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Effect of particle inertia on the viscous-convective subrange
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The spectral scaling of inertial particles in isotropic, homogeneous turbulence is investigated. The particle
density spectrum of the Elperin-Kleeorin-Rogachevskii small-scale correlation fufiPtiys. Rev. 558, 3113
(1998] is derived and extended to larger scales. In the scale rétge6Q», a peak in the spectrum is
observed when the ratio of the energies in the compressible and the incompressible components of the parti-
cle’s velocity is greater than 0.0@%tokes number-0.15. The peak is a manifestation of the accumulation of
inertial particles in regions of high strain and low vorticity. The size and location of the peak are compared
qualitatively with measurements of particle intermitter(pyeferential concentratigrirom direct numerical
simulations.

PACS numbgs): 47.27.Qb, 47.46x

I. INTRODUCTION not rescaledD ;= D) and where the long time rescalidj 2
is chosen to reproduce the conventional or normal diffusion
Recently, much attention has been given to a simpléx?(t))~t associated with a mean-field regif7,2§. Un-
model of passive scalar advection by a velocity field withder certain general conditions the random fiejgdt,x) con-
long-range spatial correlations but no memory. Interest irverges to a white-noise process in the sense of distributions,
this so-called ‘s-correlated” model stems from two fronts: i.e.,
first- and second-order statistics can be solved exactly and

with complete mathematical rigor using path intedrbp], lim (us(t+s,x+r)us(t,x))=278(s){Us(X+r)us(x)),
functional [3,4], or parametrix[5,6] methods and, con- 60
versely, an explicit set of recursive equations for all higher- )

order moments can be derived and solved with an appropri-
ate closure approximation. In particular, Kraichnan’s closurevhereris the renewal time and<I, wherel is the integral
by “linear ansatz” [7,8] has motivated a large number of length scale. It is important to emphasize that this renormal-
studies in this fieldsee Ref[9], Sec. I\) because it exhibits ization is not a uniformly valid theory in the large-scale limit
anomalous scaling behavior and provides a good testinfr —I|,) because of the strong infrared divergence in the
ground for the capabilities of renormalization-group methodsk > Kolmogorov velocity spectrum, and therefdg ob-
[10-13 and renormalized perturbation thedr/4,15. Re-  tained under this rescaling should not be interpreted as an
cently, the é-correlated model has also been used to assesxldy diffusivity. From the renormalization above, it follows
the effect of compressibility{16,17] or particle inertia trivially that the rescaled Eulerian correlation time
[18,19 on scalar statistics, the latter being driven, in part, bylims_ o 7e~ 6% is much less than the molecular diffusion
the phenomena of “preferential concentration”—the accu-time, and therefore this renormalization corresponds to the
mulation of dense particles in regions of high strain and lowlimit Pr>1, where the Prandtl number®w/D, andv is the
vorticity in a turbulent flow—developed largely in the engi- kinematic viscosity.
neering community and reviewed [ig0]. In this short work, The correct renormalization in the large-scale limit for the
the scalar spectrum of the second-order correlation functio@-correlated model with Kolmogorov velocity statistics can
presented if19] using thes-correlated model is derived and be found by computing an effective time-rescaling function,
extended to larger scales, and a more direct comparison j§2(5), so that the ensemble average of the rescaled passive
made with results from numerical studies of preferential conscalar field(ys(x/ 8,t/p?(58))) has a nontrivial limit. This
centration[21]. was done by Avellaneda and Majfl2], who found the su-
Although equations for the passive scalar covariance in gerdiffusive scaling(8) = 6%° and concluded that the eddy
compressible velocity field have only recently appeared, theliffusivity D, is unbounded, satisfyin@, (r)—= as|r]
incompressible case has a long history that can be traced-«. Thus the second-order correlations are not well ap-
back to the classical work of Richards®2]. A diffusion  proximated by a simple Gaussian profile shape at large dis-
equation for the second-order spatial correlations in a rapidlyances.
fluctuating velocity field has been repeatedly recovered in a The diffusion equation obtained from thé&correlated
number of paper§23—26 with varying expressions for the model was solved by Kraichnd@6] in the small-scale limit
effective diffusivity, D¢¢(X). The &-correlated model can be by expandingD««(r) to the first order irr?. He derivedk !
derived formally by the velocity field renormalization viscous-convective scaling for the scalar spectrum vkith
us(t,x)=6"u(6 2t,x) where the molecular diffusivitp is  greater than the Batchelor wave number in agreement with
the earlier results of Batchel§29]. Recently, both Bogucki
et al. [30] and Chasno\y31] compared the Kraichnan and
*Electronic address: cjeff@geog.ubc.ca Batchelor models using direct numerical simulations and
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found, unambiguously, that the Kraichnan éicorrelated  whereU=V+u is a random velocity fieldy ,=(U) is the
model is “correct” for Pe>1, in agreement with the analysis mean-particle velocity, and € R, is the effective molecular
above. Elperiret al.[18] used thes-correlated model to as- diffusion coefficient discussed in Sec. I. Without loss of gen-
sess the effect of particle inertia on spatial statistics anerality, we can consider the ca¥g=0 because of the Gal-
found a mechanism for intermittency in particle concentra4lean invariance of Eq.2). An equation for the second-order
tions (preferential concentrationThey derived solutions for correlation function ®,=®=(®(x)O(y)) can be con-
the nth-order correlation functiord, of the form @ (t,r) structed from Eq(2) upon multiplication by® (y):

