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Learning dynamics from nonstationary time series: Analysis of electroencephalograms

Dmitrii Gribkov* and Valentina Gribkova
Department of Physics, Lomonosov Moscow State University, 119899, Moscow, Russia

~Received 18 November 1999!

We propose an empirical modeling technique for a nonstationary time series analysis. Proposed methods
include a high-dimensional (N.3) dynamical model construction in the form of delay differential equations,
a nonparametric method of respective time delay calculation, the detection of quasistationary regions of the
process by reccurence analysis in the space of model coefficients, and final fitting of the model to quasista-
tionary segments of observed time series. We also demonstrate the effectiveness of our approach for nonsta-
tionary signal classification in the space of model coefficients. Applying the empirical modeling technique to
electroencephalogram~EEG! records analysis, we find evidence of high-dimensional nonlinear dynamics in
quasistationary EEG segments. Reccurence analysis of model parameters reveals long-term correlations in
nonstationary EEG records. Using the dynamical model as a nonlinear filter, we find that different emotional
states of subjects can be clearly distinguished in the space of model coefficients.

PACS number~s!: 05.45.2a, 07.05.Tp, 07.05.Kf, 87.19.La
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I. INTRODUCTION

Most observed real world dynamical processes are n
stationary. The nonstationarity coming from a changing
vironment essentially restricts the possibility of dynamics
traction from the corresponding time series. Dynami
invariants and stationary statistical characteristics of the p
cess no longer have any sense in the absence of statio
measures.

However, the reality is not so pessimistic. Open syste
demonstrate a quasistationary behavior if the time scale
their intrinsic motion are incomparable with characteris
times of external action, and if system parameters cha
adiabatically. Also, quasistationary segments of time se
occur if the generating system is sensitive to resonant ac
only, or has a definite threshold of response to exter
forces. The existence of quasistationarity provides us w
the possibility to reveal ‘‘hidden’’ dynamics from the ob
served process. However, detection of quasistationary
gions in chaotic time series with high embedding dimensi
is a complicated problem, and its solution depends on
type of nonstationarity, the length of the observed time
ries, the noise level, the dimensionality, and other facto
Generally, we cannot talk about the nonstationarity or s
tionarity of the process in the absence of an appropriate
namical model of phenomena. Methods@1–6# which do not
suggest a prior knowledge of the dynamical model of
process detect mostly obvious changes in observables
fall into problems of detection of nonstationarities distorti
correlations of the highest orders. Methods applying lo
dynamical models@7,6,8#, or low-dimensional global model
@9#, have the same problems, since they can not revea
long-term correlations and global dynamics of hig
dimensional system. On the other hand, the constructio
global empirical models governing the process is not a triv
task for high-dimensional chaotic dynamics manifesting
self in a scalar time series. Nevertheless, several attem
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have been made recently towards solving this probl
@10,11#. Occasionally, we can derive an empirical mod
which represents prominent features of the real dynam
under consideration. However, the correct solution to
problem depends not only on the length of the observed t
series and level of its nonstationarity, but also on the abi
of fitting model to take into account the highest dynamic
degrees of freedom and to govern the long-term correlati
of the process. Generally, we formulate the task of dyna
cal model construction from nonstationary scalar time se
as consisting of four basic steps:~1! Revealing the basis o
variables containing maximal information about the proce
~2! Finding an appropriate model representation in terms
global maps or sets of differential equations.~3! Application
of the model as a nonlinear filter for quasistationary segm
detection.~4! Final fitting of the constructed model to qua
sistationary regions of the process.

In this paper we make an attempt to develop an appro
which could provide us with an effective instrument of no
stationary time series analysis and processing. Since the
ject of our analysis is human electroencephalogram~EEG!
records, we address our work to those readers who are in
ested in EEG signal processing.

