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Learning dynamics from nonstationary time series: Analysis of electroencephalograms
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Department of Physics, Lomonosov Moscow State University, 119899, Moscow, Russia
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We propose an empirical modeling technique for a nonstationary time series analysis. Proposed methods
include a high-dimensionaN>3) dynamical model construction in the form of delay differential equations,
a nonparametric method of respective time delay calculation, the detection of quasistationary regions of the
process by reccurence analysis in the space of model coefficients, and final fitting of the model to quasista-
tionary segments of observed time series. We also demonstrate the effectiveness of our approach for nonsta-
tionary signal classification in the space of model coefficients. Applying the empirical modeling technique to
electroencephalogratEEG) records analysis, we find evidence of high-dimensional nonlinear dynamics in
quasistationary EEG segments. Reccurence analysis of model parameters reveals long-term correlations in
nonstationary EEG records. Using the dynamical model as a nonlinear filter, we find that different emotional
states of subjects can be clearly distinguished in the space of model coefficients.

PACS numbegps): 05.45—-a, 07.05.Tp, 07.05.Kf, 87.19.La

[. INTRODUCTION have been made recently towards solving this problem
[10,11. Occasionally, we can derive an empirical model
Most observed real world dynamical processes are nonwhich represents prominent features of the real dynamics
stationary. The nonstationarity coming from a changing enunder consideration. However, the correct solution to Fhe
vironment essentially restricts the possibility of dynamics ex-Problem depends not only on the length of the observed time
traction from the corresponding time series. Dynamicalse”_e? and level of its honstationarity, but "?‘ISO on the ab_|l|ty
invariants and stationary statistical characteristics of the pro2! fitting model to take into account the highest dynamical
cess no longer have any sense in the absence of stationacrl grees of freedom and to govern the long-term correlat|0|js
measures of the process. Generally, we formulate the task of dynami-
Howevér the reality is not so pessimistic. Open system§al model construction from nonstationary scalar time series
demonstrate a quasistationary behavior if the time scales &S _cobr|15|st|ng OT f_our bas_lc slte_qu.') Reyeallnbg thehbaS|s of
their intrinsic motion are incomparable with characteristic Va/1aP'€s containing maximar in ormation a ogtt_e Process.
times of external action, and if system parameters chang@) Finding an appropriate moqel representation in terms of
adiabatically. Also, quasistationary segments of time serieglc’baI maps or sets of.d|ffergnt|al equanq(&). Appllcat|on
occur if the generating system is sensitive to resonant actio f the .model as a npqllnear filter for quasistationary segment
only, or has a definite threshold of response to external 'etec'tlon.(4) F'nal fitting of the constructed model to qua-
forces. The existence of quasistationarity provides us wittpistationary regions of the process.
the possibility to reveal “hidden” dynamics from the ob- I_n this paper we make an attempt to d_evelop an approach
served process. However, detection of quasistationary ré’yh"fh coulq prowd_e us with an effective Instrument of non-
gions in chaotic time series with high embedding dimensiongtationary time series analysis and processing. Since the sub-
is a complicated problem, and its solution depends on theCt Odf our an;ljy&s IS humalr(1 elerc]:troencecpi)halogéEEG) .
type of nonstationarity, the length of the observed time Se_reco(rj S, \IIEVES _ressl our work to those readers who are inter-
ries, the noise level, the dimensionality, and other factors.eSt'_I?h in signa profcfessmg._ i Sec. Il we i
Generally, we cannot talk about the nonstationarity or sta- € paper consists of four main parts. In Sec. Il we intro-
tionarity of the process in the absence of an appropriate d duce the consequent decomp_05|t|op of the state vector Of. the
namical model of phenomena. Methdds-6] which do not process W'.th a.h|gh gmbeddlng Q|men3|on. Section I.” n-
suggest a prior knowledge of the dynamical model of thecludes a high-dimensional dynamical model construction in
process detect mostly obvious changes in observables, bHa(rm_s of d_elay_ d|ffefrehnt|al equaﬂoré@DE_s) ar:jd Ia nolnpsara- v
fall into problems of detection of nonstationarities distorting metric elst|mat|on ofthe CO{resg)Z()nlllng time r?ay‘ n ecf.
correlations of the highest orders. Methods applying localVE 3PPy recurrénce ana ysid2-14,3,6 In the space of
dynamical model$7,6,8], or low-dimensional global models modellcogfflments for the purpose Of. quasistationary region
[9], have the same problems, since they can not reveal thdetection in EEG r_ecords. We then fit the h|gh-d|mer)5|onql
long-term correlations and global dynamics of high-mOdeI_ to quasistationary regions of an EE_G time series. Fi-
dimensional system. On the other hand, the construction d?ally, '? Se_]f' V_we_derr]nonstrate tfhe t((achmque of em(()jtlo_nald
global empirical models governing the process is not a trivia]fcState %asa |ci§t|on in the space;) mo e.pagggters gnve
task for high-dimensional chaotic dynamics manifesting it- rom the nonlinear processing of respective recoras.

