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The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework
of the kinematic approximation, in the presence of a large-scale background magnetic field. The velocity field
is Gaussiang-correlated in time, and scales with a positive exporgeixplicit inertial-range expressions for
the magnetic correlation functions are obtained; they are represented by superpositions of power laws with
nonuniversal amplitudes and univers@dependent of the anisotropy and forcirmmomalous exponents. The
complete set of anomalous exponents for the pair correlation function is found nonperturbatively, in any space
dimensiond, using the zero-mode technique. For higher-order correlation functions, the anomalous exponents
are calculated t®(¢) using the renormalization group. The exponents exhibit a hierarchy related to the degree
of anisotropy; the leading contributions to the even correlation functions are given by the exponents from the
isotropic shell, in agreement with the idea of restored small-scale isotropy. Conversely, the small-scale anisot-
ropy reveals itself in the odd correlation functions: the skewness factor is slowly decreasing going down to
small scales and higher odd dimensionless ratigperskewness, ejacdramatically increase, thus diverging in
ther—0 limit.

PACS numbdr): 47.27.Te, 05.10.Cc

[. INTRODUCTION [5—17]. From the viewpoints of theoretical and numerical
analysis, focusing on a small number of indicators some ar-
In cosmical objects, small-scale evolution of the magnetig@uments are given in favor of the small-scale isotropy resto-
field B often takes place in the presence of a strong largetation in the Navier-StokefNS) turbulence{12,14. On the
scale magnetic fiel@°. It is, for example, what happens in Other hand, investigating a larger class of anisotropic indica-
the solar corona where, in spite of the typical value of thetors, footprints of small-scale anisotropy become manifest
sun’s magnetic field~1 G), fields as intense as500 G can  [9]- For a passively advected scalar, experim¢ht§] and
be observed in solar flares. These highly energetic and larg@halytical result10,11 show that the skewness factor re-

scale events coexist with small-scale turbulent activity, fi-"insO(1) deep in the inertial range. The scenario thus

; At e appears extremely faceted and needs further investigations.
nally responsible for the dissipation of magnetic field energy: p%ecently cIearyevidence of persistent small-scaleganisot-

Modelling the way through which energy is stored and then ) o
dissipate% is coniequer?tly not an easggtask. ropy has been found in Rdf17], where the statistical prop-

In Ref.[1], the following description is proposed: a large- erties of a scalar field advected by the nonintermittent NS
S . 9 P P pA ' r9€ flow generated in a two-dimensional inverse cascade regime
scale axial, e.g., directed parallel to some vegamagnetic

are investigated.
. 0 . T :
field B® is assumed to dominate the dynamics in Zhdirec- Two main goals motivate this paper. On one hand, we

tion, while the activity in the transverse plane can be satisyiye details of the results presented in the Rapid Communi-
factorily described as quasibidimensional. This picture a"cation[lG], where the effects of anisotropy on scaling expo-
lows reliable numerical simulations in two dimensions, frompents of the two-point magnetic field correlations have been
which it appears clear that the magnetic field tends to orgagddressed in the framework of the kinematic magnetohydro-
nize in rare large-scale structures separated by narrow cugtynamics(MHD) problem. Nonperturbative expressions for
rent sheets. Deep investigation of small-scale intermittencyhe scaling exponents were derived and their universality
properties is still not permitted by lack of spatial resolution. proved. Specifically, there arises a picture of a nontrivial
An interesting question raised by this problem, besidestatistical behavior, where anisotropic fluctuations are orga-
structure formation, is related to the role played by largenized in a hierarchical order according to their degree of
scale anisotropy on the small-scale statistics. Indeed, this Bnisotropy. Contributions belonging to shells of higher an-
quite a typical situation in turbulence, where almost everyisotropic index decay faster, and the isotropic contribution
large-scale forcing is not isotropic. Here, instead of takingfinally dominates.
the restoration of local small-scale isotropy for granted, as in However, the dominance of the isotropic contribution in
the Kolmogorov theory of turbulend®-4], we analyze in the scaling exponents does not imply that large-scale anisot-
detail the effects of anisotropic large-scale contributions orropy is irrelevant for the small-scale magnetic statistics. A
the small-scale magnetic fluctuations. deep investigation focused on a larger number of statistical
A wide interest has been recently devoted to this issuéndices(that is focused on the proper anisotropy indicgtors
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has to be performed in order to highlight the wafyany) in our problem the kinematic MHD equations describing the
through which large-scale anisotropy manifests itself at smalévolution of the fluctuating parB=B(x) of the magnetic
scales. This is the second aim of the present paper. Specifield are[18]

cally, in addition to the nonperturbative results for the two-

point correlations, we present new results dealing with B, +V-dB,=B-dv,+B° v, +Kke*B,, a=1,...d.
higher-order magnetic correlation functions. Being more spe- 2.1
cific, we exploit the field theoretic renormalization group

(RG) to obtain the anomalous exponents for higher-ordetyere and below={t,x}, d={3,=dlx,}, #*=d,d, is the

magnetic correlation functions at the first ordergirthe ex- | apjace operaton is the dimensionality of the space, and
ponent entering into the velocity covariance. In particular,,—y() is the velocity field. Bothv and B are divergence-
we evaluate the odd-order correlation function exponentsyqe (solenoidal vector fields: d,v,=d,B,=0. Equation

from which dimensionless ratios like skewness and hyper(z_l) follows from the simplest form of Ohm’s law for con-
skewness are calculated. As a result, in three dimensions, the, ~ive moving mediumj=o(E+vXB/c), and the Max-
former behaves at the dissipative scale as'®while the well equations neglecting the displacement currerB/c
latter as P&/, Pe being the Riet number(i.e., the equiva- |, 5« E_( gx B=4mj/c andd-B=0. Herec is the speed
lent of the Reynolds number for the NS turbulendeotice ot ight | is the density of the electric current,is the con-
the opposite signs appearing in the scaling exponents. They ctivity, andx,=c?/4o is the magnetic diffusivity. The

are the signature of persistent small-scale activities. Indeegg,, go. v, in (2.) effectively plays the same role as an
@ .

the firsi index is weakly scale .dependent while the second iéxternal forcing driving the system and being also a source
even divergent at small scaléise., Pe~c). Let us remark o anisotropy for the magnetic field statistics.
that to restore isotropy at small scales all such indices should |4 the real problemy obeys the NS equation with the

decay to zero as Pe grows. . _ additional Lorentz force termr (@ B) X B, which describes
The same general picture is found numerically in Ref.ho oftects of the magnetic field on the velocity field. The
[17] in the framework of the passive scalar advection by NStramework of our analysis is the kinematic MHD problem,

flows. In addition, our results are in qualitative agreement, ;.o o the reaction of the magnetic figkion the velocity
both with the first-ord_er analytic expressions_ for the anomasig|q v is neglected. We assume that at the initial stagjés

lous exponents obtained {iL5] for the passive scalar ad- \yeak and does not affect the motions of the conducting fluid:
vected by a synthetic velocity field, and with the results ofi o .omes then a natural assumption to consider the dynam-
Ref. [8] where the probability density functions of both a jcq jinear in the magnetic field strengithé]. It is also note-
scalar f.ielq and_its gradient are invgstigated for the class orthy that in more realistic models of the MHD turbulence
synthetic fields in the Batchelor regime. the magnetic field indeed behaves as a passive vector in the

The paper is organized as follows. In Sec. Il, we give theg,_ca|ieq Kinetic fixed point of the RG equatiofsee Refs.
detailed definition of the kinematic MHD Kasantzev- [f19 20)
of = . -

Kraichnan model, which describes the passive advection of £, ganera) velocity fields the well-known closure prob-
the magnetic field by the Gaussian, self-similar velocity fleldIem arises even for the kinematic model. This means that the

&corrfelﬁted indtilrr_ie. In Sec. (Ij”i thﬁ fieldf ther(])re(';ic _formma'fequations of evolution for the single-time multiple-space mo-
tion of the model is presented. It allows for the derivation of e “such adB,(t,r))- B, (t.r.)) are not closed. The

the closed exact equations for the response function angaion changes for random velocity fieldsorrelated in

equal-time pair correlation fur_iction of the magnetic f_ield'time. The physical choice of a real turbulent flow governed
From the homogeneous solutiofzero modepof the pair 1 yhe NS equation is then replaced by an incompressible,

correlation equation, scaling exponents of the pair correlagg¢ gimilar advecting field, with Gaussian statistics and rap-

tion function are de_termined. In Sec. IV, thesg exponents arﬁ“y changing (&-correlatedl in time. This last property al-
found nonperturbatively, for ang and space dimensionality lows us to write closed equations for the moments of the

d. In Sec. V, we discuss the UV renormalization of the magnetic fieldB and to perform analyticaboth perturbative

modei and derive the correspondi_iﬁg functions and. RG and nonperturbatiyeapproaches to thé-dimensional prob-
equations. The latter possess an infra() stable fixed o “|ndeed, in the presence of a random velocity field

point, Which_establishes the exifstence Of anomalou_s Sc_a"ngcorrelated in time, the solution is a Markov process in the
for all the hi_gher-order correl_ation_ function_s. The inertial- ime variable and closed moment equations, sometimes
range behavior of these functions is determined by the sca salled “Hopf equations,” can be obtained in analogy to the

}Sassive scalar cag@1]. Such models have attracted enor-

are callcula_ted in Sec. VI to the first order é(one-loop mous attention recentlsee, e.g., Ref$11,22—26 and ref-
approximatiof. In Sec. VII, we employ the operator product_ erences therejnbecause of the insight they offer into the

expansion to give explicit inertial range expressions for vari- figin of intermittency and anomalous scaling in fully devel-
ous higher-order correlation functions. The results obtaine ped turbulence. We also note that the isotropic version of
are rgviewed in Sec. Vl”.’ where a brief comparison with the'the kinematic rapid-change magnetic model dates back to
passive scalar problem is also given. 1967 (see Ref[27]) and was studied by the authors in Refs.
[28-31.