The paper consists of four main parts. In Sec. II we int
duce the consequent decomposition of the state vector o
process with a high embedding dimension. Section III
cludes a high-dimensional dynamical model construction
terms of delay differential equations~DDEs! and a nonpara-
metric estimation of the corresponding time delay. In Sec.
we apply recurrence analysis@12–14,3,6# in the space of
model coefficients for the purpose of quasistationary reg
detection in EEG records. We then fit the high-dimensio
model to quasistationary regions of an EEG time series.
nally, in Sec. V we demonstrate the technique of emotio
state classification in the space of model parameters der
from the nonlinear processing of respective EEG records

II. STATE VECTOR DECOMPOSITION

In this section we begin with a linear separation of lo
and high-dimensional components of the state vector of
6538 ©2000 The American Physical Society
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PRE 61 6539LEARNING DYNAMICS FROM NONSTATIONARY TIME . . .
observed process. The basic idea of the decomposition
determine two sets of variables which independently
scribe different scales of motion. Letxk5x(tk), k51,...,Nt
be a time series of the observed processx(t). We define the
state vector of the process asRW k5RW (x1k ,x2k ,...,xNk) in an
N-dimensional embedding space, wherexik5x@ tk1( i
21)t#, andt is the respective time step. The correspond
covariance matrixĈ of the process is given as

Ĉ5F s11 ¯ s1N

] ]

sN1 ¯ sNN

G , ~1!

where s l l 5(k51
Nt xlk

2 and s j l 5(k51
Nt xjkxlk . We then find

eigenvectorsSW i5SW (m i1 , . . . ,m iN), i 51, . . . ,n of matrix
~1!, solving

~Ĉ2l i Î !SW i50, ~2!

wherem i j is the j th coordinate of thei th eigenvector,l i is
the i th eigenvalue, andÎ is the unit matrix. Equation~2! is a
‘‘routine’’ eigenvalue problem. Using a linear transformx̃i

5(RW ,SW i) @15#, we obtain new variablesx̃i , which are or-
thogonal in the sense of

E
2T

T

x̃i x̃ jdt50 ~3!

for T→` and iÞ j . Actually, we can write scalar product i
Eq. ~3! as

E
2T

T

x̃i x̃ jdt5 (
m51

N

smmm imm jm1 (
lÞm, l ,m51

N

s lmm i l m jm ,

~4!

wheresmm5*2T
T xm

2 dt ands lm5*2T
T xlxmdt. Using the vec-

tor form of Eq.~4!, we obtain

E
2T

T

x̃i x̃ jdt5SW j
TĈSW i . ~5!

Finally, from Eqs.~5! and ~2! we have

SW j
TĈSW i5l i~SW j

T ,SW i !50

due to the orthogonality of the two different eigenvectors.
order to reveal the structure of the new variablesx̃i , we
choose, for simplicity, a number of eigenvectorsn53 and an
embedding dimensionN53. Taking into accounts115s22
5s335s05const, forT→`, from Eq. ~4! we obtain

E
2T

T

x̃i x̃ jdt5~m i1m j 21m i2m j 1!s121~m i1m j 31m i3m j 1!s13

1~m i2m j 31m i3m j 2!s23. ~6!

Sinces125s23 for T→`, using Eqs.~6! and ~3!, we have

~m i1m j 21m i2m j 11m i2m j 31m i3m j 2!s121~m i1m j 3

1m i3m j 1!s1350. ~7!
to
-

g

Adding conditions of orthogonality and normalization
eigenvectors, we find, from Eqs.~7! and ~3!:

m i1m j 21m i2m j 11m i2m j 31m i3m j 250,

m i1m j 31m i3m j 150,

m i1m j 11m i2m j 21m i3m j 350, ~8!

m i1
2 1m i2

2 1m i3
2 51,

m j 1
2 1m j 2

2 1m j 3
2 51.

Solving Eqs.~8!, we obtain three eigenvectors

SW 15S 1

)
,

1

)
,

1

)
D ,

SW 25S 2
1

&
,0,

1

&
D ,

SW 35S 1

A6
,2

2

A6
,

1

A6
D .