=117 ®,[x)—xN]exd0.5n(n— 1) y,t] wherei#j, from

which it follows that if the second moment of the particle ¢® )

concentration grows ¥,>0), then so do all higher-order 5 =2DV ®=2(V-{u(x)[0()0(y) +N(x)O(y)]}),
correlation functions. A Reynolds number criterion fey (3)
>0 was derived that, when satisfied, implies self-excitation

of fluctuations in particle concentration without external where®=n,—N andN=(n,) is the mean number density
pumping, and thus intermittency. In a later work, Elperinof particles. First consider the incompressible c¥sei=0.

et al.[19] presented a steady-state solutionds(r) inthe  Neglecting diffusion and averaging over an ensemble of La-
small-scale regimer less than the Kolmogorov length  grangian trajectories for a given realization wft,x), the
=(v%e)", wheres is the energy dissipation rate, and found field @ ,(t+ At,x) can be written in terms of a Taylor series

that anomalous scaling appears when the degree of congxpansion of® (t,&,,) aroundx ([19], Appendix A:
pressibility o> 1/27.

In these studies of particle inertia using theorrelated O,(t+At,X) =(O(t,E))e,
model, implicit and explicit assumptior(g.g., P&1) have 4)
been made. First consider the molecular diffusiity The 90
Kraichnan model, derived if26] assuming a continuous par- O,(t,E)=0O(t,X)+ — (&xs —X)mt+"+,
ticle field, gives a spectral decay of the form expfk) MXm

where 7g=(D7,)? is the Batchelor length andr, _
= (v/e)?is the Kolmogorov time. Using Einstein’s relation Where&,, are the Lagrangian paths
D~d;1, whered, is the particle diameterpg—0 asd, \
— o0, from which it follows that the spectral decay is incom- _ f t

= : : o S ) =X— u(t,,é,)do, 5
patible with the particle radial distribution function foyg £t (to85)do ©
<d, . Thus to correct for finite particle size in what follows,

an effective diffusivity defined bfp = max(D,di 7-;1) isused, t,=t+At—o and(),is an ensemble average ov&that,

where the tilde has been dropped. Furthermore, using Hor a given realization ofi(t,x), involves the averaging af

>1 and the effective diffusivityd, < » that is also a stated in the neighboring spac&;— x and through future timeAt.

assumption iM19]. And finally, although the effect of par- Using thed-correlated velocity field discussed in Sec. I, the

ticle inertia is considered where the particle dengityis  ensemble averages in Eq. (3) and( )¢ in Eq. (4) become

greater than the fluid densiy;, the particle mass loading independent, and the Lagrangian and Eulerian statistics con-

appp/ps Wherea, is the volume fraction of particles is as- verge. Substituting Eq¢4) and (5) into Eqg. (3) and taking

sumed to be small, implying an insignificant modulation ofthe limit At—0 in such a fashion that{,—x and

the turbulence, typically referred to as one-way coupling. [qu(t,)u(t)de is finite [26] gives a diffusive term