More precisely, we shall consider a simplified model in
which v(x) is a Gaussian random field, homogeneous, iso-
In the presence of a mean compon@&it(actually sup- tropic andé-correlated in time, with zero mean and covari-

posed to be varying on a very large scale, the largest one ance

II. DEFINITION OF THE KINEMATIC MHD
KASANTZEV-KRAICHNAN MODEL
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X X' N=06(t—t")K _4(r 2.2
<Ua( )U,B( )> ( ) DIB( ) ( a VK_lvzf dtj dxf dX,l)a(t,X)K;ﬁl(X—X/)Uﬁ(t,X/).
with
dk P, (k) The formulation(3.1) means that statistical averages of
f %‘:—gexrilk r], r=x—x, random quantities in the stochastic problé2nl), (2.2) co-
(2m)® incide with functional averages with the weight eX@d).
(2.2b The model(3.1) corresponds to a standard Feynman dia-
wherePaﬁ(k)zaaB—kakB/kz is the transverse projectdt, grammatic technique with the triple verte®'[—(v-d)B

is the momentumk= |k|, Do>0 is an amplitude factor, and T (B-)VI=BBgv, Vg, with vertex factor

0<¢<2 is a free parameter. The IR regularization is pro- . . . .

vided by the cutoff in the integral2.2) from below atk Vapy (K, A) =Ky 00p~ 1K g0y = 'pﬁ‘“ﬁﬂqﬁa”('g 2

=m, Wherem 1L is the reciprocal of the integral turbu- ’

0<£<2, the difference via the fieldsB', B, andv respectively. Strictly speaking, the
vertexV,z., has to be contracted with three transverse pro-

= — aBy
Sap(1)=Kap(0) = Kap(r) 2.3 jectors, but we omitted them in order to simplify the nota-

has a finite limit form—0- tion. In most cases, transversality \¢f, 5, with respect to all
its indices will be restored automatically owing to the con-
traction with bare propagators. The latter in the frequency-

a’B(r

aBy

a' B
Sap(r)=Drf| (d+é- Déup=¢—72|s (24 momentum {,k) representation have the form:
with (Ba(wik)B,g(_wi_k)>0
—Dol'(—¢/2) ) %
= =(B(w,K)Bs(—w,—k))g =———7-P5(k),
D= 2T T (di2+ €2)° (Bal@:K)Bg(~ 0, k)6 ==y iy PasK)
whereI'(--+) is the EulerI function (note thatD>0). It (B,(w,k)Bg(—w,~k))o
follows from Eq.(2.4) that & can be viewed as a kind of
Holder exponent, which measures the roughness of the ve- =(B°-k)2(B(w,K)B’,(—w,—k))o
locity field. In the RG approach, the exponehplays the “
same role as the parameter 4—d does in the RG theory of X (U o (0,K)v g/ (—w,—K))g
critical phenomen&32]. The relations
X<BB/(w!k)BB(_w!_k)>O:
gOEDolKOEAg (25)

define the coupling constagg (i.e., the expansion parameter (Bal@k)vp(—w, =Ko
in the ordinary perturbation thegrnand the characteristic =(B°~k)(Ba(w,k)B;,(—w,—k))o
ultraviolet (UV) momentum scalé\.

X (U o (0,K)v g(— @, —K))o,

lll. FIELD THEORETIC FORMULATION
OF THE MODEL: DYSON EQUATIONS (B(@,K)Bj(—w,—k))o=0, (3.3
FOR THE PAIR CORRELATION FUNCTIONS
and the bare propagatos ,v ), is given by Egs(2.2).

The stochastic problen2.1), (2.2) is equivalent to the The magnitudeB®=|B°| can be eliminated from the ac-
field theoretic model of the set of three fields={B’,B,uv}  tion (3.1) by rescaling of the fields8— B°B, B’ —B’/B°.
with action functional Therefore, any total or connected Green function of

o the form (B(xy):--B(x,)B'(y1)---B'(y,)) contains the
S(®)=B'[~ B~ (V- 9B+ (B-d)v+ (B v+ Koi’B] factor of (B°)""P. The parameterBop appears in the

—vK "ly/2. (3.1 bare propagatorg3.3) only in the numerators. It then

follows that the Green functions witth—p<<0 vanish

The first five terms represent the Martin-Siggia-Rose actiondentically. On the contrary, the 1-irreducible function
(see, e.g., Ref§32-34) for the stochastic problert2.1) at  (B(xy)---B(xn)B'(y1):--B'(Yp))1-ir coONtains a factor of
fixed v, and the last term represents the Gaussian averagi@®°®)? ™" and therefore vanishes for—p>0; this fact will
overv; K1 is the inverse integral operation f(2.2b) and  be relevant in the analysis of the renormalizability of the
B’ is a solenoidal response vector field.(;h11) and analo- model(see Sec. V.

gous formulas below, the required integrations oyex} The &correlated in-time character of permits us to ex-
and summations over the vector indices are implied, for exploit the Gaussian integration by patts comprehensive de-
ample, scription of this technique can be found, e.g., in Réf) to

obtain closed, exact equations for the equal-time correlation
functions of the fieldB. This strategy has been used in Ref.
B'o8 f dtj dXB(X)tB (), [16]. Below we give an alternative derivation of the equation
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for the pair correlation functions based on the field theoreti- | P.s(k) [ do’
cal formulation of the problenfsee also Ref[30] for the 28 B(w,k)= d=1) f 5
a
scalar case
The pair correlation functiongb®) of the multicompo- dq
nent field® satisfy the standard Dyson equation, which in X j ana3al(k!p!Q)Pa3a4(p)G(w,rp)
the component notation reduces to the system of two non-
trivial equations for the exact correlation function DoPalaz(q)
Cap(®,K)=(B,(w,k)Bs(—w,—k)) and the exact response X—(q(jTVa4ﬁa2(—k,—P,—Q), (3.7a

function G, 4(w,k) =(B,(w,k)Bs(— »,—k)). The latter is

independent oB° (see aboveand thus can be written as do’ dq

G,p(w,k)=P,45(k)G(w,k) with a certain isotropic scalar EEL?B’(“"k):f_J'—dVM W (Kp,)Ch (@',P)
function G(w,k). In our model these equations, usually re- 2m ) (2m) s M
ferred to as the Dyson-Wyld equatiofsee, e.g., Ref.3]), DoPya,(0)

have the form X_daVBam(_k’_p’_q)' (3.70

G Hw,k)Pop(K)=[—iw+ kok?IP,5(k) 38 B(w,k),

(3.43 wherek+q+p=0, the vertexV,g, is defined in Eq(3.2),

and the explicit form(2.2) of the velocity covariance is used.
We also recall that the integrations owgshould be cut off
Cop(@,k)=|G(w,K)[?[(B°-K)*(v o @,K)v 5(— w,—K))o from below atq=m.
BB/ The integrations ovew’ in the right-hand sides of Egs.
+2.5 (0,K)], (3.4b (3.7 give the equal-time response functios(q)
=(1/27) [dw'G(w’,q) and the equal-time pair correlation
where (B,Bj)o is given in Eq.(3.3, 388 and 38’8 are  function C,s(q)=(1/2m)[dw’C,4(w",q); note that both
self-energy operators represented by the correspondiri§€ Self-energy operators are in fact independend.oThe
1-irreducible diagrams; the other functioB&® vanish iden- ~ Only contribution toG(q) comes from the bare propagator
tically. It is also convenient to contract EB.48 with the  (3-3), which in thet representation is discontinuous at coin-
projectorP,,4(k) in order to obtain the scalar equation cident times. Since the correlation functi¢h2a, which en-
ters into the one-loop diagram far®'B, is symmetric int
-1 - 2_<$B'B andt’, the response function must be definet=at’ by half
G (@ k)= "Tatrok = 2" Hw k), (3.5 the sum of the limits. This is equivalent to the convention

where we have written
G(q)=(1/27r)f do'(—io'+ Koqz)’lz 1/2

3880,k =38 B(w,k)P,p(k)/(d—1).  (3.5D

and gives
The feature characteristic of the rapid-change models like P (K d
(3.1) is that all the skeleton multiloop diagrams entering into SB'B(p k)= =2 g 1V oswe (K., Q)
the self-energy operatoBs® B and3B'B’ contain effectively 2(d-1) J (2m) o
closed circuits of retarded propagat¢&B’) and therefore DoP, ,.(q)
vanish; it is also crucial here that the propagdtev) in Eq. XP,..(P) _d%
(2.23 is proportional to the’ function in time. Therefore the s aq
self-energy operators i(8.4) are given by the one-loop ap- XV, pa(—K,—P,—0) 3.9
a4 112 1 1 . .

proximation exactly and have the form

Substituting Eq. (3.2 into Eq. (3.8 after lengthy but

BB straightforward calculations gives

= (3.69
3B8'B(,k)=(—1/2)k kD f—ddq —(,—P“B(q) (3.9
! CAE0) (2md gTTE
SBB'= (3.6  The integration oven in Eq. (3.9 is performed explicitly

using the relation

qan 501,3
The solid lines in the diagrams denote the exact propagators f daf(q) q° d j daf(q) (310
(BB’) and (BBj); the ends with a slash correspond to the _

field B’, and the ends without a slash correspon®tdhe  and gives

dashed lines denote the velocity propagate); the verti-

ces correspond to the fact@.2). The analytic expressions 8800 k)= — K2 Do(d—1)

for the diagrams in Eq3.6) have the form 2d J(m), (3.113
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where we have written DoP.s(K)/k?"¢, the Fourier transform of the spatial part
dg 1 (2.2b of the velocity correlation functioi2.2), and replac-
m EJ —Cc.m ¢/E. 311 ing the momenta by the corresponding derivativgs,,
(m (2m)d q@te ¢ (3.119 —4,, and so on, we obtain

Here and belovC =S, /(27)% andSy=27Y4T'(d/2) is the 2k00°C =~ (d4,70,Sap) (B2 B +Co a)
surface area of the unit sphere drdimensional space; the v

parametem has arisen from the lower limit in the integral (90,50, 9a;Caay T (9a;Sua,)(94,Cayp)
overq.
Equations(3.5), (3.11) give an explicit exact expression —Su,ay%a,90,Cap - (3.19

for the response function in our model; it will be used in Sec.

V for the exact calculation of the RG functions. Like in the Note that the correlation functiof2.2) enters into Eq(3.14
scalar case, the exact response function differs from its barenly through the functior§, ., from Eq.(2.4), or, in other
analog (3.3 simply by the substitutionko— g+ Dg(d  words, through the differenc@.3), which has a finite limit
—1)J(m)/2d. Below we use the intermediate expressionat m=0. Them dependent constant part .2 vanishes
(3.9. The integration of Eq(3.4b over the frequencyw under the differentiation in the first four terms in the right-
gives a closed equation for the equal-time correlation funchand side of Eq(3.14), and in the last term it is subtracted
tion; it is important here that the dependence of the right- explicitly, owing to the subtraction in Eq3.13. Equation
hand side is contained only in the prefactG(w,k)|2. Us-  (3.14 should be augmented by the solenoidality condition:

ing Eq. (3.9) the equation foiC, (k) can be written in the
form &aCaB:O' (315)

2k k2+3B'BYC (k)= (BC. k)2 K —w,—k For the nonstationary state, t_hg functiolC ,4(t,r)
(reok™+ 2 H)Caplk) = (B2 k) (vl @, K)v g~ @, =)o =(B,(t,X)Bg(t,x+r)) depends explicitly o, and the term

N dq v . 9:C .z appears on the right-hand side of &8.14), see, e.g.,
2n) acga, (KiP,0) Ref. [16].
DoPa,a,(0) IV. NONPERTURBATIVE RESULTS FOR THE SCALING
X C e, (P) T EXPONENTS OF THE TWO-POINT MAGNETIC

CORRELATION FUNCTION
In this section we focus our attention on the inertial-range

and using Egs(3.2 and (3.9 it can be rewritten as behavior of the second-order equal-time correlation function
) o L2 C,p(t,r)=(B,(t,r)B(t,0)) in the statistically steady state.
210K“C (k) = (B K) (v o( @, K)v g — 0, = K)o As shown in Ref[16], a steady state is present when 1,

dg D &=1 being the threshold of instability. As such threshold
+ J o —d%{qalqazcalaz(p)Paﬁ(q) coincides with that of the isotropic problef8], it follows
(2m)"q that dynamo effect is thus not switched on by anisotropic

~D4.00.Cua(P)P, contributions.
PayAa;Caa,(P)Pays(d) In the isotropic case, the analytic expression for the scal-
~Pa,%a,Ca; s(P)Paa, (A} ing exponent ofC,; has been obtained in R4R28]. It was
2ot 2 also shown by the author 28] that the anomalous expo-
dg DoPaa,(d) nent is universal, and the anomaly is associated with zero-
+ d are1Pa,Pa,Cap(P) mode solutions of the equations satisfied ®y,. Higher-
(2m¢ gt 12 : : b
order correlation function exponents have been calculated to
_kalkazcaﬂ(k)}' (3.13  O(¢) in Ref.[30] by exploiting the RG.

