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The generalized hydrodynami¢the wave vector dependence of the transport coeffidiafita generalized
lattice Boltzmann equatiofLBE) is studied in detail. The generalized lattice Boltzmann equation is con-
structed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model
is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation
technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the
given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dis@igpgoviscosi-
ties), anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the
adjustable parameters that optimize the properties of the model. The proposed generalized hydrodynamic
analysis also provides some insights into stability and proper initial conditions for LBE simulations. The
stability properties of some two-dimensional LBE models are analyzed and compared with each other in the
parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in
this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation
schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity (shafd&
with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE
model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis
of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long-wavelengftfwbwet
vectork=0), it can also provide results for large valueskofSuch results are important for the stability and
other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.

PACS numbgs): 47.10:+g, 47.11+j, 05.20.Dd

[. INTRODUCTION In this work we intend to study two important aspects of
the LBE method which have not been systematically studied
The method of lattice Boltzmann equatidhBE) is an  yet: (a) the dispersion effects due to the presence of a lattice
innovative numerical method based on kinetic theory tospace andb) conditions for stability. We first construct a
simulate various hydrodynamic systefds-3]. Although the ~LBE model in moment space based upon the generalized
LBE method was developed only a decade ago, it has afattice Boltzmann equation due to d’Humés[27]. The pro-
tracted significant attention recenfl$,5], especially in the ~P0osed model has a maximum number of adjustable param-
area of complex fluids including multiphase fluif—11, eters_allowed by the f(eedom provided by a given dlscrete_
suspensions in fluifL2], and viscoelastic fluidgl3,14. The velocity set. These adjustable parameters are used to opti-

lattice Boltzmann equation was introduced to 0vercom<=,r'7ize the properties of the model through a systematic analy-

some serious deficiencies of its historic predecessor: the lap'> of the generallged hydrodyna_lmlcs O.f the fT‘Ode'-_Ge_”er_a"
tice gas automatdLGA) [15-17. The lattice Boltzmann ized hydrodynamics characterizes dispersion, dissipation

equation circumvents two major shortcomings of the Iattice(hyperViSCOSitie}S anisotropy, lack of Galilean invariance,
q I 9 nd instability of the LBE models in general. The proposed

gas gqtomata: intrinsic noise and limited values of tranSporgeneralized hydrodynamic analysis enables us to improve the
coefficients, both due to the Boolean nature of the I‘GAeroperties of the models in general. The analysis also pro-
method. However, despite the notable success of the LBRijes ys better insights into the conditions under which the

method in simulating laminaf18-21 and turbulent[22] | Bg method is applicable and comparable to conventional
flows, understanding of some important theoretical aspectsomputational fluid dynamics techniques.

of the LBE method, such as the Stablllty of the LBE method, FurthermorE, from a theoretical perspective, we would

is still lacking. It was only very recently that the formal |ike to argue that our approach can circumvent the Chapman-

connections between the lattice Boltzmann equation and thenskog analysis to obtain the macroscopic equations from

continuous Boltzmann equatidi23—-25 and other kinetic the LBE modeld27,13,14. The essence of our argument is

schemeg$26] were established. that the validity of the Chapman-Enskog analysis is entirely
based upon the fact that there are two disparate spatial scales
in real fluids: the kinetidmean-free-pathand the hydrody-

*Electronic address: lalleman@asci.fr namic scales the ratio of which is the Knudsen number.
TAuthor to whom correspondence should be addressed. Electron/hen the LBE method is used to simulate hydrodynamic
address: luo@icase.edu motion over a few lattice spacings, there is no such separa-
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tion of the two scales. Therefore, the applicability of sented in this paper. Section VII discusses the correct initial
Chapman-Enskog analysis to the LBE models might becomeonditions in the LBE simulations, and presents numerical
dubious. Under the circumstances, analyzing the generalizgésts of shear flows with discontinuities in the initial velocity
hydrodynamics of the model becomes not only appropriat@l’of"e. Section VIII provides a summary and concludes the
but also necessary. paper. Two appendices provide additional analysis for varia-
It should also be pointed out that there exists previoudions of the LBE models. Appendix A analyzes a model with
work on the generalized hydrodynamics of the LGA modelscoupling between density and velocityu, and Appendix B
[28—37 and the LBE model$33]. However, the previous analyzes the LBE models with various interpolation
work only provides analysis on nonhydrodynamic behaviorSchemes.
of the models at finite wavelength, without addressing im-
portant issues such as the instability of the LBE method or
providing insights into constructing better models. In the The guiding principle of the LBE models is to construct a
present work, by using a model with as many adjustablelynamical system on a simple lattice of high symmetry
parameters as possible, we analyze the generalized hydrodymostly square in 2D and cubic in 3hvolving a number of
namics of the model so that we can identify the causes ofjuantities that can be interpreted as the single-particle distri-
certain nonhydrodynamic behavior, such as anisotropy, andution functions of fictitious particles on the links of the
lack of Galilean invariance, and instability. Therefore, thelattice. These quantities then evolve in a discrete time ac-
analysis shows how to improve the model in a systematicording to certain rules that are chosen to attain some desir-
and coherent fashion. able macroscopic behavior that emerges at scales large rela-
This paper is organized as follows. Section Il gives a brieftive to the lattice spacing. One possible ‘“desirable
introduction to the two-dimension#&20) nine-velocity LBE  behavior” is that of a compressible thermal or athermal vis-
model in discrete velocity space. Section Il discusses theous fluid.(To simplify the analysis, in this work we shall
generalized LBE model in moment space. Section IV derivesestrict our analysis to the athermal cas&e shall demon-
the linearized lattice Boltzmann equation from the generalstrate that the LBE models can satisfactorily mimic the fluid
ized LBE model. Section V analyzes the hydrodynamicbehavior to an extent that the models are indeed useful in
modes of the linearized evolution operator of the generalizedimulating flows according to the similarity principle of fluid
LBE model, and the generalized hydrodynamics of themechanics. For the sake of simplicity, we confine our discus-
model. The dispersion, dissipation, isotropy, and Galilearsions here to two-dimensional space. The extension to three-
invariance of the model are discussed. The eigenvalue prolgimensional space is straightforward, albeit tedious.
lem of the linearized evolution operator is solved analytically A particular two-dimensional LBE model considered in
and numerically. Section VI analyzes the stability of thethis work is the nine-velocity model. In this model, space is
LBE model with Bhatnagar-Gross-KrogBGK) approxima-  discretized into a square lattice, and there are nine discrete
tion, and compares with the stability of the LBE model pre-velocities given by

II. 2D NINE-VELOCITY LBE MODEL

|
(0,0), a=0,
e,=1{ (co§(a—1)m/2],sif(a—1)m/2])c, a=1-4, (1)
(cod (2a—9)w/4],sin (2a—9)w/4])\2c, a=5-8,

wherec= 6,/6; is the unit of velocity and, and §; are the  The numbeif , can be considered as the distribution function
lattice constant of the lattice space and the unit of titbee  of velocity e, at locationr; (and at a particular timé). The
step, respectively. From here on we shall use the units ofset{f,} can be represented by a vectorfif that defines the
8,=1 and ;=1 such that all the relevant quantities are di- state of the medium at each lattice node:

mensionless. The above discrete velocities correspond to the

particle motion from a lattice nodeg to either itself, one of _ T

the four nearest neighborsx&1-4), or one of the four |f(ri)>=(f0’f1' -+ fg) )
next-nearest neighborgk&5-8). This model can easily be

extended to include more discrete velocities and in space Qfnce the vectoff(n—)} is given at a point; in space, the
higher dimensions, thereby including further distant neighiate of the medium at this point is fully specified.

bors to which the particles move in one time step. Neverthe- The evolution of the medium occurs at discrete tinhes
Igs;, “'hopp.ing” to a neighbc_)r on the Iat';ice induces inherent:n5t (with ,=1). The evolution consists of two stefd)
limitations in the discretization of velocity space. motion to the relevant neighbofsodeling of advection(2)

For the.particular rr_10de| discussed here, nine rea] NUMreqistribution of the(f,! at each nodémodeling of colli-
bers describe the medium at each nogdef a square lattice: siong. These steps are described by the equation

{f.(r)]a=01,....8. fo(rj+e, t+1)=f (1), )+ Q,(f). 3)
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The above equation is the so-called lattice Boltzmann equétiB&). The lattice Boltzmann equation can be rewritten in a
concise vector form:

[f(ri+e,,t+1))=|f(r;t))+|Af), (4)

where the following notations are adopted:
[f(rj+e, t+1))=[fo(r;+ep,t+1),fi(rj+e,t+1), ... fg(r;+eg,t+1)]7, (5a)
|Af)=[Qo(F),Q1(F), ... Qe(D)], (5b)

so that|f(r;+e,,t+1)) is the vector of a state after advec- favor of using the moment representation is somewhat obvi-
tion, and|Af) is the vector of the changes i) due to ous. Itis well understood in the context of kinetic theory that
collision . various physical processes in fluids, such as viscous trans-
The advection is straightforward in the LBE models. ThePort, can be approximately described by coupling or interac-
collisions represented by the operafdmay be rather com-  tion among “modes”(of the collision operator and these
plicated. However{) must satisfy conservation laws and be Mmodes are directly related to the momefes., the hydro-
compatible with the symmetry of the modghe underlying dynamic modes are linear combinations of mass, and mo-
atice space This might simplfy @ considerably. One "e1a MOments Tnus he moment epresentaton provdes a
simple collision model is the BGK modg84,2.3; physics into the LBE models. Because the physical signifi-
1 (eq) cance of the moments is obviodsydrodynamic quantities
Qo= —[fa= 1", (6)  and their fluxes, ety the relaxation parameters of the mo-
ments are directly related to the various transport coeffi-

wherer is the relaxation time in units of time st} (which  Cients. This mechanism allows us to control each mode in-
is set to be 1 hele and €9 is the equilibrium distribution dependently. This also overcomes some obvious deficiencies
[e3

function that satisfies the following conservation conditionsC! (€ usual BGK LBE model, such as a fixed Prandtl num-
o ber, which is due to a single relaxation parameter of the
for an athermal medium:

model.
For the nine-velocity LBE model, we choose the follow-
_ (eq)_ y
P_EC:* fa —Ea: Fa (73 ing moments to represent the model:
=(1,1,1,1,1,1,1,11, (93)
=3 e, 193 ef,, (7b) ”
“ “ le)=(-4,-1-1,-1-1,2,2.272", (9b)
wherep andu are the(mas$ density and the velocity of the le)=(4,2,2,2,2,1,1,11, (90)
medium at each lattice node, respectively. For the so-called
nine-velocity BGK model, the equilibrium is usually taken as lix=(0,1,0-1,01-1,-1,1), (9d)
9 3 =(0— 1 — T
f(aeq):WaP 1+3(eau)+§(eau)2_§u2 , (8) |qx> (Ov 2101210111 11 111) ’ (ge)
iy)=(0,0,1,0-1,1,1-1,-1)T, (9f)
wherewy=4/9, w; , 3 = 1/9, andws ¢ 7 &= 1/36. _ T
Some shortcomings of the BGK model are apparent. For la,)=(0,0-2,0211-1-1)", (99
instance, because the model relies on a single relaxation pa- IPwd=(0,1-1,1-1,0,0,0,07 (9h)
rameterr, the Prandtl number must be unity when the model e
is applied to thermal fluids, among other things. One way to |pxy)=(0,0,0,0,0,1-1,1,~ 1T (9i)

overcome these shortcomings of the BGK LBE mdd:8|
is to use a generalized LBE model which nevertheless retai
the simplicity and computational efficiency of the BGK LBE

nkhe above vectors are represented in the spaeeR®
spanned by the discrete velocitigs,}, and they are mutu-
ally orthogonal to each other. These vectors are not normal-

model. ized; this makes the algebraic expressions involving these
vectors which follow simpler. Note that the above vectors
IIl. MOMENT REPRESENTATION have an explicit physical significance related to the moments
AND GENERALIZED 2D LBE of {f,} in discrete velocity spacep) is the density mode;
Given a set ofb discrete velocities{e,|a=0,1,...,0 &) is the energy modee) is related to energy squarg;,)
—1)} with corresponding distribution functions{f,,|a and|1y>ﬂcorresponddto the andy con&ponehnts ogmomentum
=0,1,...,b—1)}, one can construct b-dimensional vec- (mass flu; |q) and|q,) correspond to the andy compo-

nents of energy flux; anfb,,) andlpxy> correspond to the

tor spacek” based upon the disprete velocity set, _and this IS jagonal and off-diagonal component of the stress tensor.
usually the space mostly used in the preceding discussion ('?fhe components of these vectors in discrete velocity space
the LBE models. One can also construct a space based upgn

. . . =R® are constructed as follows:
the (velocity) moments of f ,}. Obviously, there aré inde-
pendent moments for the discrete velocity set. The reason in [p)oe=1e.%=1, (10a
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|€)o=—4le.+3(e el ), (10b) A= {0l ) =(Flano), (11e

) ,=4]e,|~ 271(e§,X+ e2 )+ g(efmL e2 )2, by=(iy B =<fliy), (119

(100 ay={(aylf)=(f[ay), (119

1) 0= €ayx: (100 Pxx= (P ) = (F] D) (11h

|0 o=[—5le."+3(e + el Pleax. (100 Pry={Poyl F) = (F[Pxy)- (1)
liy)a=@ay, (10 Similar to{f,}, the above set of moments can also be con-

cisely represented by a vector:
|dyyo=[~5le./0+3(e2 - €2 ey, (109 Y g

‘ |Q>E(Paevsujx:qx1jyvqy1pxxrpxy)T- (12
|pxx>a:ei,x_e§,y1 (10h) . . . .
. There obviously exists a transformation mathk between
|Pxy) o= €axBay - (10)  |p) and|f) such that
Thus, lo)=M|f), (133
p={plf)=(flp), (11a [f)=M"1|p). (13b)
e=(e|f)=(fle), (11b | other words, the matrif transforms a vector in the vec-
e={e|f)=(fle), (119 tor spaceV spanned b)é the discrete velocities into a vector in
the vector spacél=R" spanned by the moments éf}.
ix=xE)=(fli, (11d  The transformation matrii is explicitly given by
|
(ol 1 1 1 1 11 1 1
(€] -4 -1 -1 -1 -1 2 2 2
(g] 4 -2 -2 -2 -2 1 1 1
(ixl o 1 0 -1 01 -1 -1 1
M=f(al |=[ 0 -2 0 2 0 1 -1 -1 1i=(p)le)le)lixlaliyla P lpxy)’
(iyl 0 0 1 0 -1 1 -1 -1
(ayl 0 0 -2 0 2 1 -1 -1
(Pysd 0 1 -1 1 -1 0 0 0 0
(Pl o 0 0O o0 01-1 1 -1
(14
|
The rows of the transformation matii are organized in the Because the medium simulated by the model is athermal,
order of the corresponding tensor, rather than in the order ahe only conserved quantities in the system are depségd
the corresponding moment. The first three rowsvbtorre-  linear momentunj=(jy,jy). Collisions do not change the

spond top, e, ande, which are scalars or zeroth-order ten- conserved quantities. Therefore, in the moment spiael-

sors, and they are zeroth-order, second-order, and fourtlisions have no effect on these three quantities. We should
order moments of f,}, respectively. The next four rows stress that the conservation of energy is not considered here
correspond tq,, qy, jy, andgy, which are vectors or first- because the model is constructed to simulate an athermal
order tensors, ang, and j, are the first-order moments, medium. Moreover, we find that the nine-velocity model is
whereasq, and g, are the third-order ones. The last two inadequate to simulate a thermal medium because it cannot
rows represent the stress tensor, which are second-order mioave an isotropic Fourier law for the diffusion of heat. Al-
ments and second-order tensors. Again, this can easily bough the conserved moments are not affected by collisions,
generalized to models using a larger discrete velocity sethe nonconserved moments are affected by collisions, which
and thus higher-order moments, and in three-dimensionah turn cause changes in the gradients or fluxes of the con-
space. The main difficulty when using the LBE method toserved moments, which are higher-order moments. In what
simulate a real isotropic fluid is how to systematically elimi- follows, the modeling of the changes of the nonconserved
nate as much as possible the effects due to the symmetry afioments is described.

the underlying lattice. We shall proceed to analyze some Inspired by the kinetic theory for Maxwell molecules
simple (but nontrivia) hydrodynamic situations, and to make [35], we assume that the nonconserved moments relax lin-
the flows as independent of the lattice symmetry as possiblearly towards their equilibrium values that are functions of
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the conserved quantities. The relaxation equations for th&o solve the mathematically difficult problem to create an

nonconserved moments are prescribed as follows: interparticle collision mechanism for the fictitious particles
. (ea) in the LBE models that would give the same eigenmodes of
e =e—se—e™], (158 the collision operator in the continuous Boltzmann equation.