The paper is organized as follows. In Sec. Il the covari-

ance equation for inertial particle concentration first derived (V- {u(x)[®(x)O(y)+N(X)O(y)1})={ Un(X)Un(X)

in [18] is discussed and the corresponding spectral equation

for ®,(k) in the regimek> 5! presented and solved. Limi-

tations of ®,(k) extrapolated into the regime~O(7 1)

are presented in Sec. lll, and in Sec. IV derive a closed-

form expression for®,(k) that is accurate in this regime. whereris the momentum relaxation time from Ed). Note

Section V is a discussion of the effect of particle inertia onthat thes-correlated in time random process yields Markov-

®,(k); a number of figures are used for illustration and anian behavior for the second-order statistics at all scales, al-

explicit comparison is made with results from Wang andthough, in general, Eq4) includes non-Markovian effects.

Maxey [21]. Section VI is reserved for conclusions. For a compressible velocity field, E¢4) becomes the
Feynman-Kac formula, which includes the characteristics
Gar=exi —[5'0(t,.&,)do]~1-[5'b(t,,£,)do where b

ll. SCALAR COVARIANCE EQUATIONS =V -u[19]. Evaluating the third term in E¢3) as above for
b+ 0 yields

PP
IXndYn'

- Um(X)Un(y)]>

The number density,(t,x) e R, =[0,») of small par-
ticles in a compressible velocity field is described by the

2
advection-diffusion equation J __ _ 9P
St =~ 2Pm0) DN 5=
My 2(7b(x)b(y))® b(y) 2
—L +V-(nU)=DAn,, 2 F2(o(x)bY))P =4 7um(X)b(Y)) 7=, (6)
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where r=y—x, and D,,,=D 8mn+{7UnU,). Equation (6)
was initially derived by Elperiret al.[18] by first evaluating
(Gatnp(t,éa1)) ¢ along the Wiener patfil9]:

At
£ [ Uty £)do+(2D) a0, @
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erage value of the least principal rate of strain, anid a

universal constant for high Reynolds number flg28]. Re-

cent numerical simulations suggegt=5.5 [30,31. The

choice 7=|y| Y/6~17, and a=5?/(127°uf) is consistent
with both the well-known resulte~ 7?d/(3072uj) and the
value ofq in the viscous-convective regime givirg= /30

~5.5. The solution of Eq(6) using Eq.(10) is [19]

wherew(t) is a Wiener process, and then passing to the limit

At—0 of 9®/ot=[D(t+At) —D(t)]/At. However, Eq(6)
in [18] contains the additional source term,
=2(7b(x)b(y))N2. The origin of this discrepancy can be

elucidated by considering the scalar covariance equatiofhere X=(apB,Pel'?,

constructed from Eq(2) multiplied by ny(y). Deriving an
equation forg(n,(x)ny(y))/dt as per Eq(6) for a homoge-
neous particle field and subtracting E6) leaves

IN(X)N(y)

o = 2h)bY)NCIN(Y).

€S)
Equation(8) should not be confused with the equation for
dN?/ gt that appears ifi32], which must be derived from the
equation for the mean field. However, Eq.(8) does dem-
onstrate that the terry, is best associated with a source of
N(x)N(y) and notd.

Particles with small but finite inertia have a velocity
#Vv wherev is the velocity of the surrounding fluid. Thus in

the case in whichv is divergenceless, homogeneous, anc[(?/‘”i__’iki* : halh
isotropic, U (or u) will be compressible, homogeneous, and Velocity correlation  coefficients(10)

isotropic with the correlation functiofiL6]

(TUm(X)Un(X+T1))= DT[ [F(r)+Fc(r)]mn

(6mn— )+rF

where F’'=dF/dr, F(0)=1—F0), and Dt=u37/d,
whereuy is the characteristic velocity of turbulent fluctua-
tions with relaxation timer, andd is the spatial dimension.
The functionF(r) describes the solenoidéhcompressible
component of the longitudinal correlation coefficient,
wheread=.(r) describes the potentiddompressiblecompo-
nent.

