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Energy spectra of steady two-dimensional turbulent flows
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The power spectrum is measured in direct numerical simulations of the two-dimensional Navier-Stokes
equation and other two-dimensional flows with white-in-time forcing at large scales. For the Navier-Stokes
equation the energy spectrum in the inertial range approach@svith increasing Reynolds number, with
possible logarithmic corrections. A family of two-dimensional flows, including the surface quasigeostrophic
equation, allows us to vary the locality of the “enstrophy” transfer, where enstrophy is the mean square of the
convected quantity. Dimensional analysis based on the enstrophy dissipation correctly predicts the energy
spectrum, whenever the enstrophy transfer can be assumed to be spectrally local. Otherwise, the enstrophy
spectrum is steeper than would be expected on the basis of local transfer. In this case the data &iggest a
passive scalar spectrum.

PACS numbdis): 47.27.Gs, 47.27.Ak, 92.90x

[. INTRODUCTION trum of k™4 based on vorticity discontinuitids5]: an oth-
erwise smooth function punctured by jump discontinuities
More than 30 years ago the energy spectrum of twohas Fourier coefficients-k~*, which corresponds to &~ *
dimensional turbulence was theoretically predicted. Yet theenergy spectrum. An idefd 6,17 to bridge the discrepancy
evidence for this spectrum has remained weak in some casdetweerk ® andk ™ * was to consider accumulations of dis-
Classical theory1-3] predicts the energy spectrum based oncontinuities through spiral vortices, and suggésts' (over
a “cascade” of either energy or enstrophy. Once the relevan@ fixed range ok only). Others[18,19 proposed that spectra
physical quantities have been identified, simple dimensionaiteeper thark~* arise from strong vortices that are distrib-
analysis leads to the power spectrum as a function of wavited over different length-scales according to a power law.
numberk. However, the spectra measured in many numericayVhich is the correct theory?

simulations decay substantially faster wktthan predicted In Sec.. I we study thg inertial range energy spectrum of
[4]. the two-dimensional Navier-Stokes equation. In Sec. Il we

II.Hrn to a more general family of flows, which allows us to

The range of wave numbers larger than the inverse syste e . . :
. L L ._ test the applicability of the various theories. Conclusions are
size and up to the dissipative damping is called “inertial ; :
found in the last section.

range.” In this paper we assume power laws for the inertial
range as a “working hypothesis,” since possible deviations
from a power behavior cannot be determined from numerical

data with confidence. . _ The two-dimensional Navier-Stokes equation takes the
A general review of two-dimensional turbulence and theform of an advection-diffusion equation for the vorticiy
slope of the energy spectrum can be found in REB]. .

Following, we summarize recent results on the inertial-range
spectrum. do . .

For decayingtwo-dimensional turbulence a spectrum pro- —+v-Vo=DV?w+f. D
portional tok~2 has by now been clearly observed for the at
late stage of the evolution, see, e.g., RETS8]. With forcing
at small scales evidence for the predictkd®® is less clear.
In a detailed analysis, Boru®] found k™2 resulting from
strong vortices and &> background field. Least reported
is two-dimensional turbulence forced large scales. High-
resolution simulations by Gotoét al. [10—12 have demon-
strated relatively flat spectra, which become less and less The flow is simulated in a doubly periodic box of size
steep as the Reynolds number increases, and indeed appe@arx 2. Forcing acts on large scales<4k|<6, with con-
to approachk 3. Similar observations have been made bystant amplitude but random phases renewed at each time
Borue[13]. Experimentally, two-dimensional Navier-Stokes step. The Fourier method is used for spatial derivatives and
turbulence is difficult to realize, although there has beerfourth-order Runge-Kutta is employed for time integration.
much progress recentlgee Ref[14]). The constant time stefit~0.5Ax/max(uvy/+|vy). This for-