However, what can be accomplished is that by carefully

e* =e—sgle—e(®], (15b crafting a simple model with certain degrees of freedom, we
. (eq>] can optimize large-scale properties of the model in the sense
dx =0x—Ss[dx—0x "1, (150 that generalized hydrodynamic effectieviations from hy-
drodynamicg are minimized.
*_q — _ (e
Gy =Gy—S/day—ay ], (15 The values of the unknown parametecs, a,gz and
. (eq) 15 Y1.2.3.4 shall be determined by a study of the modes of the
Pioc= Px ™ Sel Pax = Proc (159 linearized collision operator with a periodic lattice of size
N, XN, .
* _ _ n(ea) X y
Piy= Pxy ™ Sol Pxy = Py, (15 It should be noted that in E¢16) the densityp does not

stappear in the terms quadraticjinThis implies that the den-
b_sity fluctuation is decoupled from the momentum equation,
imilar to an incompressible LBE model with a modified
quilibrium distribution functiori 36]:

where the quantities with and without superscript * are po
collision and pre-collision values, respectively. The equili
rium values of the nonconserved moments in the above equ§
tions can be chosen at will provided that the symmetry of thé
problem is respected. We choose

fEV=w,i p+po

], (17)

3 +9 2 32
(e, 1) 2(eaw U

1 o
e(eq):<e|e> [a’2<P|P>P+ ')’2((] x|Jx>] §+ <Jy|]y>] )2/)]
where the mean densipy is usually set to be 1. The model

1 1 S, corresponding to the equilibrium distribution function of Eq.
=7 2P T v2lixtiy), (168 (g) shall be analyzed in Appendix A.

IV. LINEARIZED LBE

g(ed= [as(p|p)p+ ')’4(<JX|JX>J>2<+<JY|JY>J§)]

(ele) We consider the particular situation where the state of the
1 1,0, medium is a flow specified by uniform and steady dengity
=7 3p 5 valli 1Y), (16D  (usually p=1, so the uniform density may not appear in

subsequent expressignand velocity in Cartesian coordi-
(Gl 1 natesV=(V,,V,), with a small fluctuation superimposed:
(EQ):—CIJ x— 5C1lxs (160
L (adae T2 [1)=[F)+56), 18
(eq)zwclj = Eclj (160) where|f(®)) represents the uniform equilibrium state speci-
Yo (aylay) Y 27 fied by uniform and steady density and velocity V

=(Vy,Vy), and|5f) is the fluctuation. The linearized Bolt-

S tion |
PEV= 5 ——— (i i )i (i\liy)iD=5y(j2—j2), ~ Zmannequatonis
<pXX|pXX> 2

(160 |6 (rj+ e, t+1))=[5f(r; 1)) + QO] 5f(r; 1)) (19
VaudioGyliyy .0 1 whereQ(® is the linearized collision operator:
=1 o py Uxdy) = 3 7a(idy)- (160
xxl Mxx (0)_&Qa B o
The values of the coefficients in the above equilibrig,( QBa‘TB |f>:|f(0)>=9a,ﬁ({fa b (20)

ay3 andy; 34 Will be determined in the next section and

summarized in Sec. V E. The choices of the above equilibrig, {he moment spaci, the linearized collision operator can
are made based upon inspection of the corresponding mey, easily obtained by using Eq45) and (16):
ments given by Eqs(10), or the physical significance of

these moments. Note that in princiglg andq, can include (04l0p) dhe,

terms involving third-order terms in terms of moment, such Ba= , (21)
asj3 andjpyy [14], ande can include fourth-order terms. (@al@a) 905 4100,

Nevertheless, for the nine-velocity model, these terms of

higher order are not considered because either they do nethereg, and|g,), @=0,1,...,0—1) are the moments

affect the hydrodynamics of the model significantly, or theydefined by Eqgs.(11) and the corresponding vectors ¥
lead to some highly anisotropic behavior which is undesir-=R® defined by Eqs(9); Ag, is the change of the moment
able in the LBE modeling of hydrodynamics. due to collision given by Eqg15); |o)=|0?) is the vector
Clearly, LBE modeling of fluids is rather different from of all moments at the uniform equilibrium stdteee Eq(12)
real molecular dynamics. Therefore, it is not necessary to trjor the definition of|o)]. Obviously the linearized collision
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operatorC depends on the uniform state specified by densiand velocityV = (V,,Vy), upon which the perturbatigf ) is
superimposed. Specifically, for the nine-velocity model,

0 0 0 0 0 0 0 0 0
S,al4d —s, O S, Y,V /3 0 S2¥2Vy /3 0 0 0
Syazld 0 —S3  S3y4V,/3 0 S3¥4Vy/3 0 0 0
0 0 0 0 0 0 0 0 0
C= 0 0 0 S5C1/2 —Sg 0 0 0 0 (22
0 0 0 0 0 0 0 0 0
0 0 0 0 0 $,C4/2 -s; 0 0
0 0 0 3551 Vy 0 —3sg7,Vy 0 -—s3 O
0 0 0 39y3Vy/2 0 3sgy3Vy/2 0 0 -5
|
The perturbation in the moments correspondingsi is |6f(k,t+1))=L]|5f(k,t)), (29

|8e), and|Se)=M|8f). The change of the perturbation due

to collisions is linearly approximated bjAp)=C|d¢) in  where

the moment spacé\l spanned by{|g,)|a=0,1,...,0

—1)}. This change of state in discrete velocity spacés L=A"[I+M"'CM], (29)

|Afy=M"1C|Se). Therefore, Eq(19) becomes
is the linearized evolution operator.
|5f(r;+e,,t+1))=|8f(r; 1))+ M ICM|5f(r; ).

(23 V. MODES OF LINEARIZED LBE
In Fourier space, the above equation becomes A. Hydrodynamic modes and transport coefficients
A8 (k,t+1))=[I1+M"1CM]| 6 (k,t)), (29 The evolution equatioii23) is a difference equation that

has a general solution:
whereA is the advection operator represented by the follow-

ing diagonal matrix in discrete velocity spate= R®: |G(rj,t=1))=KJKJZ'|Gy), (30)

Aap= EXPi€, K) Gag, (25 wherem and n are indices for spacer (= mx+ny), andx

whered, is the Kronecker delta. It should be noted that forandy are units vectors along theaxis andy axis, respec-
a mode of wave numbek=(k, k,) in Cartesian coordi- tively; |Go) is the initial state. We can consider the particular
nates, the advection operatrin the above equation can be case of a periodic system such that the spatial dependence of

written as follows: the above general solution can be chosen as
A=diag1,p.q9,1/p,1/9,pq,a/p,1/pq,p/q),  (26) |6t)= exp(—ik-r;+2zt)|G(r;,1)). 31
where By substituting Eqs(30) and (31) into the linearized LBE
p=ekx, qg=ey. @27) (28), we obtain the following equation:

The advection can be decomposed into two parts, along two 2|Gg)=L|[Gy), (32

orthogonal directions, such asaxis andy axis in Cartesian

coordinates: The above equation leads to the dispersion relation between

zandk:
A(ky)=A(k,,k,=0)=diag1,p,1,1h,1,p,1/p,1/p,p),
defL-2zl]=0, (33
A(ky)=A(k,=0k,)=diag 1,19,1,14,9,9,1/q,1/q),
which determines the transport behaviors of various modes

andA(k,) andA(ky) commute with each other: depending on the wave vectkr The solution of the above
eigenvalue problem of the linearized evolution operdtor
A=Alk)A(ky) =Alky)Alky), provides not only the dispersion relation, but also the solu-

i.e., the advection operation can be applied alongttieec- tion of the initial value problem of E¢28):

tion first, and then along thg direction, orvice versa The b
linearized evolution equatiof24) can be further written in a 5Tk, D)=L 8F(k,0))= S 74|2,)(z,] 5F(k,0))
concise form: ' ' “ ZalZal\Za ,0)),
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where |z,) is the eigenvector of with eigenvaluesz, in  The transport coefficients and the Galilean-coefficient are re-
discrete velocity spacg. lated to the eigenvalues af as the following:
The eigenvalue problem of E(B3) cannot be solved ana-

lytically in general, except for some very special cases. Nev- _ i
ertheless, it can be easily solved numerically using various v(k) kZRe[In zr(k)], (389
packages for linear algebra, suchLasAack. For smallk, it
can be solved by a series expansionk.iThe only part ol 1
that hask dependence is the advection operaoil herefore, g(k)V cos¢=— Elm[ln zr(K)], (38D
we can expand ! in L:
1 1
K=A"1=KO+ KD (k) +K@(k?)+ - + KK+ -, zv(k)+§(k)=—ERe[lnzi(k)], (380
(34)
(n) n. 1
whereK™ depends ork™ c(k)£g(k)V cos¢=FimlInz. (k)], (38
1
() P . .
Kanﬁ_ n! (K- €)" - (39 wherez(k) andz- (k) are the eigenvalues corresponding to

the hydrodynamic modes of the linearized evolution operator
When k=0, the eigenvalue problem of théoXb) matrix L. Since the transport coefficients can be obtained through a
LO=(1+M~1CM) can be solved analytically. There exists perturbation analysis, we shall use the following series ex-
an eigenvalue of 1 with threefold degeneracy, which correpansion ink:
sponds to three hydrodynamiconservegfimodes in the sys-

tem: one transversésheaj and two longitudinal(sound v(K)=vo—vik?+ ...+ (=) " k™ + -, (399

modes. It is interesting to note that whés= (7,0) or k

=(0,7), L also has an eigenvalue efl, which corresponds {(K)=Lo= 41K+ .+ (1)K + -+, (39D

to the checkerboard mode, i.e., it is a conserved modé.of

Being a neutral mode as far as stability is concerned, it will Cs(k)=Co—Cik*+ ... +(=1)"Ck*"+---, (390

be necessary to study how it is affected by a mean velocity

V. Thus we shall have to analyze the model koranging 9(K)=0go—g:1k*+ ... +(=1)"gk*"+---. (390

from O to 7, which the standard Chapman-Enskog analysis

cannot do. It should be noted that, in the usual Chapman-Enskog analy-
The hydrodynamic modes &t=0 are sis of LBE models, one only obtains the values of the trans-

port coefficients atk=0. As we shall demonstrate later,
lot)= cosé)j,)— sin 0|jy>z|jT>, (36a higher-order corrections to the transport coefficiénts, hy-

perviscositiesare important to the LBE hydrodynamics, es-
le+)=|p)=(cosd|j,)+ sin 0|jy>)§|p>i liL), (36b pecially for spatial scales of a few lattice spacings.

One possible method by which to solve the dispersion
whered is the polar angle of wave vectér For finitek, the  relation deffL—zI]=0 is to apply the Gaussian elimination
behavior of these hydrodynamic modes depends Wpdn  technique using %/, as small parameters for the noncon-
two-dimensional space, these linearized hydrodynamiserved modesthe kinetic modes Starting from a X9 (b

modes behave as followW87]: X b in general determinant, we obtain a>33 determinant
for the three conserved modes. The elements of this new
ler(t)) =24 0+(0)) determinant are computed as a series 6f, Bhdk with the

necessary numbers of terms to achieve a given accuracy

= exfl —ik(gVcosa)t] when computing the roots of the dispersion equation.

X exp — vk?t)|0+(0)), (379 It should be mentioned that the value of the present tech-
nique is that it provides a very simple means by which to
lo.(1)=2.]0.(0)) analyze models with various streaming and collision rules
- =t with as many adjustable parameters as possible to be deter-
= ex{d *ik(cs=gVcose)t] mined later when trying to satisfy either the stability criteria
or physical requirements to model various hydrodynamic
xXexd — (v/2+k?t]|e - (0)), (37b systems. Free parameters are the equilibrium coefficients in

_ ) . Egs.(16): ¢1, «a;, andvy;; and relaxation rates, .
wherev and{ are the shear and bulk viscosity, respectively;

the coefficientg indicates whether the system is Galilean
invariant (that g=1 implies Galilean invariangecs is the
sound speedy is the magnitude of the uniform streaming  We first consider the case in which the streaming velocity
velocity of the systenV=(V,,V,); and ¢ is angle between V=0. To the first order ink, we obtain two solutions of
the streaming velocityV and the wave vectok. The  Im(Inz.)=%ikcs with
Galilean-coefficientg(k) is similar to theg factor in the
Frish-Hasslacher-Pomeau lattice gas automgt&—17,

which also determines the Galilean invariance of the system.

B. Case with no streaming velocity(V=0)

24+ 22|, (40)
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These are the sound modes supported by the medium. At the C=Vcosp*c2+VZcod ¢, (48)
next order, we obtain modes with Re@)=—r,k’. To en- s

force isotropy we need to have N - )
whereV cos¢=V -k, andk is the unit vector parallel td.

1 1 1 1\(ci+4) This clearly shows that the system obeys Galilean invariance
s 27 (S—— E) 2-c) (41) only up to first order inv. One way to correct this defect is
o 8 ! to allow for compressibility effects in the equilibrium prop-
such that the9 dependence im, vanishes, erties, as shown in Appendix A. The dispersion of sound can
be computed either analytically, by carrying out the pertur-
(2—cy)) (1 1 bation expansion ik, or numerically, by solving the eigen-
Vo= 15 S_s —3) (42)  value problem for any value d&. The dispersion of sound is

important when studying the nonlinear acoustic properties of

which can be interpreted as the shear viscosity of the mehe medium. .
dium in the limitk =0 (measured in basic units of space and Second, the attenuation of the transverse wave depends

time). For the sound modes, we also find an attenuation ratBOt only onV but also on the direction of the wave vector
Re(Inz.)=—(v/2+{)k% where (vo/2+ ¢y) is the longitu- In order to eliminate the'anlsotropy in thé dependence of
dinal kinematic viscosity in a two-dimensional system. Thethe shear wave attenuation, we must choose
bulk viscosity of the model at long-wave-length lirkit 0 is
ci1=—2. (49
(c;+10-12¢2) (1 1
50:T<s_2_ E)' (43 With the above choice af,, the shear viscosity in the limit
of k=0 is given by
The positivity of the transport coefficients leads to the

bounds on the adjustable parameters: vo=[Sx(2— Ss)[C§+ (1- 3c§)V2 cog ¢]+3[2(sg—S,)
—16<a,, (443 +5g(S,— 2) cog ]V cos ¢]/[65,5g
2 2
—4<c<2, (44b) X (V2 cos ¢+cg)]. (50)

and the bounds on the following relaxation parameters:  Similarly, from the attenuation of acoustic waves, one ob-
tains the bulk viscosity(in the limit of k=0) that has a

0<s,<2, (458  complicated dependence on the streaming velogity
0<sg<2. (45D Lo=(V cosp\V?cod ¢+ c{12V?[(s,—Sg)
The bounds fora, andc; will be further narrowed in the +5,(sg—2)cos ¢]+(252—33238+438)(1—3C§)}
following analysis. Based upon the above resultygf ¢y, .
andcg, it is clear that the model is isotropic at rése., the +3V*cos’ ¢[ oS (255 + 35,55~ 85,) +6(S,—Sp) |

streaming velocityV=0) and in the limit of k=0. The 2
Galilean-coefficientg cannot be determined when the +2V7 oS ¢[6(Sy85~ S, S5)C + S(2- )]
streaming velocityV=0. Therefore, the case of a finite +c6VA(s,—Sg) +55(2—Sy)
streaming velocityV is considered next.
X (2—3c2)])/{12s,55(V? cog ¢ +c2)}. (51)
C. Case with a constant streaming velocity V
As indicated by Eqs(38), to the first order irk, the three It is obvious that the streaming velocityhas a second order

hvdrodvnamic roots of the dispersion equati ndz. effect onvg, and a first-order effect ofy,. A careful inspec-
gK/e ch phas@V cose and thepsound sp?ae:q aﬁ; %rdef’c)o tion of the above result of, indicates that the first-order
cause the root of the transverse mode) (to have a correct effect of V on ¢, can be eliminated by settingf=1/3 (or,

phase corresponding to the streaming velovifas expected guivalently,a;=—8). Furthermore, the second-order effect
for a model satisfying Galilean invariance, i.g,=1, we of V on the sound speed and the longitudinal attenuation can

must set also be eliminated by using a slightly more complicated
model with thirteen velocities, as noted by a previous work
2 [38].
1= 73T 3 (46) In summary, although all the transport coefficients are
isotropic in the limitk=0, some undesirable features of the
If we further set LBE models can be clearly observed at the second order in
when the streaming velocity has a finite magnitude. First,
v,=18, (47  the acoustic wave propagation is not Galilean invariant. Sec-
ond, both the shear and the bulk viscosities depend/on
then we obtain the roots of the sound modes)(which lead  Nevertheless, these effects are of second ordgf, iand can
to the sound speed be improved to higher order in bothandV by incorporat-
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ing compressibility into the equilibrium properties of the mo- relaxation parameters in the model as opposed to one in
ments(see Appendix A or using models with a larger ve- the LBE BGK model. Two of thens, andsg, determine the
locity set. bulk and the shear viscosities, respectively. Also, because
C1=—2, Sg=Sg [see Eq.(41)]. The remaining three relax-
D. Third-order result ation parametersss, Ss, and s;, can be adjusted without