Elperinet al.[19] solved Eq(6) using Eq.(9) ford=3 in
the viscous regime< 7. In this regime the correlation co-
efficients can be written as

F(n=(1-e[1-a(r/7?],

N re’
d—1

,Tmln
c r2

rmrn
r2

], 9)

Fe(r)=el1-a(r/n)?],
(10

where « is a constant ané is a measure of the compress-
ibility. The expression for=(r) is accurate in the range

d(r) (12)

(L X228(%),

S(X) = RefA P (iX) +AQZ (IX)};
P#(iX) andQf(iX) are the Legendre functions with imagi-
nary argumenZ=iX;B,=(1+30)/3(1+ ), u=150/(1
+30), {({+1)=pu?>—5u+2; Pe=u3r/D>1 is the Pelet
number, and the parameter of compressibiliy=e/(1
—¢). Note that for an incompressible velocity fiela=0,
the correlation function for &r<(aPe) ¥, is ®(r)
=const, corresponding to the well-knowk ! viscous-
convective scaling.

It is often useful to consider the spectral covariance den-
sity function W (k)=(27) 9 dr ®(r)exp(=ik-r), where
VelC:ReWeR, , ¥ (k)=¥*(—k), to gain some under-
standing of the relative contribution of individual wave num-
bers to the overall variance. Fourier transforming E&).
rj—idl/ dk;] and using isotropic, viscous regime
as above yields a

Bessel-type equation accurate for 7~ ;

0=—N?k>¥ +Kk>¥"+Bk¥V'+CV, (12
where (k) e R, , A\=[6D]|y| }(1-20/(1+30)]*? is a
diffusive length scale « 7g),B=2[2+150/(1+30)], C
=1200/(1+30), and the primes denote differentiation with
respect tak. The spectral density' (k) may be obtained by
solving Eq.(12) [34] or by Fourier transforming Eq11)
directly giving

(k)= Ck*K (Ak)+ Cok*l ,(\K), (13
with {K,l,u}eR, veC; and wherel and K are modi-
fied Bessel functions, wu=(1—B)/2=-3/2—150/
(1+30) and v=[(1—B)2—4C]¥%2=3/21— (100/3)0/
(1+30)%]Y2. As per Eq.(11) discussed if19], two quali-
tatively different regimes characterize the behavior of Eqg.
(13). For o=<1/27, Im{v}=0, C,=0, and the scaling in the
rangek<\ ! is normal; i.e., W(k)~k“~". On the other
hand, foro>1/27, Rév}=0 and the scaling is anomalous;
i.e., U(k)~k* cos(v|Ink+ ¢), where is an arbitrary phase.
Furthermore, the presence of the additional paramgtee.,
C,#0) implies that the spectral transfer is nonlocal—given

<57 estimated from the familiar Batchelor parametrization‘I’IkO the spectral transfeﬁ\I’/ak|k0 is determined by a

for the second-order structure functi@8]. The correspond-
ing expression forF,(r) is less accurate in the reginre
~O(7n) because of the higher-order derivatiies and F
that appear vigdrb(x)b(y)) in Eg. (6). In Sec. IV, Eq.(10)
for F(r) is used with a more accurate expressionFg(r)
that is also valid in the range<57.
In order to recover the well-known viscous-diffusive re-

gime in the limit e—0, it is appropriate to writea
=f(7,uUg,n) andr=g(|y|) wherey= —(1/q)7-;1 is the av-

boundary condition that setg at somek<k, near the
boundary of the inertial- and viscous-convective regimes.
The nonlocal nature of the spectral covariance det 1/27
prevents the determination 6f; andC, without resorting to

a direct numerical simulation of Eq2) and, therefore, this
regime is not considered further in this work. Note that for
an incompressible velocity field=0, Eq. (13) reduces to
the analytic form first derived in[35]: ¥ (k)~k 3(1
+AK)exp(—AKk).
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IIl. ANALYSIS

The time-evolution equation for the spherically integrated

scalar covariance spectrul(k) =4mk>¥ (k) may be writ-
ten as

JE(K)  ax(k)
ot ok

—2DK?E(k) + P(k), (14

where x(k) is the scalar dissipation rate am(k) is the
production spectrum of scalar variance. Solving ¥an the
steady state for the range<\ ~! gives