self in a scalar time series. Nevertheless, several attempts Il STATE VECTOR DECOMPOSITION

In this section we begin with a linear separation of low-
*Electronic address: dima_g@pacbell.net and high-dimensional components of the state vector of the
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observed process. The basic idea of the decomposition is thdding conditions of orthogonality and normalization of
determine two sets of variables which independently deeigenvectors, we find, from Eqé7) and (3):

scribe different scales of motion. Le&f=x(t,), k=1,...N;
be a time series of the observed proced3. We define the
state vector of the process BRg=R(Xyx, Xk, .. Xni) iN an
N-dimensional embedding space, where,=x[t,+ (i

—1)7], andris the respective time step. The corresponding

covariance matriXC of the process is given as

D

ON1 ONN

where (r“=2|':';1x|2k and oj|=ZE‘:1xjkx|k. We then find
eigenvectorsS, =S(ui, . . .
(1), solving

Mind, 1=1,...n of matrix

(C—NnDS=0, (2)

where w;; is the jth coordinate of theth eigenvector); is
theith eigenvalue, antlis the unit matrix. Equatiof) is a
“routine” eigenvalue problem. Using a linear transfofin

=(R,S) [15], we obtain new variable¥;, which are or-
thogonal in the sense of

.
J %%;dt=0 3
-T

for T—o andi#j. Actually, we can write scalar product in
Eqg. (3) as

N N

N
f_T?i?dele OmmtimMjmt >

TimMil Ljm
I#m, I,m=1

4
whereom=J T x2dt and o= J T 1x;xmdt. Using the vec-

tor form of Eq.(4), we obtain

T - A >
f %%;dt=S]CS;.
;

©)

Finally, from Egs.(5) and(2) we have

S/CS=x(S[.S)=0

MitMjot miopirt piopizt pizpi2=0,

Mitijzt izpj1=0,

Mitij1t miomjot pizpiz=0, (8)
pit pht uh=1,
Mj21+M122+Mj23: 1

Solving Egs.(8), we obtain three eigenvectors

- 1 1 1
Sl: T T T
(f3 V3 ﬁ)

»_( 101)

S,= —5, 5
a_(l 2 1)
NNV

New variablesX; =%;(t,) follow from the scalar product
Xik=(R¢,S):

3

1
Xik=—= 2 Xik
1K 1/§J§=:l I
X ! [ ] 9
Xop=——| Xq,—X s
2k \/i 3k 1k

Xa=—"=[X1k— 2Xok+ X3x],
3k G 1k 2k T X3k

whereX,, andXz, are proportional to first and second order
derivatives of the process, respectively. Varial@sdeter-
mine the new low-dimensionalnE& 3) state vector in the
space of the eigenvectors;

M= ;1 S - (10

due to the orthogonality of the two different eigenvectors. In

order to reveal the structure of the new variabiges we
choose, for simplicity, a number of eigenvectars 3 and an
embedding dimensiolN=3. Taking into accountr{;= o,
= 033= og=const, forT—«, from Eq.(4) we obtain

.
J:Tyis'(jdt:(Mil/’vj2+/U«i2/~l*jl)0'12+(/“i1/~l“j3+ Mizij1) 013

(6)