. . . . __having any effect on the transport coefficients in the order of
The analysis in the preceding subsections shows that isot- However, they do have effects in higher-order terms

ropy for the.hydrodynam.ic modes of the dispersion eoluatior:Therefore, one can keep values of these three relaxation pa-
can be attained to the first and second orderk by care- rameters only slightly larger than 1no severe over-

fully adjusting the parameters in the model. In the Situationrelaxation effects are produced by these modash that the

mtT t{; ur;gp(rjm s;reatmlng.r\ée]lcoui%]/ par:allel to '; we f'n.d corresponding kinetic modes are well separated from those
at the third-order term itk for the shear mode IS aniso- ,4qes more directly affecting hydrodynamic transport.

tropic, i.e., It is interesting to note that the present model degenerates
2 2 1 1 2 2 to the BGK LBE model[2,3] if we use a single relaxation
O=—|z5a=tg|tlz— o+ 5| Vcose parameter for all the modes, i.s,=1/7, and choose

338 358 9 3 Sg SS
az=4, (549

11 1(2 1 °

+lz——+—|——1]|| co¢ 6— cog 6+ =|.
3 sSg Ssisg 3 va=—18. (54b)

(52)
] ) ] ] Therefore, in the BGK LBE model, all the modes relax with
The anisotropic term ing; (depending on co) can be  gxactly the same relaxation parameter so there is no separa-

eliminated if we choose tion in time scales among the kinetic modes. This may se-
(2—sq) verely affect the dynamics and the stability of the system,
s5=3(3 58) . (53)  due to the coupling among these modes.
98
As indicated by Eq.42), parametersg is usually chosen VI. LOCAL STABILITY ANALYSIS

close to 2 from below in order to obtain a small shear vis- .

cosity (and, consequently, a large Reynolds numbEhere- The stability of the LBE method has not been well under-
fore, the preceding expression yields a small valuesipr ~ Stood, although there exists some preliminary wiatk,42.
This would lead to an undesirable consequence: Moge ~ HOwever, previous work does not provide much theoretical
relaxed with the relaxation parametey would become a [Nsight into either the causes or the remedies for the instabil-
quasiconserved mode leading to some sort of viscoelastiy Of the LBE method. In the following analysis, a system-
effect [14]. Therefore, we usually choose to have lasge atic procedure that identifies some causes of instability is

such that the advection coefficient of transverse waves has hscussed and illustrated by some examples.

angular dependence for nonzérén third order ink. That is, Our stability analysis relies on the eigenvalue problem for
the physical conservation laws are preserved at the expende€ linearized evolution operatay, the dispersion equation.

of the isotropy of the dispersion in third ord@nd all higher ~FOr large values ok, one could in principle analyze the
orders in k. dispersion equation to higher order by perturbation expan-

It should be noted that the value gfhas effects on the sion. In practice, it is more efficient to compute the roots of

Reynolds number because the titneeeds to be rescaled as the dispersion equation numerically. We shall try to identify
gt. the conditions under which one of the modes becomes un-

stable: instability occurs when Re(dp)<0.
We have noticed some interesting qualitative properties of
the dispersion for the nine-velocity model when wave vector
k is parallel to certain special directions with respect to the
Among seven adjustable parametecs,(«;, andvy;) in lattice line. These properties are listed in Table |. These
the equilibrium values of the moments in the modede Egs.  qualitative behaviors of the dispersion equation already dem-
(16)], so far only five of these parameters have been fixed bynstrate the strong anisotropy of the dispersion relations dic-
enforcing the model to satisfy certain basic physics as showtated by the lattice symmetry.
in the preceding analysis;=—2, a,=—8, y1=v3=2/3, To exhibit the complex behavior of the dispersion equa-
and y,=18. These parameter values are the optimal choicéon, we compute the roots of the dispersion equation with a
in the sense that they yield the desirable propeftsstropy, given set of parameters. Figure@land Xb) show the real
Galilean invariance, etc.to the highest order possible in and imaginary parts of the logarithm of the eigenvalues as
wave vectork. It should be stressed that the constraints im-functions of k, respectively. Figure 1 clearly exhibits the
posed by isotropy and Galilean invariance are beyond theoalescence and branching of the roots. This suggests a com-
conservation constraints — models with only conservatiomplicated interplay between the modes of collision operator
constraints would not necessarily be isotropic and Galileamffecting the stability of the model. The asymmetric feature
invariant in general, as observed in some newly proposedf these curves is due to the presence of a constant stream-
LBE models for nonideal gas¢89,40,9. Two other param- ing.
eters,a; andy,, remain adjustable. In addition, there are six ~ The growth rate of a mode,), Re(Inz,), depends on all

E. Optimization of the model and connection
to the BGK LBE model
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TABLE |. Special properties of the dispersion relation when wave vdctigrof some special values.

k Dispersion equation Conditions
[z-1]°=0
[z-(1-5s7)]=0
(0,0) [z—(1-s3)]=0 $7=Ss

[z—(1-s5)]*=0
[z2—(1-s¢)]*=0

[2+1]=0

[z+(1—s5)]=0 or[z+(1—-5s7)]=0
[z+(1—sg)]=0 or[z+(1—5)]=0

(£1,0)m [22—}ssz+55—1]=0
or [2%+ 3(s3—25,)7°
(O,i 1)77 + %{52(58_453) - GS3SB+ 9(52+S3+ Sg_ 2)}22

+3(sg—1)(S5(S5—2) +59)2
+(1-5s,)(1—s3)(1—sg)] =0

[2—(1-35)]?=0

[22—3s5z+85—1]?=0

(x1,£1)7 [Z3+ §(11s,— 353—9)Z?
+35{3(4s5—3)—S(s3+2)}z

+(1-s5)(1—5s3)]=0

the adjustable parameters: the relaxation parameters, the
streaming velocityv, and the wave vectok. To illustrate

this dependence, we consider the BGK LBE model with
1/7=1.99. Figure 2 shows the growth rate for the most un-
stable mode as a function of streaming veloaityand wave
vectork. For eachV, we letk be parallel toVv, with a polar
angle @ with respect to thex axis. Then we search for the
most unstable mode in the intervai®= . For the nine-
velocity BGK LBE model, the unstable mode starts to appear
aboveV~0.07. Figure 2 shows the strong anisotropy of the
unstable mode: the growth rate significantly depends on the
direction ofk, and the critical value ok at which the un-
stable mode starts to appear is also strongly anisotropic. We
also compute the growth rate for the most unstable mode
with V perpendicular tk, and find that the stability of the
model is generally qualitatively the same as whéis par-

allel tok, but is slightly more stable. Generally, we find that
the transverse mode is more stable than longitudinal modes.
In many instances we have observed that sound waves
propagating in the direction of the mean flow velocditycan

be quite unstable. This instability may be reduced by making
the first-orderV-dependent term in the attenuation of the
sound waveg {, in Eq. (51)] equal to O by choosing?
=1/3, as indicated in the preceding section. It should be
noted that when the growth rate is infinitesimal, it takes an
extremely long time for the instability to develop in simula-
tions. Because the unstable modes we have observed have a
large wave vectok (small spatial scajeas a practical means

of reducing the effect of instabilities in LBE simulations,

some kind of spatial or temporal filtering technique may be g, 1. Logarithmic eigenvalues of the nine-velocity model.