(0~ xo f:mf)df, (15

where xo=2D [;k?E(k)dk. Equation(15) has been used
successfully for incompressible flows whefe=0 and

x (k) = xo to determine the consta@; in Eq.(13) as a func-
tion of (xo.|7v|,\), in good agreement with numerical simu-
lations[30,31]. In fact, in the incompressible cagg can be
evaluated analytically to giv€; = yo\¥% (7¥22v2|y|) [35].
For inertial particles ¢+ 0) the terms in Eq(6) correspond-
ing to P(k) in Eq. (14) may be easily identified; the covari-
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FIG. 1. Log-log plot of the production spectrum of scalar vari-
ance for different values af. The lines are from Eq.16) and the
symbols from Eq(22) where the addition of a higher-order term in
F.(r) has produced the correct asymptotic Jirg P(k)=0. The
parameter values ang,=1, e=0.01, and P+1000.

ance production terms are the second term and one-half téere

third term on the right-hand sidehs) of Eq. (6). Note that

the third term is equal to the sum of the contribution from
incompressible advection along compressible streamlines

(i.e., spectral transfgrand the contribution from compress-
ible advection along incompressible streamlirtes., spec-
tral production. Using Eqs.(9) and(10), it follows thatP is
given by

10/y|o

P(k)=4wk2m[6‘lf+k‘1f’]. (16)

Plots of k vs P(k) with x, set to unity,C, calculated
numerically from Eq(15), andW¥ given by Eq.(13) accurate

for k>%"1 are shown as the lines in Fig. 1. The figure

reveals that ifP(k) is extended to the nonviscous regitke

<1, then the extrapolated production of variance due to

particle inertia continues to increase with decreagirig this
physically reasonable? Consider the ter(a®x)b(y))® in
Eqg. (6). The correlation functioB(r) =(b(x)b(y)) has been
evaluated irf36] using a quasinormal closure for the fourth-
order momentsB(r)~ (1215- 1080y — 198y + 24y>+ 7y%)
X(1+y) % wherey=Gr? and G= 5230 2 The con-
stant of proportionality follows fromB(r)=30y|%c/(1

+ o) +--- calculated from Eq99) and(10). The scalar spec-
trum of the divergenc&®(k) is available in closed form
[37]:

2 ©
EP(k)= —J kr sinkrB(r)dr,
m™ Jo

_ 30/y]*0Hk

- @ 29/ -1/
121517 0) [121%2>%%K 55 kG~ ?)+ 1080,
—594fe;— (360f2+ 198 e, + (7353 — 240f )eg

+(735f2— 24)es+ 147fe;+ Teg], (17

en=(=1)" {—k** K55 n(kG™1?)
+(26/3 GYA* K g5 n(KG 1A,
f=GYk,
and
H = 322-23/6c0q 297/6)I'(— 13/3 G 4112

A normalized plot ofEP(k) is shown in Fig. 2. The figure
reveals thaE(k) begins to decrease fdrless than about
0.357" 1. However, it is not surprising that a decreasePin
below 5 ! is not observed in Fig. 1 if one considers the
truncated form oB(r) used in the calculation oF andP. In

1.0

0.8

E®(k)

0.0

0.01 0.05 0.50
kn

FIG. 2. The scalar spectrum of the velocity divergence
from Eq. (17).
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fact, calculatingB(r) with viscous-regime velocity correla- No i
tion coefficients(10) gives B(r)=const, which is not par- —
ticularly accurate for > . In the next section, new expres- —_
sions for ¥ and P are derived that may be extended to %
smallerk with greater confidence. <7
=
(:_/ ——
IV. EXTENSION TO LARGER SCALES B
<
The velocity correlation coefficients given in EQ.0) are 5o
the first two terms in a general expansion in even powers of = 27
r. Higher-order terms in th&_ expansion, through deriva- =
H ’ " H s H H Ol
tives F, to FZ, make a significant contribution to y
(Uum(X)b(y)) and B(r). In particular, expandingd-. to the w0
fourth order,F(r)=e[1— a(r/7)?+ Ba(r/n)*], where B S -

is a constant, gives '
0.01 0.10 1.00 10.00

, (18) km

FIG. 3. Comparison of the exact scalar production term
which with 8=1/154 well captures the overall behavior of 47k*(27¢*W¥) (symbol$ with the approximationQ(k) (lines).
Pinsky et al’s [36] more accurate expression fB(r), and  The cutoff used in Eq(23) atk=0.357 ' is shown as a dashed
is particularly accurate in the ranges57 (not shown. The ~ Vertical line. For parameter values see Fig. 1.
fourth-order term is ignored ifu,(X)u,(y)) as it makes ] ] ]
only a minor contribution in this range. Thus the expressiondiumber P&1 (i.e., A< 7), there will be a well-defined re-
for both F(r) [Eq. (10)] and F.(r) are accurate in the  9ion neark=7"* where these two expressions fdr join
<57 regime. smoothly. Thus we can write