Sinceo1,= 0,3 for T—o0, using Eqs(6) and(3), we have

+ (Migptjzt+ Hizij2) 023

(Mitttjot Miokj1T Miottjst Kisiijz2) 1ot (KRi1kj3

+ mizpj1) o13=0. (7)

We can rewrite Eq.(10) in terms of the original
N-dimensional embedding space

N
Fk=j§1 [xls (12)

wherefj is thejth basis vector, and) is thejth coordinate
of the low-dimensional state vectdj embedded into the
original N-dimensional space. Comparing E¢E0) and(11),
we find

n
P>

N n N
> mi%ie= 2 12 mi > MimXmke (12)
1 i=1 =1 i=1 m=1
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x, dx dy dz_]c . 15
a_y' a_z' a_ (X,y,Z,a), ( )

where variablex represents an observable, anhdnda are
the nonlinearity and the vector of the coefficients, corre-
spondingly. We chooskin the form of a polynomial of.th
order. Unfortunately, high levels of noise in real processes

do not allow us to apply model representatidb) to &k. We

cannot use Eq(14) as a local variable, because vecthr
contains high order derivatives that produce large errors.
However, we can take into account the highest degrees of
freedom “hidden” in Egs.(13) and(14), implicitly.

We consider an expansion of systdftb) in a class of
DDE,

dx dy dz

w Y G ? g fyezx.a, 19

. wherex,=x(t—7*), and 7* is a characteristic time delay.
FIG. 1. State vectorR, decomposition:ry is the low-  As always, we have a problem of how closely the con-
dimensional component defined by eigenvec®rsandd, is the  structed model approximates the dynamics of our observ-
vector of difference accounting for higher degrees of freedom.  gple. We choose functioh=2m:1amcpm in the form of a
polynomial of third order, withVl =35 nonlinear termsp,, .
Formula (12) defines the low-dimensional vectdg in the  In general, Eqs(16) have infinite dimensions, and we can
N-dimensional embedding spagg.does not contain all the expect that systertil6) will fit the high-dimensional dynam-
information about the process. If the minimal dimension ofics of the observed time series. Another problem is how to
the embedding spad¥,,,>n, we define the vectoﬂkz R, estimate the value of*. Since methods proposed in Ref.
—fy, which is the difference between the original [10] use special forms of the nonlinearityand do not work
N-dimensional state vectd®, and the low-dimensionaf, ~ for Polynomials of general form, we apply another nonpara-
(Fig. 1). Using Eq.(12), we obtain metric approach to time delay estimation. We look for a
delay variable satisfying the following requiremex:is sta-
tistically independent ok, and contains maximal informa-

N
de= 2, x5, (13)  tion about vectod, . This requirement leads to calculations
=1 of extrema of two pieces of mutual information:

d : . [ *\ 2 | p(Xi YX’Tj) 1
Xjk:Xjk_i:El ,LLiij:l MimXmk - (14) a(T )_ ¥ p(Xi ’XTj) 0g p(xi)p(xq-j) ( 7)
We suggest that vectdd, includes information about the 2"d
highest degrees of freedom which are not accounted for by d
i 7= S px s, plog T L g
A i L P(Xi)P(X+)

l1l. HIGH-DIMENSIONAL DYNAMICAL MODEL
CONSTRUCTION FOR STATIONARY TIME SERIES wherep(x;,x;;) andp(x;) are joint and individual probabil-
) ) _ ity densities, correspondingly.
In Sec. Il we did not regard the nonstationarity of the Functionsl ,(7*) andl 4(7*) have several extrema on a

