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Quasiperiodicity and transition to chaos
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In coupled Lorenz systems, we find that the three-frequency quasiperiodcity exists in the finite parameter
range robustly. We also find the period-doubling bifurcation of the torus and the quasiperiodic windows in
superchaos. Based on the separation of the dynamics, corresponding explanations are given by making use of
the synchronous dynamics.

PACS numbeps): 05.45.Pq

Transition to chaos is a fundamental problem in the nonsence of coupling or for small driving. The interesting points
linear dynamics. Several rout¢s—4] have been found in are whether we can find three-frequency quasiperiodicity in
low-dimensional chaotic systemgwe define a low- Systems with more complex dynamics and whether we can
dimensional chaotic system as the system with a chaotic afind the transition involved with three-frequency quasiperi-
tractor whose dimension is less than Recently, the transi- odicity.
tion to high-dimensional chaos also attracts a great deal of [N this paper, we address the transition to high-
attention. Harrison and Ldi5] presented a route to high- dimensional chaos via quasiperiodicity and the robustness of
dimensional chaos where the system first comes to lowthree-frequency quasiperiodicity. Furthermore, we will show
dimensional ChaOS, then to a high_dimensiona' muper_ the existence of interesting quasipel’iodicity windows in su-
chaos with the second Lyapunov exponent passing througtPerchaos.
zero continuously. However, there exists another type of The model we used is the couplédLorenz oscillators
high-dimensional chaos that has only one positive Lyapuno{19.20
exponent and more than one zero Lyapunov exponent. Gen- .
erally speaking, this type of chaos cannot be attained only Xj=0o(yi=X),
through the transition form of periodic behavior or a fixed
point. To investigate the transition to this type of high- Yi=pXi—VYi=XiZi+(e=r)(Xj11=X;) +(e+r)(X_1=X)),

dimensional chaos, the quasiperiodicity route will be a good (1)
candidate. :
Evidence of the route to chaos from quasiperiodicity was Zi=XiYi— Z,
first known in late 197046,7], our understanding of the ]
transition still appears quite limited. Most of investigations 1=12,... N,

in the 1980s was concentrated on two-dimensiofZi)
maps and three-dimensionéD) flows, [7—11] where the
transition involves with the frequency locking or wrinkles or

corrugation on the torus. However, one new type of transi o o i .
less we mention it specifically. The Lorenz oscillators are in

tion to chaos with dimension larger than 3 was recently pro L . "
9 y P synchronization for =0. Whenr increases beyond a critical

ESZﬁgyWroecrlzn;he atno(;uswlismgge%lcy tﬂ?trtg)rﬁgl;\]”thgﬂz fre_value, a Hopf bifurcation related to the synchronous chaos

mechanism of the transition is believed to be heteroclinicWIII occur (for details see Ref.17)). In this paper, we only

bifurcation occurring in a four-dimension@édD) system. It survey a small range of parametebeyond the Hopf bifur-

raises a question: can we find another situation where torus fgtion. . . .

destroyed without wrinkle and frequency lock in a different We linearize Eq(1) along the typical orbit of the system
It has been controversial regarding whether there exists

quasiperiodicity with more than two incommensurate fre-

guencies. Ruelle and Takepy showed that three-frequency

quasiperiodicity is unlikely since it can be destroyed by

wheree is the diffusion coupling and is the flow coupling.
When we fixoc=10 andp=28, the single Lorenz system
will be in chaos.N=4 ande=14 throughout the paper un-

8% = o 8y; — OX;),

3= pOXi— 8Yi= OXiZi = X0z F (€= T)(8; 1~ OX))

small perturbations. The experiments that followed were in- +(e+1) (X _1— OX),

conclusive[13—-16. Grebogiet al. [17] reported the results

of some numerical experiments on a model system. They 57,= S%;Y, + X 8y, — 82,

found that chaos in their system appeared to have zero mea- ! RO v

sure until coupling was almost 3/4 of the critical coupling. i=12,... N, )

Three-frequency quasiperiodicity is also found in other nu-

merical simulations and electronic circuits8]. The com-  where (6%;,8Y;,5z) is the perturbation around the typical
mon point in these investigations is that the systems behawerbit of the system. We integrate Ed4) and(2) by the use
in the way of three-frequency quasiperiodcity in the ab-of Runge-Kutta method. Based on E@%) and(2), we can
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FIG. 1. (a) The first four Lyapunov exponents in coupled Lorenz systéirs4, e= 14, 0= 10, andp=28. These parameters remain the
same for all the following figures unless we mention it specifically. The time sequences of va(igifle= 1,2,3,4) for four sites whetb)
r=7.954;(c) r=7.97;(d) r=7.9714.