With respect to Ref(28], the main technical difference is

For 0< <2, Eq.(3.13 allows for the limitm—O0: the first ~ that, in order to extract the anisotropic contributions to the
three integrals in its right-hand side are separately finite fofSotropic scaling, the angular structure of zero modes has
m=0; the last integral is finite owing to the subtraction, NOW to be explicitly taken into account. To start our analy-
which has come from the contribution wilt®'® in the left-  SiS: 1t us consider the closed E.14) for C,. For what
hand side of Eq(3.12. Indeed, the possible IR divergence follqws, it is worth emphasmpg tWC.’ propgrtles'ﬁtw.
of this integral atg=0 is suppressed by the vanishing of the (i) Becguse of homogenelty‘_,aﬁ '_S left invariant under
expression in the curly brackets. In what follows we set the following set of transformations:
=0. i ) o r——r and a<p; 4.9

Equation(3.13 can also be rewritten as a partial differ-
ential equation for the pair correlation function in the coor-  (ii) C,4(r)=C,z(—r), as it follows from(3.14) after the
dinate representationC,4(r)=(B,(t,x)Bg(t,x+r)) [we  substitutionr— —r.
use the same notatidd, ; for the coordinate function and its In the presence of anisotropy, the most general expression
Fourier transformh Noting that the integrals in Eq3.13  for the two-point magnetic correlation§,,4(r), in the sta-
involve convolutions of the functionsC,4z(k) and tionary state involves fivétwo in the isotropic cagefunc-
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tions depending on both=|x—x'| and z=cos¢=B°-r/r, [ro,+(d—1))Fi+[rad,— 20, ] Fo+ 210, + d,— 220,— 2] F5
where B® is the unit vector corresponding to the direction -0 (4.10
selected by the mean magnetic field. Note that the space is '
anisotropic but still homogeneous, so that there is no explicit

dependence on the pointsx’, but only on their difference. 9, o+ [rdp+d] Fa+[zrd, +(1-2%)3,] Fs=0,
Namely, (4.1
N Bzr 8 associated to the projections ovey/r and Bg, respectively.
Cap(r)=F1(r,2) r2 +F2(r,2) 85t F5(r,2) r From the relation(4.5), Egs. (4.10 and (4.11), it then

follows that only two functions of the"’s in (4.2) are inde-
B A pendent. A possible way to isolate contributions of the an-
+Fa(rz) — + Fs5(r,2)BgBj. (4.2 isotropic components from the isotropic scaling is to use the
decomposition ofF’s on the Legendre polynomial basis.
From the propertiesi) and (i) of C,4(r) one immediately ~This is the subject of the next subsection.
obtains the following relations for th&’s:

(o]

A. Decomposition in Legendre polynomials

Fi(r,z)=F(r,—2) i=1,2}5, 4.3 . .
In terms of the Legendre polynomials, functiofgr,z)
Fo(r,2)=— Fa(r,—2) (4.4) can be decomposed in the form:
Fa(r,z)=TFu(r,2). (4.9 F(riz)=2 t9(r)Pi(z) i=1,25 (j even,
i=0
Substituting the expressiof.2) into (3.14 and using the (4.12

chain rules, we obtain, after lengthy but straightforward al-
gebra, the following four equation&orresponding to the

projections over ,r z/r2, 8,5, BYrz/r, andBIBY): fg(r,2)=j20 f3(r)Pi(z) (j odd), (4.13

[ayr22+br o, +cy(1—2°) 92+ dyzd,+ e, F;
where the separation of even and odd order¢4ii?2 and

+[far e+ 9129, + 1177 (4.13 arises as a consequence of the symmetries expressed
+[KyZrd, + 1,220, 4 Myz+n,9,] Fa+ [ 04+ p122] Fe by the relatlons_(4.3) a_lnd (4.4), respectively. o
Simple considerations related to the “uniaxial” character
=(q,+r,2%)B%?, (4.6)  of the forcing term withB® in the basic equatio2.1), and
the linearity of the latter irB° andB suggest that the indgx
apFy+[bor292+ c,or g, + dy(1— 22) 92 in the above decompositions should be restricted <@.
) The rigorous assessment of this point will be given in Sec.
t€2d,+ 1] 7o+ 9oz F 3+ [k +1,2°] 75 IV B. On the other hand, contributions associatedj te2
= (My+n,z2)B%, 4.7 can be easily “activated” either when a fully anisotropic

forcing (i.e., projecting onto all Legendre polynomigls
added on the right-hand side (f.1), or in the framework of

+ +[cgr2d%+ ] ; : >
30271 D30,Fo [ Cor “dr - dar 0y finite-size systems led by anisotropic boundary conditions.

+e3(1_22)0‘;§+f3202+ 03] %3 Moreover, as we shall see in Sec. V, scaling exponents as-
_ sociated toj>2 contribute to the inertial-range scaling of
+[jazrd, + (ka+132°) 9, + myz] Fs higher-order correlation functions involving the product
—n,B°%, 4.9 B.Bg at a single spacetime point. The latter property holds

also without the invocation of a fully anisotropic forcing on

9.2 o 2 the left-hand side of Eq2.1). From all these considerations

40, F 5+ [Dar“07 + Cal 0+ dy(1—27) 07 + €420, 4 14] 75 we shall exploit the general decompositigdsl? and(4.13
=g,B°?, (4.9 involving all j’s. _

In order to obtain equations fcflf')(r), we have to insert
where the coefficients; ,b;,...r; are functions of¢ andd  EgQs.(4.12 and (4.13 into Egs.(4.6)—(4.11. Furthermore,
and are reported in Appendix A. Without loss of generality,quantities like zP93F (p=0,1,2, and q=0,1) and (1
we have fixed =1 in (2.4), and we have neglected all terms —22)55}' have to be expressed in terms of Legendre poly-
involving the magnetic diffusivityxy, our attention being nomials. This can be done exploiting well-known relations

indeed focused in the inertial range of scales, igsr involving the Legendre polynomialsee, e.g., Ref35]): the
<L, where nzxé’goc/\*l is the dissipative scale for the resulting expressions fadJ.F and (1— zz)&ﬁfare reported
problem. in Appendix B. For the sake of brevity, we report hereafter

With the substitution of the expressioh.2), the solenoi- only the projection of Eq(4.6), the structure of the others
dal condition(3.15 splits into the following couple of equa- being indeed similafthe full set of equations is however
tions: reported in Appendix €
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ayr 2O rf Mgy +d, +eyf(V+1fyrf/ @

JA-DfYT22)+1) > 1R, JfY+(2j+1) > f5,
q=1 q=1

j+1
1(3) 1(3)
s—1l-1T 253 i1

+0;

+n1(2] +1)qZO f(Z?:])Jerrl

Jfi2+(2] +1)qzl £52, |+ af (2 +kar

(-1 (1+1)(j+2) s j j+1
'1[ o1 1T gpes ot @D 2 H e e (2 o i ol
ipf AU e G¥DZ g, U2+
1(2)-3)(2j=-3) 172 1 (2j+3)(2j+1) ~ (2j—-1)(2j+1)) 1 " (2j+3)(2j+5) 172
o2 2 1
=B q,+rq §5j,2+§6j,0 . (414)
|
From the above equation we can see that termszRk&r ii—-1) -
are responsible for the coupling between an arbitrary aniso- plmﬁ—z
tropic contribution of ordej and all larger orders. The full
set of equationg§C1)—(C6) is thus not closed and there are 02 2 1
no chances to solve them analytically. Simple physical argu- ~— B™ a1 +ry 3 .2t 3 9.0 | (4.16

mentations actually permit to overcome the closure problem.
Indeed, in the presence of a cascadelike mechanism of en-azfjg1>+ b2r2f}’<2’+czrfj’(2)+[d2j(1—j)+e2j +f2]fJ(2>
ergy transfer towards small scales, anisotropy present at the
integral scale should rapidly decay during the multiple-step j ji(g—1)
i ici i i + ._f(3) éf(s)
transfer, and an almost isotropic inertial range scaling should 9221 —1 171221y (2j=3) 112
be restored. Mathematically, this means tfats should be

i i i isotri 2 1
iraep|dly decreasing functions of the degree of anisotrppy —B% my+n, 55]_ p 55]_,0) , 417
i<t . (4.15 az(2j +1)fY, +ba(2j + 1))+ cor2f P+ dar ¥
and similarly for their derivatives. We shall control the va- +eaj (1) +faj +03lf{> +jar ,J—fj’(_Sl)
lidity of this physical assumption in a self-consistent way, at 2j-1
the end of our calculatioh. iG—1) i
The hierarchy(4.15 is exploited here by retaining, for +115 21 +m32j_1}f§5_)1=n38025j,2, (4.18

eachi appearing in the functiont’s, the lowest value of
the indexj. When doing this, the simplifications on Egs.