observed time series. This does not pI?y a significant role ifmited interval. We look for the minimum of Eq17) and
the formal decomposition of state vec®yg. We only made the maximum of Eq(18), which are close enough on some
the assumption that vectol,= R, —f} includes information interval[ r;,7,]. Thus we obtain two estimations, and T8
about the highest degrees of freedom which are not aosf time delay 7, respectively. In general, when values
counted for by state vector,, responsible for the low- andr; are significantly different, we can construct a multi-
dimensional dynamics derived from the observed time serieslelay dynamical system or, at least, try each value of the
However, in this section we use stationary measures, andelay, using Eq(16). As shown in the next sections, even
must require the process to be stationary. the single delay model is sufficient for performing an EEG
Since the second and third variables in E®). approxi-  records analysis.
mate the first and second order derivatives of the process, In some cases formulél8) can be replaced by a more
respectively, it is reasonable to present the dynamics of theimple relation. We find the maximal average of the absolute
low-dimensional vectof(t) as value|x}’k| [see Eq(14)],
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dpy d
<|Xj|>T_N_tk21 |Xjk|,

where T is the time of observation. The maximal average

projection ofd, gives an index* of the delay coordinate in
N-dimensional embedding space. We then find the delay as

LEARNING DYNAMICS FROM NONSTATIONARY TIME . ..

7 =]* At, whereAt is a sampling time interval of the time
series.

We cannot give a strict recommendation as to the appli
cation of a certain formula or certain time delay in all pos-
sible cases. Each time series requires individual conside
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FIG. 2. Probability distributiorp.. vs time delayr for a qua-
sistationary segment of the EEG record registered from a subject in
the rest state.

ation. According to our experience, a prior approach and a

definite freedom of choice of* are more effective than
parametric methods of delay estimation.
Having delay variablec,, we fit system(16) to the ob-
served time series, by the solution of the matrix equation
AZ=2At- a,

()—()!y)lzv)—()r) : (19)

where

2

X2 Y2 Z; X72 X3

@:
2
1 Xn-1 YN-1 ZN-1 Xong-1o XN-1
is a matrix of nonlinearities correspondingftcand
23— 7
A= : ,

ZANRP ANy

ai
a—.):
Ay

Using Eq.(19), we can obtain vectad of the model coeffi-
cients from

OT.AZ7=2At-®T. P-4,

where®T is a transposed matri®. Having this set of fitted
coefficients, we integrate EqEL6) numerically by the sim-
plest Euler method adapted to DDE integration, with initial
conditionsxq, Y1, z1, andx,=X; _,+ derived from observed
time series.

IV. QUASISTATIONARY REGION DETECTION
AND MODELING

Next we suppose that our observable is nonstationary.

Our main goal is to determine regions where the time serie

demonstrates a quasistationary behavior. In other words, we

want to find regions of long-term correlations and similar
dynamics(if the latter is present We define a sampling time
window of lengthn,, moving along the process, and estimate
the time delay in each window, using formulds) and(18).
We then fit model16) to the data bounded by each moving
window. Equation$16) are assumed to be a sort of nonlinear
filter matching the observed time series. The lengjtof the

window is chosen to be proportional to the characteristic

windows. In order to reveal the dynamical correlations,
we use the recurrence analysis technique in the space of
model coefficients. However, some nonlinear terms of
the model may be erroneous and add only numerical noise.
Such terms can alter the dynamics of the original system.
If the respective nonlinearity does not fit the time series,
its coefficient is small and the variance of the coefficient
(computed from the least-squares) fis large. We can
reduce the influence of erroneous nonlinearities, replacing
each  vector a,=(as,....ami) by  vector ¢
=(ay;/|dayl,...,ami /| damil), where|dan,| is the absolute
value of the variance of theth coefficient in theith sam-
pling window. We define Euclidean distance between two
arbitrary chosen vectoig andc;, asA;;=|¢;—¢;j. If A;; is

less than a prior constant we mark the point with coordi-
nates(i,j) on the corresponding recurrence plane. Processing
all N,,XN,, points, we obtain the recurrence plot.
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time of the process of correlation distortion. Each set of fitted

coefficients is represented by akl-dimensional vector
a(i=1,... Ny, whereM=35,i is the index of the current
window, andN,,=N;—n,, is the whole number of sampling

FIG. 3. (i) Reccurence plot of modé€16) vectorsEi , tracing the
normalized EEG observable presentediin. Sets of black points
mark regions of maximal correlations of coefficients.
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TABLE |. Model (16) fitted to a quasistationary EEG segment.