New variablesx̃ik5 x̃i(tk) follow from the scalar product
x̃ik5(RW k ,SW i):

x̃1k5
1

)
(
j 51

3

xjk ,

x̃2k5
1

&
@x3k2x1k#, ~9!

x̃3k5
1

A6
@x1k22x2k1x3k#,

wherex̃2k and x̃3k are proportional to first and second ord
derivatives of the process, respectively. Variables~9! deter-
mine the new low-dimensional (n53) state vector in the
space of the eigenvectors;

rWk5(
i 51

n

SW i x̃ik . ~10!

We can rewrite Eq. ~10! in terms of the original
N-dimensional embedding space

rWk5(
j 51

N

iW j xjk
r , ~11!

where iW j is the j th basis vector, andxjk
r is the j th coordinate

of the low-dimensional state vectorrWk embedded into the
original N-dimensional space. Comparing Eqs.~10! and~11!,
we find

rWk5(
j 51

N

iW j(
i 51

n

m i j x̃ik5(
j 51

N

iW j(
i 51

n

m i j (
m51

N

m imxmk . ~12!
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6540 PRE 61DMITRII GRIBKOV AND VALENTINA GRIBKOVA
Formula ~12! defines the low-dimensional vectorrWk in the
N-dimensional embedding space.rWk does not contain all the
information about the process. If the minimal dimension
the embedding spaceNmin.n, we define the vectordW k5RW k
2rWk , which is the difference between the origin
N-dimensional state vectorRW k and the low-dimensionalrWk
~Fig. 1!. Using Eq.~12!, we obtain

dW k5(
j 51

N

iW j xjk
d , ~13!

xjk
d 5xjk2(

i 51

n

m i j (
m51

N

m imxmk . ~14!

We suggest that vectordW k includes information about the
highest degrees of freedom which are not accounted fo
rWk .

III. HIGH-DIMENSIONAL DYNAMICAL MODEL
CONSTRUCTION FOR STATIONARY TIME SERIES

In Sec. II we did not regard the nonstationarity of t
observed time series. This does not play a significant rol
the formal decomposition of state vectorRW k . We only made
the assumption that vectordW k5RW k2rWk includes information
about the highest degrees of freedom which are not
counted for by state vectorrWk , responsible for the low-
dimensional dynamics derived from the observed time ser
However, in this section we use stationary measures,
must require the process to be stationary.

Since the second and third variables in Eq.~9! approxi-
mate the first and second order derivatives of the proc
respectively, it is reasonable to present the dynamics of
low-dimensional vectorrW(t) as

FIG. 1. State vectorRW k decomposition: rWk is the low-

dimensional component defined by eigenvectorsSW i , anddW k is the
vector of difference accounting for higher degrees of freedom.
f
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dx

dt
5y,

dy

dt
5z,

dz

dt
5 f ~x,y,z,aW !, ~15!

where variablex represents an observable, andf and aW are
the nonlinearity and the vector of the coefficients, cor
spondingly. We choosef in the form of a polynomial ofLth
order. Unfortunately, high levels of noise in real proces
do not allow us to apply model representation~15! to dW k . We
cannot use Eq.~14! as a local variable, because vectordW k
contains high order derivatives that produce large erro
However, we can take into account the highest degree
freedom ‘‘hidden’’ in Eqs.~13! and ~14!, implicitly.

We consider an expansion of system~15! in a class of
DDE,

dx

dt
5y,

dy

dt
5z,

dz

dt
5 f ~x,y,z,xt ,aW !, ~16!

wherext5x(t2t* ), and t* is a characteristic time delay
As always, we have a problem of how closely the co
structed model approximates the dynamics of our obse
able. We choose functionf 5(m51

M amwm in the form of a
polynomial of third order, withM535 nonlinear termswm .
In general, Eqs.~16! have infinite dimensions, and we ca
expect that system~16! will fit the high-dimensional dynam-
ics of the observed time series. Another problem is how
estimate the value oft* . Since methods proposed in Re
@10# use special forms of the nonlinearityf, and do not work
for polynomials of general form, we apply another nonpa
metric approach to time delay estimation. We look for
delay variable satisfying the following requirement:xt is sta-
tistically independent ofx, and contains maximal informa
tion about vectordW k . This requirement leads to calculation
of extrema of two pieces of mutual information:

I a~t* !5(
i , j

p~xi ,xt j !logF p~xi ,xt j !

p~xi !p~xt j !
G ~17!

and

I b~t* !5(
i , j

p~xi
d ,xt j !logF p~xi

d ,xt j !

p~xi
d!p~xt j !

