Was plotted. Later on, however, the linear theory fails be-

for various values of the shear ratg in the range cause the nonlinearities become relevant, and the long-time

[1074,10"2]. We found that the qualitative behavior is the regime is entered. This is characterized by the shrinking of

same for all the values af considered. From the knowledge the support ofc(k,t) toward the origin with different rates

of the structure factor we compute the characteristic lengthfor the shear and the flow directions so that the tilt angle,

R(t) as namely, the direction along whid@ is aligned, decreases in
time. The structure factor is divided into two separated foils

B 1 which are symmetric due to the propeﬂ:;(lz,t):C(—IZ,t).
Ry(t) = ﬁ (20) In each foil two distinct peaks can be observed located at
K (Kx,.ky,) and (y,.ky,) with |kx1|=2|kx2| and|kyl|:2|ky2|.
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FIG. 3. Data collapséscaling ploj for the domain radii ind
=2. The quantities ¢ Int)*R,(t) and (y Int)¥*R,(t) are plotted
against the strainyt for different values of the shear rateAjy
=0.0001, ©)y=0.001, @)y=0.01. The two straight lines have
slopes 5/4 and 1/4.

vt

FIG. 4. Data collapséscaling ploj for the excess viscosity in
d=2. The quantity ¢/In t)¥?A (t) is plotted against the straipt
for different values of the shear rateAjy=0.0001, ©)y
=0.001, )y=0.005, @)y=0.01. The straight line has slope
—3/2. The inset shows the maxima &fy as a function ofy. The

Their heights change in time. The first peak to prevail is thatoPe ©f the straight line is 0.6.

located at kxl,kyl), while the other peak dominates later. As

; ~1/2 i i
time elapses the two peaks are observed to prevail altef@l stress by plotting ¥Int)"““AN, againstyt with y

nately. This oscillatory behavior continues up to the longest= 0-01. We find thaiAN,(t) scales asymptotically as pre-
times of our computations. dicted by Eq(19), again modulated by an oscillatory pattern.

In Fig. 3 the quantities¥ In /"R, (t) and (ylnt)l"‘Ry(t) The periodic oscillations obser\(ed in all the physical ob-
are plotted against the straj [22]. According to Eqs(16) servables are due to the competition between the different
and (17) for long times these quantities should collapse, forpeaks ofC(k,t). Let us refer to the behavior of the excess
different values of the shear, on two power law master
curves with exponents 5/4 and 1/4, respectively. Here we
observe that the collapse is indeed good, but the predicte:
power-law behavior is modulated by an oscillatory pattern.
These oscillations are observed to be periodic on a logarith:
mic time axis and persist up to the limit of the computational =~ —1
time.

We now consider the rheological behavior of the mixture
by plotting in Fig. 4 the quantity¥/In t)*A 7 (t) against the
strain. This quantity reaches a maximumyat=3.5 and then
decreases, as also found in experimg8sis For long times
Eq. (18) would predict a data collapse for differepton a
single power law master curve with exponend/2. Here the
situation is similar to the previous figure, in that the pre-
dicted behavior is modulated by logarithmic-time periodic
oscillations. On the basis of simple scaling arguments the -2
maximum of the excess viscosityn(t,,) is expected to oc- 1
cur at a fixedyt and to scale as\ 5(t,)~vy 7, with v
=2/3 [6,8]. These arguments do not directly apply to the
one-loop approximation since, due to the mean-field nature L L o
the exponents are different. The asymptotic solutib®) is 1 10 102 10° o
not adequate to this early-stage effect. HThdependence of 7t
A 7(t,,) is plotted in the inset of Fig. 4, showing that a power
law behavior withv=0.6 is obeyed, in partial agreement  FIG. 5. The first normal stregsN; multiplied by (y Int)"*? as
with the aforementioned scaling arguments. a function of yt. The value ofy is 0.01. The slope of the straight