m on am m ¢ am m on am

1 1.00 0.0 13 72 0.0 25 xx* —0.00562

2 x 000038 14 zx, 016820 26 y® —7.98441

3 y -001588 15 x2 0.0 27 y%z 19.26195 )
4 z 0.0 16 x® —0.00705 28y?x. —0.68471

5 x, -—0.00103 17 x’y —0.06627 29 y7ZZ —121.763

6 x?> —0.002875 18 x’z —0.66733 30yzx, 0.0 '
7 xy 005487 19x*%, 00 31 yx 00 08 L
8 xz -—0.22058 20 xy? 0.0 32 7% —-300.343 x o4l
9 xx, —0.00241 21 xyz —3.34429 3322, 0.0 0
10 y? 0.20041 22xyx, —0.05540 34 zX 0.0 04 AL A T

11 yz 291392 23 X22 ~31.1660 35 X?. 0.001 74 0 200 400 600 800 1000 1200 1400 1600 1800 2000

12 yx, 0.0 24 xzx. 0.27342

For demonstration of described technique we choose
“normal” human EEG record with sampling frequency 200
Hz. The whole length of the time seriesNg= 1600 points.

We choose window of length,,=200 points, moving one ii)
point ahead along the EEG observable. By fitting the model,

we obtainN,,= 1400 vectorst;. Figure 2 demonstrates the
distribution of delaysr]" calculated for each time window.

Figure 3i) presents recurrence plot of all pairs of normalized 12
vectorsc; /|| Cal With distances\;j<2~*. Sets of points in 08
Fig. 3(i) determine regions of maximal correlations of model * ©°4
coefficients. The corresponding time series of the EEG ‘
record is plotted in Fig. @). We can expect to find a sta- 40 200 400 600 800 1000 1200 1400 1600 1800 2000
tionary dynamics which is governed by modék) inside time (points)

regions of strong correlations of model coefficients. Before

fitting the model to observed data, we apply a five-point local FIG. 4. (i) Phase portrait and time series of a real quasistation-
spline approximation of the quasistationary segnipoints  ary EEG segment(ii) Trajectory and time series generated by
280—800 detected in Fig. @). We then fit mode(16) to the ~ model(16), with parameters listed in Table I.

segment, from point 301 to point 5@éotally 10° points of
interpolated data The fitting parameters of the model are
presented in Table |. Time delay" is equal to 25 ¢*
=n*At, n* =125). While model construction all erroneous
nonlinearities with small coefficients and large variances o
coefficients are zeroed.

Having fitted coefficients, we integrate equati@hé) for-
ward in time 106 time points ahead with stefyt=0.2, and
initial conditions derived from reafinterpolated EEG ob- TABLE II. Model (16) fitted to a quasistationary EEG segment
servable. Because we apply a fractional time step, the intgstate ).
gration scheme provides additional interpolation of time se
ries, in accordance with step division. Mod&b) generates m ¢, am m en anm m on am
the time series which covers an unfitted interval of real data:
The generated process is then compared with a real EEG 5
segment, from point 351 to point 75btally 2x 10° points X 00 14 2% 0.0 26y 0.0
of interpolated data Figures 4i) and 4ii) demonstrate 3 Y —0.06334 15 x; 00 27 y’z —12.454
phase trajectories and time series of réaterpolated and 4 2z —0.03094 16 x* —0.00830 28y*x, 0.0
model processes, respectively. We find that phase portraits df X, —0.03534 17 x’y —0.06663 29 yz* 0.0
reconstructed and model trajectories are topologically simi-6 x* —0.00935 18 x’z —0.25836 30yzx, —4.1356
lar. However, estimations of embedding dimensions of real7 xy —0.03264 19 x?x, 0.00543 31 yx? —0.21849
and model time series are different and equal to 8 and 68 xz —0.33662 20 xy?> —0.23862 32 z* —99.525
correspondingly. Nevertheless, in contrast to local modelingd xx, 0.00269 21 xyz 0.0 33 7%, 0.0
techniques, we obtain a global model generating the proces® y? 0.11752 22xyx, —0.13783 34 zx2 0.0
similar to the quasistationary segment of observable. The1 yz -0.82027 23 xZ2 -6.2304 35 x* —0.00783
advantage of such technique is that we can match the long2 yx. —0.06283 24 xzx, 0.09200
term correlations of the process.

