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Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy,
Galilean invariance, and stability
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The generalized hydrodynamics~the wave vector dependence of the transport coefficients! of a generalized
lattice Boltzmann equation~LBE! is studied in detail. The generalized lattice Boltzmann equation is con-
structed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model
is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation
technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the
given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dissipation~hyperviscosi-
ties!, anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the
adjustable parameters that optimize the properties of the model. The proposed generalized hydrodynamic
analysis also provides some insights into stability and proper initial conditions for LBE simulations. The
stability properties of some two-dimensional LBE models are analyzed and compared with each other in the
parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in
this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation
schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity profile~shock!
with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE
model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis
of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long-wavelength limit~wave
vectork50), it can also provide results for large values ofk. Such results are important for the stability and
other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.

PACS number~s!: 47.10.1g, 47.11.1j, 05.20.Dd
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I. INTRODUCTION

The method of lattice Boltzmann equation~LBE! is an
innovative numerical method based on kinetic theory
simulate various hydrodynamic systems@1–3#. Although the
LBE method was developed only a decade ago, it has
tracted significant attention recently@4,5#, especially in the
area of complex fluids including multiphase fluids@6–11#,
suspensions in fluid@12#, and viscoelastic fluids@13,14#. The
lattice Boltzmann equation was introduced to overco
some serious deficiencies of its historic predecessor: the
tice gas automata~LGA! @15–17#. The lattice Boltzmann
equation circumvents two major shortcomings of the latt
gas automata: intrinsic noise and limited values of transp
coefficients, both due to the Boolean nature of the LG
method. However, despite the notable success of the L
method in simulating laminar@18–21# and turbulent@22#
flows, understanding of some important theoretical asp
of the LBE method, such as the stability of the LBE metho
is still lacking. It was only very recently that the forma
connections between the lattice Boltzmann equation and
continuous Boltzmann equation@23–25# and other kinetic
schemes@26# were established.
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In this work we intend to study two important aspects
the LBE method which have not been systematically stud
yet: ~a! the dispersion effects due to the presence of a lat
space and~b! conditions for stability. We first construct
LBE model in moment space based upon the general
lattice Boltzmann equation due to d’Humie`res@27#. The pro-
posed model has a maximum number of adjustable par
eters allowed by the freedom provided by a given discr
velocity set. These adjustable parameters are used to
mize the properties of the model through a systematic an
sis of the generalized hydrodynamics of the model. Gene
ized hydrodynamics characterizes dispersion, dissipa
~hyperviscosities!, anisotropy, lack of Galilean invariance
and instability of the LBE models in general. The propos
generalized hydrodynamic analysis enables us to improve
properties of the models in general. The analysis also p
vides us better insights into the conditions under which
LBE method is applicable and comparable to conventio
computational fluid dynamics techniques.

Furthermore, from a theoretical perspective, we wo
like to argue that our approach can circumvent the Chapm
Enskog analysis to obtain the macroscopic equations f
the LBE models@27,13,14#. The essence of our argument
that the validity of the Chapman-Enskog analysis is entir
based upon the fact that there are two disparate spatial s
in real fluids: the kinetic~mean-free-path! and the hydrody-
namic scales the ratio of which is the Knudsen numb
When the LBE method is used to simulate hydrodynam
motion over a few lattice spacings, there is no such sep
ic
6546 ©2000 The American Physical Society
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tion of the two scales. Therefore, the applicability
Chapman-Enskog analysis to the LBE models might beco
dubious. Under the circumstances, analyzing the genera
hydrodynamics of the model becomes not only appropr
but also necessary.

It should also be pointed out that there exists previo
work on the generalized hydrodynamics of the LGA mod
@28–32# and the LBE models@33#. However, the previous
work only provides analysis on nonhydrodynamic behav
of the models at finite wavelength, without addressing i
portant issues such as the instability of the LBE method
providing insights into constructing better models. In t
present work, by using a model with as many adjusta
parameters as possible, we analyze the generalized hydr
namics of the model so that we can identify the causes
certain nonhydrodynamic behavior, such as anisotropy,
lack of Galilean invariance, and instability. Therefore, t
analysis shows how to improve the model in a system
and coherent fashion.

This paper is organized as follows. Section II gives a br
introduction to the two-dimensional~20! nine-velocity LBE
model in discrete velocity space. Section III discusses
generalized LBE model in moment space. Section IV deri
the linearized lattice Boltzmann equation from the gene
ized LBE model. Section V analyzes the hydrodynam
modes of the linearized evolution operator of the generali
LBE model, and the generalized hydrodynamics of
model. The dispersion, dissipation, isotropy, and Galile
invariance of the model are discussed. The eigenvalue p
lem of the linearized evolution operator is solved analytica
and numerically. Section VI analyzes the stability of t
LBE model with Bhatnagar-Gross-Krook~BGK! approxima-
tion, and compares with the stability of the LBE model pr
o
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sented in this paper. Section VII discusses the correct in
conditions in the LBE simulations, and presents numeri
tests of shear flows with discontinuities in the initial veloci
profile. Section VIII provides a summary and concludes
paper. Two appendices provide additional analysis for va
tions of the LBE models. Appendix A analyzes a model w
coupling between densityr and velocityu, and Appendix B
analyzes the LBE models with various interpolatio
schemes.

II. 2D NINE-VELOCITY LBE MODEL

The guiding principle of the LBE models is to construct
dynamical system on a simple lattice of high symme
~mostly square in 2D and cubic in 3D! involving a number of
quantities that can be interpreted as the single-particle di
bution functions of fictitious particles on the links of th
lattice. These quantities then evolve in a discrete time
cording to certain rules that are chosen to attain some de
able macroscopic behavior that emerges at scales large
tive to the lattice spacing. One possible ‘‘desirab
behavior’’ is that of a compressible thermal or athermal v
cous fluid.~To simplify the analysis, in this work we sha
restrict our analysis to the athermal case.! We shall demon-
strate that the LBE models can satisfactorily mimic the flu
behavior to an extent that the models are indeed usefu
simulating flows according to the similarity principle of flui
mechanics. For the sake of simplicity, we confine our disc
sions here to two-dimensional space. The extension to th
dimensional space is straightforward, albeit tedious.

A particular two-dimensional LBE model considered
this work is the nine-velocity model. In this model, space
discretized into a square lattice, and there are nine disc
velocities given by
ea5H ~0,0!, a50,

~cos@~a21!p/2#,sin@~a21!p/2# !c, a51 –4,

~cos@~2a29!p/4#,sin@~2a29!p/4# !A2c, a55 –8,

~1!
on

s

wherec5dx /d t is the unit of velocity anddx andd t are the
lattice constant of the lattice space and the unit of time~time
step!, respectively. From here on we shall use the units
dx51 andd t51 such that all the relevant quantities are
mensionless. The above discrete velocities correspond to
particle motion from a lattice noder j to either itself, one of
the four nearest neighbors (a51 –4), or one of the four
next-nearest neighbors (a55 –8). This model can easily b
extended to include more discrete velocities and in spac
higher dimensions, thereby including further distant neig
bors to which the particles move in one time step. Nevert
less, ‘‘hopping’’ to a neighbor on the lattice induces inhere
limitations in the discretization of velocity space.

For the particular model discussed here, nine real nu
bers describe the medium at each noder j of a square lattice:

$ f a~r j !ua50,1, . . . ,8%.
f

he

of
-
-
t

-

The numberf a can be considered as the distribution functi
of velocity ea at locationr j ~and at a particular timet). The
set$ f a% can be represented by a vector inR9 that defines the
state of the medium at each lattice node:

u f ~r j !&[~ f 0 , f 1 , . . . ,f 8!T. ~2!

Once the vectoru f (r j )& is given at a pointr j in space, the
state of the medium at this point is fully specified.

The evolution of the medium occurs at discrete timet
5nd t ~with d t51). The evolution consists of two steps:~1!
motion to the relevant neighbors~modeling of advection! ~2!
redistribution of the$ f a% at each node~modeling of colli-
sions!. These steps are described by the equation

f a~r j1ea ,t11!5 f a~r j ,t !1Va~ f !. ~3!
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The above equation is the so-called lattice Boltzmann equation~LBE!. The lattice Boltzmann equation can be rewritten in
concise vector form:

u f ~r j1ea ,t11!&5u f ~r j t !&1uD f &, ~4!

where the following notations are adopted:

u f ~r j1ea ,t11!&[@ f 0~r j1e0 ,t11!, f 1~r j1e1 ,t11!, . . . ,f 8~r j1e8 ,t11!#T, ~5a!

uD f &[@V0~ f !,V1~ f !, . . . ,V8~ f !#T, ~5b!
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so thatu f (r j1ea ,t11)& is the vector of a state after adve
tion, and uD f & is the vector of the changes inu f & due to
collision V.