; (3) 2¢n(5) /(5)
(C1)—(Co6) are enormous and the resulting set of equations a4(2] + DF5y T br i 4 Cor

reads: +[daf (1= ) + g + fa] (7
ar 2t M+ byrf [ M [eqj (1) +dyj +eg ] f +fyrf ] =94B%8 0, (4.19
+Lgai +ia)f{ +kar -1 £ rfj’(l>+(d—l)f}1)+rfj(2)—jf}2)+r%fj’(}l)
+ |11'2(j::1)+m12jj_1 #2), —zjjilf}‘?FO, 20
The physical assumptiof.15 is unnecessary when the decom- (2)+ 1)f1(i)1+ rfJ,(3)+de(3)+ r ﬁfi’(?_ J;JJ :1) fJ(5*)l

position in the irreducible representations of the 80¢ymmetry
group is exploited(see Ref.[36] for the cased=3). This leads =0. (4.21)

exactly to the same results obtained earlier in RE], where the . . )
hierarchy(4.15 was assumed. Notice that the additional exponents SCMe remarks are noteworthy. Focusing on the isotropic
(subsets Il and 1)l reported in[36] are related to the pseudotenso- contribution,j=0, we notice that the first two equations in-
rial structures and that in our model they do not contribute to thevolve solely the functiong{" and f{?) (and their deriva-
inertial-range behavior of the pair correlator. tives). With the solenoidal conditior{4.20), it is easy to
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check that they coincide with the equation reported in Ref. We are now ready to show that nontrivial scaling behav-
[28] for the isotropic problem. Moreover, foj=2, Eq. iors forf; take place due to zero modes, i.e., solutions of the
(4.16 suggests taking the function f;  homogeneous probler;f;=0. To that purpose, we exploit
=(fM,£2 13, 1(9,) as an unknown field. It is immedi- (4.23 and define coefficienty; through the relationf;
ately verified thaf; appears also in the other equations Whenzyjrﬁ. Inserting the latter expression in the PDE system, a
the indexj(j=2) is renamed j(—1) in Egs.(4.18 and  4x4 algebraic linear system far; is obtained. The emer-
(4.21) and (—2) in Eg. (4.19. When doing this, a linear gence of zero modes is thus reduced to impose the existence
partial differential equatiotPDE) system of the typel;f;  of nontrivial solutions of a & 4 homogeneous linear system,
=g; (hereafter, repeated indices are not summiedob-  that means here the resolution of an algebraic equation of
tained, g; involving all terms related to the mean fiekf,  gighth degree arising from the condition that the determinant
and £; is restricted, for instance, to the first four equations. of the system coefficients is zero. The calculation, lengthy
'The analytlcal treatment of the resulting equation systeng ;¢ straightforward, leads to four sets of zero modesually
still remains a very hard task for general values of the spacgjgnt sets, but it turns out that the associated coefficignis,
separatiorr. The situation changes when one focuses on th%f four of them do not satisfy the solenoidal condition

merpal fange 9f scaleg.e., for p<r<L). In the latter case (4.20—(4.21)] the expressions and the admissibility of which
scaling behaviors are expected and we shall have . . ) ,
are given and discussed in the next section.

f}i>(r)ocr4i) with  ¢y<g<---, (4.22
where the hierarchy on the exponegf8 immediately fol- B. Zero-mode solutions and their admissibility
lows from (4.15. Let us start with the casp=0, corresponding to the iso-
The structure of the above equations fixes the relationiropic contribution. As already observed, Edq4.16) and
between the scaling exponents relative to differemt In-  (4.17) are decoupled from the others, and the problem can be

deed, when searching for power law solutid@ié(r)urﬁf'), solved directly forf{") andf{?), which must satisfy also the
in order to obtain balanced equations the “oblique” relationssolenoidal conditior{4.20. The imposition of the existence
must hold: of nontrivial solutions(for j=0 we have a homogeneous 2
D A2 A3 _ H5) ><2.algebraic linear system fc_yj) and t_he solenoidal con-
G=87=67=001=67,. (423 straint(4.20 lead to the following solutions:

_ —d?+d-2¢+ J12d%¢ - 8dé+8¢°d — 4d%¢P - 4d3E+d? +d* - 2d°

0~ 2d—2 (4.29
[
with their é—0 andd—oe limits: . 1
pj—:_m{2§+d2—d+[—2d3§—2d2§2—6d3
{o=—E+0(&%)
5 +4£%d+8+10dé+20dj— 20d — 8&— 8j + 4d?j?
=—&—— +O(1/d?, (4.29 +2£2— 4¢j2+ 17d%— 8d 2+ 8¢&j + 4d3) + 4d?j &
i3 +4dj?¢+4)%—16d%) — 12d&j +d*
- _ 2
fo=—d+eqg +O(&D) +2K(d-1)(2- )13, (4.28
1 2&¢é-1
—- S+ # +O(1/d2). (426  Wwhere

— _ 3 27 _ 2 2 2 i —
For j=2 the zero-mode exponents are K=(d=1)(d*+4d" —5d"+2d%¢+ £°d + 4d¢) —6d¢ +8d

—12dj+4dj?— 2+ 4E+ 8] —8Ej —4—4j2+ 4E)?),

{=- 2é+d?—d—[—2d3%¢—2d?£2—6d°
! 2(d—1){ [ with their é£-0 andd— limits
+4£%d+8+10dé+20dj — 20d— 8&— 8j + 4d?j?

s s , P . . L (d=1+j)(d*+dj—2d+4j-2j?) 5
+26°—4&j°+17d°—8dj +8¢&j+4d°j +4d7j & g =i ([d=2+2])(d+2])(d—1) +0(£9)
+4dj%é+4)%—16d%) —12dgj +d? 26(i—£)

=i— - c 2
+2\K(d-1)(2- 51", 427 JmEr g o, 429
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- —4d%—17dj+16d+ 28) — 16— 14j%+ 2d?j + 5dj°+ 2j3 )
G =j—2+¢ — : — — +0(£9)
(d—2+2j)(d+2j—4)(d—1)
2&(j—2
=j—2+—§(Jd )+O(1/d2), (4.30
gt —5d2—7dj+6d+4j—2j2+d3+2d2j—dj2—2j3+o )
pp=—d=jté (d—2+2))(d+2))(d—1) (&)
1 2¢(j+1-
:—a+§—j——§(1d §)+O(1/d2), (4.30

(j—1)(2j?—4j+5dj—4d+2d?)

P =2 A T T o (d T2 —4)(d=-1)
+0(&%)
:_§+2_j_$+0(1/d2). (4.32

UV boundary condition is thus reduced to search for regular
solutions forf;(r) in the {&—0 limit. This is easy to do and
the result is that solely exponents andgji for j=2 permit
satisfisfaction of the condition of regularity fér, the other
exponents being indeed0 for ¢£&=0. Notice that, the zero-
mode exponent, coincides with the isotropic solution ob-
tained in Ref[28].

Let us now discuss the IR boundary conditiqds34). In

Let us discuss the admissibility of these solutions. Withthis case, as pointed out in R¢28], a crucial role is played

the term admissible we mean a solutih(r) satisfying the
appropriate boundary conditions, at both sn{alhV limit)
and large scaleqIR limit). Specifically, the following
asymptotic behaviors have to be satisfied:

regular for r~»5—0

(4.33
(4.39

fi(r)

fi(r)—0 for r>L.

by the external forcing. Indeed, in the presence of forcing,
zero modes and the decaying forced solution may be
matched at the integral scdlethus satisfying the IR bound-
ary conditions. The result of this argumdnthich can be
rigorously illustrated solely foj=0 where the general solu-
tion for f;(r) is availabld is that zero-mode exponents are
not admissible forj=4. Indeed, as we can see from Eq.
(4.16—(4.19, the forcing term related t8° projects solely
on the shellg<2.

To summarize, we have one admissible zero modg for

Concerning the limit4.33, we have to consider solutions =0({y) and two admissible zero modes for 2(¢3). Our
corresponding to the diffusive range and to match them wittattention being focused on the inertial range of scéies,
our inertial-range power laws. From E®.14 we can easily r/L<1), our choice forj=2 is for {, . We have indeed to
see that the equations holding in the diffusive range are oltake the exponent giving the leading inertial-range contribu-
tained by setting to zero the paramegeirhe consequence is tion.
that our inertial-range zero-mode solutions become solutions Finally, we can thus define the final solutidn of our
in the diffusive range fo€=0. The problem related to the problem as:

[t} = —d?+d-2¢+ \/12d2§—8d§+225_2<;— Ad*g?—ad’¢+d?+d'—2d® o) = ¢ 27.52 o),
(4.39
{=0=— ﬁ{dz—dwg—[s— 12d—8¢+2dé+4£%d— 2d2¢2— 2d3¢+ 8d?¢+ d?+ 2%+ 2d3 + d*
-2K(2-§d-1)]"3
“@ iz o)
- 2§+0(1/d3), (4.3

d
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6 . scale and is the time scale. The dimensions are found from
=6 the obvious normalization conditions

/ df=—dk=1, d?=d?=0, d“=df=0, d*=—-d*=1,
4 i

and from the requirement that each term of the action func-
j=4 tional be dimensionlesgvith respect to the momentum and
_ /// frequency dimensions separatelyrhen, based orui'é and
sh2 ] ¢, one can introduce the total canonical dimensihn
=dk+2d¢ (in the free theoryj,>4?), which plays in the
j=2 theory of renormalization of dynamical models the same role
as the conventionalmomentum dimension does in static
problems.
j=0 In the action(3.1), there are fewer terms than fields and
parameters, and the canonical dimensions are not determined
2 ‘ w ‘ L . ‘ unambiguously. This is of course a manifestation of the fact
0 02 0.4 06 08 1 that the “superfluous” paramet&°=|B°| can be scaled out
E-' from the action(see Sec. Il After it has been eliminated
(or, equivalently, zero canonical dimensions have been as-
signed to i}, the definite canonical dimensions can be as-
signed to the other quantities. They are given in Table I,

FIG. 1. Behavior of zero-mode exponerts(j =0, 2, 4, and
vs ¢ for d= 3. Notice the inequality (< {,<{,<..., which means
the validity of the hierarchy4.22 and thus the self-consistency of

our zero-mode solutions. including the dimensions of renormalized parameters, which
will appear later on. From Table | it follows that the model
where becomes logarithmi¢the coupling constany, becomes di-
mensionlessat £=0, and the UV divergences have the form
K=(d—1)(d3+2d2¢+3d%+ £2d+2dé— 4+ 4&E— £2). of the poles in¢ in the Green functions.

The total canonical dimension of an arbitrary
We stress that, foj>2, exponents;=¢;" become admis- 1-irreducible Green functioR =(®...®),_; is given by the
sible under the conditions already discussed in Sec. IVA. relation

The last remark concerns the self-consistency of our so-

lution, that is, the validity of the hierarchy it#.22. The dr=d‘§+2d?=d+2—N¢d¢, (5.1
validity of the latter can be easily verified from Fig. 1 where )
the behavior of; (j=0, 2, 4 and Bis shown ford=3 asa  WhereNq={Ng/,Ng,N,} are the numbers of corresponding
function of & Similar behaviors actually hold for affs and ~ fields ®={B’,B,v} entering into the functior’, and the
j’s. As we shall see in Sec. VI, a hierarchical order for thesummation over all types of the fields is implied. The total
scaling exponents is also present for higher-order correlatioflimensiondr is the formal index of the UV divergence. This

functions. means that superficial UV divergences, whose removal re-
quires counterterms, can be present only in those functions
V. UV RENORMALIZATION OF THE MODEL: for which dr. is a non-negative integer.
RG FUNCTIONS AND RG EQUATIONS Analysis of divergences in the proble(8.1) should be

based on the following auxiliary considerations:

The RG approach to the statistical models of the turbu- (i) All the 1-irreducible Green functions withlz, <Ng
lence is exposed in Refg33, 34] in detail (see also Ref26]  vanish(see Sec. Il
for the scalar Kraichnan modebelow we confine ourselves (i) If for some reason a number of external momenta
to the only information we need. occur as an overall factor in all the diagrams of a given

The analysis of UV divergences is based on the analysi§reen function, the real index of divergendg is smaller
of canonical dimensionssee, e.g., Ref[32]). Dynamical thand by the corresponding numbéthe Green function
models of the typeg3.1), in contrast to static models, have requires counterterms only if;- is a non-negative integer
two scales, i.e., the canonicdiengineering”) dimension of In the model(3.1), the derivatived at the vertex can be
some quantityF (a field or a parameter in the action func- moved onto the fiel®’ using the integration by parts, which
tional) is described by two numbers, the momentum dimenecreases the real index of divergendg=dr—Ng, . The
sion di and the frequencky dimensiag . They are deter- fjg|d B’ enters into the counterterms only in the form of a
mined so tha{F]~[/] %[ T] 9%, where/ is the length derivative,d,Bj.