The next example demonstrates the empirical models con-
structed for two quasistationary segments revealed in a
single EEG record registered from the subject, whose eyes
ere opened and closed during some period. The sampling
frequency of the EEG record is 128 Hz. Quasistationary seg-
ments for the “open eyes” stat¢) and the “closed eyes”
state(ll) are detected by the recurrence technique described

100 00 13 22 -3.27486 25 x¢ 0.0
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TABLE Ill. Model (16) fitted to a quasistationary EEG segment Subj
a ubject 1
(state I). )

LR \
m on an m o am m  on an Xr i |

100 00 13 2 00 25 xx¢ 00

1
2 X 0.0 14 zx. 0.11369 26 y® —3.65661
3 y -002176 15 x> —0.00167 27 y’z —7.8836 Xut

4 'z 005857 16 x® 0.00066 28y%x, —0.84987 :
5 x, -—0.00174 17 x?% —0.01766 29 y7ZZ 161.65 i
6

7

8

9

x2 —0.00021 18 x¥z 00 30 yzx, 00 *e )

xy 0.011925 19x?x, —0.00077 31 yx* —0.09987 : : :
0 200 400 600 800 1000 1200 1400

Xz 0.0 20 xy? 0.0 32 72 -328.63 ) !
xx, 000160 21 xyz 3.08417 337’ 16.1856 time (points)
10 y? 0.0 22 xyx, —0.00801 34 zxX 0.0 b)
11 yz 078363 23 xz2 —9.7743 35 x> —0.00334

12 yx, —0.01768 24 xzx. 0.35923 x, [ b
R R

above. Here we also apply a five-point local spline interpo- Il

lation of real data. Tables Il and Il present models fitted to ** {f | ‘ 1
guasistationary regions of states | and Il, respectively. Model
| is found from 8x 10? points, and model Il obtained from b |
10° points of interpolated data. Delays calculated for states | *c ] |

and Il are equal to 70 and 18, correspondingly. We integrate I I
0 200 400 600 800 1000 1200 1400

time (points)

A)
FIG. 6. Normalized EEG recordsg, Xy, and X¢ registered
State | from subject 1(a) and subject Zb) in R, M, andC emotional states,
EEG time Y

respectively.
series and p y

trajectories:
---------- real
model

model | (Table Il) 2700 points ahead with stefit=1/3.
Figure 5A) demonstrates redinterpolatedl and model time
series and trajectories for state |. Model (lTable Ill) is
integrated 5< 10* points ahead with stefit=4x10"2. The
respective time series and trajectories for real and model pro-
cesses are plotted in Fig(By. Generally, the contrast be-
tween states | and Il is obvious and does not require a com-
- plicated modeling technique, but in Sec. V we consider a
| | [ I | | | H A H H H H
-1-20 100 200 300 400 500 600 700 800 900 c!assmcatlon_of emotional states where dynamlcal_d_lscrepan—
cies can be fixed only by changes of model coefficients.

time (points)

B) V. CLASSIFICATION IN THE SPACE OF COEFFICIENTS

Here we demonstrate the technique of emotional state
classification in the space of model coefficients. We consider
EEG records of three emotional states: a ‘“resR) state
with closed eyes, a “listening music(M) state, and a “cal-
culation” (C) state. A subject in th#¥ state was requested to
listen to music with closed eyes, and a subject inGhstate