The advection is straightforward in the LBE models. T
collisions represented by the operatorV may be rather com-
plicated. However,V must satisfy conservation laws and b
compatible with the symmetry of the model~the underlying
lattice space!. This might simplify V considerably. One
simple collision model is the BGK model@34,2,3#:

Va52
1

t
@ f a2 f a

(eq)#, ~6!

wheret is the relaxation time in units of time stepd t ~which
is set to be 1 here!, and f a

(eq) is the equilibrium distribution
function that satisfies the following conservation conditio
for an athermal medium:

r5(
a

f a
(eq)5(

a
f a , ~7a!

ru5(
a

ea f a
(eq)5(

a
ea f a , ~7b!

wherer andu are the~mass! density and the velocity of the
medium at each lattice node, respectively. For the so-ca
nine-velocity BGK model, the equilibrium is usually taken

f a
(eq)5warF113~ea•u!1

9

2
~ea•u!22

3

2
u2G , ~8!

wherew054/9, w1,2,3,451/9, andw5,6,7,851/36.
Some shortcomings of the BGK model are apparent.

instance, because the model relies on a single relaxation
rametert, the Prandtl number must be unity when the mo
is applied to thermal fluids, among other things. One way
overcome these shortcomings of the BGK LBE model@2,3#
is to use a generalized LBE model which nevertheless ret
the simplicity and computational efficiency of the BGK LB
model.

III. MOMENT REPRESENTATION
AND GENERALIZED 2D LBE

Given a set ofb discrete velocities,$eaua50,1, . . . ,(b
21)% with corresponding distribution functions,$ f aua
50,1, . . . ,(b21)%, one can construct ab-dimensional vec-
tor spaceRb based upon the discrete velocity set, and this
usually the space mostly used in the preceding discussio
the LBE models. One can also construct a space based
the ~velocity! moments of$ f a%. Obviously, there areb inde-
pendent moments for the discrete velocity set. The reaso
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favor of using the moment representation is somewhat o
ous. It is well understood in the context of kinetic theory th
various physical processes in fluids, such as viscous tr
port, can be approximately described by coupling or inter
tion among ‘‘modes’’~of the collision operator!, and these
modes are directly related to the moments~e.g., the hydro-
dynamic modes are linear combinations of mass, and
menta moments!. Thus the moment representation provide
convenient and effective means by which to incorporate
physics into the LBE models. Because the physical sign
cance of the moments is obvious~hydrodynamic quantities
and their fluxes, etc.!, the relaxation parameters of the m
ments are directly related to the various transport coe
cients. This mechanism allows us to control each mode
dependently. This also overcomes some obvious deficien
of the usual BGK LBE model, such as a fixed Prandtl nu
ber, which is due to a single relaxation parameter of
model.

For the nine-velocity LBE model, we choose the follow
ing moments to represent the model:

ur&5~1,1,1,1,1,1,1,1,1!T, ~9a!

ue&5~24,21,21,21,21,2,2,2,2!T, ~9b!

u«&5~4,2,2,2,2,1,1,1,1!T, ~9c!

u j x&5~0,1,0,21,0,1,21,21,1!T, ~9d!

uqx&5~0,22,0,2,0,1,21,21,1!T, ~9e!

u j y&5~0,0,1,0,21,1,1,21,21!T, ~9f!

uqy&5~0,0,22,0,2,1,1,21,21!T, ~9g!

upxx&5~0,1,21,1,21,0,0,0,0!T, ~9h!

upxy&5~0,0,0,0,0,1,21,1,21!T. ~9i!

The above vectors are represented in the spaceV5R9

spanned by the discrete velocities$ea%, and they are mutu-
ally orthogonal to each other. These vectors are not norm
ized; this makes the algebraic expressions involving th
vectors which follow simpler. Note that the above vecto
have an explicit physical significance related to the mome
of $ f a% in discrete velocity space:ur& is the density mode;
ue& is the energy mode;u«& is related to energy square;u j x&
andu j y& correspond to thex andy components of momentum
~mass flux!; uqx& and uqy& correspond to thex andy compo-
nents of energy flux; andupxx& and upxy& correspond to the
diagonal and off-diagonal component of the stress ten
The components of these vectors in discrete velocity sp
V5R9 are constructed as follows:

ur&a5ueau051, ~10a!
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ue&a524ueau013~ea,x
2 1ea,y

2 !, ~10b!

u«&a54ueau02
21

2
~ea,x

2 1ea,y
2 !1

9

2
~ea,x

2 1ea,y
2 !2,

~10c!

u j x&a5ea,x , ~10d!

uqx&a5@25ueau013~ea,x
2 1ea,y

2 !#ea,x , ~10e!

u j y&a5ea,y , ~10f!

uqy&a5@25ueau013~ea,x
2 1ea,y

2 !#ea,y , ~10g!

upxx&a5ea,x
2 2ea,y

2 , ~10h!

upxy&a5ea,xea,y . ~10i!

Thus,

r5^ru f &5^ f ur&, ~11a!

e5^eu f &5^ f ue&, ~11b!

«5^«u f &5^ f u«&, ~11c!

j x5^ j xu f &5^ f u j x&, ~11d!
r
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qx5^qxu f &5^ f uqx&, ~11e!

j y5^ j yu f &5^ f u j y&, ~11f!

qy5^qyu f &5^ f uqy&, ~11g!

pxx5^pxxu f &5^ f upxx&, ~11h!

pxy5^pxyu f &5^ f upxy&. ~11i!

Similar to $ f a%, the above set of moments can also be co
cisely represented by a vector:

u%&[~r,e,«, j x ,qx , j y ,qy ,pxx ,pxy!
T. ~12!

There obviously exists a transformation matrixM between
u%& and u f & such that

u%&5Mu f &, ~13a!

u f &5M21u%&. ~13b!

In other words, the matrixM transforms a vector in the vec
tor spaceV spanned by the discrete velocities into a vector
the vector spaceM5Rb spanned by the moments of$ f a%.
The transformation matrixM is explicitly given by
M[1
^ru

^eu

^«u

^ j xu

^qxu

^ j yu

^qyu

^pxxu

^pxyu

2 [1
1 1 1 1 1 1 1 1 1

24 21 21 21 21 2 2 2 2

4 22 22 22 22 1 1 1 1

0 1 0 21 0 1 21 21 1

0 22 0 2 0 1 21 21 1

0 0 1 0 21 1 1 21 21

0 0 22 0 2 1 1 21 21

0 1 21 1 21 0 0 0 0

0 0 0 0 0 1 21 1 21

2 [~ ur&,ue&,u«&,u j x&,uqx&,u j y&,uqy&,upxx&,upxy&
T.

~14!
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The rows of the transformation matrixM are organized in the
order of the corresponding tensor, rather than in the orde
the corresponding moment. The first three rows ofM corre-
spond tor, e, and«, which are scalars or zeroth-order te
sors, and they are zeroth-order, second-order, and fou
order moments of$ f a%, respectively. The next four row
correspond toj x , qx , j y , andqy , which are vectors or first-
order tensors, andj x and j y are the first-order moments
whereasqx and qy are the third-order ones. The last tw
rows represent the stress tensor, which are second-order
ments and second-order tensors. Again, this can easil
generalized to models using a larger discrete velocity
and thus higher-order moments, and in three-dimensio
space. The main difficulty when using the LBE method
simulate a real isotropic fluid is how to systematically elim
nate as much as possible the effects due to the symmet
the underlying lattice. We shall proceed to analyze so
simple~but nontrivial! hydrodynamic situations, and to mak
the flows as independent of the lattice symmetry as poss
of

th-

o-
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t,
al

of
e

le.

Because the medium simulated by the model is atherm
the only conserved quantities in the system are densityr and
linear momentumj5( j x , j y). Collisions do not change the
conserved quantities. Therefore, in the moment spaceM, col-
lisions have no effect on these three quantities. We sho
stress that the conservation of energy is not considered
because the model is constructed to simulate an athe
medium. Moreover, we find that the nine-velocity model
inadequate to simulate a thermal medium because it ca
have an isotropic Fourier law for the diffusion of heat. A
though the conserved moments are not affected by collisio
the nonconserved moments are affected by collisions, wh
in turn cause changes in the gradients or fluxes of the c
served moments, which are higher-order moments. In w
follows, the modeling of the changes of the nonconserv
moments is described.