In Fig. 5 we report the numerical results for the first nor-line is —1/2.
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viscosity to understand how this competition affects the
rheological quantities, using the features of the structure fac- 1509
tor to obtain information about the domains evolution under !'F i \
the action of sheaiA » reaches its first maximum when the i ‘” Wl\i M
shape ofC(k,t) is such that the peak located akxl(,kyl) ! ”M\h “muw
prevails and the difference between the heights of the twa “““w h|||| W\l‘
peaks is maximal. At this time the domains are elongated by y“w Mw ||\
the flow and there is a prevalence of thin domains in the L'
system. As these stringlike domains are stretched further
they eventually break up into two or more domains, dissipat-

ing the stored energy. This has two effects: the excess vis
cosity decreases and, on the other hand, the thick domains¢ so00
which have not yet been broken, prevail. In this situation the

other peak ofc(k,t) [which is located atl(xz,kyz) and rep-

resents the smaller featutegows faster until it prevails and

A 5 reaches a minimum. This behavior is reproduced with a
characteristic frequency in logarithmic time. Recently, a o
similar behavior has been observed in the numerical simula:

tion of the full model, Eq(2) [14].
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2.d=3
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In this section we report the result of the numerical solu-1OO
tion of EqQ.(7) in d=3. In Fig. 6 the time evolution of the
structure factor in the special plankg=0, k,=0, andk,

=0 is shown fory=0.001. In the plan,=0 C(k,t) be-

haves analogously to the previously discussed two-
dimensional case. The structure factor on the plape0 o
gives information relative to the observation of the system
along the shear direction: No velocity gradient is present in

the plane perpendicular to this orientation, but there are dif- k.=0 k.=0

ferent velocities in thec andz directions. This allows us to FIG. 6. The structure factor from the numerical solution of Eq.
explain the observed behavior, which is rather different fro 7)in d=3 at consecutive times fop=0.001 andT =0. From top
that observed &t,=0. The structure factor initially develops 5 pottom the sectionk,=0, k,=0, andk,=0 of the structure
a circular volcano, as without shear. The edge of the volcan@cior are shown. The range 41& k,, andk, varies as—0.6

is progressively deformed by the shear into an ellipse with<, ky ,k,<0.6 atyt=1; —0.0375<k, <0 0375,—0.3<k,<0.3,
the major axis along thk, direction. Dips in the edge of the and— o 3<k,=<0.3 atyt=20.

volcano at values ok,=0 develop with time so that, at

=1, C(k,t) is made of two foils but these are not completely C(k,t) shrinks toward the origin faster in the than in the
separated. During the time evolution the axes of the ellips&, direction, the second normal stress differedde,(t) is
shrink; the decrease is faster along Kyalirection. The two  negative. This is in accordance with general experimental
foils are never completely separated and the angle formedxperience23].

with thek, direction is zero, as observed in experimdi®s

At yt=5 two well formed peaks start to develop and grow IV. OSCILLATING SHEAR

on each foll ofC(IZ t). These four peaks have the same
height and their relative heights do not change in time, as can
be seen atyt=20 in the picture, differently from the situa-
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In this section we consider the case of a time-dependent
shear rate with

tion on thek,=0 plane. (1) = v, COSwt. (22)
In the k,=0 plane the shear has no effect at all and the
structure factor remains circular during its evolution. This situation is of great experimental relevance expecially

The computed behavior &®,(t) andR(t) is similar to  for probing the viscoelastic properties of a phase-separating
that of the two-dimensional case. We also fifi}(t) binary mixture.
~R(t), as expected. We solved Eq.(7) numerically ind=2 using the same
We report in Fig. 7 the plots of y/Int)YA (t), numerical scheme as in the case of steady shear, for different
(yInt)"Y2AN,(t), and — (yInt)"Y2AN,(t) as functions of values ofy, and w. We will describe below the casg,
yt. It appears that the rheological quantities still have ampli-=10"3, r=2/w=6x10°. The time evolution of the struc-
tudes which are modulated by logarithmic-time oscillations,ture factor in the first cycle of(t) is shown in Fig. 8. The
which are in phase among them. The origin of such oscilladynamical pattern is analogous to the one wjth const for
tions has to be found again in the oscillations of the peaks ofimes t<7/4 as can be seen att=1.5. Then the time-
the structure factor in the plarlg=0. Since the support of dependent velocity field modifies the behavior of the mixture
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FIG. . (/A n(t) (%), (yIn) ANy (1) (O), and FIG. 9. The structure factor at each quarter of a single oscilla-