TABLE I. Canonical dimensions of the fields and parameters in the m@&dbl

F B,Bo B, 1% K,Kp m, My A D,DO go g
dk 0 d -1 -2 1 —24¢ & 0
de 0 0 1 1 0 1 0 0
de 0 d 1 0 1 & £ 0
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(iii) A great deal of diagrams in the mod@.1) contain  In Eqg. (5.5, we have writterD,= x4, for any variablex, and
effectively closed circuits of retarded propagatdBB’'),  the RG functiongthe 8 function and the anomalous dimen-
and therefore vanish. For example, all the nontrivial dia-sion y) are defined as
grams of the 1-irreducible functiofB,B v ,), i, vanish.

From the dimensions in Table | we firdl=d+2—N, yF(g)ET)MIn Zg for anyZg, (5.6a
—dNg, anddf-=(d+2)—N,—(d+1)Ng/ . From these ex-
pressions it follows that for ang, superficial divergences ﬂ(g)zf)ﬂg:g[—é’-{— v (5.6b

can only exist in the 1-irreducible functions witkg =1,

N,=Ng=0 (dr=2, dy=1), Ng:=Ng=1, N,=0 (dr=2, The relation betweeg andy in Eq. (5.6b results from the
d=1), Ng=N,=1, Ng=0 (dr=1, d/-=0), andNg,=Ng  definitions and the last relation in E¢.2).

=N,=1, (dr=1, d-=0) [we recall thatNg=<Ng see (i) Now let us turn to the explicit calculation of the constant
abovd. However, the first of these counterterms has necesZ« in the one-loop approximation in the MS scheme. It is
sarily the form of a total derivative8%4°B,,, vanishes after determined by the requirement that the 1-irreducible function
the integration ovex and therefore gives no contribution to (B'B)1-ir expressed in renormalized variables be UV finite

the renormalized action. Furthermore, for the last two of(i-€- be finite foré—0). This requirement determinés, up.
these functions, all the nontrivial diagrams vanjskee(ii)  ©an uUv finite contribution; the latter is fixed by the choice

abovd. As in the case of the passive scalar fig2é], we are of a renormalization scheme. In the MS scheme all renormal-
left with the only superficially divergent function iZation constants have the form “donly poles in£.” The

(B.Bg)1_ir ; the corresponding counterterm necessarily confunction(B'B);_;, in our model is known exactlfsee Egs.
tains the derivative) and therefore reduces B);azBa (an- (343 and (3.11]. Let us substitute EQs(5.2) into Egs.

other structureB/,d,d5Bz, vanishes by virtue of the sole- .(3'43’ (3.1 and_ ch(_)oseZK to cancel the pole ig in the
noidality of B). integralJ(m). This gives

Introduction of this counterterm is reproduced by the mul- (d—1)
tiplicative renormalization of the parameteyg, «, in the Z,=1-gCy——", (5.7)
action functional(3.1) with the only independent renormal- 2d¢

lzation constant,: with the coefficientC,4 from Eq.(3.11b. Note that the result

(5.7 is exact, i.e., it has no corrections of ordgr, g3, and
so on; this is a consequence of the fact that the one-loop

. . - . approximation3.11) for the response function is exact. Note
Here u is the reference mass in the minimal substraction bp 3.1y b

. . also that Eq(5.7) coincides literally with the exact expres-
scheme(MS),.wmch we always use in what followg,and « sion forZ, in the case of a passive scalaee Ref[26]).
are renormalized analogs of the bare parameaggrand «, : , =
and Z=27(g,£,d) are the renormalization constants. Their For the —anomalous dimensiony,(9)=D,InZ,
relation in Eq.(5.2) results from the absence of renormaliza- ~A(9)%n Z, from the relation$5.6b and(5.7) one obtains
tion of the contribution withk ~* in Eq. (3.1), so thatD,
= —aué i ati ; —&DyInZ, (d—1)
=(goko=9gux. No renormalization of the fields and the v (9)= =gCyq
“mass” mis required, i.e.Zg=1 for all ® andmy=m. The 1-DyInZ, 2d
renormalized action functional has the form

Ko=KZ,, gO:gngzgy Zg:Z;l- (5.2

(5.9

From Eq.(5.6D it then follows that the RG equations of the

Sp(®)=B'[— ;B (V- @)B+ (B- d)v+(B° d)v+Z,xk3°B] model have an IR stable fixed poiiB(g,)=0, B'(9s)
“ >0] with the coordinate

—vK /2, (5.3
2d¢
where the functiorK from Eq. (2.2b is expressed in renor- Y« :Cd(d—l) ) (5.9
malized parameters using Ed5.2): Dy=goko=gu’«.
The relation S(®,ep)=Sg(P,e,u) (where g Let F(r) be some equal-time two-point quantity, for ex-
={gg,kq,m} is the complete set of bare parameters, and ample, the pair correlation function of the primary fielfis
={g,x,m} is the set of renormalized paramejemiplies ={B’,B,v} or some composite operators. We assume that

W(eo) =Wg(e,u) for the bare correlation function®v  F(r) is multiplicatively renormalizable, i.eF =Z¢FR with
=(®...®) and their renormalized analoyféz. We use@M cclerltain renormallization _constam:. The. existence of non-
to denote the differential OperatiolngM for fixed €9 and tr|V|.aI IR stable fixed po!nt |mplles that |I:1 the IR asymptotic
operate on both sides of this equation with it. This gives théd€gion Ar>1 and any fixednr the functionF(r) takes on
basic RG differential equation: the form

DreWr(€,u)=0, (5.4 F(r)zkggAdF(Ar)—AFX(mr), (5.10

where Dgg is the operatiorfDM expressed in the renormal- wheredy anddg are the frequency and total canonical di-
ized variables: mensions ofF, respectively, andy is some function whose
explicit form is not determined by the RG equation itself.
Dre=D,+B(9)dg— v(9)D,- (5.5  The critical dimensiom\¢ is given by the expression
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A[F]EAF:d';+Awdg+ YE, (5.12) In general, counterterms to a given operdtoare deter-
mined by all possible 1-irreducible Green functions with one
where % is the value of the anomalous dimensi@6a at ~ Operator F and arbitrary number of primary fields
the fixed point and\,=2—y* =2 £ is the critical dimen- = (F(X)®(X1) -*®(Xn))1-i; . The total canonical dimension
sion of frequencyinote that the value of,(g) at the fixed (formal index of divergendgefor such functions is given by
point is also found exactly from the last relation in Eg. 4
(5.60: 7 =7.(9) = €] =~ Nadle, ©9
The critical dimensions of the basic fieldsin our model  with the summation over all types of fieldb={B’,B,v}
are found exactlfwe recall that they are not renormalized entering into the function. For superficially divergent dia-
and thereforey,=0 for all ®]. From the dimensions in  grams, the real index of divergena,=d;—Ng. , is a non-

Table | we then findd,=1-¢, A,=0, A, =d. negative integer, cf. Sec. V.
In what follows, an important role will be played by the
VI. CRITICAL DIMENSIONS tensor composite operators built solely of the fiBlavithout
OF COMPOSITE OPERATORS derivatives:

Any local (unless stated to be otherwjsmonomial or FP  (x)=B, (X) B, (X)[B(X)B4(X)] n=2l+p.
polynomial constructed of primary fields and their deriva- 2 "“p “1 “p “ “ 6.4
tives at a single spacetime poix&{t,x} is termed a com- :

posite operator. Examples a8, B;,d°Bs, B/V.-9B,, and  Herep is the rank of the tensor anu=2l+p is the total
SO on. number of fieldsB entering into the operator. From Table |

Since the arguments of the fields coincide, correlatiorand Eq.(6.3) for the operatorg6.4) we obtainds=0 and
functions with these operators contain additional UV diver-q/ — _ N —(d+1)Ng . Therefore, the divergences can exist

gences, which are removed by additional renormalizatiorbmy in the functions withN,=Ng, =0, for which dp=d/.
procedure(see, e.g., Ref.32]). For the renormalized corre- —0. This means that the Oﬁ’erat(ﬁg\p) mix only with each
lation functions standard RG equations are obtained, WhiCBthér i.e., the set6.4) is closed with respect to the renor-
describe IR scaling with definite critical dimensioms- maliz,ation,.

=A[F] of certain "basis” operator§. Owing to the renor- The simple analysis of the diagrams shows that the
malization,A[ F] does not coincide in general with the naive 1-irreducible function

sum of critical dimensions of the fields and derivatives en-

tering Into P _ e . (FP(0B(xy) B (X )1 (65

In general, composite operators are mixed in renormaliza-
tion, i.e., a UV finite renormalized operatBFf has the form contains the factorBO)n—n' and therefore vanishes far
FR=F+ counterterms, where the contribution of the coun-~p, "¢f. the discussion in the end of Sec. Ill. It then follows
terterms is a linear combination & itself and, possibly,
other unrenormalized operators which “admix” t6 in
renormalization.

Let F={F,} be a closed set, all of whose monomials mix
only with each other in renormalization. The renormalization
matrix Ze={Z,,} and the matrix of anomalous dimensions FP= Z v FEP) (6.6
ve={vap} for this set are given by n’p’

that the operatoF"P") can admix toF (" only if n’<n.
This means that the corresponding infinite renormalization
matrix

is in fact block-triangular, i.eZ, nrp,» =0 forn’>n, and so
Fa=2 ZaFh, ve=Z:'D,Z¢, (6.1) are the matricer, Ar, andUg . It is then obvious that the
b critical dimensions associated with the operatBf8” are
) ) . ) ) completely determined by the eigenvalues of the finite sub-
and the. cqrrespondmg matrlx of crltll(cal dimensiong blocks withn’=n. In the following, we shall not be inter-
={Aap} is given by Eq(5.11), in whichdg, d¢, anddg are  ggted in the precise form of the basis operat@&<®), we
understood as the diagonal matrices of canonical dimensiongther shall be interested in the anomalous dimensions them-
of the operators in questiofwith the diagonal elements gelyes. Therefore, we can neglect all the elements of the
equal to sums of corresponding dimensions of all fields anghatrix (6.6) other tharZ,, o - The latter are found from the
derivatives constituting=) and yg=1v¢(g,) is the matrix  functions (6.5) which are independent d° and therefore
(6.1) at the fixed poin{(5.9). can be calculated directly in the isotropic theory wif
Critical dimensions of the sét={F} are given by the 0. |t is then clear that the block,,, ,,» can be diagonal-
eigenvalues of the matridg. The “basis” operators that jzed by the changing to irreducible operators: scalars (