The k™2 law follows from dimensional analysig2,3]. mula is appropriate from linear stability analysis of the ad-
Closure theory gives a logarithmic correction vection equation and the coefficient in front is empirically
k~3log(k/k) Y. Dimensional analysis requires us to choosedetermined.
the relevant physical quantities and predicts different expo- In two-dimensional flows, vortices merge and grow ever
nents depending on this choice. Saffman proposed a spelarger. These vortices must be destroyed in order to reach a

II. NAVIER-STOKES FORCED AT LARGE SCALES

In two dimensions, vorticity is a scalar quantity. The forcing
f supplies the energy dissipated via a dissipation conflant
Half of the square of the vorticity is called “enstrophy.”

A. Design of simulations
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TABLE I. List of runs and their parameteris.=number of grid 1
points on each side. The total timffleover which measurements are
taken starts after a prior period of relaxation to equilibrium. Aver- 0.01 /:f;
ages( ) are over all space and a number of instances of time. The
enstrophy dissipation =D{(V 6)2). o |
Y N T D (v?) (6% e 2 el
1 256 67 1x10°3 0.38 0.38 5%10° *
1 512 134 X104 0.48 048 5103 10°
1 1024 59 X104 0.61 061 4.%10°
1 2048 3 9 10°° 0.63 0.63 4.x10°° 1o |
2 256 4021 X104 0.044 046 56103
2 512 247 Xx10% 0.056 058 5.610°° 1012
2 1024 300 6105 0.073 091 52103 ! 1000
2 2048 8 210°° 0.085 1.2 5%10°°3
3 256 167 < X10°% 5.4x10°° 084 5.6<10°3 FIG. 1. Enstrophy spectra for the Navier-Stokes equation for
3 512 804 6105 7.8x10°% 1.2 5.6¢10°3 different Reynolds numbers. Forcing acts on large scales. The dot-
3 1024 335 %105 7.1x10°% 1.4 5.3x10°3 ted line has slope-1. There is a visible change of the inertial range
4 256 419 &10° 14x10° 21 7.9¢10°3  Slope with Reynolds number.
-5 -3 -3
j: 501224 ?3257:, 151109 6 ;gi ig* 4 g:g gg 18* 3 A logarithmically corrected power law is also fitted to the

inertial range Ck™(k/kq)S" tlog(k/k) G979 This par-
ticular form follows Ref.[10] and reduces to the closure
prediction fors=—1. The wave numbek, is the forcing
stationary state. This is done by adding a dissipation terndcale,k,~5, k4 the dissipation scale, and is a constant.
—yw, with y~0.01, to the right-hand side of E@l), re-  The fittedsis insensitive to the choice &f;. For the purpose
stricted to large scales<0lk|<3. The number of involved of comparison, the Reynolds numbR[ used in Fig. 2 is
modes allows rather isotropic large-scale dissipation andefined in the same way as in Rgf0]
forcing.
A mild spectral filter has been used, without complete UL 1 u
dealiasing. Dealiasi d L= USVOY, L=g
g. Dealiasing conserves energy and enstrophy D 2 (D(Vw))12
[20,8], but not other inviscid constants of motion. Hence, it
could artificially favor a power-law behavior based on thesey and L are a velocity and length scale respectively. The
quantities[21]. arameters is shown in Fig. 2 as diamonds. The measure-
The use of normal viscosity requires more computationaments agree within errors with simulations by Gofdb] at
resources than hyperviscosity. The real Navier-Stokes equgesolutions ranging up to 40964096. They are shown in

tion has normal viscosity, and hyperviscosity is known toFjg. 2 as discs, to be compared with the diamond symbols.
affect some of the statistical properties. To avoid this degree

of uncertainty normal viscosity is used in the simulations - -
here. -
The slope of the energy spectrum equilibrates quickly and

fluctuates little with time. Long runs showed no drift in the o o
energy spectrum. Table | lists the runs together with severa 15T ° 1
of their parameters. The first column defines the type of flow
by a parameter introduced later in the text. The Navier- °
Stokes equation correspondsde 2. 2 x
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x
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B. Inertial range spectrum 25t