—(yInt)"""AN(t) (®) as functions of the straint. The straight  tion in the asymptotic stage. The range kof and k, is —0.15
lines have slopes-3/2 and—1/2. <k, ,k,<0.15 at each time.

with respect to the case of a steady flow. In particular, at the - e
, . - and move toward the origin. The position in thelane of
end of the first oscillation, the four peaks ©{k,t) are lo-

d ble di f h ioinkal the other peaks rotates back and forth cyclically along an
cated at comparable distances from the originkapace, o, qyimately circular path. The radius of this trajectory
differently from what is observed in Fig. 2 ¢t=6. The two

: : e ) shrinks toward the origin at a rate comparable with that of
highest maxima aty,t=6 in Fig. 8 are characterized by he position of the other peaks. In the asymptotic regime the
[ky|>|ky|. During the later time evolution these peaks growyq peaks have approximately the same height and the cy-
clical rotation of the peak position persists. This is shown in
Yot =15 "ot =3 Fig. 9, where the configurations of the structure factor are
1000 shown at each quarter of oscillation of the shear rate in the
asymptotic stage.

In Fig. 10 the evolution of the characteristic lengiigt)
andR,(t) is plotted againstyst. We also plot, in the inset,
the time average of these quantities over a period order
to smooth out the superimposed oscillations. Here we ob-
serve, for timed <7, growth laws analogous to that of the
steady shear case, nameRj(t) ~t>* and R,(t) ~t¥% The
growth exponent oR, changes smoothly, froit= r onward,
from 5/4 to the asymptotic value 1/4, which is reached at
vot~80 when all four peaks of the structure factor have the
same height. The gradual crossovemgffrom 5/4 to 1/4 can
be better observed for larger values nfsince the regime
with a,=5/4 persists for a longer time. This is shown in Fig.
11, where the evolution d&,(t) andR(t) is plotted against
Yot for 7=5x10°. For small 7, instead,R, and R, grow
with the same exponent 1/4 from the beginning.

These observations suggest the following physical inter-
pretation. Fott<7/2, sincey does not change sign, the evo-
lution of the mixture is comparable to the case with a con-
stant shear rate. In particular, i is sufficiently large to
exceed the initial stage when domains are forming, the

FIG. 8. The structure factor at each quarter of the firét) power growth laws described in Sec. Il f& andR, are
oscillation. The range ok, andk, varies, at increasing times, as Observed witha,=5/4 anda, =1/4. On time scales much
—0.6<ky,ky<0.6 atyt=1.5; —0.3<k,<0.3 and—0.6<k,<0.6  longer thenr, however, the network of larger domains can-
at yt=3,4.5; —0.3<k, ,k,<0.3 atyt=6. not be efficiently tilted along the flow orientation, which

1000

2000 4000 .
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FIG. 10. The sizes of the domains in tkéupper curve andy
(lower curvg directions are plotted againskt for =6x1C°. In
the inset the same quantities (* a® for the x andy directions,

respectively averaged over every single period of oscillation are

plotted at times ih— 1/2)y,7, with m=1,2, . .. ,againstygt. The
two straight lines have slope 1/4.

changes its sign periodically. This is confirmed by the behav-

ior of the two peaks withk,|>|k,| whose position in thé&
plane moves toward the origin but does not crosskie0

plane, as would be the case if the orientation of the domains
corresponding to these peaks were reversed. In this situation
the differencel =1 between the exponents in the flow and

107

FIG. 11. The sizes of the domains in tk€upper curvg andy
(lower curve directions in the case=5x10°. The two straight
lines have slopes 5/4 and 1/4.

shear directions cannot be sustained, because the larger do-
mains are not directed along the flow orientation at all times,
and a growth law with the same exponent 1/4 in all direc-
tions is obeyed. It is interesting to notice that the other peaks,
which represent smaller domains formed by the breakup of
the larger ones, cross thg=0 plane during their rotation
every half period ofy. This suggests that these features are
tilted by the oscillating shear and follow the flow orientation.
Thus we expect to observe in a real mixture two type of
domains which respond differently to the oscillations of the
flow: a network of large and elongated structures which
maintain the orientation imposed during the first half period
of ¥ and a multitude of more isotropic features, generated by
the breakup of strained regions, which oscillate following the
flow.