possess definite critical dimensions have the form =0), vectors p=1), and traceless tensorp%2), but for
our purposes it is sufficient to note that the elements of the
phas_ U..ER 6.2 block qu,npr vanish forp§ p’, i.e., this block is triangular
a % abt b .2 along with the corresponding blocks of the matriges Ag,

andUg. Indeed, the irreducible tensor of the rgmkonsists

where the matrtUg={U,p} is such tha\f=UgAgUgtis  of the monomials withp'<p only, for example, F72

diagonal. =B,Bg— 5aﬁled, and therefore only these monomials can



6598 N. V. ANTONOV, A. LANOTTE, AND A. MAZZINO PRE 61

admix to the monomial of the rankin renormalization. The S2F(nP) ap (X)
final conclusion is that the critical dimensions, associated Vi oa g g, (X X1, X0) = ! (6.9
with the set(6.4), coincide with the diagonal elemenss, , 1Rt 6B, (X1) 5BB (X))
E.A”p'”p of the_matrix (5.19), they_are completely deFer- It is convenient to represent it in the form
mined by the diagonal element, =2, ,, of the matrix
(6.6), and that they can be calculated directly in the isotropic V..., 5 5 (X;X1,X2) = 8(X—X1) 8(X—Xy)
theory withB°=0. Lo
Now let us turn to the one-loop calculation of the diagonal 2 |
elementZ,,, of the matrixZ in the MS scheme. L€t (x;B) Xm[bal”'bap(b )]
be the generating functional of the 1-irreducible Green func- v
tions with one composite operatBf"® and any number of (6.10

fields B. Herex={t,x} is the argument of the operator and \hereh_ is a constant vector, which after the differentiation
B(x) is the functional argument, the “analog” of the random ;g subst|tuted with the fiel® ().

field B(x). We are interested in theth term of the expan- The vertex(6.10 contains a—2) factors ofB. Two re-
sion of I'(x;B) in B(x), which we denotd” (™ (x;B); it has  maining “tails” B are attached to the lower vertices of the
the form diagram in Eq{(6.8). We know that the UV divergent part of
- the diagram is proportional ta factors B without deriva-
Lo ap (x;B) tives, so that we can omit the first term of the vertex

B'[—(v-d)B+(B-ad)v], or, equivalently, the first term in

1 Eq. (3.2). Furthermore, we can set all the external momenta
TRl e dxl"'f dxBg, (X1):**Bg, (Xn) in the integrand equal to zero, and the UV divergent part of
the diagram(6.8) takes on the form
><<F;“1P?.ap(x)|3ﬁl(xl)---Bﬁn<xn)>1,i, : (6.7 )

J
bg.bg ——=—1[b, b, (b*)']T , (6.1
In the one-loop approximation the function®.7) is repre- Fs B“r?bﬁl(?bﬁz[ @y PO Tpip,:0, (610

sented diagrammatically as follows:
where we have denoted

1
rgfl)--'“p=F5"f-)"“p+§A\ ) (6.9 -D J do dq q33q54P3152(Q)
0 27

Tﬁlﬁzﬂ3ﬁ4_ (27T)d qurf[ w2+ Kgq4] .

Here the solid lines denote the bare propagatBR), from 6.12
Eq. (3.3, the ends with a slash correspond to the fiBld ~ We recall that the integration overshould be cut off from
and the ends without a slash correspon8tthe dashed line below atq=m (see Sec. )l In Eq.(6.12, we have to change
denotes the velocity propagat@.2); the vertices correspond to the renormalized variables using Ed@S.2); in our ap-
to the factor(3.2). The first term in Eq(6.9) is the “tree” proximation this reduces to the substitutigg—gu® and
approximation, and the black circle with two attached linesky— «. Then we perform the integration overand use the
in the diagram denotes the variational derivative relations(3.10 and

f dat qﬁlqﬂzqﬁgqﬁ4 08,6,0828, 08,8,98,8,T 95,8,98,8, f dat
af(Q) g e 41()

This gives Ouya, ©IC. The latter determine nondiagonal elements of the

matrix Zg, which we are not interested in here. Finally we
£ obtain
T _ g dm) d+1)85. 4.8
B152ﬁ3/34 2d(d+2) [( ) ﬁlﬁz B3,34 c
~F(P) [1_m
p

(n)
_(551/3455233+551535ﬁ2/34)]’ (6.13 ral %p @y 4d(d+2) }—F - 619

with the integralJ(m) defined in Eq(3.11h. where we have written
Substituting Eq.(6.13 into Eq. (6.11) gives the desired
expression for the divergent part of the diagré®B). It is
sufficient to take into account only the terms proportional to
the monomiaIBal(x)---Bap(x)[Bw(x)Ba(x)]I and neglect
all the other terms, namely, those containing the factors of =2p(p—1)—(d—1)(n—p)(d+n+p). (6.195

Qnp=2n(n—1)—(d+1)(n—p)(d+n+p—2)
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The dots in Eq.(6.14 stand for theO(g®) terms and the the background fiel@° is “turned on,” the admixture of the
structures different fronfF("P, = denote the equality up to monomials withn’<n and p’>p becomes possible. The
UV finite parts; we also recall that=p+2I. “missing” fields B in the monomials witm’<n are substi-
tuted with the constant fieldB® [the total number of the
fields B and B° has to be equah, owing to the linearity of
the basic equatiofi2.1) in B and B°], while the “superflu-
ous” indices of the monomials witlp’ >p are contracted
with the indices ofB®, so that the basis operator remains a
pth rank traceless tensor. And vice versa, the unrenormalized
9C4Qnp , monomiaIF(”p) from (6.4) is a linear combination of the
T 2d(d+2)¢ +0(g°), (6.16  basis operatoré.2) with respective dimensions,, .. The
hierarchy relation$6.19 then show that the minimal dimen-

with C4 from Eq. (3.11D. For the anomalous dimension Sion entering intoF("™ is A, , . wherep, is the minimal

The constanZ,, is found from the requirement that the
renormalized analog’f=Z T, of the function(6.14 be
UV finite (mind the minus sign in the expongnalong with
the expression3.11b for the integralJ(m) and the MS
scheme this gives

Zp=1

ynp:@ In Z,,, it then follows possible value op for a givenn, i.e.,p,=0 if nis even and
a p,=1 if nis odd.
ngan 2
Ynpl9) = 777375 TO(99). (6.17)
P 4d(d+2) VIl. OPERATOR PRODUCT EXPANSION AND THE
From Table | and Eqg5.9) and(5.11) for the corresponding ANOMALOUS SCAL::NU(f\IgﬁgNT;E CORRELATION

critical dimensionA,, ;= yn,(9,) we finally obtain
The representatio(b.10 for any scaling functiony(mr)
A, (g)= £§Qnp +0(&2), (6.18 describes the behavior of the Green function for>1 and
mP 2(d-1)(d+2) any fixed value ofmr. The inertial range corresponds to the
additional condition thamr<1. The form of the function
x(mr) is not determined by the RG equations themselves; in
the theory of critical phenomena, its behavior for—0 is
. - - = studied using the well-known Wilson operator product ex-
creases monotonically with and reaches its minimum for pansion(OPB; see, e.g., Ref[32]. This technique is also
the minimal possible value, i.ep=0 if n is even andp applicable to the theory of turbulence; see, e.g., R,
=1 if nis odd: 34].
; / According to the OPE, the equal-time product
Anp=Anp I p=p". (6.193 F,(X)F,(x") of two renormalized composite operatorsxat
Furthermore, this minimal value is negative and it decreases (X+x')/2=const and'=x—x’'—0 has the representation
monotonically am increases:

with the polynomialQ,, from Eq. (6.195.
The straightforward analysis of the expressi@18
shows that for fixedh and anyd, the dimensiom,, , de-

0> Aok 0> Ak 1.1 A gk 20- (6.19h FﬂmFAXU=§ZCJUFJLm, (7.0)

Finally, we note that for any fixe@, the dimension6.18

decreases monotonically asncreases: where the function€, are the Wilson coefficients regular in
m? and F, are, in general, all possible renormalized local
composite operators allowed by symmetry; more precisely,
the operators entering into the OPE are those which appear

The inequalitieg6.19 show that the critical dimensions of . ) . X
the tensor operatoi$.4) exhibit a kind of hierarchy; in par- in the correspondmg Taylor expansions, qnd_also all possible
i ’ operators that admix to them in renormalization. If these op-

ticular, the less is the rank, the more negative is the dimenérators have additional vector indices, they are contracted
sion and, as will be explained in Sec. VII, the more impor- ’ y

tant is its contribution to the inertial-range behavior. W't\r/'v??h%l‘jﬂgessspgfnd;nnge:gﬂice;ts cozir:hkfecssesfzﬁlnee?jlg{hat the ex-
In the model of passive scalar advection by the rapid- 9 y

change velocity field2.2) in the presence of an imposed gaps!?n In.t_qu.(Zj..l) IS T“a:f |nTtr>]aS|s operatlp(ﬁaZ) W'thl
linear gradient, similar inequalities are satisfied by the criti- iefinte critica |men5|0,n a- 'N€ renormalized correfa-
cal dimensions of tensor operators of the typel), but con- tion f”F‘C“O“ <F1(_X)F2(X ) is obtame_d_ by averaging Eq.
structed of gradients of the scalar figkke Ref[15]). In the (; 1) .Wr';[hhthe dwg(ljght_l_er:(rﬁR, the qua.ntl'geséFa.) azﬁi%r on
order O(¢) their critical dimensions coincide exactly with the right-hand side. Their asymptotic behavior IS