State Il

EEG time
series and
trajectories:
---------- real
model

1.2 was asked to calculate in his mind with eyes closed. EEG
0.7 records were registered from different subjects with a sam-
0.2 |}

pling frequency of 200 Hz. Each time series includes 1400
points (7 seg¢ of real EEG recordgFigs. 6a) and Gb)].
: : Using a five-point spline interpolation of observed data, we
_13 { | ! | 1 ) 1 1 1 1 1 1 1 4
0 200 400 600 800 1000 1200 1400 1600 1800 2000 obtain about qug points. Applying samp_lmg and fitting
) . procedures described in Sec. IV, we obtain a set of delays
time (points) . . .
and model vectorg; . The parameters are calculated in win-
FIG. 5. (A) Trajectories and time series of real and model qua-dows of lengthn,, = 10° points. In order to avoid local cor-
sistationary EEG segments for statépen eyes (B) Trajectories  relations induced by the spline approximation, we choose a
and time series of real and model quasistationary EEG segments fstep of window movement equal to ten points. Finally, we
state Il (closed eyes obtainN,,=6x 10? vectorsa; of the coefficients. For a clear

S
o©
T
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Space of Coefficients Space of Coefficients
( Subject 1) A C - state ( Subject 1)
A C-state o M- state ( Subject 1)
o M- state A C - state ( Subject2)
o R-state o M- state ( Subject2)

A
g n fﬂo NS \
° -0.1
0.3 2
g " -0.3
0.1 9 -0.6
- 0.1 A 29
a, od S
3i aq; ‘ A ) ° -0.4
a 3 -0.1 5—“
-0.3 ° 02
-0.5
-0.3 0
ay 0.2 -0.1
52_ 0.1
. .. . {
FIG. 7. Sets of points characterizing three emotional states of 03 0.2

subject 1 in the space of model paramet@s(l=1, 2, and 3;i

=1,... 600). FIG. 8. Sets of model parametets;, (I=1, 2, and 3;i
=1,...,600) characterizingM) and (C) emotional states of two

presentation of the classification procedure, we consider thgubjects.

eigenvalue problem

VI. CONCLUSION

(IS_0|T)é|:0, . . . . .
A nonstationary dynamical time series analysis suggests
a a the revelation of long- term nonlinear correlations and qua-
1 Ny sistationary regions of the process. These can be found via
P=ATA, A= c (200 the construction of an empirical dynamical model of the ob-
ayy - Aun served process. Since most real observables have a high em-

w bedding dimension, the empirical model must be also high

where g;; is the jth fitted coefficient in theith sampling d|rr1|e2§|ﬁn§I. Bec_aUS(le 'éher.e |sfa| prolblem IEI fmcimg an O‘I)t"
window, andé, and €, are thelth eigenvalue and an eigen- mal high-dimensional basis ot focal variables from scajar
A , S observables, we apply an extended representation of the
vector of matrixP, respectively. For graphic simplicity we o4e| in a class of DDE's. Thus our main results are as
take|=3. Solving Eq.(20), we obtain new paramete®; fo|iows: (1) The construction of model basis consisting of
=(&;,&) corresponding to the largest eigenvalues of matrix, thogonal local variables which determine the evolution the
P. Coordinate&i; determine the evolution of a new vector of low- dimensional component of a state vector, and a sta-
a;=(3a,;,ay ,a5) In three-dimensional space. Figure 7 tistically independent delay varialg& which implicitly rep-
shows distinct separation of three sets of coeffici@ytsor  resents the high- dimensional componei@s$.High- dimen-
three emotional states of subject 1. Figure 8 demonstratessjonal empirical model construction in the form of delay
classification oM andC states of subjects 1 and 2 in a spaceequations(3) Application of recurrence analysis in the space
of parameter&,; . We can see the intersections of sets ofof model parameters for quasistationary region detectin.
points characterizing two identical emotional states, and @ classification procedure defined in the space of model co-
clear distinction of the sets corresponding to different statesefficients for nonstationary time series classification. The
We check this interesting fact on two other subjects, angroposed technique demonstrates its efficiency for EEG
obtain similar results. Of course, our statistical ensembleecord processing and classification.
(four subjectsis far from being sufficient to make any con-
clusion about invariant properties of distributions of vectors
a; for various emotional states of different subjects; never-
theless, this interesting fact attracts our attention, and re- We want to thank Professor Yu. Kuznetsov for useful
quires additional treatment. Here we only note the fact thatliscussions. We are thankful to Professor A. Kaplan and Pro-
the classification scheme works well for nonstationary sigfessor T. Musha for EEG records kindly provided for the
nals with high embedding dimensions. analysis.
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