For studying rheological properties it is customp2y| to
introduce a complex viscosity* = " —i " which is related
to the shear stress by

Txy(1) = yo( 7' cOswt+ 7"sinwt) (23

when Eq.(22) holds. It is also useful to considg25] another
representation of the shear stress given by

Ty (1) =Csin(wt+ ¢). (29

The connection between Eq23) and(24) is given by

C=yo\n' %+ 7" (25
and
tang= 77—” . (26)
Vi

By defining y* (t) = y,e'“!, we can write Eq(23) as

ny(t):Rq 7" y* (D] 27

In order to relate the real and imaginary parts of the viscosity
to physical quantities, E423) can be cast as

t
oyy(t)= 777(t)+Gf y(t)dt’, (28)
0

where #7=7', G=w7n", and the identity simt
=w/[hcoswt’dt’ has been used.

The coefficienty in the right-hand side of Eq28) mul-
tiplies the portion of the shear stress in phase with the shear
rate and represents the viscosity of a viscoelastic fluid. The
integral of the second term of the right-hand side of 8)
can be identified with the shear strain present in the mixture
at timet. The coefficientG is therefore the effective elastic
shear modulus of the fluid. Pure viscous behavior corre-
sponds toG=0 (¢=m/2), pure elastic behavior tgg=0
(¢=0) [25].

In order to computey andG during phase separation we
calculated the shear stress by numerical integration using its
general definition(9). By writing

oyy(t)=A coswt+ B sinwt (29
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straight lines have slopes3/2 and— 1/2.

tigating shows in the asymptotic stage a behavior that is

it follows that 7=A(t)/yo andG=wB(t)/7o. In generalA  gggengially elastic. The experimental daté28] confirm this
and B depend on time. During a single shear oscillation,panavior.

however, we expect that E§29) will hold as a good ap-
proximation with constant values f& and B. In this way,
ay(t) is expressed in terms of the first two coefficients in a V. SUMMARY AND DISCUSSION
Fourier series expansion over an interval of scaled time of
duration 27. The values we obtain may be referred to the
time that locates the middle of the interval. Thus we get

In this paper we have studied the kinetics of a phase-
separating binary fluid, in the presence of a shear flow, by
means of the TDGL model. It is nowadays well established
that the corresponding model with=0 accurately describes
mx2m the main features of the segregation process in binary alloys,
f oxy(t/w)costdt, (30 where hydrodynamics can be neglected. In viscous fluids,
such as polymeric blends, the validity of the present ap-
proach is limited to the early stage of spinodal decomposi-
mx2m , tion; for longer times one should consider the full hydrody-
f(ml)xzﬂgxy(t/w)s'nt dt, 3D namic descriptiori2].
When shear is applied to a fluid the behavior of the sys-
tem is profoundly changed in many respects and the predic-
wherem=1.2, .. .. tive value of the proposed models is a matter of general
In Fig. 12 we report the plots of andG againsty,t. The  debate. A discussion on the possible effects of hydrodynam-
viscosity shows a crossover between a power law decay Wwitlts is presented ifi3]. Moreover, the numerical solution of
exponent—3/2 at short times and an asymptotic behaviorthe TDGL model with shear poses serious problems due to
whose exponent is- 1/2. This can be explained by observing discretization limitations and finite size effects and, although
that, for the steady shear case, the dynamic viscogitp-  some progress has recently been achiétéddl a satisfactory
incides with the excess viscosity, which scales with the indescription is not yet available. In this scenario it is impor-
verse of the domains volumé When an oscillatory shear is tant to devise a simple analytical scheme providing the fun-
applied,V crosses over from an initial power law increase damental tools for the comprehension of the fluid dynamics.
V~t*2, similar to the one for the case with steady sheae A natural choice in the field of growth kinetics is the lange-
Fig. 3), to a slower growthvV~t*? as already discussed approximation, which has been thoroughly studied in the
above forR,(t), producing a corresponding crossoverzin - case without shear, where it has proven to give a reliable
From the computed values of and G we estimated the description of the segregation process, although @tean-
phase anglap, which, according to Eqs(26) and (28), is  field level.
given by ¢=arctafi(7/G)w]. In Fig. 13 we report the time In this paper the behavior of the TDGL model in the
evolution of ¢ as a function ofygt. It can be seen thab one-loop approximation is studied in detail, and the whole
decreases with time to reach an asymptotic value which iime evolution of the mixture is considered, from the
approximately 0.016. Accordingly, the system we are invesquenching instant onward; the cases of a stationary flow and