calculate the Lyapunov exponents spectrum with the retities X,Y, andZ, which are the sums of the variablggy,
peated use of the Gram-Schmidt reorthonormalization procegnd z for all sites. We takeX, for example,

dure on the vector frameds; , Sy, 6z). (The detailed algo-

rithm of the Lyapunov exponents spectrum may be found in 1 1

Ref.[21]) The first four Lyapunov exponents in the range of ~ X= 7 > Xi=7 > (Xrt+xg)(i)

re[7.95,7.97% have been shown in Fig(d). It is obvious

that quasiperiodic motion exists in this region and the tran- 1 _ _

sitions to chaos can be seen at the large and sneaibis. In =xs+ 7 DD ael @t =yt o(ay),

Figs. 1b), 1(c), and 1d), we show the time sequence of K

variablex of the four sites for different parameters for which

the system has different dynamics. The common aspect Wwherea, is the Fourier coefficient of the TWC. By numeri-
that the dynamics of the system may be divided into twocal simulation, we know tha, (k> 1) is much smaller than
components, for examples(i)=x7(i) +xg(i). One is the a; ando(a,) is a small amount corresponding xq. Thus
synchronous componersC), (Xs,Ys,Zs), Where all sites when we takeX, Y, andZ into consideration, we eliminate
behave in the same way; the other is the traveling wavehe TWC up to the small amount ofa,). As a result, if SC
componentTWC), (x+(i),y1(i),z7(i)), where the different is periodic (or two-frequency quasiperiodicitythe system
sites behave in the same periodic way but with a constanwill behave in the way of two-frequendyr three-frequengy
phase difference ofr/2 between two adjacent sites. That is, quasiperiodicity. Another important thing is that both the fre-
x7(i,t)=x[i+1t—(7/4)] wherer is the temporal period of quency and the strength of the TWC will increase with the
the TWC. To single out the SC, we may consider the quanincrease of in this region.
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FIG. 2. The Lyapunov exponents in the ranger ef(7.969,7.9712)(b) and(d) The time sequences of variablefor the synchronous
motion for differentr, (b) r =7.9705 andd) r =7.965.(c) and(e) The profile of the minimum oK with the same parameters @g and(d),
respectively(f) The Lyapunov exponents fid =4, e=16.

We zoom in the Lyapunov exponents spectrum in the recan also find various saddle-node bifurcations between two-
gion ofr € (7.969,7.9712) in Fig.@). Three zero Lyapunov and three-frequency quasiperiodicities. One section of the
exponents are found, which means that three-frequency quayapunov exponents spectrum fer=16 is shown in Fig.
siperiodicity exists in this region. To further confirm our 2(f). We can find that the three-frequency quasiperiodicity
findings, we plot the time sequence of quantXyfor r finally settles down to two-frequency after a series of transi-
=7.9705 in Fig. 2b). To magnify the weak periodic modu- tions between three-frequency and two-frequency quasiperi-
lation, we show the profile of the minimum &fin Fig. 3(c). odcity. It is noted that all of the transitions are saddle-node
In these plots we may find the slow periodic modulationbifurcation. In this system, we do not find the direct transi-
whose amplitude is very small on SC. In Figd® we show tion to chaos from three-frequency quasiperiodicity.
the results for =7.96 where the system is in two-frequency  Now we are interested in the transition to chaos around
guasiperiodicity. The profile of the minimum of is also r=7.951. In Fig. 8a), we may notice that there exist several
shown in Fig. 8e). In these plots, no periodic modulation is instabilities during the transition from two-frequency quasi-
found and the SC is periodic. The fluctuations in Fige)3 periodicity to chaos such as thoserat7.953 and = 7.952.
and 3e) are caused bp(a,). All of these results show that These instabilities do not change the nature of the quasiperi-
there exists three-frequency quasiperiodicity, and the threesdicity. To investigate how the torus changes during these
frequency quasiperiodicity exists in a finite parameter rangénstabilities, we study SC on th¥-Z plane. In Fig. 8b) r
robustly. The three-frequency quasiperiodicity is developed=7.9532 where SC rotates two cycles in the right half-plane
from the two-frequency quasiperiodicity via Hopf bifurca- then rotates one cycle in the left-half plai#2]. When we
tion at aboutr=7.9695 and then loses its stability and increase to 7.9524 in Fig. &), we find that the rotation of
changes to a different two-frequency quasiperiodicity via ahe torus doubles, namely, it rotates four cycles in one half-
saddle-node bifurcation at aroumd=7.9709. Actually, we plane and two cycles in the other half-plane. If we only trace
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FIG. 3. (a) The Lyapunov exponents versus(b), (c) and(d) the trajectories of the synchronous motion for different parametdi®
r=7.9532,(c) r=7.9524, andd) r=7.9513.(e), (f), and(g) The bifurcation diagrams for the synchronous motion.