The enstrophy spectruki(k) zf“;‘:k|&)|2d k, is shown in } 02

Fig. 1 for various Reynolds numbers. The slope in the iner- | , ,
tial range becomes flatter as the Reynolds number increase 100 1000 10000 100000
The spectra are averaged over several instants of time. Reynolds Number

While the spectra hardly change V,Vith time, averaging (_)ver_ FIG. 2. Slope of the enstrophy spectrum of the two-dimensional
several snapshots smooths the wiggled spectra and aids {fyyier-stokes equation versus Reynolds nunfer The different

this way thel determination of slopes. Local slopes can l?‘?ypes of points correspond to a simple power leerror bars, a
extracted using one of the usual methods of numerical diftogarithmically  corrected  power law of the form

ferentiation. Rather similar slopes are obtained from fitting a-1(k/k,)s*log(k/k) @*97*9 (¢), the same from simulations
straight line to the spectrum on a log-log plgoints with by Gotoh (©), and the slope of the background fielkY. The
error bars in Fig. 2 The error bars result from fitting differ- slope of the energy spectrum is the slope of the enstrophy spectrum
ent ranges and also comparing with local slopes. minus 2.
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10 T T Ill. @« TURBULENCE
A. Introduction

In this section we investigate other two-dimensional
flows. A particular family of flows, collectively called &
turbulence,” has recently attracted attention as model equa-
tions for the study of turbulence and singularitisse, e.g.,
Refs.[23-26,22).

H(kK?

0001 [ 0=2 —— 1 The flows are described by advection-diffusion equations
=3 ceeerreee
0.0001 L o S 0 - - =2
T 10 100 E+U'V6=DV 0+f. (39
k

FIG. 3. Spectra of enstrophy concentrationd £ 26,9 in the

large-scale and inertial range. The scalar quantity advecteddgr,t). The velocityv (r,t) is

a function of#, best written in Fourier space,

Whatever the assumed functional form and the procedure . A
to determine the slopes, a clear flattening with Reynolds v(k,t)=i—0(k,t). (3b)
number is evident. The energy spectrum is simply related to k®
the enstrophy spectrum (k) = H(k)/k?. From Fig. 2 one R .
can rule outE(k)~k ™4, but notk '3 It is most plausible We write k for |k|. The symbolk* indicates a vector of
thatk ™2 (with perhaps logarithmic corrections asymptoti-  |ength |k| and direction perpendicular t. It follows that
cally reached. ) ) . _ V-0=0.The forcing is again white-in-time.

The steeper slope measured in many earlier simulations pitarent values ofa correspond to different flow25].
might simply be explained by the low resolutioand there- 1o 1y dimensional Navier-Stokes equatiti is recov-
fore low Reynolds numbgrThere are several venues of ex- ered fora=2 and @ corresponds tas. The surface quasi-
planation. Flow at low Reynolds number could really have eostrophic equationg=1, is a special case of quasigeo-
steeper spectrum. Coherent structures and intermittency € frophic flow, as relevan’t for planetary atmospheres and

fects havg been Eropoggd to th'.s end. Another possible e>(()'ceans{23]. In this casep is physically interpreted as tem-
planation is that "local” interactions among wave vectors erature, which determines the velocity field through its

are stil Sb?re?d t(;ver a sulf)stt;;mtl_al r?nlge of wave nLImberguoyancy effect. A third equation consideredvis 3 which
comparablé 1o the siz€ of he Inertial range in numercag jsaq jn geophysical context as a shallow flow on a rotating

simula.tions. Qr the higher slqpes .m.ight have been due tgphere with uniform internal heatif@7].