Inspired by the kinetic theory for Maxwell molecule
@35#, we assume that the nonconserved moments relax
early towards their equilibrium values that are functions
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the conserved quantities. The relaxation equations for
nonconserved moments are prescribed as follows:

e* 5e2s2@e2e(eq)#, ~15a!

«* 5«2s3@«2« (eq)#, ~15b!

qx* 5qx2s5@qx2qx
(eq)#, ~15c!

qy* 5qy2s7@qy2qy
(eq)#, ~15d!

pxx* 5pxx2s8@pxx2pxx
(eq)#, ~15e!

pxy* 5pxy2s9@pxy2pxy
(eq)#, ~15f!

where the quantities with and without superscript * are po
collision and pre-collision values, respectively. The equil
rium values of the nonconserved moments in the above e
tions can be chosen at will provided that the symmetry of
problem is respected. We choose

e(eq)5
1

^eue&
@a2^rur&r1g2~^ j xu j x& j x

21^ j yu j y& j y
2!#

5
1

4
a2r1

1

6
g2~ j x

21 j y
2!, ~16a!

« (eq)5
1

^«u«&
@a3^rur&r1g4~^ j xu j x& j x

21^ j yu j y& j y
2!#

5
1

4
a3r1

1

6
g4~ j x

21 j y
2!, ~16b!

qx
(eq)5

^ j xu j x&

^qxuqx&
c1 j x5

1

2
c1 j x , ~16c!

qy
(eq)5

^ j yu j y&

^qyuqy&
c1 j y5

1

2
c1 j y , ~16d!

pxx
(eq)5g1

1

^pxxupxx&
~^ j xu j x& j x

22^ j yu j y& j y
2!5

1

2
g1~ j x

22 j y
2!,

~16e!

pxy
(eq)5g3

A^ j xu j x&^ j yu j y&

^pxxupxx&
~ j x j y!5

1

2
g3~ j x j y!. ~16f!

The values of the coefficients in the above equilibria (c1 ,
a2,3, andg1,2,3,4) will be determined in the next section an
summarized in Sec. V E. The choices of the above equilib
are made based upon inspection of the corresponding
ments given by Eqs.~10!, or the physical significance o
these moments. Note that in principleqx andqy can include
terms involving third-order terms in terms of moment, su
as j x

3 and j xpxx @14#, and« can include fourth-order terms
Nevertheless, for the nine-velocity model, these terms
higher order are not considered because either they do
affect the hydrodynamics of the model significantly, or th
lead to some highly anisotropic behavior which is unde
able in the LBE modeling of hydrodynamics.

Clearly, LBE modeling of fluids is rather different from
real molecular dynamics. Therefore, it is not necessary to
e

t-
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e
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o-

f
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ry

to solve the mathematically difficult problem to create
interparticle collision mechanism for the fictitious particl
in the LBE models that would give the same eigenmodes
the collision operator in the continuous Boltzmann equati
However, what can be accomplished is that by carefu
crafting a simple model with certain degrees of freedom,
can optimize large-scale properties of the model in the se
that generalized hydrodynamic effects~deviations from hy-
drodynamics! are minimized.

The values of the unknown parameters,c1 , a2,3, and
g1,2,3,4, shall be determined by a study of the modes of
linearized collision operator with a periodic lattice of siz
Nx3Ny .

It should be noted that in Eq.~16! the densityr does not
appear in the terms quadratic inj . This implies that the den-
sity fluctuation is decoupled from the momentum equati
similar to an incompressible LBE model with a modifie
equilibrium distribution function@36#:

f a
(eq)5waH r1r0F3~ea•u!1

9

2
~ea•u!22

3

2
u2G J , ~17!

where the mean densityr0 is usually set to be 1. The mode
corresponding to the equilibrium distribution function of E
~8! shall be analyzed in Appendix A.

IV. LINEARIZED LBE

We consider the particular situation where the state of
medium is a flow specified by uniform and steady densityr
~usually r51, so the uniform density may not appear
subsequent expressions! and velocity in Cartesian coordi
natesV5(Vx ,Vy), with a small fluctuation superimposed:

u f &5u f (0)&1ud f &, ~18!

where u f (0)& represents the uniform equilibrium state spe
fied by uniform and steady densityr and velocity V
5(Vx ,Vy), and ud f & is the fluctuation. The linearized Bolt
zmann equation is

ud f ~r j1ea ,t11!&5ud f ~r j ,t !&1V(0)ud f ~r j ,t !& ~19!

whereV(0) is the linearized collision operator:

Vba
(0)5

]Va

] f b
U

u f &5u f (0)&

[Va,b~$ f a
(0)%!. ~20!

In the moment spaceM, the linearized collision operator ca
be easily obtained by using Eqs.~15! and ~16!:

Cba5
^%bu%b&

^%au%a&

]D%a

]%b
U

u%&5u%(0)&

, ~21!

where %a and u%a&, a50,1, . . . ,(b21) are the moments
defined by Eqs.~11! and the corresponding vectors inV
5R9 defined by Eqs.~9!; D%a is the change of the momen
due to collision given by Eqs.~15!; u%&5u% (0)& is the vector
of all moments at the uniform equilibrium state@see Eq.~12!
for the definition ofu%&]. Obviously the linearized collision
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operatorC depends on the uniform state specified by densityr and velocityV5(Vx ,Vy), upon which the perturbationud f & is
superimposed. Specifically, for the nine-velocity model,

C51
0 0 0 0 0 0 0 0 0

s2a2 /4 2s2 0 s2g2Vx /3 0 s2g2Vy /3 0 0 0

s3a3 /4 0 2s3 s3g4Vx /3 0 s3g4Vy /3 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 s5c1 /2 2s5 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 s7c1 /2 2s7 0 0

0 0 0 3s8g1Vx 0 23s8g1Vy 0 2s8 0

0 0 0 3s9g3Vy /2 0 3s9g3Vx /2 0 0 2s9

2 . ~22!
e

w

o

e

tw

t

lar
ce of

een

des

lu-
The perturbation in the moments corresponding toud f & is
ud%&, andud%&5Mud f &. The change of the perturbation du
to collisions is linearly approximated byuD%&5Cud%& in
the moment spaceM spanned by$u%a&ua50,1, . . . ,(b
21)%. This change of state in discrete velocity spaceV is
uD f &5M21Cud%&. Therefore, Eq.~19! becomes

ud f ~r j1ea ,t11!&5ud f ~r j ,t !&1M21CMud f ~r j ,t !&.
~23!

In Fourier space, the above equation becomes

Aud f ~k,t11!&5@ I1M21CM#ud f ~k,t !&, ~24!

whereA is the advection operator represented by the follo
ing diagonal matrix in discrete velocity spaceV5R9:

Aab5 exp~ iea•k!dab , ~25!

wheredab is the Kronecker delta. It should be noted that f
a mode of wave numberk5(kx ,ky) in Cartesian coordi-
nates, the advection operatorA in the above equation can b
written as follows:

A5diag~1,p,q,1/p,1/q,pq,q/p,1/pq,p/q!, ~26!

where

p5eikx, q5eiky. ~27!

The advection can be decomposed into two parts, along
orthogonal directions, such asx axis andy axis in Cartesian
coordinates:

A~kx![A~kx ,ky50!5diag~1,p,1,1/p,1,p,1/p,1/p,p!,

A~ky![A~kx50,ky!5diag~1,1,q,1,1/q,q,q,1/q,1/q!,

andA(kx) andA(ky) commute with each other:

A5A~kx!A~ky!5A~ky!A~kx!,

i.e., the advection operation can be applied along thex direc-
tion first, and then along they direction, orvice versa. The
linearized evolution equation~24! can be further written in a
concise form:
-

r

o

ud f ~k,t11!&5Lud f ~k,t !&, ~28!

where

L[A21@ I1M21CM#, ~29!

is the linearized evolution operator.

V. MODES OF LINEARIZED LBE

A. Hydrodynamic modes and transport coefficients

The evolution equation~23! is a difference equation tha
has a general solution:

uG~r j ,t5 l !&5Kx
mKy

nzl uG0&, ~30!

wherem and n are indices for space (r j5mx̂1nŷ), and x̂
and ŷ are units vectors along thex axis andy axis, respec-
tively; uG0& is the initial state. We can consider the particu
case of a periodic system such that the spatial dependen
the above general solution can be chosen as

ud f &5 exp~2 ik•r j1zt!uG~r j ,t !&. ~31!