a section of the trajectory in the pladeZz, for example X  observed in Figs. @) and 3e). When the distance between
e (—12,—10) [or X e (10,12)] andZ  (34,38), we may find any pair of adjacent branches of the solution of SC becomes
two curves while there is only one curve for7.9532. If we  smaller than the thickness of the corresponding solution
further decreaseg, the period of SC will double again and so branches, SC will no longer obey the original periodic path.
will the number of the curvefFig. 3(d)]. It will jump between the two branches under the control of
It will be more convenient to investigate the transition if TWC. With further decreasing SC will jump between two
the bifurcation diagram is built up. We define a Poincaremore distant branches. It is the jump between the different
section for SC when the trajectory passes throughxtg  branches that interrupts the bifurcation sequence. Though we
plane from negative to positiveY. The results are shown in do not know the exact form of the coupling between the
Fig. 3(e). The period-doubling bifurcation to chaos is ob- TWC and SC, we know that the strength of the coupling
served. In Ref[23], the authors suggested a model to simu-between the TWC and SC is determined by the quantity
late the period-doubling bifurcation of a torus by applying ao(a,). Therefore, it is interesting to notice that the coupling
periodic driving to a system that manifests period-doublingbetween the SC and TWC in our case is not a constant. This
bifurcation to chaos. Differing from their model, our period- conclusion is different from that of Reff23]. For the transi-
doubling bifurcation of the torus is not artificial. The peri- tion nearr =7.951, the bifurcation sequence terminates at a
odic driving and the dynamics, which manifests period-weak coupling. However, we can also observe the period-
doubling bifurcation, occur spontaneously, and they cannodoubling bifurcation, which terminates at a strong coupling,
exist in a single Lorenz system of the same parameters. Thier example, the transition to chaos at the highend[see
invites a question: will the period-doubling bifurcation un- Fig. 3@)]. In the case shown in Fig(®), the two-frequency
dergo infinite time? The authors 3] stated that the bifur- quasiperiodicity is developed from the three-frequency qua-
cation only proceeds several times or even transforms teiperiodicity and its SC has a high period. As a result, its SC
chaos without period-doubling bifurcation when the couplinghas a more branches than those in Figs) 8nd 3f), and the
between the driving and the system of period-doubling bifur-distances between any adjacent branches are much smaller. It
cation is strong. We also find that the period-doubling bifur-is also the reason why fewer period-doubling bifurcations are
cation only occurs for a few times in Fig(f3. After the  observed.
bifurcation from period 8 to period 16, we cannot observe Some remarks are necessary to be made. First, the period-
period-doubling bifurcation any more. For the interruption of doubling bifurcation of the torus discussed above is one ex-
the period-doubling bifurcation sequence, we can have ample that shows the two-frequency quasiperiodicity yields
good understanding based on the separation of the dynamits chaos without frequency locking and wrinkle of the torus.
of the system. We know from E@2) that the effect of the The torus keeps its smoothness until becoming ckiadsig.
TWC cannot be eliminated completely. 3). Though our results are obtained from SC, we can draw
There still exists a small quantity(a,). The main effect the same conclusion even if we construct other Poinsace
of o(a,) is to thicken all the branches of the solution on thetions such as ar(1)—y(1) plane withz(1) taking its maxi-
synchronous manifold. The thickening phenomenon can bewum. Second, it is important to notice that there is only one
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FIG. 4. (a) The Lyapunov exponents in the rangeref[7.9711,7.971Y. (b) and(c) The magnified plots of the Lyapunov exponents of