numerical arufact;, e.g. an'lnsuff|c.|ent.number of repre- One can study Eq3) also for values ofr not physically

sented modes or insufficient integration time. realized. It can be considered as a model system param-
etrized bya, which, in view of Eq.(3b), controls the depen-

C. Decomposition into strong vortices and background field ~ dence ofv on 6. Only the nonlinear terne -V ¢ in Eq. (38
couples different modes and generates small-scale turbulence
¥om the large-scale forcing. In Fourier space E3).trans-

tes into

A few, large coherent structures can dominate the energ
spectrum over a substantial range of wave numbers. If th
vortices are distributed by themselves with ever and ever
smaller length scale, they can also determine the form of the
spectrum over the entire inertial range. Decomposition into(at+Dk2)f9(IZ t)zf dik’
coherent structures and background flow has been applied to '
decaying turbulencd18,19 and to turbulence forced at
small scaleg9]. Here we shall apply the same decomposi-Here, the influence of on the coupling between modes is
tion to turbulence with forcing at large scales. seen explicitly.

The procedurg18,19,9 decomposes the domain into @  Borrowing terminology from the Navier-Stokes equation,
small region of high enstrophy and a large remaining regionthe conserved quantity6? shall be called “enstrophy.” As
of background flow. The cutoff level is chosen ai2s. The  a consequence of E¢Ba) enstrophy moves from the forcing
slopes depend on the cutoff level far, but only weakly at  to the dissipation scale. The left hand side of g con-
this value for the cutoff. The background flow covers 94—serves(#") for all @ and positive integers. Another con-
97 % of the domain, in agreement with an approximatelyserved quadratic quantity i¢s6, which however does not
Gaussian distribution fow [12,22. Applying this procedure, need to be positive and it is not local. Here the stream func-
the slopes of the background flow are shown in Fig. 2 ag;y, W is given by &(E,t)z@(lz,t)/k“. The kinetic energy

crosses. The background field has systematically a flatter »2> is only conserved for certain values ef when it

. ) i L0
;slgavse, but with the same asymptotic behavior as the Completgoincides with eithef %) or ().

The foreground fieldthe strong vorticeshas a cleak 2 Equation(3) is invariant under —r\, t—t\% This in-
spectrum, as shown in Fig. Golid line). This behavior is Variance naturally defines a Reynolds number for flow of any
independent of the Reynolds number. a as Re=UL/D. We chooseU=(v?) and L=1 for a

ik-k'*

>
kla

* (K O(k—K ) +T(Kk,t).
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3 s FIG. 5. Slopes of the enstrophy spectrum verausignoring
1000 10000 possible modifications to a pure power laBhown are the slopes
05 ; at the highest Reynolds numbet, the slopes of their background
ol LI field (X), and data by Pierrehumbest al. (©) who used hyper-
05 | i viscosity. At higher Reynolds numbers the spectra become flatter.
p The solid, dashed, and dash-dotted line are theories for asymptoti-
® sl | cally large Reynolds number. The dotted line roughly separates
5l . t ] local and nonlocal enstrophy transfer, based on a dimensional esti-
mate.
25 { a=4
N 1000 0 512x512 produced intermediate values betweenl and 2

. at the same resolution, so that there is no discernible quali-
FIG. 4. Slope of the enstrophy spectrum for flows with tative difference.

=1,3,4 as a function of Reynolds number Re. Points with error bars Also the decomposition into backaround and forearound
correspond to the complete flow; crosses to the background f|0V\4__ d i ied tp bef Ei 93 h th gt h
Solid and dashed lines are theoretical values for asymptoticallyIe IS carrned out as before. |gure. shows the en_s ropny
large Reynolds number. spectra of the foreground at a resolution of 1824024, i.e.,

comparable Reynolds number. A different behavior is seen

large-scale Reynolds number Re. With this definition the'cor a<2 anda>2. In the first case, regions of large enstro-