By substituting Eqs.~30! and ~31! into the linearized LBE
~28!, we obtain the following equation:

zuG0&5LuG0&, ~32!

The above equation leads to the dispersion relation betw
z andk:

det@L2zI#50, ~33!

which determines the transport behaviors of various mo
depending on the wave vectork. The solution of the above
eigenvalue problem of the linearized evolution operatorL
provides not only the dispersion relation, but also the so
tion of the initial value problem of Eq.~28!:

ud f ~k,t !&5Ltud f ~k,0!&5 (
a51

b

za
t uza&^zaud f ~k,0!&,
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where uza& is the eigenvector ofL with eigenvaluesza in
discrete velocity spaceV.

The eigenvalue problem of Eq.~33! cannot be solved ana
lytically in general, except for some very special cases. N
ertheless, it can be easily solved numerically using vari
packages for linear algebra, such asLAPACK. For smallk, it
can be solved by a series expansions ink. The only part ofL
that hask dependence is the advection operatorA. Therefore,
we can expandA21 in L:

K[A215K(0)1K(1)~k!1K(2)~k2!1•••1K(n)~kn!1•••,

~34!

whereK(n) depends onkn:

Kab
(n)5

1

n!
~2 ik•ea!ndab . ~35!

When k50, the eigenvalue problem of the (b3b) matrix
L(0)5(I1M21CM) can be solved analytically. There exis
an eigenvalue of 1 with threefold degeneracy, which cor
sponds to three hydrodynamic~conserved! modes in the sys-
tem: one transverse~shear! and two longitudinal~sound!
modes. It is interesting to note that whenk5(p,0) or k
5(0,p), L also has an eigenvalue of21, which corresponds
to the checkerboard mode, i.e., it is a conserved mode oL2.
Being a neutral mode as far as stability is concerned, it w
be necessary to study how it is affected by a mean velo
V. Thus we shall have to analyze the model fork ranging
from 0 to p, which the standard Chapman-Enskog analy
cannot do.

The hydrodynamic modes atk50 are

u%T&5 cosuu j x&2 sinuu j y&[u j T&, ~36a!

u%6&5ur&6~cosuu j x&1 sinuu j y&)[ur&6u j L&, ~36b!

whereu is the polar angle of wave vectork. For finitek, the
behavior of these hydrodynamic modes depends uponk. In
two-dimensional space, these linearized hydrodyna
modes behave as follows@37#:

u%T~ t !&5zT
t u%T~0!&

5 exp@2 ik~gV cosf!t#

3exp~2nk2t !u%T~0!&, ~37a!

u%6~ t !&5z6
t u%6~0!&

5 exp@6 ik~cs6gV cosf!t#

3exp@2~n/21z!k2t#u%6~0!&, ~37b!

wheren andz are the shear and bulk viscosity, respective
the coefficientg indicates whether the system is Galile
invariant ~that g51 implies Galilean invariance!; cs is the
sound speed;V is the magnitude of the uniform streamin
velocity of the systemV5(Vx ,Vy); andf is angle between
the streaming velocityV and the wave vectork. The
Galilean-coefficientg(k) is similar to theg factor in the
Frish-Hasslacher-Pomeau lattice gas automata@15–17#,
which also determines the Galilean invariance of the syst
-
s

-

ll
ty

is

ic

;

.

The transport coefficients and the Galilean-coefficient are
lated to the eigenvalues ofL as the following:

n~k!52
1

k2
Re@ ln zT~k!#, ~38a!

g~k!V cosf52
1

k
Im@ ln zT~k!#, ~38b!

1

2
n~k!1z~k!52

1

k2
Re@ ln z6~k!#, ~38c!

cs~k!6g~k!V cosf57
1

k
Im@ ln z6~k!#, ~38d!

wherezT(k) andz6(k) are the eigenvalues corresponding
the hydrodynamic modes of the linearized evolution opera
L. Since the transport coefficients can be obtained throug
perturbation analysis, we shall use the following series
pansion ink:

n~k!5n02n1k21 . . . 1~21!nnnk2n1•••, ~39a!

z~k!5z02z1k21 . . . 1~21!nznk2n1•••, ~39b!

cs~k!5C02C1k21 . . . 1~21!nCnk2n1•••, ~39c!

g~k!5g02g1k21 . . . 1~21!ngnk2n1•••. ~39d!

It should be noted that, in the usual Chapman-Enskog an
sis of LBE models, one only obtains the values of the tra
port coefficients atk50. As we shall demonstrate late
higher-order corrections to the transport coefficients~i.e., hy-
perviscosities! are important to the LBE hydrodynamics, e
pecially for spatial scales of a few lattice spacings.

One possible method by which to solve the dispers
relation det@L2zI#50 is to apply the Gaussian eliminatio
technique using 1/sa as small parameters for the nonco
served modes~the kinetic modes!. Starting from a 939 (b
3b in general! determinant, we obtain a 333 determinant
for the three conserved modes. The elements of this n
determinant are computed as a series of 1/sa andk with the
necessary numbers of terms to achieve a given accu
when computing the roots of the dispersion equation.

It should be mentioned that the value of the present te
nique is that it provides a very simple means by which
analyze models with various streaming and collision ru
with as many adjustable parameters as possible to be d
mined later when trying to satisfy either the stability criter
or physical requirements to model various hydrodynam
systems. Free parameters are the equilibrium coefficient
Eqs.~16!: c1 , a i , andg i ; and relaxation ratessa .

B. Case with no streaming velocity„VÄ0…

We first consider the case in which the streaming veloc
V50. To the first order ink, we obtain two solutions of
Im(ln z6)57ikcs with

cs
25

1

3 S 21
a2

8 D . ~40!
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These are the sound modes supported by the medium. A
next order, we obtain modes with Re(lnzT)52n0k

2. To en-
force isotropy we need to have

1

s9
2

1

2
52S 1

s8
2

1

2D ~c114!

~22c1!
, ~41!

such that theu dependence inn0 vanishes,

n05
~22c1!

12 S 1

s8
2

1

2D , ~42!

which can be interpreted as the shear viscosity of the
dium in the limitk50 ~measured in basic units of space a
time!. For the sound modes, we also find an attenuation
Re(lnz6)52(n0 /21z0)k

2 where (n0 /21z0) is the longitu-
dinal kinematic viscosity in a two-dimensional system. T
bulk viscosity of the model at long-wave-length limitk50 is

z05
~c1110212cs

2!

24 S 1

s2
2

1

2D . ~43!

The positivity of the transport coefficients leads to t
bounds on the adjustable parameters:

216,a2 , ~44a!

24,c1,2, ~44b!

and the bounds on the following relaxation parameters:

0,s2,2, ~45a!

0,s8,2. ~45b!

The bounds fora2 and c1 will be further narrowed in the
following analysis. Based upon the above results ofn0 , z0,
andcs , it is clear that the model is isotropic at rest~i.e., the
streaming velocityV50) and in the limit of k50. The
Galilean-coefficient g cannot be determined when th
streaming velocityV50. Therefore, the case of a finit
streaming velocityV is considered next.

C. Case with a constant streaming velocity V

As indicated by Eqs.~38!, to the first order ink, the three
hydrodynamic roots of the dispersion equation (zT and z6)
give the phasegV cosf and the sound speedcs . In order to
cause the root of the transverse mode (zT) to have a correct
phase corresponding to the streaming velocityV, as expected
for a model satisfying Galilean invariance, i.e.,g051, we
must set

g15g35
2

3
. ~46!

If we further set

g2518, ~47!

then we obtain the roots of the sound modes (z6) which lead
to the sound speed
he

e-

te

Cs5V cosf6Acs
21V2 cos2 f, ~48!

whereV cosf[V• k̂, and k̂ is the unit vector parallel tok.
This clearly shows that the system obeys Galilean invaria
only up to first order inV. One way to correct this defect i
to allow for compressibility effects in the equilibrium prop
erties, as shown in Appendix A. The dispersion of sound
be computed either analytically, by carrying out the pert
bation expansion ink, or numerically, by solving the eigen
value problem for any value ofk. The dispersion of sound is
important when studying the nonlinear acoustic properties
the medium.

Second, the attenuation of the transverse wave depe
not only onV but also on the direction of the wave vectork.
In order to eliminate the anisotropy in theV dependence of
the shear wave attenuation, we must choose

c1522. ~49!

With the above choice ofc1, the shear viscosity in the limi
of k50 is given by

n05@s2~22s8!@cs
21~123cs

2!V2 cos2 f#13@2~s82s2!