Evaluating the contribution of the fourth-order termAp

148 (r\?
1‘?(;)

B(r)=e30/y/?

with 8= 1/154 to the last two terms on the rhs of E). and _ C1k*K,(Ak), K=k

Fourier transforming gives, respectively, two new terms in CsRe¢ 3, F (a,a—c+1la—b+1;6 Y}, k<kn

Eq. (12): (21
10 4 valid for o<1/27 where C3=T(v)(2A) 3(\/2)""/

-2 g ” -2 g ” " : .
—7 V'+ —p ———(5V"+kV"). (19 [2 cosan/2)]C, andk,, is computed numerically from the
7 1430 117 1+3¢ intersection® (k,) [Eq.(12]=W (k) [Eq. (20)].

Incorporating the first term of Eq9) into the scalar

g — 73 . . _ . -
Writing W ~k™>+ 6f(k) in the viscous-convective regime production spectrunlé) gives

(i.e., E~k 1) and substituting above we find that the second

term, compared to the first, is of the ordérand can be 10yl "

ignored. Thus the dominant contribution of the fourth-order P(k)=4mk? 6V +kv'+ 5| (22
term inF, is throughB(r) producing a new equation foF 3(1+a) 11y

of the form

Plots ofk vs P(k) with y, set to unity,C,; calculated nu-
merically from Eq.(15), and¥ given by Eq.(21) are shown
as the symbols in Fig. 1. The production of scalar variance
whereA=[10/1177‘20/(14—30)]1’2, B andC are defined as does, in fact, decrease ks~ 0, consistent withE”(k) shown

er Eq.(12), and the diffusion term-\2k?*¥ of Eq. (12) has in Fig..2. Howeve_zr, the accuracy ?‘f(k) determined from
Eeen ?g(nozed for the range<\ . The substitL?ti(()rf):(l P(K) via Eq.(15) in the rangek<7 " has yet to be deter-

. . . mined.
ik/A)/2 produces the celebrated hypergeometric equatlor{n A useful measure of the accuracy®fr) and henc@®(k)

0=(k*+A%)¥"+Bk¥V'+CV¥,

_ " / can be constructed from the spectral density of the velocity
=&(&- +B(£-0. + . ;
0=&e- V¥ +B(E-0.9T +CW divergence ¢(k)=EP(k)/(47k?). The scalar production
- ; term 2(7b(x)b(y))® from Eq. (3) approximated to fourth
th solution[34 . . :
with solution[34] order using Eq(18) and Fourier transformed to giv@(k)
W=Re{Cs¢ % (a,a—c+la—b+1:6Y) =47k?{10/y|0/[3(1+0)][3¥+W¥"/(11%%)]} can be

compared with the exact expressiomk#(27¢* V), where
+Cu& PF(b,b—c+ 1b—a+1;&hH}, (20 * is a spherical convolution. This comparison is shown in
Fig. 3 with y, set to unityC, calculated numerically from
where ,F;eC is a hypergeometric functioa=(B—1)/2  Eqg.(15), and¢ and V¥ given by Eqs(17) and(21), respec-
+[(1-B)?—4C]¥%2, b=(B—1)/2—[(1—-B)2—4C]¥42, tively. Although Q(k) is not equal to the production spec-
andc=B/2. Neither Eq(12) nor (20) is valid over the whole trum P(k)—it lacks a contribution from the source term
range ofk, and they are in fact related through the asymptotic2{ 7u,(x)b(y))d®/ox,,—a comparison ofP(k) in Fig. 1
lim._ oV [Eq.(12]=Ilim_ ..V [Eqg. (20]. For Prandtl (symbols and Q(k) in Fig. 3 (lines reveals that the two
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functions are very similar. Both the approximate and exact 2
source terms shown in Fig. 3 decrease with decredsibgt N
clearly Q(k) overestimates the source term in the reglon =3 I
<n~ L Itis therefore appropriate to introduce a cutkgfin - e o
the evaluation ofy(k) via Eg. (15) wherek, is defined by s
B 5 10yle n
f Q(k)= f A7k (27¢*V)dk= 1+0) E(k)dk. o A _S
] Sz
For 0<0<1/27,k.=0.35; "1 suffices with reasonable ac- g 2‘ - . =
. . . K . 8 Koc (=) ic -1 =]
curacy and is shown as the dashed vertical line in Fig. 3. = O Eq (49 - o
Note that thisk-space cutoff is consistent with the previous | ¢/ - kyn *
statement that the velocity correlation coefficients are accu-
rate in the range<5%. Equation(15) therefore becomes . _g
. 2 | <
X(k)~){0—f P(&)dé, k=maxk,0.35771). (23 s Y . . . . . .
x 0.0 0.010 0.020 0.030
Equations(21)—(23) complete the determination df (k) o
as a function of the parameteys, |/, A, ando. FIG. 4. Plot showing both the scale brekk (right axis be-
tween the k=>3 inertial-convective subrange and the viscous-
V. SPECTRA AND DISCUSSION convective subrange, and the measure of self-excitation