Re[lnz,]

0 1T/2. 1'r
k

used in the LBE schemes to reduce small-scale fluctuationhe values of the parameters atg=—8, az=4, ¢;=—2, 7,

and thus to limit the development of instabilities. =y;=2/3, y,=18, andy,=—18. The relaxation parameters are

It should be pointed out that we do not discuss here the,=1.64,s;=1.54, s;=s,=1.9, andsg=s,=1.99. The streaming
influence of boundary conditions that may completelyvelocityV is parallel tok with V=0.2, andk is along thex axis. (a)
change the stability behavior of the model through eitheiRe(Inz,) and(b) Im(Inz,).
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' =1/7<1.99. Therefore, we can conclude that by carefully

0.03 ] separating the kinetic modes with different relaxation rates,
9=30°1 we can indeed improve the stability of the LBE model sig-
= nificantly.
g 0.02/ 8
g VII. NUMERICAL SIMULATIONS
% OF SHEAR FLOW DECAY
s 0.01 To illustrate the dispersion effects on the shear viscosity

in hydrodynamic simulations using the LBE method, we
conduct a series of numerical simulations of the shear flow
decay with different initial velocity profiles. The numerical
implementation of the model is discussed next.

0.07 0.12 0.17
4

FIG. 2. Growth rate of the most unstable mode for the BGK A. Numerical implementation and initial conditions

LBE model —Inz, vs the streaming velocity magnitudé The Th uti f th del still ists of t t .
relaxation parametesg=1/7=1.99. The wave vectdk is set par- e. evolution 9 . € model st . CO.nSIS S0 W.O S. eps:
advection and collision. The advection is executed in discrete

allel to the streaming velocity. For each value o with a polar -
angled with respect to the axis, the growth rate is computed in the VEIOCity space, namely, tf (x,t)), but not to the moments

interval O<k< in k space. Each curve corresponds to the growthl @ (X;t)). However, the collision is executed in moment
rate of the most unstable mode with a givénandk parallel toV space. Therefore, the evolution involves transformation be-

with the polar angle? with respect to thex axis. tween discrete velocity spaééand moment spac#, simi-
lar to Fourier transform in the spectral or Galerkin methods.

large-scale genuine hydrodynamic behavior or local excital N€ €volution equation of the model is
[f(x+e,8,t+8))=f(x,1)) + M~ S[|o(x,1)) —| D],

tion of Knudsen modes.
As previously indicated, the adjustable parameters in our
model can be used to alter the properties of the model. The (55
stability of the BGK LBE model and our model is compared yheres is the diagonal relaxation matrix:
in Fig. 3. In this case we choose the adjustable parameters in
our model to be the same as the BGK LBE model, but main-
tain the freedom of different modes to relax with different
relaxation parametess, . Figure 2 shows that for each given | simulations using the LBE method, the initial condi-
value ofV, there exists a maximum value sf=1/7 (which  tions provided are usually specified by velocity and pressure
determines the shear viscosityelow which there is no un- (density fields. Often the initial condition of , is set to its
stable mode. The values of other relaxation parameters Us@auilibrium value corresponding to the given flow fields,
in our model ares,=1.63, s3=1.14, ss=s;=1.92, andsy  with a constant density if the initial pressure field is not
=sg=1/7. Figure 3 clearly shows that our model is more specified. The initial conditions of, can include the first-
stable than the BGK LBE model in the interval £83  order effectfY). The first-order effect in moment space is
obtained through Eq55):

S=diag 0,—s,,—S3,0,—55,0,—S;,—Sg,—Sg). (56)

Wy=g5-1MD| (e 5
0.20 ] le™) |£9), (57)
whereD is a diagonal differential operator:
. 0.15r1 ) Dup=us€a- V. (58)
Equation(57) is similar to Chapman-Enskog analysisf§f .
00« Moment 152 Woda ] For the shear flow, only the initial velocity profile is
BGK LBE Model given_. The density mo_d.e. is_ set to be uniform initially. The
0.050 remaining modes are initialized as the following:
1.9 1.95 2.0
sg=1/T p=1, (593
FIG. 3. Stability of the generalized LBE model vs the BGK e= —2+3(u>2(+ uf,), (59b)
LBE model in the parameter space\6andsg=1/7. The lines with
symbols[] and X are results for the BGK LBE model and the s=1—3(u2+u2) (590
model proposed in this work, respectively. The region under each Xy
curve is the stable region in the parameter spacé andsg=1/7. _
Note that the stability of the BGK LBE model starts to deteriorate Ox= —Ux, (599
after sg=1.92, whereas the stability of the proposed generalized
LBE model remains virtually intact. qy= —Uuy, (59¢
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2
Proc= (U= UJ) = 5 (del—dyly), (591) L.Or 1
8
1 5
Pxy= UxUy— 3—88(ayux+ dyxuy). (599 %
8 0.5 b
The terms inp,, andp,, involving derivatives of the veloc- ?
ity field take into account viscous effects in the initial con-
ditions. These terms are obtained through &4). The first- Theory
order terms in turn induce second-order contributiomih X X Simulation (a)
respect to space derivatiyeghich are not included here. 0.0 \
This leads to weak transients of short duration if there is N/4 N./2 3N,/4
x

separation of time scales {25g) <(2—ss).

Our first test is the decay of a sinusoidal wave in a peri- :
odic system for various values &f The numerical and the- il
oretical results agree with each other extremely well and
confirm thek dependence of and v. The agreement indi-
cates that our local analysis is indeed sufficiently accurate in
this case.

The next case considered is more interesting and reveal-
ing because the initial velocity contains shocks. Consider a
periodic domain of sizéN, X N,=84x4. At time t=0, we
take a shear wavey(x,0) of rectangular shap@liscontinui- 1

Theory

. . X X Simulation
ties inuy atx=N,/4 andx=3N,/4): 0.0 ‘ (b)
Uy(x,00=Up, 1<x<N,/4, No/4 Ne/2 /4
3N, /4<X=N,, FIG. 4. Decay of discontinuous shear wave velocity profile
uy(x,t). The lines and symbolgx) are theoreticalEq. (60)] and
Uy(x,0)=—Up, N,/4<x<3N,/4. numerical results, respectively. Only the positive half of each ve-

locity profile is shown. LBE mode{a) with no interpolation,(b)
The initial conditionu,(x,0) is set to a constant everywhere. with the central interpolation and=0.5.
We consider two separate cases with and without a constant

streaming velocity/. pendence of(k) caused by the interpolation. This phenom-
ena is not necessarily connected to the Burnett effect, as
B. Steady casgV=0) claimed by a previous worf46]. This artifact is also com-
For the case of zero streaming velocity, the initial condi-{nonly observed in other CFD methods involving interpola-
ions.

tion for u, is zero in the system. The solution of the Navier-

Stokes equation for this simple problem is Figure 5 shows the decay of(x,t) at one location of

Theory

Uy(X,1)= >, a, exp(— v kat)cogKkx), (60)

_____ Simulation |

1.0

wherea,, is the Fourier coefficient of the initial velocity pro-
file uy(x,0), vo=w(kp), andk,=2m(2n—1)/N,. The mag-
nitude of theu,(x,0), Uy=0.0001 in the simulations.