1s8~s222! cos2 f#V4 cos2 f#/@6s2s8

3~V2 cos2 f1cs
2!#. ~50!

Similarly, from the attenuation of acoustic waves, one o
tains the bulk viscosity~in the limit of k50) that has a
complicated dependence on the streaming velocityV:

z05„V cosfAV2 cos2 f1cs
2$12V2@~s22s8!

1s2~s822!cos2 f#1~2s223s2s814s8!~123cs
2!%

13V4 cos2 f@cos2 f~2s813s2s828s2!16~s22s8!#

12V2 cos2 f@6~s2s82s22s8!cs
21s8~22s2!#

1cs
2@6V2~s22s8!1s8~22s2!

3~223cs
2!#…/$12s2s8~V2 cos2 f 1cs

2!%. ~51!

It is obvious that the streaming velocityV has a second orde
effect onn0, and a first-order effect onz0. A careful inspec-
tion of the above result ofz0 indicates that the first-orde
effect of V on z0 can be eliminated by settingcs

251/3 ~or,
equivalently,a2528). Furthermore, the second-order effe
of V on the sound speed and the longitudinal attenuation
also be eliminated by using a slightly more complicat
model with thirteen velocities, as noted by a previous wo
@38#.

In summary, although all the transport coefficients a
isotropic in the limitk50, some undesirable features of th
LBE models can be clearly observed at the second orderk
when the streaming velocityV has a finite magnitude. First
the acoustic wave propagation is not Galilean invariant. S
ond, both the shear and the bulk viscosities depend onV.
Nevertheless, these effects are of second order inV, and can
be improved to higher order in bothk andV by incorporat-
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ing compressibility into the equilibrium properties of the m
ments~see Appendix A! or using models with a larger ve
locity set.

D. Third-order result

The analysis in the preceding subsections shows that
ropy for the hydrodynamic modes of the dispersion equa
can be attained to the first and second orders ink by care-
fully adjusting the parameters in the model. In the situat
with a uniform streaming velocityV parallel tok, we find
that the third-order term ink for the shear mode is aniso
tropic, i.e.,

g152S 2

3s8
2

2
2

3s8
1

1

9D 1S 1

3
2

2

s8
1

2

s8
2D V2 cos2 f

1F1

3
2

1

s8
1

1

s5
S 2

s8
21D G S cos4 u2 cos2 u1

1

3D .

~52!

The anisotropic term ing1 ~depending on cosu) can be
eliminated if we choose

s553
~22s8!

~32s8!
. ~53!

As indicated by Eq.~42!, parameters8 is usually chosen
close to 2 from below in order to obtain a small shear v
cosity ~and, consequently, a large Reynolds number!. There-
fore, the preceding expression yields a small value fors5.
This would lead to an undesirable consequence: Modeuqx&
relaxed with the relaxation parameters5 would become a
quasiconserved mode leading to some sort of viscoela
effect @14#. Therefore, we usually choose to have larges5
such that the advection coefficient of transverse waves ha
angular dependence for nonzerok in third order ink. That is,
the physical conservation laws are preserved at the exp
of the isotropy of the dispersion in third order~and all higher
orders! in k.

It should be noted that the value ofg has effects on the
Reynolds number because the timet needs to be rescaled a
gt.

E. Optimization of the model and connection
to the BGK LBE model

Among seven adjustable parameters (c1 , a i , andg i) in
the equilibrium values of the moments in the model@see Eqs.
~16!#, so far only five of these parameters have been fixed
enforcing the model to satisfy certain basic physics as sh
in the preceding analysis:c1522, a2528, g15g352/3,
andg2518. These parameter values are the optimal cho
in the sense that they yield the desirable properties~isotropy,
Galilean invariance, etc.! to the highest order possible i
wave vectork. It should be stressed that the constraints i
posed by isotropy and Galilean invariance are beyond
conservation constraints — models with only conservat
constraints would not necessarily be isotropic and Galil
invariant in general, as observed in some newly propo
LBE models for nonideal gases@39,40,9#. Two other param-
eters,a3 andg4, remain adjustable. In addition, there are s
t-
n

n

-

tic

an

se

y
n

e

-
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n
n
d

relaxation parameterssi in the model as opposed to one
the LBE BGK model. Two of them,s2 ands8, determine the
bulk and the shear viscosities, respectively. Also, beca
c1522, s95s8 @see Eq.~41!#. The remaining three relax
ation parameters,s3 , s5, and s7, can be adjusted withou
having any effect on the transport coefficients in the orde
k2. However, they do have effects in higher-order term
Therefore, one can keep values of these three relaxation
rameters only slightly larger than 1~no severe over-
relaxation effects are produced by these modes! such that the
corresponding kinetic modes are well separated from th
modes more directly affecting hydrodynamic transport.

It is interesting to note that the present model degener
to the BGK LBE model@2,3# if we use a single relaxation
parameter for all the modes, i.e.,sa51/t, and choose

a354, ~54a!

g45218. ~54b!

Therefore, in the BGK LBE model, all the modes relax wi
exactly the same relaxation parameter so there is no sep
tion in time scales among the kinetic modes. This may
verely affect the dynamics and the stability of the syste
due to the coupling among these modes.

VI. LOCAL STABILITY ANALYSIS

The stability of the LBE method has not been well und
stood, although there exists some preliminary work@41,42#.
However, previous work does not provide much theoreti
insight into either the causes or the remedies for the insta
ity of the LBE method. In the following analysis, a system
atic procedure that identifies some causes of instability
discussed and illustrated by some examples.

Our stability analysis relies on the eigenvalue problem
the linearized evolution operatorL, the dispersion equation
For large values ofk, one could in principle analyze th
dispersion equation to higher order by perturbation exp
sion. In practice, it is more efficient to compute the roots
the dispersion equation numerically. We shall try to ident
the conditions under which one of the modes becomes
stable: instability occurs when Re(lnza),0.

We have noticed some interesting qualitative properties
the dispersion for the nine-velocity model when wave vec
k is parallel to certain special directions with respect to
lattice line. These properties are listed in Table I. The
qualitative behaviors of the dispersion equation already d
onstrate the strong anisotropy of the dispersion relations
tated by the lattice symmetry.

To exhibit the complex behavior of the dispersion equ
tion, we compute the roots of the dispersion equation wit
given set of parameters. Figures 1~a! and 1~b! show the real
and imaginary parts of the logarithm of the eigenvalues
functions of k, respectively. Figure 1 clearly exhibits th
coalescence and branching of the roots. This suggests a
plicated interplay between the modes of collision opera
affecting the stability of the model. The asymmetric featu
of these curves is due to the presence of a constant stre
ing.

The growth rate of a modeuza&, Re(lnza), depends on all
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TABLE I. Special properties of the dispersion relation when wave vectork is of some special values.

k Dispersion equation Conditions

@z21#350
@z2(12s2)#50

(0,0) @z2(12s3)#50 s75s5

@z2(12s5)#250
@z2(12s8)#250

@z11#50
@z1(12s5)#50 or @z1(12s7)#50
@z1(12s8)#50 or @z1(12s9)#50

(61,0)p @z22
1
3 s5z1s521#50

or @z41
1
3 (s322s2)z3

(0,61)p 1
1
9 $s2(s824s3)26s3s819(s21s31s822)%z2

1
1
3 (s821)„s2(s322)1s3…z

1(12s2)(12s3)(12s8)] 50

@z2(12s8)#250

@z22
1
3 s5z1s521#250

(61,61)p @z31
1
9 (11s223s329)z2

1
1
9 $3(4s323)2s2(s312)%z
1(12s2)(12s3)] 50
ith
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the adjustable parameters: the relaxation parameters,
streaming velocityV, and the wave vectork. To illustrate
this dependence, we consider the BGK LBE model w
1/t51.99. Figure 2 shows the growth rate for the most u
stable mode as a function of streaming velocityV and wave
vectork. For eachV, we letk be parallel toV, with a polar
angleu with respect to thex axis. Then we search for th
most unstable mode in the interval 0<k<p. For the nine-
velocity BGK LBE model, the unstable mode starts to app
aboveV'0.07. Figure 2 shows the strong anisotropy of t
unstable mode: the growth rate significantly depends on
direction of k, and the critical value ofk at which the un-
stable mode starts to appear is also strongly anisotropic.
also compute the growth rate for the most unstable m
with V perpendicular tok, and find that the stability of the
model is generally qualitatively the same as whenV is par-
allel to k, but is slightly more stable. Generally, we find th
the transverse mode is more stable than longitudinal mo
In many instances we have observed that sound wa
propagating in the direction of the mean flow velocityV can
be quite unstable. This instability may be reduced by mak
the first-orderV-dependent term in the attenuation of t
sound waves@z0 in Eq. ~51!# equal to 0 by choosingcs

2

51/3, as indicated in the preceding section. It should
noted that when the growth rate is infinitesimal, it takes
extremely long time for the instability to develop in simul
tions. Because the unstable modes we have observed h
large wave vectork ~small spatial scale!, as a practical mean
of reducing the effect of instabilities in LBE simulation
some kind of spatial or temporal filtering technique may
used in the LBE schemes to reduce small-scale fluctuat
and thus to limit the development of instabilities.