(@ around (b) re[7.97139,7.9714P and (c) r €[7.9716,7.9716B (d) and (e) The evolutions ofX in the Poincaresection forr
=7.971394 3 and=7.971 394 612(f) In(T) vs Inr—r .

positive Lyapunov exponent and two zero Lyapunov expo-city followed by frequency locking, then undergoes the

nents after the onset of the chaos. According to the Kaplanperiod-doubling bifurcation to chaos. In the second window,

Yorke conjecturd24], we know the dimension of the attrac- there exists no three-frequency quasiperiodicity, and the two-
tor is larger than 3. That is, a high-dimension chaos vidgrequency quasiperiodicity moves to chaos directly via pe-

period-doubling bifurcation of the two-frequency torus is at-riod doubling of the torus. In both windows, the superchaos
tained. Finally, as shown in Fig(&, we can find that super- is restored continuously from the high-dimension chaos with

chaos will appear after the birth of the high-dimensionalone positive and two zero Lyapunov exponents. The exis-
chaos. Here the second Lyapunov exponent gradually beaence of the quasiperiodic windows may be explained based
comes positive at a parameter with a finite distance from then the separation of the dynamics of the system. We know
onset of the chaos, which is in agreement with the statemerthat all the qualitative changes of the system are mainly re-
provided by Harrison and Ldb] that the superchaos is in- lated to the SC. The existence of the quasiperiodic windows
duced gradually. Nonetheless, the difference is obvious: wes due to the existence of the periodic windows for the SC.

first encounter the high-dimensional chaos just when th&he sudden appearance of the quasiperiodic windows is be-
regular motion loses stability, while Harrisat al. first en-  cause the periodic windows appear via tangent bifurcations
counter a low-dimensional chaos. for the SC. The evolutions oX in the Poincaresection de-

In Fig. 4a), we may notice an interesting phenomenon. Infined above for =7.971394 3 and=7.971394 612 are re-
the super-chaotic region, we find that there exists regulacorded in Figs. &) and 4e). The intermittency is clear in
motion windows located at e[7.97139,7.9714pR and r these two plots. The closer to the critical,
e[7.9716,7.971 6B The regular motion windows can be =7.971394 6137, the longer is the duration of the periodic
observed in Fig. @) also. We plot in Figs. é) and 4c) the  phase. The averaged life for periodic ph&3¢ is plotted vs
detailed Lyapunov exponents of the spectrum. To our surfr —r|. The power law is clear and the exponentis, that
prise, we find that they are both two-frequency quasiperiodis, <T>~|r—rc|‘1/2. It agrees with the result for the intermit-
icity in these two windowgto our knowledge, this is first tency of saddle-node tyd@5]. The same conclusion can be
time that the quasiperiodicitiy window is obseryeahd the  drawn for the second quasiperiodic window.
quasiperiodic windows come from superchaos abruptly. In  For different parameter sets, we can observe similar pic-
the first window, the two-frequency quasiperiodicity first un-tures as those discussed above. The effects of different pa-
dergoes the Hopf bifurcation to three-frequency quasiperiodrameters are changing the location of the quaiperiodic
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FIG. 5. The Lyapunov exponents when=28. (b) The symmetric periodic synchronous orbit fer=28. andr=12.15.(c) The

Lyapunov exponents whel=10 ande=>50.

"dent” and selecting the periodic synchronous orbit. In Fig. three-frequency quasiperiodicity and the period-doubling bi-

5(a), we show the first four Lyapunov exponents when

furcation are seen. The quasiperiodic windows in superchaos

=28. A similar structure to the Lyapunov exponents is foundcan be found also if we zoom in on this plot.

in Fig. 3@ and shows the period-doubling bifurcation of a

It is necessary to note that the results obtained here are

torus to chaos. It is worth mentioning that the periodic syn-not limited to the coupled Lorenz systems. One possible ex-
chronous orbit is different from the one in Fig. 3. In this perimental setup to realize those phenomena is the coupled
case, the synchronous orbit is invariant under the transformazhua’s circuits, which are used in R¢R0].

tion (X,Y,2)—(—X,—Y,Z) [Fig. 5b)]. Furthermore, the

phenomena observed here are independent of the dimension This work was supported in part by NSF Grant No. DMR
of the system. We show the first four Lyapunov exponents irf728858 and in part by the MRSEC Program of the National

a section of the quasiperiodic "dent” in Fig.(§ where

Science Foundation under Grant No. NSF DMR 9808595.
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