1
n(m=3)mn=——

YoT J(m-1)x2m

1 _ w
G((m—3)7n)= P
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of an oscillating shear have been examined. In doing this welomains network is proposed. On the basis of our results it is
undercover a very rich dynamical pattern, where not onlyplausible that this double overshoot represents the first part
some experimental findings are reproduced, but additionadf a logarithmic-time periodic phenomenon which could per-
predictions are allowed. After an early stage, which is accuhaps be detected with a suitable experimental setup. In the
rately described by the linear theory of Cahn-Hilliard, themodel we have studied, the oscillatory behavior is due to the
presence of the velocity field produces an anisotropic powecompetition between the different maxima of a fourfold
law growth of the characteristic lengti andR, , respec- peaked structure factor. The presence of these maxima is
tively in the flow direction and perpendicularly to it. The interpreted is Sec. llIB as due to the existence of different
value of the exponent, =1/4 in the direction perpendicular types of domains and the recurrent prevalence of each peak
to the flow is the same as in models with vectorial conserveds suggested to be caused by the interplay between these
order parameter without shear; although the actual value dfinds of regions. A structure factor with four maxima has
this exponent is not expected to be accurate for real fluidalso been observed in polymer mixtured?2]; however, to
(since, even without shear, the exponent obtained at the sanoer knowledge the connection between the alternating domi-

level of approximation is known to correspond to the nance of the peaks @(k,t) and the overshoots observed in
Lifshitz-Slyozov exponent= 1/3 for scalar fields a growth  the viscosity and in the stresses has never been discussed
exponente, unaffected by the presence of shear has als@efore, perhaps due to insufficient resolution, although an
been obtained by scalinfl3] and renormalization group experimental confirmation of this hypothesis would be desir-
[14] arguments applied to the full model equations, and iggple.

also measured in experiment8]. Moreover, a difference  When an oscillating shear is present, the anisotropic re-
Aa=1 between the flow and shear exponents is also exgime discussed so far for the steady shear case crosses over
pected to be obtained by releasing the present approximatiad an isotropic growth when domains are fully developed. In
[13,14] and is observed in some experiments. In the case of s |ate stage, from analysis of the behavior of the structure
stationary flow the anisotropic growth governed by these exfactor, we conjecture again the existence of two types of
ponents is observed from the onset of the scaling regimgomains, responding differently to the flow oscillations: the
onward. The power law behavior of any observable is deconetwork of elongated structures keeps the orientation as-
rated by logarithmic-time periodic oscillations. These oscil-sumed during its formation in the early stage, while small
lations characterize the scaling regime up to the longesfeatures generated by breakup of strained parts oscillate in
simulated time but they are not observed in the asymptotiphase with the flow. In this late stage the growth kinetics is
solution presented ifiLl3]. Given that logarithmic-time peri- regulated by the same exponents as without flow. We are not
odicity appears to be a rather common feature observed, asvare of experiments reporting these features; it would be
well as in segregating fluids, during fracturing of heteroge-interesting to devise an experimental setup for testing this
neous solidd27,28 and in stock market indicef29] for  prediction.

instance, it would be interesting to devise an analytical ap-

proach to case light on the origin of this phenomenon, at ACKNOWLEDGMENTS

least in the present model.
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