G ~18!

wherep(xi ,xr j ) andp(xi) are joint and individual probabil-
ity densities, correspondingly.

FunctionsI a(t* ) and I b(t* ) have several extrema on
limited interval. We look for the minimum of Eq.~17! and
the maximum of Eq.~18!, which are close enough on som
interval @t1 ,t2#. Thus we obtain two estimationsta andtb
of time delayt* , respectively. In general, when valuesta
andtb are significantly different, we can construct a mul
delay dynamical system or, at least, try each value of
delay, using Eq.~16!. As shown in the next sections, eve
the single delay model is sufficient for performing an EE
records analysis.

In some cases formula~18! can be replaced by a mor
simple relation. We find the maximal average of the absol
value uxjk

d u @see Eq.~14!#,
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^uxj
du&T5

1

Nt
(
k51

Nt

uxjk
d u,

where T is the time of observation. The maximal avera
projection ofdW k gives an indexj * of the delay coordinate in
N-dimensional embedding space. We then find the dela
t* 5 j * Dt, whereDt is a sampling time interval of the tim
series.

We cannot give a strict recommendation as to the ap
cation of a certain formula or certain time delay in all po
sible cases. Each time series requires individual consi
ation. According to our experience, a prior approach an
definite freedom of choice oft* are more effective than
parametric methods of delay estimation.

Having delay variablext , we fit system~16! to the ob-
served time seriesxk by the solution of the matrix equation

DzW52Dt•F̂~xW ,yW ,zW,xW t!•aW , ~19!

where

F̂5F 1 x2 y2 z2 xt2 x2
2

¯

] ] ] ] ] ] ]

1 xNt21 yNt21 zNt21 xtNt21 xNt21
2

¯

G
is a matrix of nonlinearities corresponding tof, and

DzW5F z32z1

]

zNt
2zNt22

G , aW 5F a1

]

aM

G .

Using Eq.~19!, we can obtain vectoraW of the model coeffi-
cients from

F̂T
•DzW52Dt•F̂T

•F̂•aW ,

whereF̂T is a transposed matrixF̂. Having this set of fitted
coefficients, we integrate Eqs.~16! numerically by the sim-
plest Euler method adapted to DDE integration, with init
conditionsx1 , y1 , z1 , andxt5x12n* derived from observed
time series.

IV. QUASISTATIONARY REGION DETECTION
AND MODELING

Next we suppose that our observable is nonstation
Our main goal is to determine regions where the time se
demonstrates a quasistationary behavior. In other words
want to find regions of long-term correlations and simi
dynamics~if the latter is present!. We define a sampling time
window of lengthnw moving along the process, and estima
the time delay in each window, using formulas~17! and~18!.
We then fit model~16! to the data bounded by each movin
window. Equations~16! are assumed to be a sort of nonline
filter matching the observed time series. The lengthnw of the
window is chosen to be proportional to the characteris
time of the process of correlation distortion. Each set of fit
coefficients is represented by anM-dimensional vector
aW i( i 51, . . . ,Nw), whereM535, i is the index of the curren
window, andNw.Nt2nw is the whole number of samplin
as

i-
-
r-
a

l

y.
s
e

r

r

c
d

windows. In order to reveal the dynamical correlation
we use the recurrence analysis technique in the spac
model coefficients. However, some nonlinear terms
the model may be erroneous and add only numerical no
Such terms can alter the dynamics of the original syste
If the respective nonlinearity does not fit the time seri
its coefficient is small and the variance of the coefficie
~computed from the least-squares fit! is large. We can
reduce the influence of erroneous nonlinearities, replac
each vector aW i5(a1i ,...,aMi) by vector cW i
5(a1i /uda1i u,...,aMi /udaMi u), whereudamiu is the absolute
value of the variance of themth coefficient in thei th sam-
pling window. We define Euclidean distance between t
arbitrary chosen vectorscW i andcW j , asD i j 5icW i2cW j i . If D i j is
less than a prior constant«, we mark the point with coordi-
nates~i,j! on the corresponding recurrence plane. Process
all Nw3Nw points, we obtain the recurrence plot.