Figures 4a) and 4b) show the decay of the rectangular
shear wave simulated by the normal LBE scheme and the
LBE scheme with second-order central interpolatigvith
r=0.5, wherer is the ratio between advection lengsh and
grid size A,), respectively.(The detailed analysis of LBE
schemes with various interpolations is provided in Appendix 0.5 :
B.) The lines are theoretical results of E§O) with v(k,) 0 0.08 0.16
obtained numerically. The times at which the profile of rt
uy(x,t) (normalized byJo) shown in Fig. 4 ar¢= 100, 200, FIG. 5. Decay of discontinuous shear wave velocifgx,t) at a
.. .,500. The numerical and theoretical results agree closelycation close to the discontinuity=3N,/4. The solid lines and
with each other. The close agreement shows the accuracy ghshed lines are theoretical and numerical results, respectively. The
the theory. In Fig. &), the overshoots at early times due to LBE scheme with no interpolation does not have an overshooting,
the discontinuous initial condition are well captured by thewhereas the LBE scheme with central interpolation erd.5 has.
analysis. This overshoot is entirely due to the strénde-  The time is rescaled as 2t.

no interpolation

w(x,t) /U,

interpolated
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discontinuity, x=3N,/4=63. We tested the normal LBE (a) T '
scheme without interpolation and the LBE scheme with
second-order central interpolation witk- 0.5, and compared
the numerical results with theoretical ones. Again, the nu-
merical and theoretical results agree very well with each
other for both caseéwith and without interpolation Note
that the time is rescaled as 2t in the figure. It should be
pointed out that the LBE solutions of the flow differ from the
analytic solution of the Navier-Stokes equation in both short-
time and long-time behavior. Interpolation causes overshoot
in the velocity at the initial stage. Even without interpolation, I
the LBE solution does not decdgxponentially right away. 0.0 , ‘
This is due to the variation of the viscosity wikhand this N /4 3N,/4 5N,/4
could be interpreted as the influence of the kinetic mogdgs. x

we had a vanishingly small Knudsen number, then khe
dependence would be negligible; however, all relaxation
rates must be smaller than 2 so that higher modes can play a
role)) This transient behavior is due to the higher-order effect
(of velocity gradienk, as discussed previously.

1.0+ ~;::::::,':;:::::::::;::;::';;.:‘..i,v;;‘é:,:::,; e T -

wy(,8) /Uy

C. Streaming case(V =constany

uy(x,t)/UO

We also consider the case with a constant streaming in the
initial velocity, i.e., u,(x,0)=V,=0.08. This allows us to '
check the effects of the non-Galilean invariance in the sys-
tem. With a constant streaming velocity, the solution of the ‘ '

Navier-Stokes equation is 0.0 Ll e
N,/4 3N,/4 5N,/

% X X £ I & (CI)

Uy(X,t)= >, a,exp(— rokat)cog ky(x—g,Vyt)], (61)

s

1.0
whereg,=g(k,) is the Galilean coefficient. -
Similarly to Fig. 4, Fig. 6 shows the evolution af(x,t)
for the same times as in Fig. 4. The solid lines and the sym-
bols (X) represent theoretical and numerical results, respec-
tively. Shocks move from left to right with a constant veloc-
ity V,=0.08. Figures @), 6(b), and Gc) show the results for |
the normal LBE scheme without interpolation, the scheme 0 v
with second-order central interpolation, and the scheme with I ! 1o
second-order upwind interpolation, respectively. In Figs. 0.0l {1 L 10
6(b) and Gc), the dashed lines are the results obtained by
settingg,=1 in Eq. (61). Clearly, the effect ofj(k) is sig-
nificant. For the LBE scheme with central interpolation, the
results in Fig. €) with g(k) =1 underpredict the overshoot- FIG. 6 Decay of discont_inuous shear wave veloc?ty_profile
ing at the leading edge of the shock and overpredict thaly(x,t) with a constant strear_mng velociyy,=0.08. The_ solid lines
overshooting at the trailing edge, whereas the results in Fig?"d symbols(x) are theoretica[Eq. (61)] and numerical results,
6(c) for the LBE scheme with upwind interpolation overpre- reSPectively. The dashed lines(in) and(c) are obtained by setting
dict the overshooting at the leading edge of the shock ang=1 in Ed. (61. LBE model(a) with no interpolation,(b) with

underpredict the overshooting at the trailing edge central interpolation and= 0.5, (c) with upwind interpolation and
’ r=0.5.

u,(2,t) /Uy

0.5F ) .

N,/ 4 3N,/ 4 5N,/4

X

Vill. CONCLUSION AND DISCUSSION and stability of the model can be easily analyzed. In sum-

In this paper, a generalized nine-velocity LBE modelmary, a systematic and general procedure by which to ana-
based on the generalized LBE model of d’'Hure&{27] is  lyze the LBE models is described in detail in this paper.
presented. The model has the maximum number of adjuslthough the model studied in this paper is relatively simple,
able parameters allowed by the discrete velocity set. Théhe proposed procedure can be readily applied to analyze
values of the adjustable parameters are obtained by optimiznore complicated LBE models.
ing the hydrodynamic properties of the model through the The theoretical analysis of the model is verified through
linear analysis of the LBE evolution operator. The linearnumerical simulation of various flows. The theoretical results
analysis also provides the generalized hydrodynamics of thelosely predict the numerical results. The stability of the
LBE model, from which dispersion, dissipation, isotropy, model is also analyzed and compared with the BGK LBE
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model. It is found that the mechanism of separate relaxationg, provided that the Galilean invariance is also assured up to
for the kinetic modes leads to a model which is much morea certain order ok, then we can claim that the LBE model is
stable than the BGK LBE model. indeed adequate to simulate the Navier-Stokes equatigns
The proposed model is a Galerkin type of scheme. Into a certain order ok). There is no distinction between the
comparison with the BGK LBE model, the proposed modelLBE model and the Navier-Stokes equations up to a certain
requires the transformations between the discrete velocitprder of k. Thus, there is no need to use the Chapman-
spaceV and the moment spadé back and forth in each step Enskog analysis to obtain the macroscopic equations from
in the evolution equation. However, the extra computationathe LBE models. On the other hand, we have also shown
cost due to this transformation is only about 10—20 % of thghat, in the limit ofk=0, these two approaches obtain the
total computing time. Thus, the computational efficiency issame results in terms of the transport coefficients and the
comparable to the BGK LBE model. Our analysis also showg>alilean coefficient. Nevertheless, it is very difficult to apply
that the LBE models with interpolation schemes have enorthe Chapman-Enskog analysis to obtain the generalized hy-
mous numerical hyperviscosities and anisotropies due to thdrodynamics of the LBE models, which is important to LBE
interpolations. numerical simulations of hydrodynamic systems. The stabil-
We also find optimal features of the proposed nine-ity result obtained by the linear analysis presented in this
velocity model: it is difficult to improve the model by simply paper is very difficult for the standard Chapman-Enskog
adding more velocities. For instance, we found that addingnalysis to obtain. Therefore, the proposed procedure by
eight more velocities£ 1,=2) and (+2,=1) would notim- ~ Which to analyze the LBE model indeed contains more in-
prove the isotropy of the model. However, our analysis doeformation and is more general than the low-order Chapman-
not provide anya priori knowledge of an optimal set of Enskog analysis. Despite its generality and power, the linear
discrete velocities. That problem can only be solved by opanalysis has its limitations. Because it is a local analysis, it
timization of the moment problem in velocity spai@]. It ~ does not deal with gradients.
is also worth noting that the values of all but twag(and Our future work will extend the analysis to fully thermal
v4) of the adjustable parameters in our model coincide withand compressible LBE models in three-dimensional space.
the corresponding parameters in the BGK LBE model. The
main distinction between our model and the BGK LBE ACKNOWLEDGMENTS
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servation that some flows are much more stable than what is
predicted by the linear analysis of spatially uniform flows. APPENDIX A: COUPLING BETWEEN DENSITY
For instance, in plane Couette flow with only two nodes AND OTHER MODES
along the flow direction, the only possible valueskadlong
the same direction are 0 and which are far from the value 5p=p—(p) and other modes;, &, pyy. andpy. the equi-

of k at which the bulk instability occurs. Namely, the recip- libri | fth q dified 5s to the foll
rocal latticek is not large enough to accommodate the pos—.I r|_um values ot these modes are modilied as 1o the follow-

sible unstable modes. Furthermore, in the direction perpeH-ng'

To consider the coupling between the density fluctuation

dicular to the flow, although the reciprocal lattike can ea)_ o .o

accommodate unstable shear modes, the velocity gradient, e(*0= azptyvallxtiy)(2=p), (Al3)

alters the stability of the systerfit improves the stability in

this particular ca§¢. ystertt Imp ’ eCV=agp+y,(j3+iy)(2-p), (ALb)
One philosophic point must be stressed. We deliberately (eq) .