It should be pointed out that we do not discuss here
influence of boundary conditions that may complete
change the stability behavior of the model through eit
the
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FIG. 1. Logarithmic eigenvalues of the nine-velocity mod
The values of the parameters area2528, a354, c1522, g1

5g352/3, g2518, andg45218. The relaxation parameters a
s251.64, s351.54, s55s751.9, ands85s951.99. The streaming
velocity V is parallel tok with V50.2, andk is along thex axis.~a!
Re(lnza) and ~b! Im(ln za).



ita

ou
Th
ed
rs
in
nt
n

-
us

re

lly
es,
ig-

sity
e

ow
l

s:
ete

nt
be-

ds.

i-
ure

s,
ot

is

s
e

K

e
t

K

e
ac

te
ze

6556 PRE 61PIERRE LALLEMAND AND LI-SHI LUO
large-scale genuine hydrodynamic behavior or local exc
tion of Knudsen modes.

As previously indicated, the adjustable parameters in
model can be used to alter the properties of the model.
stability of the BGK LBE model and our model is compar
in Fig. 3. In this case we choose the adjustable paramete
our model to be the same as the BGK LBE model, but ma
tain the freedom of different modes to relax with differe
relaxation parameterssa . Figure 2 shows that for each give
value ofV, there exists a maximum value ofs851/t ~which
determines the shear viscosity! below which there is no un
stable mode. The values of other relaxation parameters
in our model ares251.63, s351.14, s55s751.92, ands9
5s851/t. Figure 3 clearly shows that our model is mo
stable than the BGK LBE model in the interval 1.9<s8

FIG. 2. Growth rate of the most unstable mode for the BG
LBE model 2 ln za vs the streaming velocity magnitudeV. The
relaxation parameters851/t51.99. The wave vectork is set par-
allel to the streaming velocityV. For each value ofV with a polar
angleu with respect to thex axis, the growth rate is computed in th
interval 0,k<p in k space. Each curve corresponds to the grow
rate of the most unstable mode with a givenV, andk parallel toV
with the polar angleu with respect to thex axis.

FIG. 3. Stability of the generalized LBE model vs the BG
LBE model in the parameter space ofV ands851/t. The lines with
symbolsh and 3 are results for the BGK LBE model and th
model proposed in this work, respectively. The region under e
curve is the stable region in the parameter space ofV ands851/t.
Note that the stability of the BGK LBE model starts to deteriora
after s8>1.92, whereas the stability of the proposed generali
LBE model remains virtually intact.
-

r
e

in
-

ed

51/t<1.99. Therefore, we can conclude that by carefu
separating the kinetic modes with different relaxation rat
we can indeed improve the stability of the LBE model s
nificantly.

VII. NUMERICAL SIMULATIONS
OF SHEAR FLOW DECAY

To illustrate the dispersion effects on the shear visco
in hydrodynamic simulations using the LBE method, w
conduct a series of numerical simulations of the shear fl
decay with different initial velocity profiles. The numerica
implementation of the model is discussed next.

A. Numerical implementation and initial conditions

The evolution of the model still consists of two step
advection and collision. The advection is executed in discr
velocity space, namely, tou f (x,t)&, but not to the moments
u%(x,t)&. However, the collision is executed in mome
space. Therefore, the evolution involves transformation
tween discrete velocity spaceV and moment spaceM, simi-
lar to Fourier transform in the spectral or Galerkin metho
The evolution equation of the model is

u f ~x1ead t ,t1d t!&5u f ~x,t !&1M21S@ u%~x,t !&2u% (eq)&],

~55!

whereS is the diagonal relaxation matrix:

S[diag~0,2s2 ,2s3 ,0,2s5 ,0,2s7 ,2s8 ,2s9!. ~56!

In simulations using the LBE method, the initial cond
tions provided are usually specified by velocity and press
~density! fields. Often the initial condition off a is set to its
equilibrium value corresponding to the given flow field
with a constant density if the initial pressure field is n
specified. The initial conditions off a can include the first-
order effectf a

(1) . The first-order effect in moment space
obtained through Eq.~55!:

u% (1)&5S21MDu f (eq)&, ~57!

whereD is a diagonal differential operator:

Dab5dabea•“. ~58!

Equation~57! is similar to Chapman-Enskog analysis off a
(1) .

For the shear flow, only the initial velocity profile i
given. The density mode is set to be uniform initially. Th
remaining modes are initialized as the following:

r51, ~59a!

e52213~ux
21uy

2!, ~59b!

«5123~ux
21uy

2!, ~59c!

qx52ux , ~59d!

qy52uy , ~59e!

h

h

d
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pxx5~ux
22uy

2!2
2

3s8
~]xux2]yuy!, ~59f!

pxy5uxuy2
1

3s8
~]yux1]xuy!. ~59g!

The terms inpxx andpxy involving derivatives of the veloc-
ity field take into account viscous effects in the initial co
ditions. These terms are obtained through Eq.~57!. The first-
order terms in turn induce second-order contributions~with
respect to space derivatives! which are not included here
This leads to weak transients of short duration if there
separation of time scales (22s8)!(22s5).

Our first test is the decay of a sinusoidal wave in a pe
odic system for various values ofk. The numerical and the
oretical results agree with each other extremely well a
confirm thek dependence ofg and n. The agreement indi-
cates that our local analysis is indeed sufficiently accurat
this case.

The next case considered is more interesting and rev
ing because the initial velocity contains shocks. Conside
periodic domain of sizeNx3Ny58434. At time t50, we
take a shear waveuy(x,0) of rectangular shape~discontinui-
ties in uy at x5Nx/4 andx53Nx /4):

uy~x,0!5U0 , 1,x<Nx/4,

3Nx /4,x<Nx ,

uy~x,0!52U0 , Nx /4,x<3Nx/4.

The initial conditionux(x,0) is set to a constant everywher
We consider two separate cases with and without a cons
streaming velocityV.

B. Steady case„VÄ0…

For the case of zero streaming velocity, the initial con
tion for ux is zero in the system. The solution of the Navie
Stokes equation for this simple problem is

uy~x,t !5(
n

an exp~2nnkn
2t !cos~knx!, ~60!

wherean is the Fourier coefficient of the initial velocity pro
file uy(x,0), nn[n(kn), andkn52p(2n21)/Nx . The mag-
nitude of theuy(x,0), U050.0001 in the simulations.

Figures 4~a! and 4~b! show the decay of the rectangul
shear wave simulated by the normal LBE scheme and
LBE scheme with second-order central interpolation~with
r 50.5, wherer is the ratio between advection lengthdx and
grid size Dx), respectively.~The detailed analysis of LBE
schemes with various interpolations is provided in Appen
B.! The lines are theoretical results of Eq.~60! with n(kn)
obtained numerically. The times at which the profile
uy(x,t) ~normalized byU0) shown in Fig. 4 aret5100, 200,
. . . , 500. The numerical and theoretical results agree clos
with each other. The close agreement shows the accurac
the theory. In Fig. 4~b!, the overshoots at early times due
the discontinuous initial condition are well captured by t
analysis. This overshoot is entirely due to the strongk de-
s
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pendence ofn(k) caused by the interpolation. This phenom
ena is not necessarily connected to the Burnett effect
claimed by a previous work@46#. This artifact is also com-
monly observed in other CFD methods involving interpo
tions.

Figure 5 shows the decay ofuy(x,t) at one location of

FIG. 4. Decay of discontinuous shear wave velocity profi
uy(x,t). The lines and symbols~3! are theoretical@Eq. ~60!# and
numerical results, respectively. Only the positive half of each
locity profile is shown. LBE model~a! with no interpolation,~b!
with the central interpolation andr 50.5.