I : found from the corresponding RG equations and has the
6.1 hich h tifact of th -l -
érox?)rﬁa\{zic:g(sésé ngve\\//ﬁr, an artiiact ot the one-loop ap-¢, (F,ycm®a, From the operator product expansi@hl)

pse therefore find the following expression for the scaling

As already said above, the operators that possess defini . in th . for th |
critical dimensiong6.18 are not(6.4) themselves, but the ynctlon X(mr) in the relpresentatlo(B.lo) or the correla-
tion function(F ;(x)F,(x")):

basis operators related to the latter by the relati@n® and
(6.2). In the isotropic caseB°=0), the basis operator with
the dimension\, , is ap-th rank traceless tensor constructed

of all the monomials="'P") with n’=n andp’<p. When

App>Ayp if n<n’. (6.190

x(mn)=2, Ay(mn)’a, (7.2
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where the coefficient®\,=A,(mr) are regular in (r)?; plained in Sec. VI, the basis operator that possesses definite
they depend oni, d and, in our case, on the cosire critical dimensiond, ; is ajth rank traceless tensor, so that
=cos#=BC-r/r. its mean value is also jgh rank traceless tensor, built solely
Consider for definiteness the equal-time pair correlatiorof the constant vectd® and Kronecke® symbols. It is then
function of the operator$6.4); their vector indices will be clear that its contraction witlC,(r) gives rise to thejth
omitted in order to simplify the notation. For the leading order Legendre polynomid®;(z).
term in the asymptotic regioAr>1 from the general ex- Now let us turn to the comparison of the nonperturbative
pression(5.10 we obtain results for the pair correlation functio@,s(r)=(B,Bpg),
n n'p’ B A AL obtained in Sec. IV using the zero-mode techniques, with the
(FOP) () FM'P)(x0)) = (AF)~Snp,~n ,panann’p’(m(r;'s) predictions of the RG and OPE, given above. To this end, we
' putn=n’'=p=p’=1in EQs.(7.3), (7.4). The isotropic shell
with the dimensiomd,, , from Eq. (6.18 and certain func- (j=0) in Eq.(7.4) is then represented by the trivial operator
tions xnp.nrpr(Mr). We recall that the monomidb.4) is a  F=1 (k=0) with Ag(=0 and the monomiaB?=B B, (k
linear combination of basis operators possessing definite2) with A, o= —&+0(&?) [see Egs(6.19 and (6.18].
critical dimensiong6.18 with different values of the indi- The leading term of the smafhr behavior is given by the
ces; we also recall that,, is the minimal possible value gf  latter, so that we have to identity, , with {,= o from Eq.
for a givenn, i.e.,p,=0 if nis even andp,=1 if nis odd.  (4.35.
In Eq. (7.3), only the leading contribution is displayed, It was mentioned in Sec. VI that in the one-loop approxi-
which is determined by the minimal dimensions entering intomation, dimension$6.18 coincide with the critical dimen-
the operators on the left-hand sitkee the discussion in the sions of tensor operators of the tyf&4), but constructed of

end of Sec. V). the scalar gradients. The above identification shows that this
The leading term of the Taylor expansion for the functioncoincidence is confined to the ordex(¢) even for the sim-
(7.3 involves the operators X from (6.4) with k=n+n’  plest dimensionA,,. For the scalar case, one has ,=

and I<p+p’; higher-order terms involve tensors of arbi- — ¢ exactly in agreement with the well-known exact solution
trary rank, built of the fieldB and its derivatives. The de- for the two-point structure function obtained[i21], while in
composition in renormalized operators gives rise to all theour casej, qis a nontrivial function ofé.

tensorsF K with k<n+n’ and all possible values qf the At first sight, the first anisotropic correction is related to
tensors withl >p-+p’ appear owing to the renormalization the term withk=j=1 in Eq.(7.4), i.e., to the simplest op-
of the higher-order terms with derivatives. Therefore, the deerator B. However, the mean valuéB(x)) vanishes and
sired asymptotic expression for the functigg, ,-p'(mr) in  therefore gives no contribution to Eq7.4). Indeed, the

Eq. (7.3 in the regionmr<1 has the form analysis of the diagrams shows tHi8(x)) is obtained from
ntn’ the 1-irreducible functiogB’(x)),_i; , which vanishes ow-
, (mr= A (Mr)2kit .o 74 ing to the invariance of the modéB.1) with respect to the

Xnpap (M) kzo 2 k(Mo 74 shift B’ —B’ + const.

The leading anisotropic correction is therefore related to
the term withk=j=2, i.e., with the operatoB,B. Its di-
mensionA, ,=2¢/(d—1)(d+2)+0(&?) has to be identi-
fied with {,=¢, and is in agreement with E¢4.36.

where A,; are coefficients dependent only @ d, andz
=cos#, and the second summation runs over all valuej of
allowed for a giverk. Some remarks are now in order.

The leading term of the inertial-range behavionr<1) .
of the functionynp, .o (M) is obviously given by the con- We have thus established the agreement between the

tribution with the minimal dimensior\, ; entering into Eq. O(¢) results obtained using the RG and OPE, with the first
(7.4). terms of thg expansions i& of the exact nolnperturbatlve
The dots in Eq.(7.4) stand for the contributions of the results obtained within the zero-mode techniques. Note that
order (Mr)27°® and higher, which arise from the senior for the isotropic exponent, such ?greement was mentioned
operators, for exampl&#°B and so on. earlier in Ref[30] to the orderO(¢&?).
The operator& () with k>n+n’ (whose contributions . 1€ €xact expressiont.35, (4.39 can therefore be
would be more importaitdo not appear in Eq(7.4), be- viewed as nonperturbative predictions for the critical dimen-

cause they do not appear in the Taylor expansion of th§!ons of the operator8®=B,B, andB,Bg, respectively.
function (7.3 and do not admix in renormalization to the Similarly, the result¢4.27) for the higher exponentg can
terms of the Taylor expansion. In other words, the number o€ linked to certain composite operators with two fiekis
the fieldsB in the operatoF, entering into the right-hand andj derivatives forf;" and (—2) derivatives forf; . We
sides of the expansior(Z.1) can never exceed the total num- shall not dwell on this point here and only note that the
ber of the fieldsB in their left-hand sides. exponents/, and{, are indeed related to the second-rank

The expansiori7.4) is consistent with the Legendre poly- and fourth-rank families of the irreducible operators built of
nomial decomposition of the typ@.2) or, in general, with two fields B and two derivativesgBJB, with various ar-
the decomposition in irreducible representations of the rotarangements of the vector indices.
tion group, employed in Ref$13,14,36. This becomes es- As is explained above in Sec. IV, the exponeg‘ljfs for
pecially clear if the left-hand side of E¢7.1) involves only  j=4 do not appear in the inertial-range behavior of the pair
scalar quantities. Then all vector indices of the mean valuesorrelation function. This is also easily understood within the
(F4) in the right-hand side are contracted with the indices ofOPE. The mean value of theh rank irreducible operator
the corresponding Wilson coefficient8,(r). As is ex-  with nfieldsB is a tracelesgth rank tensor built of vectors
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B° and Kronecke® symbols. This follows from the linearity second- and higher-order correlation functipria the first

of the basic equatiof2.1) in B andB° [see also the discus- order of the exponerg and in any space dimensiah

sion in Sec. Ill below Egs(3.3)]. However, nonvanishing ~ In the language of the zero-mode techniques, anomalous
tensors of this type do not exist if the number of vectorexponents are associated with scale invariant functions
indices exceeds the number of fielfhe structures like Which are annihilated by the inertial operator(remember

B° B° B? B° /(B®)? are forbidden becausB® appears in that in definingl we neglected the mole_cular diffusiviky): .
L2 s the so-called zero modes of the equations for the correlation

the bare propagatof8.3) only in the numeratoils )
It was noted in Sec. IV that these exponents will be acti_functlons. In the language of the RG, these exponents are

: : . . I determined by the critical dimensions of tensor composite
\c/)ittgda\ll;/hf;g;lnf;rlg §8|'5,?gr?1%|cg;°§£geée{g]teﬁ'eprrigfﬁﬂg?, d operators built of the magnetic field without derivatives, Eq.

side of Eq.(2.1). Moreover, the above interpretation in terms (6.4), and exhibit a kind of hierarchy related to the degree of

of the OPE shows that they are relevant even for the origina"Tm'SOIrOpy: the less is the_ rank, the .Iess is the cﬁmepsmn and,
simple model(2.1) consequently, the more important is the contribution to the

Although the contributions withhi>n vanish in the mean inertial-range k_)ehavior. '_I'he leading terms of the etaid
value(B,(x)B4(x')), they are present in the expansiail) structure func_t|ons are given by _the scaleecton operators.
without ;veragingand therefore the exponeri,tﬁ can reveal For the pair correlation function, the complgte set Qf the
themselves in other correlation functions that invoIveexponents ha; be4)en hcalculated nonpertl;(rbat;)vely uimg the

, . exact equatiorni3.14); they are given in Eqg4.27) together
g;re p([(r)](iuctlzg(ﬁ Btﬁo(t)i(c). g]eﬁ:\;[gmaréfthe%ge fruerl]?[’iirr]]ts with the discussion of their admissibility.
(B(X)B (x')CI)y(xg---CD(x )) for x—x'. Of course, these The general expressiors.10), (7.3 describe the behav-
exgonenﬁts also ;ppear irq the represéntati((ﬁmo) i,f the ior of the correlation functions foAr>1, and any fixed

. . . S mr(m=1/L), whereA ~1x 7, 7 being the dissipative scale,
correlation fynctlonF(r) in the left-hand side involves the andL is the integral scale of the problem: expressi6hg),
operators withj >n.

(7.4) correspond to the additional conditionr<1 (inertial

range. These results for the leading terms can be summa-
VIil. DISCUSSION AND CONCLUSIONS rized as follows:

The zero-mode and RG techniques have been exploited in/gn At ! —App —Aq Apig, P
a model of magnetohydrodynamics turbulence where the<B”(t’X)B”(t'X )y (Ar)™FnonZapg(m) nraseqoer £,
magnetic field is passively advected by a Gaussian velocity r=|x—x| @8.1)
S-correlated in time, in the presence of a constant back-
ground magn_etic field_ that introduces a large-scale anisotyith Anp given by[see Egs(6.15 and(6.18]
ropy. The basic equations of the model are Egsl)—(2.4).
We have shown that the correlation functions of the mag- 2p(p—1)—(d—=1)(n—p)(d+n+p) )
netic fluctuations exhibit inertial-range anomalous scaling. “n.p~ 2(d—1)(d+2) +0(£9).
The explicit asymptotic expressions for the correlation func- (8.2)
tions of the magnetic field and their powers have been ob-
tained. In the inertial range, the correlation functions are repHereB, is some component @, e.g., its projection onto the
resented as superpositions of power laws with universatlirectionr/r or B%/B°, p, is the minimal possible value qf
exponents and nonuniversal amplitudes. The anomalous efer a givenn (i.e., p=0 for n even ando=1 for n odd. The
ponents have been calculated both nonperturbatifetythe  exponents™% are expressed through the dimensidns, as
second-order correlation functipand perturbativelyfor the  follows:

r éng .
An+q,0_An,0_Aq,0:_m+o(§2) if n,q are even,
&(ng+d+1) .
M= AnegoAnamAqi=— — g5 tO&) i ng are odd, 8.3
n . . .
An+q,1—An,o—Aq,1:—((ji_—q2)+o(§2) if n is even andq is odd.