FIG. 2. Probability distributionpt vs time delayt* for a qua-
sistationary segment of the EEG record registered from a subje
the rest state.

FIG. 3. ~i! Reccurence plot of model~16! vectorscW i , tracing the
normalized EEG observable presented in~ii !. Sets of black points
mark regions of maximal correlations of coefficients.
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6542 PRE 61DMITRII GRIBKOV AND VALENTINA GRIBKOVA
For demonstration of described technique we cho
‘‘normal’’ human EEG record with sampling frequency 20
Hz. The whole length of the time series isNt51600 points.
We choose window of lengthnw5200 points, moving one
point ahead along the EEG observable. By fitting the mo
we obtainNw51400 vectorscW i . Figure 2 demonstrates th
distribution of delayst i* calculated for each time window
Figure 3~i! presents recurrence plot of all pairs of normaliz
vectorscW i /icWmaxi with distancesD i j ,224. Sets of points in
Fig. 3~i! determine regions of maximal correlations of mod
coefficients. The corresponding time series of the E
record is plotted in Fig. 3~ii !. We can expect to find a sta
tionary dynamics which is governed by model~16! inside
regions of strong correlations of model coefficients. Befo
fitting the model to observed data, we apply a five-point lo
spline approximation of the quasistationary segment~points
280–800! detected in Fig. 3~i!. We then fit model~16! to the
segment, from point 301 to point 500~totally 103 points of
interpolated data!. The fitting parameters of the model a
presented in Table I. Time delayt* is equal to 25 (t*
5n*Dt, n* 5125). While model construction all erroneou
nonlinearities with small coefficients and large variances
coefficients are zeroed.

Having fitted coefficients, we integrate equations~16! for-
ward in time 104 time points ahead with stepDt50.2, and
initial conditions derived from real~interpolated! EEG ob-
servable. Because we apply a fractional time step, the i
gration scheme provides additional interpolation of time
ries, in accordance with step division. Model~16! generates
the time series which covers an unfitted interval of real da
The generated process is then compared with a real E
segment, from point 351 to point 750~totally 23103 points
of interpolated data!. Figures 4~i! and 4~ii ! demonstrate
phase trajectories and time series of real~interpolated! and
model processes, respectively. We find that phase portrai
reconstructed and model trajectories are topologically si
lar. However, estimations of embedding dimensions of r
and model time series are different and equal to 8 and
correspondingly. Nevertheless, in contrast to local mode
techniques, we obtain a global model generating the pro
similar to the quasistationary segment of observable.
advantage of such technique is that we can match the lo
term correlations of the process.

TABLE I. Model ~16! fitted to a quasistationary EEG segment

m wm am m wm am m wm am

1 1.00 0.0 13 z2 0.0 25 xxt
2 20.005 62

2 x 0.000 38 14 zxt 0.168 20 26 y3 27.984 41
3 y 20.015 88 15 xt

2 0.0 27 y2z 19.261 95
4 z 0.0 16 x3 20.007 05 28 y2xt 20.684 71
5 xt 20.001 03 17 x2y 20.066 27 29 yz2 2121.763
6 x2 20.002 875 18 x2z 20.667 33 30 yzxt 0.0
7 xy 0.054 87 19 x2xt 0.0 31 yxt

2 0.0
8 xz 20.220 58 20 xy2 0.0 32 z3 2300.343
9 xxt 20.002 41 21 xyz 23.344 29 33 z2xt 0.0
10 y2 0.200 41 22 xyxt 20.055 40 34 zxt