Xoc(®,0) xic—1 (left axis) computed numericallylines) and ap-
Equation(6) for the correlation functio(r) reveals that  proximated analytically by Eq24) (CJ). These functions have been
the covariance of inertial particles is controlled by the com-calculated using modéR1)—(23) at four Prandtl numbers and ap-
petition between radial dlffu5|orDeﬁV ® with positive-  pear such that the lines are, from top to bottons= 8000, 3000,
definite diffusivity D¢y, radial advectionVq4o®/or with 1200, and 500.
positive radial velocityV s~ —(7u,(0)b(r)), and production
®/ 7, with time constamrrj1~<rb(0)b(r)>_ Isotropy and/or dissipation in the viscous-convective range is therefore
parity invariance of the turbulent flow ensures tBag—D  Xuc(K,0) = x(K,0) xic/x(Kp,0), which increases with in-
andV4—0 at the smallest scales-0. Production is maxi- creasingo.
mal atr=0 but the accumulation/rarefaction of particles at The scale break, shown in Fig. 4 has been computed
such small scales is mitigated by molecular diffusion, whichnumerically using model (21)—(23) and the inertial-
transports the covariance to scales larger thaithe com- ~ convective range spectrutabove for Pr in the range 500 —
pressible velocityV, which peaks near =107, always 8000. Also shown is a measure of the increase in scalar
contributes to the transport of particle covariance to largeglissipation rate through the viscous-convective regime
scales. At near inertial scales, howevg; begins to domi-  Xuc(®,0)/xic—1. The figure illustrates a number of robust
nate both production and ballistic transport, thereby preventtrends that are worthy of d|SCU35|0n Fitlgf,increases from
ing the build up of covariance, i.e., preferential concentra=~0.057"* at =0 to ~0.135; ' near 0=0.03; the
tion. We can therefore expect preferentlal concentration tgiscous-convective regime gets pushed to smaller scales.
peak near the inertial-viscous subrange transition and this ig,hus aso increases, the accuracy of the entire modeled
in fact, what the present model predicts. inertial-convective/viscous-convective spectrum also in-
It is unlikely that the production of scalar variance due tocreases, under the assumption that the scaiipg k> re-
particle inertia—limited to smak as shown in Fig. 1—has a mains invariant. Second, and as mentioned abgyg(>)
large effect on the scaling of the inertial-convective subrangécreases with increasing.. To aid in this discussion,
for 0<1/27, and, in fact, simulations of massless particles inx,c(*) has been fit to the approximate analytic form
low-Mach number compressible turbulence show little varia-
tion in scaling foro=1 [38]. Numerical simulation§30,31] Xoc(®)= xic exd In(Pn Y 8.50+ 348Q:°)],  (24)
of the viscous-convective subrange for incompressible flow
o=0 suggest that the scale brekk between the inertial- depicted with(] in Fig. 4. This equation demonstrates, for-
and viscous-convective subranges occurs, naturally, at theally, the self-excitatioriexponential growthin the second
intersection between the inertial-convective spectrummoment of particle concentration first dlscusse@ma] The
Eic(K)=Cicxice " Y32 and E(K):E;c(kp) =E(k,) where weak Pr dependence results from a “longer” viscous-
Ci.~3/4 is the Obukhov-Corrsin constant,is the energy convective regime with increasing Pr and therefore more

dissipation rate, andy;.=x(k,)=const is the inertial- self-excitation. Self-excitation begins  near o
convective range scalar dissipation rate. 6or0, x;,c=xo  ~0.04In(Pr) %8° and along with self-excitation of higher-
and the scale break is given byk,=(C./q)%?n ! order moments leads to preferential concentration.
~0.057" ! whereq is a function of|y|, whereas foro+0, The scalar spectrunE, computed numerically using