In the presence of an anisotropic forcing, questions aboutarge-scale anisotropy on the inertial-range statistics of pas-
isotropy restoration at small scales are naturally raised. Isively advected field{5,6,15,17 and the velocity itself
particular, an issue recently addressed concerns the behavi®,13,14. In the case of passive advection of a scalar field,
of the derivative skewness factor of the passive scalar atoth the rea[5] and the numerical experimerits,17] show
large Pelet number, Pe, in the presence of large-scale anthat the derivative skewness remaél) for very high Pe
isotropy, and, in a more general formulation, the effects ofclet, in disagreement with what could be expected on the
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basis of both dimensional argumentations and cascade ideage dimensionless raticRnESn/SZn/Z’ S, being thenth order
It means that, contrary to K41 hypothesis, anisotropy presentyctyre function of the scalar field, are given by the expres-

at large scales persists at small scales. For the velocity fiel ions (8.5 without A dependent factors and with the same

in the case of a homogeneous shear flow an equivalent reSl@&ponents ofnr (see Ref[11] for S; and Ref[15] for gen-
has been found for the vorticity, which keeps a constan, | s and ds). So, for example, fork=1 the ratio

value, independent of the Reynolds numpix t82k+1/8'§+(1’2) decreases down to the small scales, but much

Let us now briefly discuss the consequences of our resul S . . . .
. S T . .~ Slower than it was expected on the basis of dimensional ar-
for anisotropic indicators in this problem. Since the equation

(2.1) is not invariant with respect to the shBt B+ const gumentations, while fok>1 it grows in agreement with the

. ; results for Ref[17].
we can use as the simplest measure of small-scale anisotropy It should be emphasized. however. that the results ob-
the dimensionless ratios of the correlation functions of th P ' '

field B without derivatives. e Sained within the lowest-order approximations §rare reli-
€9 able only for moderate, because the actual expansion pa-

(B“’l(x)BH(x’)) rameter in the Kraichnan modelig rather thar¢ itself (see
R,= (BH B, (X)) (8.9 Ref.[26]). The analysis of the largebehavior requires some
Il I

additional resummation of thé series, which remains an
open problem. For the passive scalar case, the numerical ex-
perimentg 17] and the instanton calculyi87] show that the
exponents analogous {89 in Eqg. (8.1) tend to a finite limit
Ropr 1% (A1) A2ko(mr)dacria- 2kt DA202 (859  asn— (“saturation”). It is worth noting that the limiting
expressions fon—o obtained in Refs[37] diverge asé
Rops 2% (A1) A2krrymr)dacr20-(ktDA20 (8 5h  —0, thus signalling that smalf and largen limits do not
commute. The persistence of small-scale anisotropies and the
Note that the ratiog8.5) depend on both scales of wave intermittency saturation are both statistical signatures of qua-
numberA andm; the dependence on the former follows from sjdiscontinuities observed in the scalar figk¥]. It is then
the fact that the powerB|' have nontrivial anomalous di- reasonable to expect that the saturation of intermittency takes
mensions. The dependence on thécl®e number, Pe place also in the magnetic case where quasidiscontinuous
=(A/m)¢ can be estimated by replacingvith »=1/A; see  structures in the magnetic field are likely to be pregsee,
Ref.[11]. Using explicitO(¢) expressions fod,, , we then  e.g.,[38,39).

From Eqs.(8.3) it then follows that in inertial range of scales
we have

obtain: To conclude, let us compare briefly the situation for the
X passively advected fields with the case of weak acoustic tur-
Roy 1 Pe (dT2-ak/[2(d+2)] (8.68  bulence, where the spectra can be obtained as solutions of
the linear kinetic equationssee Refs[40,41])). For weakly
Ry oo Pekk DI(d+2) (8.6  dispersive wavese.g., with the dispersion law(k)ok**?

] . ) with 6<1), the anisotropy introduced by the large-scale
Since the leading terms of the even functidBsl) are  forcing enhances going down towards to the depth of the
determined by the exponents of the isotropic stigdl, those  jnertial rangg40]. The hierarchy of the exponents related to
related to scalar RG operatgrthe inertial-range behavior of the | egendre decomposition is opposite to that established
the even ratiog8.5b), (8.6 is the same as in the isotropiC pelow and in Refs[13—17): anisotropic corrections decrease
model. This gives a quantitative support to the universalitygigwer for largelj’s [40]. On the contrary, for the nondisper-
of a'nomalous exponents with respect to d_ifferent classes @fje waves 6=0) the hierarchy of the exponents is similar
forcing. On the other hand, the odd quantiti8sa, (8.68 o that in our case, the anisotropic corrections decay faster
appear to be sensitive to the anisotroRy:in (8.68 slowly  ang faster wittj and the spectrum tends to become isotropic
decreases for Pec, while ratiosR, 1 With k=2 increase  at small scalef41]. To the best of our knowledge, no infor-
with Pe. Moreover, general expressials5a contain large  mation is available for the higher-order correlation functions
A dependent factors, which also prevent these functions froifyr sych models. One can thus conclude that turbulent sys-
vanishing at Pe>. Notice the important difference be- tems can exhibit essentially different types of behavior with

tween the isotropic and the anisotropic problem: in therespect to the small-scale isotropy restoration.
former the (nonuniversagl constant of the inertial-range

power laws of odd-order moments are zero by symmetry,
while this is not the case in the anisotropic context. This
implies that the(hierarchical exponents for the odd-order It is a pleasure to thank A. Gruzinov and M. Vergassola
moments appear solely in the anisotropic case. For a givefor their stimulating suggestions on the subject matter. Use-
odd order, the leading exponent is thus responsible for th&ul discussions with L. Ts. Adzhemyan, |. Arad, L. Biferale,
observed scale-dependent normalized odd order ratios.  A. Celani, R. Festa, J.-L. Gilson, J. Honkonen, |. Procaccia,
The picture outlined above seems rather general. Indeed K. V. Runov, and D. V. Vassilevich are also acknowledged.
is compatible with that recently established for the NS tur-A.M. was partially supported by the INFM research Contract
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APPENDIX A: COEFFICIENTS IN THE EQUATIONS
FOR THE MAGNETIC CORRELATION FUNCTIONS

We report hereafter the coefficierds,b; ,..., r; appearing
in Egs.(4.6)—(4.9).

1. Coefficients in Eq.(4.6)
a;=d-—1,
b;=(d-1)(d-1-¢),
ci=d—1+¢,
dy=(d—1+§&)(26—d—3),
e, =—&+382+2¢(d—2)+2d(1—d),
f,=—2d¢,
9:=2&(d—2+¢),
j1=— ¢+ E(d—-2)—2d],
ky=—2d¢,
li=—2§(2-d=-§),
my=—&(262—-8&+8—2d),
n,=2¢,
0;=—§&(£§-2),
p1=—&(§—2)(§-4),
1= &(£-2),
r1=£(6—2)(¢-4).

2. Coefficients in Eq.(4.7)
a=(d+&-1)[2-2£+6(6-1)],
b,=d—1,
Co=(d+&—1)(d—1)+2¢,
d,=d+&-1,
e,=—(d+&—1)(d—1),
fo= & &2+ £(2d—3)+d?—3d],
92=2¢[ £+ £(d—2)—d],
kp=d+&-1,

lo=(d+£-1)(§-2),
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m,=—(d+§&-1),
n,=—(d+&-1)(é-2).
3. Coefficients in Eq.(4.9)
az=(2-¢)(d+£-1),
by=—&(d+£-2),
c3=d-—1,
dg=¢+(d—1)2,
e;=d+&-1,
fa=—(d+&-1)(d+1),
g3=—d?+2d—¢d+4E—-1-2¢2,
ja=—d¢,
k3=¢,
l3=¢&(d+&-2),
my=—2£(§-2),
Ny=2&(£—2).

4. Coefficients in Eq.(4.9)
a,=2(2-¢)(d+£-1),
b,=d—1,
c,=(d+&—1)(d—1)+2¢,
d,=d+¢-1,
e,= —(d+&-1)(d—1+2§),
fa=—2¢,
9,=2¢.

APPENDIX B: RELATIONS INVOLVING THE LEGENDRE
POLYNOMIALS

From the well-known relations involving the Legendre

polynomials Pj(z) (see, e.g., Ref{35]) the following de-
compositions for a functiof (r,z) =37_,P;(2)f;(r) hold:

zazlz:g,o P; jf]-+(2j+l)q§=:1 fzqﬂ}, (B1)
- j(i—1) (j+D(j+2)
2 _ . i L
z ‘72':_]20 PJ{ 5=1 N1 TES I
+(2] +1>q§o f2q+,»+1} (B2)
B ” j j+1
ZF—EO Pj[mfj—l—i_ 2j—+3fj+l , (B3)
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iG-1) (j+1)2 j? (+2)(+1)
ZF= E Plai—nei—a 2 @raen Te-nei+n T ejese s iy BY
(1—zz)a§|::j§=}0 P, j(1—j)fj+2(2j+1)q§=:1 faqijls (B5)
sF=3 Pl 2j+1) f2q+,-+1] (B6)
j=0 q=0

APPENDIX C: FULL SET OF EQUATIONS PROJECTED ON THE LEGENDRE POLYNOMIALS

Inserting Eqs(4.12 and (4.13 into Egs.(4.6)—(4.11) and exploiting the relations reported in Appendix B, the following
equations follow from the orthogonality of Legendre polynomials:

arr?f M +byrf Mty +d; +e,fi+f,f] 2

j(1—j)f}1>+2(2j+1)q§1 fL jth+ (2 +l)q§l fogei

] fr<3>+j+ £13)

+j1f1(2)+k1" 2j—1'1-17 )3 i+t

+9 +nl<21+1>2 Foeiea

iHP+(2] +1>q§1 foes

14— 1) @ UL+ )f@

_ ” j j+1
(3) (3) (3)
2= f1%) 51+3 SR 2]+1)q§:0 oo f19+ £

+| 2j_ J +3 j+1

+my

5
+0, (%

(j+1)? I

_ . b (J+2)(+1) 5
(2j+3)(2j+1) (2j—1)(2j+1)

(2j+3)(2j+5) 12

iG-1 £5) 4

15— oi=3) i-2" fi7+
(2j-1)(2j-3) !

+p

— BOZ

2 1
Qitry §5j,2+§5j,o : (C1

+e,

apf P+ b,or 267 @ 4 corf/ @ dy| j(1— )2 +2(2J+1)2 f2, jf}2>+(2j+1)q§=‘,l f<22q>+j}

j j+1
+1,f1%+g, 2j_1f1@1+ 2j+3f}~1>l +Kof )
= (1> j? o, G+20+D) g
1@j-1)(2j-3) 172 [ (2j+3)(2j+1)  (2j—-1)(2j+1) (2j+3)(2j+5) 1+2
o2 2 1
:B m2+ n2 §5j,2+§5j,0 y (CZ)

as(2j +1)§0 £S5, 41+ D3(2] +1)q§0 f52), g+ Car2f P+ darf/ Pt eg j(1-)FP+2(2) + 1)(121 fg?ﬂ}

. s 11 e
Jf(3)+(21+1)2 Poali | +0af}”'+ Jof| 52 lfﬁ*”f+ 2773 1| @D 2 fig
](J_l) (5) (J+l)(J+ ) (5) ] (5) j+ (5)
el 5 T e Nt (@] +1)Z f5 g |+ Mg =1t gahn
=I’I3B°25j'2, (CS)

1(1—J)f<5>+2(21+1)2 £, |+Ca +,f(°

ay(2j +1)q§0 £33 1+ bar 27+ cyrf/ P +d, ¥+ (2] +1)q§l )

2948025]',0: (04)
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rf /M (d=D)f M+ @ =] jf12+(2)+1) E Foeei [+

11 5 (FD(G+2) 4
_{ T f(9,— 513 £+ (2] +1)E
S ) .,
(2J+1)2 £, g+ B +df®+r 35— 1fJ£5>+

(+D0+2) o

21+3 J+1 (2 +1 2 f2q+]+l
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fzq“”} [ZJj pfist zj-jtrlsf}s*)1 0 ©
2jJ+—+13f1+1 2]"'1)2 f2q+1+1 ];]j— )f<5)
(C6)
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