2 0.0
11 yz 2.913 92 23 xz2 231.1660 35 xt

3 0.001 74
12 yxt 0.0 24 xzxt 0.273 42
e

l,

l

e
l

f

e-
-

a.
G

of
i-
l

6,
g
ss
e
g-

The next example demonstrates the empirical models c
structed for two quasistationary segments revealed i
single EEG record registered from the subject, whose e
were opened and closed during some period. The samp
frequency of the EEG record is 128 Hz. Quasistationary s
ments for the ‘‘open eyes’’ state~I! and the ‘‘closed eyes’’
state~II ! are detected by the recurrence technique descr

TABLE II. Model ~16! fitted to a quasistationary EEG segme
~state I!.

m wm am m wm am m wm am

1 1.00 0.0 13 z2 23.274 86 25 xxt
2 0.0

2 x 0.0 14 zxt 0.0 26 y3 0.0
3 y 20.063 34 15 xt

2 0.0 27 y2z 212.454
4 z 20.030 94 16 x3 20.008 30 28 y2xt 0.0
5 xt 20.035 34 17 x2y 20.066 63 29 yz2 0.0
6 x2 20.009 35 18 x2z 20.258 36 30 yzxt 24.1356
7 xy 20.032 64 19 x2xt 0.005 43 31 yxt

2 20.218 49
8 xz 20.336 62 20 xy2 20.238 62 32 z3 299.525
9 xxt 0.002 69 21 xyz 0.0 33 z2xt 0.0
10 y2 0.117 52 22 xyxt 20.137 83 34 zxt

2 0.0
11 yz 20.820 27 23 xz2 26.2304 35 xt

3 20.007 83
12 yxt 20.062 83 24 xzxt 0.092 00

FIG. 4. ~i! Phase portrait and time series of a real quasistati
ary EEG segment.~ii ! Trajectory and time series generated
model ~16!, with parameters listed in Table I.
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PRE 61 6543LEARNING DYNAMICS FROM NONSTATIONARY TIME . . .
above. Here we also apply a five-point local spline interp
lation of real data. Tables II and III present models fitted
quasistationary regions of states I and II, respectively. Mo
I is found from 83102 points, and model II obtained from
103 points of interpolated data. Delays calculated for state
and II are equal to 70 and 18, correspondingly. We integ

FIG. 5. ~A! Trajectories and time series of real and model q
sistationary EEG segments for state I~open eyes!. ~B! Trajectories
and time series of real and model quasistationary EEG segmen
state II ~closed eyes!.

TABLE III. Model ~16! fitted to a quasistationary EEG segme
~state II!.

m wm am m wm am m wm am

1 1.00 0.0 13 z2 0.0 25 xxt
2 0.0

2 x 0.0 14 zxt 0.113 69 26 y3 23.656 61
3 y 20.021 76 15 xt

2 20.001 67 27 y2z 27.8836
4 z 0.058 57 16 x3 0.000 66 28 y2xt 20.849 87
5 xt 20.001 74 17 x2y 20.017 66 29 yz2 161.65
6 x2 20.000 21 18 x2z 0.0 30 yzxt 0.0
7 xy 0.0119 25 19 x2xt 20.000 77 31 yxt

2 20.099 87
8 xz 0.0 20 xy2 0.0 32 z3 2328.63
9 xxt 0.001 60 21 xyz 3.084 17 33 z2xt 16.1856
10 y2 0.0 22 xyxt 20.008 01 34 zxt

2 0.0
11 yz 0.783 63 23 xz2 29.7743 35 xt

3 20.003 34
12 yxt 20.017 68 24 xzxt 0.359 23
-

el

I
te

model I ~Table II! 2700 points ahead with stepDt51/3.
Figure 5~A! demonstrates real~interpolated! and model time
series and trajectories for state I. Model II~Table III! is
integrated 53104 points ahead with stepDt5431022. The
respective time series and trajectories for real and model
cesses are plotted in Fig. 5~B!. Generally, the contrast be
tween states I and II is obvious and does not require a c
plicated modeling technique, but in Sec. V we conside
classification of emotional states where dynamical discrep
cies can be fixed only by changes of model coefficients.