Xic decreases with increasingaccording to Eq(23). How-  model(21)—(23) and the inertial-convective range spectrum,
ever, for purposes of comparison, it is convenient to sets shown in Fig. 5 along with the change in scalar dissipation
Xic(o) to a constant reference value, i.e., unity. The scalarate y,.(k)/x;.. Both features discussed above—the sup-
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FIG. 6. Plot showing the characteristic scale of preferential con-
FIG. 5. The scalar spectrum computed at varioussing model  centration as a function of the Stokes number. The wave nuhp,ber
(21)—(23) and the corresponding increase in scalar dissipation ratdés computed frOWﬁE/ﬂklkp=0 using model21)—(23).
Note that the increase i, begins ak=0.35;" ! as per Eq(23).
The parameter values ase=0.01 and P+ 1000.

VI. CONCLUSIONS

pression of the viscous-convective regime at larger scales The effect of particle inertia on the viscous-convective
and the self-excitation of the spectrum—are clearly ViSiblesubrange has been investigated o 1/27 (small Stokes
Beginning ato~0.007, a peak ak,~0.17 * is visible in  number regime Using the s-correlated model, an analytic
the spectrum and becomes more pronounced mgreases. expression for the second-order spectral density of inertial
The wave numbek, is a useful measure of the length scale particles is derived as a function of a Batchelor-type diffu-
at which preferential concentration occurs, and it is discussegjye length scale, the rate of strain of Kolmogorov eddies,
further below. _ . _ the scalar dissipation rate, and the degree of compressibility
An important parameter in most studies of preferential(stokes number A rich spectral behavior is observed in the
concentration in the literature is the Stokes number, whicRiscous-convective regime that includes the following fea-
plays a role similar toe (or o) in this work. The Stokes tyres. Particle inertia suppresses snkaiiscous-convective
number is usually defined as the ratip/ 7, wherer, is the  scaling; the start of the viscous-convective regime is pushed
particle aerodynamic time constd@0]. Comparing Eq(18)  to smaller scales with increasing, beginning neark
to Pinsky etal. [36] expressionB(r)=(4/15)r5/7+ -  ~0.135; ! for 0.02< o< 1/27 (Stokes numbers-0.3). As-
gives sociated with increased compressibility is the emergence of a
well-defined “bump” in the spectrum beginning at @
~0.007 (Stokes number<0.15. The bump represents the
472 accumulation of inertial particles in regions of high strain
( P) (25)  and low vorticity in the flow and is a manifestation of inter-
mittency in the spatial statistics. The characteristic scale of
this preferential concentration ranges from around G0o
=0.007 (Stokes number0.15) to about 13 at o=1/27
(Stokes numbetr 0.35). The relative height of the bump in-
creases exponentially with an increasing Stokes number,
. , X consistent with results from numerical simulatidi2d] that
7p/7, in Fig. 6 in the range 0.067<1/27 corresponding g0y 4 rapid increase in preferential concentration with an

roughly to 0.15<7,/7,<0.35. The figure reveals that the jhcreasing Stokes number for Stokes numbers less than
characteristic scale of preferential concentration mcrease@nity_

from ~607 at a Stokes number of 0.15 t613» at a Stokes
number of 0.35, consistent with the estimate[#0] that
particles with a Stokes number of around 1 are concentrated
at length scale$6—20#. Note also that rapid growth in the
viscous-convective regime for Stokes numbers greater that | am grateful to Phillip Austin and Nicole Jeffery for a
0.15 (0>0.007) shown in Fig. 5 is consistent with the rapid careful reading of the manuscript. | also thank Tov Elperin
growth in preferential concentration in the range of Stokedor a useful discussion. This work is supported by the Natu-
numbers 0.2—1 shown in Fig. 18 1] ral Sciences and Engineering Research Council of Canada.

The wave number of the spectral ped defined by
aE/ak|kp=0 is plotted as a function of the Stokes number
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