FIG. 5. Decay of discontinuous shear wave velocityuy(x,t) at a
location close to the discontinuityx53Nx /4. The solid lines and
dashed lines are theoretical and numerical results, respectively.
LBE scheme with no interpolation does not have an overshoot
whereas the LBE scheme with central interpolation andr 50.5 has.
The time is rescaled asr 22t.
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discontinuity, x53Nx/4563. We tested the normal LBE
scheme without interpolation and the LBE scheme w
second-order central interpolation withr 50.5, and compared
the numerical results with theoretical ones. Again, the
merical and theoretical results agree very well with ea
other for both cases~with and without interpolation!. Note
that the time is rescaled asr 22t in the figure. It should be
pointed out that the LBE solutions of the flow differ from th
analytic solution of the Navier-Stokes equation in both sho
time and long-time behavior. Interpolation causes oversh
in the velocity at the initial stage. Even without interpolatio
the LBE solution does not decay~exponentially! right away.
This is due to the variation of the viscosity withk and this
could be interpreted as the influence of the kinetic modes~If
we had a vanishingly small Knudsen number, then thek
dependence would be negligible; however, all relaxat
rates must be smaller than 2 so that higher modes can p
role.! This transient behavior is due to the higher-order eff
~of velocity gradient!, as discussed previously.

C. Streaming case„VÄconstant…

We also consider the case with a constant streaming in
initial velocity, i.e., ux(x,0)5Vx50.08. This allows us to
check the effects of the non-Galilean invariance in the s
tem. With a constant streaming velocity, the solution of
Navier-Stokes equation is

uy~x,t !5(
n

an exp~2nnkn
2t !cos@kn~x2gnVxt !#, ~61!

wheregn[g(kn) is the Galilean coefficient.
Similarly to Fig. 4, Fig. 6 shows the evolution ofuy(x,t)

for the same times as in Fig. 4. The solid lines and the s
bols ~3! represent theoretical and numerical results, resp
tively. Shocks move from left to right with a constant velo
ity Vx50.08. Figures 6~a!, 6~b!, and 6~c! show the results for
the normal LBE scheme without interpolation, the sche
with second-order central interpolation, and the scheme w
second-order upwind interpolation, respectively. In Fi
6~b! and 6~c!, the dashed lines are the results obtained
settinggn51 in Eq. ~61!. Clearly, the effect ofg(k) is sig-
nificant. For the LBE scheme with central interpolation, t
results in Fig. 6~b! with g(k)51 underpredict the overshoo
ing at the leading edge of the shock and overpredict
overshooting at the trailing edge, whereas the results in
6~c! for the LBE scheme with upwind interpolation overpr
dict the overshooting at the leading edge of the shock
underpredict the overshooting at the trailing edge.

VIII. CONCLUSION AND DISCUSSION

In this paper, a generalized nine-velocity LBE mod
based on the generalized LBE model of d’Humie`res @27# is
presented. The model has the maximum number of adj
able parameters allowed by the discrete velocity set.
values of the adjustable parameters are obtained by opti
ing the hydrodynamic properties of the model through
linear analysis of the LBE evolution operator. The line
analysis also provides the generalized hydrodynamics of
LBE model, from which dispersion, dissipation, isotrop
-
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and stability of the model can be easily analyzed. In su
mary, a systematic and general procedure by which to a
lyze the LBE models is described in detail in this pap
Although the model studied in this paper is relatively simp
the proposed procedure can be readily applied to ana
more complicated LBE models.

The theoretical analysis of the model is verified throu
numerical simulation of various flows. The theoretical resu
closely predict the numerical results. The stability of t
model is also analyzed and compared with the BGK LB

FIG. 6. Decay of discontinuous shear wave velocity profi
uy(x,t) with a constant streaming velocityVx50.08. The solid lines
and symbols~3! are theoretical@Eq. ~61!# and numerical results
respectively. The dashed lines in~b! and~c! are obtained by setting
gn51 in Eq. ~61!. LBE model ~a! with no interpolation,~b! with
central interpolation andr 50.5, ~c! with upwind interpolation and
r 50.5.
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model. It is found that the mechanism of separate relaxat
for the kinetic modes leads to a model which is much m
stable than the BGK LBE model.

The proposed model is a Galerkin type of scheme.
comparison with the BGK LBE model, the proposed mod
requires the transformations between the discrete velo
spaceV and the moment spaceM back and forth in each ste
in the evolution equation. However, the extra computatio
cost due to this transformation is only about 10–20 % of
total computing time. Thus, the computational efficiency
comparable to the BGK LBE model. Our analysis also sho
that the LBE models with interpolation schemes have en
mous numerical hyperviscosities and anisotropies due to
interpolations.

We also find optimal features of the proposed nin
velocity model: it is difficult to improve the model by simpl
adding more velocities. For instance, we found that add
eight more velocities (61,62) and (62,61) would not im-
prove the isotropy of the model. However, our analysis d
not provide anya priori knowledge of an optimal set o
discrete velocities. That problem can only be solved by
timization of the moment problem in velocity space@24#. It
is also worth noting that the values of all but two (a3 and
g4) of the adjustable parameters in our model coincide w
the corresponding parameters in the BGK LBE model. T
main distinction between our model and the BGK LB
model is that our model has the freedom to allow the kine
modes to relax differently, whereas in the BGK LBE mod
all kinetic modes relax at the same rate. This mechan
severely affects the stability of the BGK LBE schemes,
pecially when the system is strongly overrelaxed.

It should be mentioned that the procedure we prop
here can be applied to analyze the linear stability of spati
nonuniform flows, such as the Couette flow, Poiseuille flo
or lid-driven cavity flow. For spatially nonuniform flows, th
lattice Boltzmann equation is linearized over a finite dom
including boundary conditions. This leads to an eigenva
problem with many more degrees of freedom than w
needed in the analysis of this paper. Standard Arnoldi te
niques@47# allow us to determine parts of the spectrum
the linearized collision operator, in particular to study t
flow stability. This analysis enables us to understand the
servation that some flows are much more stable than wh
predicted by the linear analysis of spatially uniform flow
For instance, in plane Couette flow with only two nod
along the flow direction, the only possible values ofk along
the same direction are 0 andp, which are far from the value
of k at which the bulk instability occurs. Namely, the reci
rocal latticek is not large enough to accommodate the p
sible unstable modes. Furthermore, in the direction perp
dicular to the flow, although the reciprocal latticek can
accommodate unstable shear modes, the velocity grad
alters the stability of the system.~It improves the stability in
this particular case.!

One philosophic point must be stressed. We delibera
did not derive the macroscopic equations corresponding
the LBE model in this work; instead, we only analyzed t
generalized hydrodynamic behavior of the modes of the
earized LBE evolution operator. We argue that if the hyd
dynamic modes behave exactly the same way as those o
linearized Navier-Stokes equations, up to a certain orde
ns
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k, provided that the Galilean invariance is also assured u
a certain order ofk, then we can claim that the LBE model
indeed adequate to simulate the Navier-Stokes equations~up
to a certain order ofk). There is no distinction between th
LBE model and the Navier-Stokes equations up to a cer
order of k. Thus, there is no need to use the Chapm
Enskog analysis to obtain the macroscopic equations f
the LBE models. On the other hand, we have also sho
that, in the limit of k50, these two approaches obtain th
same results in terms of the transport coefficients and
Galilean coefficient. Nevertheless, it is very difficult to app
the Chapman-Enskog analysis to obtain the generalized
drodynamics of the LBE models, which is important to LB
numerical simulations of hydrodynamic systems. The sta
ity result obtained by the linear analysis presented in t
paper is very difficult for the standard Chapman-Ensk
analysis to obtain. Therefore, the proposed procedure
which to analyze the LBE model indeed contains more
formation and is more general than the low-order Chapm
Enskog analysis. Despite its generality and power, the lin
analysis has its limitations. Because it is a local analysis
does not deal with gradients.

Our future work will extend the analysis to fully therma
and compressible LBE models in three-dimensional spac
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APPENDIX A: COUPLING BETWEEN DENSITY
AND OTHER MODES

To consider the coupling between the density fluctuat
dr5r2^r& and other modes,e, «, pxx , andpxy , the equi-
librium values of these modes are modified as to the follo
ing:

e(eq)5a2r1g2~ j x
21 j y

2!~22r!, ~A1a!

« (eq)5a3r1g4~ j x
21 j y

2!~22r!, ~A1b!

pxx
(eq)5g1~ j x

21 j y
2!~22r!, ~A1c!

pxy
(eq)5g3~ j x j y!~22r!, ~A1d!

where (22r) is used to linearly approximate 1/r when the
averaged densityr0[^r&51. With the above modifications
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four elements in the first column of the linearized collisi
operatorC accordingly become

C125s2F1

4
a22

1

6
g2~Vx

21Vy
2!G , ~A2a!