did not derive the macroscopic equations corresponding to o =r1(ix+iy)(2=p), (Alc)

the LBE model in this work; instead, we only analyzed the

generalized hydrodynamic behavior of the modes of the lin- p§§Q)= Y3(ixiy)(2—p), (Ald)

earized LBE evolution operator. We argue that if the hydro-
dynamic modes behave exactly the same way as those of thehere (2-p) is used to linearly approximate divhen the
linearized Navier-Stokes equations, up to a certain order ofiveraged density,=(p)=1. With the above modifications,
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k FIG. 8. k dependence of the Galilean coefficienfor various

models. Solid lines, dotted lines, and dashed lines corresponfd to
FIG. 7. k dependence of viscosities for various models. The— g, 7/g, andw/4, respectively. The middle three curves gi&)
values of the adjustable parameters and the relaxation parametggy the LBE model without interpolation, the lower three for the
are the same as in Fig. 1. The solid lines, dotted lines, and dashgE model with central interpolation and=0.5, and the upper

lines correspond t@=0, /8, andw/4, respectively. LBE model tnree for the LBE model with upwind interpolation anet 0.5.
(a) with no interpolation(b) with central interpolation, ant) with

upwind interpolation.
2

four elements in the first column of the linearized collision 9=1+ 3 5[(Sg—2)(S5—g)(S5Sg— 355~ 355+ 6)

operatorC accordingly become 5558
k2v2
1 1 +(cod 6— cog )]+ [(2—sg)(Sg—S,)sir? ¢
C12: SZ Zaz_g ’}/2(V§+V)2/)}, (A2a) 6C§stg
+2¢2s,(S5— 655+ 6)C0F ¢]. (A5)
1 1 2 2
Ci3=53 Zas_gﬂ(VxJFVy) : (A2b)
APPENDIX B: INTERPOLATED LBE SCHEME
3
— 2 2
Cig=— 55871(Vx_vy)v (A20) Recently, it has been proposed to use interpolation
schemes to interpolatgf .} from a fine mesh to a coarse
3 mesh in order to improve the spatial resolution calculations
Cio= 58973VXVV (A2d)  for a limited cost in total number of nodg¢d3,44. Obvi-

ously, the interpolation schemes create additional numerical
viscosities. The Chapman-Enskog analysis shows that any
Based on the linearized collision operator with the abovesecond- or higher-order interpolation scheme does not affect
changes, the shear and the bulk viscosities at the limk of the viscosities in the limik— 0 on the fine mesh. A problem
—0are with much greater importance in practice is to calculate the
viscosity at finitek. To our knowledge, no such analysis is
1 5 1 1 now available in the literature.
vo=3(1-V cos ¢) ss 2) (A3) In the interpolated LBE schemes, the advection step is
altered by the interpolation scheme chosen, while the colli-
sion step remains unchanged. The advection on a fine mesh
combined with interpolation on a coarse mesh is the recon-
struction step on the coarse mesh. Therefore, to obtain the
modified linearized evolution operatbr only the advection
_ Vcosé operationA must be changed. In what follows, we shall con-
12cs,Sg sider a coarse mesh with lattice constapt and time step
) S;. The lattice constant of a underlying fine meshr &,
with r<1. Effectively, the hopping velocities of particles are

1 2
§o=l—253(2—305)(2—52)

(1—3c2)(3s,55— 25, — 4sg)

* 45258[52 S+ 2(S283— S, Sg)COS’ ] reduced by a factor of on coarse mesh. Therefore, dimen-
3 sional analysis suggests that the sound speed is reduced by a
V~cosé [S,— Sg+ Sy(Sg— 2)co ] (aA4)  factorofr, and the viscosities are reduced by a factarah
ACsysg - 2 0 TAT® ' the limit k=0. However, the dimensional analysis does not

provide any information about the quantitative effects of in-
terpolation wherk is finite. We shall analyze the effects of
some commonly used second-order interpolation schemes in

The sound modes propagate with velodity- ¢, (at first or-
der ink). The Galilean coefficient up t®(k?) is
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the LBE methods. For simplicity, we shall only deal with a 2. Upwind interpolation

uniform mesh with square grids. The upwind direction in the LBE method is relative to the

particle velocitye, (the characteristiggrather than the flow
1. Central interpolation velocity u. Therefore, the interpolation stencil is static in
The reconstruction step with second-order central interpoliMe. Second-order upwind interpolation leads to
lation is given by the following formula: F(r—1)
fo(r)= > fo(rj—26r,)+r(2—r)fh(r;—or,)

fo(ry)= r(r2—1) X (rj=or,) +(1—r?)fi(r))

(1—f)(2—f)f*
r(r+1) T fa), (B7)
+— f(rj+0r,), (B1)

where 6r, is defined in Eq.(B3). Accordingly, the phase

wheref* is the post-collision value of,, i.e., factors in the advection operator given by EB4) become

*=f,+Q,f), B2 1-r)(2—r) r(2-r) r(r—1
o (f) (B2) A=( ) )+( )+( ), (883
2 P 2p?
and
(1-r)(2—r) r(r—1)p?
1 - " T _ 4y "
o =6, (B3) B 2 r2=rjp 7 (B8D
The advection operator in this case becomes C:(l—r)(z—r) n r(z—r +r(r —b (B8O)
2 q 292
A= diag 1A,C,B,D,AC,CB,BD,DA), (B4)
(1—r)(2—r) r(r—1)g?
where D=———+r2-nNg+———, (B8d)
r(r+1 r(r—1 ) .
A:(T)p'i‘(l_rz)—F (2—) (B5@  wherep=e'*x andgq=e'".
P Again, the third-order termq;) in k for the shear mode is
anisotropic unless the following relation is satisfied:
r(r+1) r(r—=21)p
B= +(1-r%)+ ——>, (B5b)
2p 2
2 (2—sg)
S5=r*—s . (B9)
r(r+1)q r(r—1) (3r°—3rsg+2sg)
C=—ag—+ 1-r?)+ 2q (B50)
For sg ands; in the usual rangesg near 2 andsg between 1
r(r+1) r(r—1)q and 3/2), the preceding equation leads to a complex value of
D= 2q +(1—r2)+T, (B5d) r. It should be pointed out that due to the commutativity of

propagation along andy axes, one could apply different
interpolation formulas along each axis, according to the
physics of flow. For instance, a large stretch of grid can be
applied in the direction along which flow fields do not
change much in space, whereas in the other orthogonal di-
rection, a normal gridwithout interpolation or even a re-
ined grid [45] can be used, so that the aspect ratio of the
eshes is large enough to be appropriate to the flow.
Figure 7 shows th& dependence of the normalized shear
viscosity v(k)/ v, for the LBE model with and without inter-
polation schemes. Three orientationsko&re chosenf=0
(solid ling), 7/8 (dotted ling, and /4 (dashed ling Figures
7(a), 7(b), and 7c) show thewv(k)/vy for the LBE model
(2—sy) with no interpolation, with second-order central interpolation
2 = %8 (86)  scheme and =0.5, and with second-order upwind interpo-
(3r2—sg) lation scheme and=0.5, respectively. It should be stressed
that interpolation schemes do create an enormous amount of
which improves Eq(53), since we can choosg close to 2  numerical viscosity ak= 7/2: Both the central and the up-
while maintainingss reasonably far away from @etween 1 wind interpolation schemes increase the shear viscosity at
and 3/2) by taking? close to 2/3. = /2 by almost two orders of magnitude, whereas without

wherep=e*x andq=¢'*y. With the new phase factors, we
find new results at orders 1 and 2knThe speed of sound
and the Galilean coefficient are multiplied byand the vis-
cosity coefficients are multiplied by?.

At higher order ik, dispersion effects due to lattice arise,
leading to differences between solutions of the standar
Navier-Stokes equations and the flows computed using the
LBE technique.

As in Eqg.(53), we find that the advection coefficient for
shear waves can be made isotropic to second ordkrky
choosing

S5=3r
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interpolation, the corresponding increase for the LBEthree curvesg(k)=1, correspond to the LBE scheme with

scheme is at most only a factor of about @rbthe direction  the upwind interpolation. Again, interpolations have a sig-

0= /8). In all cases, the viscosity displays significant an-nificant effect on Galilean invariance.

isotropy atk= /2. One common feature observed in Figs. 7 and 8 is that the
Similarly to Fig. 7, Fig. 8 shows thk dependence of the transport coefficients of a model along the direction fof

Galilean-coefficieng(k). The three curves in the middle of ==/8 is far from those along the directior=0 and ¢

the figure corresponding to the LBE model without interpo-= #/4. This is related to the fact that for the square lattice,

lation. The lower three curvegy(k)<1, correspond to the the wave vectok along the directiord= /8 is not a recip-

LBE scheme with the central interpolation, and the upperrocal vector of the underlying lattice.
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