V. CLASSIFICATION IN THE SPACE OF COEFFICIENTS

Here we demonstrate the technique of emotional s
classification in the space of model coefficients. We consi
EEG records of three emotional states: a ‘‘rest’’~R! state
with closed eyes, a ‘‘listening music’’~M! state, and a ‘‘cal-
culation’’ ~C! state. A subject in theM state was requested t
listen to music with closed eyes, and a subject in theC state
was asked to calculate in his mind with eyes closed. E
records were registered from different subjects with a sa
pling frequency of 200 Hz. Each time series includes 14
points ~7 sec! of real EEG records@Figs. 6~a! and 6~b!#.
Using a five-point spline interpolation of observed data,
obtain about 73103 points. Applying sampling and fitting
procedures described in Sec. IV, we obtain a set of de
and model vectorsaW i . The parameters are calculated in wi
dows of lengthnw5103 points. In order to avoid local cor
relations induced by the spline approximation, we choos
step of window movement equal to ten points. Finally, w
obtainNw563102 vectorsaW i of the coefficients. For a clea

-

for

FIG. 6. Normalized EEG recordsxR , xM , and xC registered
from subject 1~a! and subject 2~b! in R, M, andC emotional states,
respectively.
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presentation of the classification procedure, we consider
eigenvalue problem

~ P̂2u l Î !eW l50,

P̂5ÂTÂ, Â5F a11 ¯ a1Nw

] ]

aM1 ¯ aMNw

G , ~20!

where aji is the j th fitted coefficient in thei th sampling
window, andu l andeW l are thel th eigenvalue and an eigen
vector of matrixP̂, respectively. For graphic simplicity w
take l 53. Solving Eq.~20!, we obtain new parametersãl i
5(aW i ,eW l) corresponding to the largest eigenvalues of ma
P̂. Coordinatesãl i determine the evolution of a new vecto
aW i5(ã1i ,ã2i ,ã3i) in three-dimensional space. Figure
shows distinct separation of three sets of coefficientsãl i for
three emotional states of subject 1. Figure 8 demonstrat
classification ofM andC states of subjects 1 and 2 in a spa
of parametersãl i . We can see the intersections of sets
points characterizing two identical emotional states, an
clear distinction of the sets corresponding to different sta
We check this interesting fact on two other subjects, a
obtain similar results. Of course, our statistical ensem
~four subjects! is far from being sufficient to make any con
clusion about invariant properties of distributions of vecto
aW i for various emotional states of different subjects; nev
theless, this interesting fact attracts our attention, and
quires additional treatment. Here we only note the fact t
the classification scheme works well for nonstationary s
nals with high embedding dimensions.

FIG. 7. Sets of points characterizing three emotional state
subject 1 in the space of model parametersãli ( l 51, 2, and 3;i
51, . . . ,600).
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VI. CONCLUSION

A nonstationary dynamical time series analysis sugge
the revelation of long- term nonlinear correlations and q
sistationary regions of the process. These can be found
the construction of an empirical dynamical model of the o
served process. Since most real observables have a high
bedding dimension, the empirical model must be also h
dimensional. Because there is a problem in finding an o
mal high-dimensional basis of local variables from sca
observables, we apply an extended representation of
model in a class of DDE’s. Thus our main results are
follows: ~1! The construction of model basis consisting
orthogonal local variables which determine the evolution
of low- dimensional component of a state vector, and a s
tistically independent delay variable~s! which implicitly rep-
resents the high- dimensional components.~2! High- dimen-
sional empirical model construction in the form of dela
equations.~3! Application of recurrence analysis in the spa
of model parameters for quasistationary region detection.~4!
A classification procedure defined in the space of model
efficients for nonstationary time series classification. T
proposed technique demonstrates its efficiency for E
record processing and classification.
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