C135s3F1

4
a32

1

6
g4~Vx

21Vy
2!G , ~A2b!

C1852
3

2
s8g1~Vx

22Vy
2!, ~A2c!

C1952
3

2
s9g3VxVy . ~A2d!

Based on the linearized collision operator with the abo
changes, the shear and the bulk viscosities at the limit ok
→0 are

n05
1

3
~12V2 cos2 f!S 1

s8
2

1

2D , ~A3!

z05
1

12s2
2 ~223cs

2!~22s2!

2
V cosf

12css2s8
~123cs

2!~3s2s822s224s8!

1
V2

4s2s8
@s22s812~s2s82s22s8!cos2 f#

1
V3 cosf

4css2s8
@s22s81s2~s822!cos2 f#. ~A4!

The sound modes propagate with velocityV6cs ~at first or-
der in k). The Galilean coefficient up toO(k2) is

FIG. 7. k dependence of viscosities for various models. T
values of the adjustable parameters and the relaxation param
are the same as in Fig. 1. The solid lines, dotted lines, and da
lines correspond tou50, p/8, andp/4, respectively. LBE mode
~a! with no interpolation,~b! with central interpolation, and~c! with
upwind interpolation.
e

g511
k2

3s5s8
2 @~s822!~s52s8!~s5s823s523s816!

1~cos4 u2 cos2 u!#1
k2V2

6cs
2s2s8

2 @~22s8!~s82s2!sin2 f

12cs
2s2~s8

226s816!cos2 f#. ~A5!

APPENDIX B: INTERPOLATED LBE SCHEME

Recently, it has been proposed to use interpolat
schemes to interpolate$ f a% from a fine mesh to a coars
mesh in order to improve the spatial resolution calculatio
for a limited cost in total number of nodes@43,44#. Obvi-
ously, the interpolation schemes create additional numer
viscosities. The Chapman-Enskog analysis shows that
second- or higher-order interpolation scheme does not af
the viscosities in the limitk→0 on the fine mesh. A problem
with much greater importance in practice is to calculate
viscosity at finitek. To our knowledge, no such analysis
now available in the literature.

In the interpolated LBE schemes, the advection step
altered by the interpolation scheme chosen, while the co
sion step remains unchanged. The advection on a fine m
combined with interpolation on a coarse mesh is the rec
struction step on the coarse mesh. Therefore, to obtain
modified linearized evolution operatorL, only the advection
operationA must be changed. In what follows, we shall co
sider a coarse mesh with lattice constantdx , and time step
d t . The lattice constant of a underlying fine mesh isrdx ,
with r<1. Effectively, the hopping velocities of particles a
reduced by a factor ofr on coarse mesh. Therefore, dime
sional analysis suggests that the sound speed is reduced
factor ofr, and the viscosities are reduced by a factor ofr 2 in
the limit k50. However, the dimensional analysis does n
provide any information about the quantitative effects of
terpolation whenk is finite. We shall analyze the effects o
some commonly used second-order interpolation scheme

ers
ed

FIG. 8. k dependence of the Galilean coefficientg for various
models. Solid lines, dotted lines, and dashed lines correspondu
50, p/8, andp/4, respectively. The middle three curves areg(k)
for the LBE model without interpolation, the lower three for th
LBE model with central interpolation andr 50.5, and the upper
three for the LBE model with upwind interpolation andr 50.5.
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the LBE methods. For simplicity, we shall only deal with
uniform mesh with square grids.

1. Central interpolation

The reconstruction step with second-order central inter
lation is given by the following formula:

f a~r j !5
r ~r 21!

2
f a* ~r j2dra!1~12r 2! f a* ~r j !

1
r ~r 11!

2
f a* ~r j1dra!, ~B1!

where f a* is the post-collision value off a , i.e.,

f a* [ f a1Va~ f !, ~B2!

and

dra5
1

r
ea . ~B3!

The advection operator in this case becomes

A5 diag~1,A,C,B,D,AC,CB,BD,DA!, ~B4!

where

A5
r ~r 11!p

2
1~12r 2!1

r ~r 21!

2p
, ~B5a!

B5
r ~r 11!

2p
1~12r 2!1

r ~r 21!p

2
, ~B5b!

C5
r ~r 11!q

2
1~12r 2!1

r ~r 21!

2q
, ~B5c!

D5
r ~r 11!

2q
1~12r 2!1

r ~r 21!q

2
, ~B5d!

wherep5eikx andq5eiky. With the new phase factors, w
find new results at orders 1 and 2 ink. The speed of sound
and the Galilean coefficient are multiplied byr and the vis-
cosity coefficients are multiplied byr 2.

At higher order ink, dispersion effects due to lattice aris
leading to differences between solutions of the stand
Navier-Stokes equations and the flows computed using
LBE technique.

As in Eq. ~53!, we find that the advection coefficient fo
shear waves can be made isotropic to second order ink by
choosing

s553r 2
~22s8!

~3r 22s8!
, ~B6!

which improves Eq.~53!, since we can chooses8 close to 2
while maintainings5 reasonably far away from 2~between 1
and 3/2) by takingr 2 close to 2/3.
-

rd
e

2. Upwind interpolation

The upwind direction in the LBE method is relative to th
particle velocityea ~the characteristics! rather than the flow
velocity u. Therefore, the interpolation stencil is static
time. Second-order upwind interpolation leads to

f a~r j !5
r ~r 21!

2
f a* ~r j22dra!1r ~22r ! f a* ~r j2dra!

1
~12r !~22r !

2
f a* ~r j !, ~B7!

where dra is defined in Eq.~B3!. Accordingly, the phase
factors in the advection operator given by Eq.~B4! become

A5
~12r !~22r !

2
1

r ~22r !

p
1

r ~r 21!

2p2
, ~B8a!

B5
~12r !~22r !

2
1r ~22r !p1

r ~r 21!p2

2
, ~B8b!

C5
~12r !~22r !

2
1

r ~22r !

q
1

r ~r 21!

2q2
, ~B8c!

D5
~12r !~22r !

2
1r ~22r !q1

r ~r 21!q2

2
, ~B8d!

wherep5eikx andq5eiky.
Again, the third-order term (g1) in k for the shear mode is

anisotropic unless the following relation is satisfied:

s55r 2
~22s8!

~3r 223rs812s8!
. ~B9!

For s8 ands5 in the usual range (s8 near 2 ands5 between 1
and 3/2), the preceding equation leads to a complex valu
r. It should be pointed out that due to the commutativity
propagation alongx and y axes, one could apply differen
interpolation formulas along each axis, according to
physics of flow. For instance, a large stretch of grid can
applied in the direction along which flow fields do n
change much in space, whereas in the other orthogona
rection, a normal grid~without interpolation! or even a re-
fined grid @45# can be used, so that the aspect ratio of
meshes is large enough to be appropriate to the flow.

Figure 7 shows thek dependence of the normalized she
viscosityn(k)/n0 for the LBE model with and without inter-
polation schemes. Three orientations ofk are chosen:u50
~solid line!, p/8 ~dotted line!, andp/4 ~dashed line!. Figures
7~a!, 7~b!, and 7~c! show then(k)/n0 for the LBE model
with no interpolation, with second-order central interpolati
scheme andr 50.5, and with second-order upwind interp
lation scheme andr 50.5, respectively. It should be stresse
that interpolation schemes do create an enormous amou
numerical viscosity atk5p/2: Both the central and the up
wind interpolation schemes increase the shear viscosityk
5p/2 by almost two orders of magnitude, whereas witho
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interpolation, the corresponding increase for the LB
scheme is at most only a factor of about 2.5~in the direction
u5p/8). In all cases, the viscosity displays significant a
isotropy atk5p/2.

Similarly to Fig. 7, Fig. 8 shows thek dependence of the
Galilean-coefficientg(k). The three curves in the middle o
the figure corresponding to the LBE model without interp
lation. The lower three curves,g(k)<1, correspond to the
LBE scheme with the central interpolation, and the up
tt.

tt.

.

, J

ys
-

-

r

three curves,g(k)>1, correspond to the LBE scheme wit
the upwind interpolation. Again, interpolations have a s
nificant effect on Galilean invariance.

One common feature observed in Figs. 7 and 8 is that
transport coefficients of a model along the direction ofu
5p/8 is far from those along the directionsu50 and u
5p/4. This is related to the fact that for the square latti
the wave vectork along the directionu5p/8 is not a recip-
rocal vector of the underlying lattice.
u-
.
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