R Id ber Re tak v slightly diff t val gphy are rogndisr(ellipt!cal), while in the [ater they form
frg%ngL isneudmbeef[)re{eZ).a €s on only slightly difterent vaiue filaments(Fig. 6). As discussed below, this conforms with

the idea that the small scales are dominated by large-scale

shear only fora>2.
B. Results

The flows for differente are simulated and analyzed in C. Comparison with theory
the same way as described in Sec. Il for the Navier-Stokes piarehumberet al. [24] suggested the spectra aftur-

equation. The scalaf takes on the role ob. The slopes for 1, jance could be explained by a local enstrophy cascade in
a S'mEj'eé power Lelw are shown in Fig. 4. Since, from Eq.q,q region ofx and a Batchelor-type passive scalar behavior
(3b), [v(K)|?=16(K)|?/k*(*~ D, the slopes of the energy and in another. Indeed this finds strong support from the data.
enstrophy spectrum differ precisely by@ 1). In each part Classical dimensional analysis states that dognd the
of Fig. 4 a clear dependence on Reynolds number is seegnstrophy dissipation are physically important. From the di-
The background flow shows a systematically flatter slope. mension of velocity{v]=L/T, the dimension of the scalar
Previous studies of the energy spectrum for flows with[ g]1=12-/T follows using Eq.(3b). One arrives at the pre-
a#2 anda#1 are due to Pierrehumbeet al They use (diction of an “enstrophy cascade/24]
hyperviscosity to extend the inertial range and hence observe
flatter slopes, even at lower resolution. _ 2 2131, — 713+ (213)a
Figure 5 provides an overview of slopes as a function of H k)~ (d(65)/dD)™% #e. “)
a. Shown are the slopes for the complete flow fie{ts
ang|e$’ the background ﬁe|d€:rosse£ and data by Pierre- These prediCtiOﬂS are drawn as solid lines in FlgS 2,4, and
humbertet al. (circles [24]. The slopes displayed are for the 5. They agree with the data far<2. Fora>2 the slopes do
highest Reynolds number measured and are hence steept seem to approach the enstrophy prediction and never
than for asymptotically high Reynolds number. Finite-timebecome flatter thar-1.
singularities fora<1 pose questions on the validity of the ~ The cascade argument requires a sufficiently local enstro-
numerical scheme. phy transfer[2]. The criterion is the mean-square shear,
Values ofe=1 and 2 are both special, since they con-Which behaves agk’E(k)dk [2]. The spectrume(k) is
serve kinetic energy. A run foe=1.5 at a resolution of based on the veIocityE(k)=f||;|:k|5|2dk. This limits the
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N %v . The data agree wi_th Edq4) for a<_2 and Eq.(5) for a
Q 4 \ ‘ >2. The validity of either approach is theoretically particu-
w ‘@ - larly questionable fow=2, yet both coincide and appear to
\ ® - 'W g be correct(besides logarithmic correctionsExactly at this
= crossover lies the Navier-Stokes equation. Here both @gs.
4 / and (5) are dimensionally correct, becaugecontains only
- \" —_ o N units of time. Only here coincides the theory of enstrophy
> RS e cascades with passive advection of small scales.
o ﬁ - Ao- N - The idea thatwell-separatedstep discontinuities in the
° ﬂfﬁ‘&‘Q\\} N enstrophy distribution determine the spectrlth] leads to
() © H(k)~k ™2 for all « and is ruled out by the dai@ee dash-
dotted line in Fig. % Incidentally, the strong enstrophy %on-
5 < 5 ; centrations considered in isolation form preciselyka
= = \7)>>\ < ‘7 :/}) spectrum fore=1 anda=2, as seen in Fig. 3. The qualita-
7 tive difference in the foreground field far<2 anda>2 is
® - v ( |~ % . 2 = also clearly seen in Fig. 6. By definition, the foreground flow
= P ,6 field is set to zero whergd|<26,,s. Saffman’s argument
= ! U - c4 explains thek~2 behavior in this case: as a consequence of
N pa~ \ ~ the decomposition procedure, a one-dimensional cut through
5 == the field shows(well-separated step discontinuities. Why
©)) \ , (@ ;\Q”@/\ Jl the foreground spectrum far=2 is more similar to that of
_° e~ e ( a=1 than toa=3 is unclear.
) @ For the background field we note from Figs. 2 and 4 that

the difference in slope between the complete field and the

FIG. 6. Contour plot of the scalat in regions of large enstro- background field is re_duced with increased Reynol_ds num-
phy 62>4(¢?) for (a) a=1, (b) a=2, (c) «=3, and(d) a=4. In ber. The Ias_t data p_omt foir=1 appears as exce_ptlon. In
(a) and (b) elliptic structures predominate, while) and (d) show  total, there is no evidence for any discrepancy in the two
many thin filaments. Contour lines are drawra 0,,s, +30,ms,  SIOP€S for asymptotically high Reynolds number.

*46,.s, and so on.

. ) IV. GENERAL THEORY
validity of Eq. (4) to a<2. For «>2 the transfer is not
expected to be spectrally local. Figure 5 shows the separation The conclusions are drawn and discussed in the context
of local and nonlocal transfer based on above integral estiwith various other result¢e.g., Refs[28,2,13,9,24,29,1p
mate (leading tos=2a—5) as a dotted line. on two-dimensional turbulence.

Another important transition takes place alsomat2. Steepening by large structure€oncentrations of large
The typical time scale of motion as a function of wave num-enstrophy(“‘strong vortices”) lead to a steepening of the
ber changes. Based on either E4). or (5), the fast motion  spectrum for any kind o& turbulence. However, they have
shifts from small scales to large scales. lor 2 the small  less influence on the spectrum at higher Reynolds number.
scales do not have enough time to equilibrate, before they affeor the two-dimensional Navier-Stokes equation this was al-
moved around by the large scale motion over substantigieady suggested by earlier observatiph3]. Asymptotically
distances. There is no time to reach “Kolmogorov equilib-the flow field appears to approach the same inertial range
rium.” spectrum with or without its large vortices taken into ac-

This leads to the idea that a passive scalar spectrum migleount. For the Navier-Stokes equation without forcing or
be applicable. The classical theory of the passive scalar spewith small-scale forcing, coherent vortex structures have also
trum in two-dimensional turbulendg8] leads indeed to a been observed to steepen the spectrum, may it be over a
k~! spectrum and has also been suggested as an alternatiV@ited range of wave numbers or for the entire inertial
explanation of the Navier-Stokes enstrophy spectf@y  range. For large-scale white-in-time forcing asymptotic
Batchelor’'s[28] derivation does not make use of the func- steepening isiot supported by the data.
tional dependence of the velocity, since it is for a passive Enstrophy dissipation based scalingor the Navier-
scalar. Hence thk ™! form generalizes to anyg, and can be Stokes equation the enstrophy dissipation based scaling law
justified for =2 because of the aforementioned nature ofis in good agreement with numerical simulations, even when
time scales. To reproduce this spectrum by dimensionatormal(genuing viscosity is used. The energy spectrum flat-
analysis one assumksnd the absolute size of the enstrophytens with Reynolds number and appears to approach
(6?) are physically important. One obtains k=3 (k™! for the enstrophy with logarithmic corrections to

this power law certainly possib[d0,13. The same theory as
for the Navier-Stokes equation applies to other flows as long
H(k)~(6%)k ™ (5  as the enstrophy transfer may be assumed to be dominated
by local strain(“local enstrophy cascadg’ In this case,
independent ofe. The dashed lines in Figs. 4 and 5 aredimensional analysis based on enstrophy dissipation cor-
drawn at an exponent of 1. Apparently no enstrophy spec- rectly describes the inertial range energy spectrum within a
trum for our a-turbulence is flatter thak 1. power law approximation.
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