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Quasiperiodicity and transition to chaos
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In coupled Lorenz systems, we find that the three-frequency quasiperiodcity exists in the finite parameter
range robustly. We also find the period-doubling bifurcation of the torus and the quasiperiodic windows in
superchaos. Based on the separation of the dynamics, corresponding explanations are given by making use of
the synchronous dynamics.

PACS number~s!: 05.45.Pq
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Transition to chaos is a fundamental problem in the n
linear dynamics. Several routes@1–4# have been found in
low-dimensional chaotic systems~we define a low-
dimensional chaotic system as the system with a chaotic
tractor whose dimension is less than 3!. Recently, the transi-
tion to high-dimensional chaos also attracts a great dea
attention. Harrison and Lai@5# presented a route to high
dimensional chaos where the system first comes to l
dimensional chaos, then to a high-dimensional one~super-
chaos! with the second Lyapunov exponent passing throu
zero continuously. However, there exists another type
high-dimensional chaos that has only one positive Lyapu
exponent and more than one zero Lyapunov exponent. G
erally speaking, this type of chaos cannot be attained o
through the transition form of periodic behavior or a fix
point. To investigate the transition to this type of hig
dimensional chaos, the quasiperiodicity route will be a go
candidate.

Evidence of the route to chaos from quasiperiodicity w
first known in late 1970s@6,7#, our understanding of the
transition still appears quite limited. Most of investigatio
in the 1980s was concentrated on two-dimensional~2D!
maps and three-dimensional~3D! flows, @7–11# where the
transition involves with the frequency locking or wrinkles
corrugation on the torus. However, one new type of tran
tion to chaos with dimension larger than 3 was recently p
posed where the torus is directly destroyed without f
quency locking and wrinkle of the torus@12#. The
mechanism of the transition is believed to be heterocli
bifurcation occurring in a four-dimensional~4D! system. It
raises a question: can we find another situation where toru
destroyed without wrinkle and frequency lock in a differe
way?

It has been controversial regarding whether there ex
quasiperiodicity with more than two incommensurate f
quencies. Ruelle and Takens@4# showed that three-frequenc
quasiperiodicity is unlikely since it can be destroyed
small perturbations. The experiments that followed were
conclusive@13–16#. Grebogiet al. @17# reported the results
of some numerical experiments on a model system. T
found that chaos in their system appeared to have zero m
sure until coupling was almost 3/4 of the critical couplin
Three-frequency quasiperiodicity is also found in other n
merical simulations and electronic circuits@18#. The com-
mon point in these investigations is that the systems beh
in the way of three-frequency quasiperiodcity in the a
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sence of coupling or for small driving. The interesting poin
are whether we can find three-frequency quasiperiodicity
systems with more complex dynamics and whether we
find the transition involved with three-frequency quasipe
odicity.

In this paper, we address the transition to hig
dimensional chaos via quasiperiodicity and the robustnes
three-frequency quasiperiodicity. Furthermore, we will sh
the existence of interesting quasiperiodicity windows in s
perchaos.

The model we used is the coupledN Lorenz oscillators
@19,20#

ẋi5s~yi2xi !,

ẏi5rxi2yi2xizi1~e2r !~xi 112xi !1~e1r !~xi 212xi !,
~1!

żi5xiyi2zi ,

i 51,2, . . . ,N,

wheree is the diffusion coupling andr is the flow coupling.
When we fix s510 andr528, the single Lorenz system
will be in chaos.N54 ande514 throughout the paper un
less we mention it specifically. The Lorenz oscillators are
synchronization forr 50. Whenr increases beyond a critica
value, a Hopf bifurcation related to the synchronous ch
will occur ~for details see Ref.@17#!. In this paper, we only
survey a small range of parameterr beyond the Hopf bifur-
cation.

We linearize Eq.~1! along the typical orbit of the system
(xi ,yi ,zi)

ḋxi5s~dyi2dxi !,

ḋyi5rdxi2dyi2dxizi2xidzi1~e2r !~dxi 112dxi !

1~e1r !~dxi 212dxi !,

d żi5dxiyi1xidyi2dzi ,

i 51,2, . . . ,N, ~2!

where (dxi ,dyi ,dzi) is the perturbation around the typica
orbit of the system. We integrate Eqs.~1! and~2! by the use
of Runge-Kutta method. Based on Eqs.~1! and ~2!, we can
6521 ©2000 The American Physical Society
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FIG. 1. ~a! The first four Lyapunov exponents in coupled Lorenz systems.N54, e514,s510, andr528. These parameters remain th
same for all the following figures unless we mention it specifically. The time sequences of variablex( i )( i 51,2,3,4) for four sites when~b!
r 57.954;~c! r 57.97; ~d! r 57.9714.
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calculate the Lyapunov exponents spectrum with the
peated use of the Gram-Schmidt reorthonormalization pro
dure on the vector frame (dxi ,dyi ,dzi). ~The detailed algo-
rithm of the Lyapunov exponents spectrum may be found
Ref. @21#! The first four Lyapunov exponents in the range
r P@7.95,7.975# have been shown in Fig. 1~a!. It is obvious
that quasiperiodic motion exists in this region and the tr
sitions to chaos can be seen at the large and smallr ends. In
Figs. 1~b!, 1~c!, and 1~d!, we show the time sequence o
variablex of the four sites for different parameters for whic
the system has different dynamics. The common aspec
that the dynamics of the system may be divided into t
components, for example,x( i )5xT( i )1xS( i ). One is the
synchronous component~SC!, (xS ,yS ,zS), where all sites
behave in the same way; the other is the traveling w
component~TWC!, „xT( i ),yT( i ),zT( i )…, where the different
sites behave in the same periodic way but with a cons
phase difference ofp/2 between two adjacent sites. That
xT( i ,t)5xT@ i 11,t2(t/4)# wheret is the temporal period o
the TWC. To single out the SC, we may consider the qu
-
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tities X,Y, andZ, which are the sums of the variablesx,y,
andz for all sites. We takeX, for example,

X5
1

4 ( xi5
1

4 ( ~xT1xS!~ i !

5xS1
1

4 ( S (
k

ake
i ~2pk/t!t1~ ip/2!D 5xS1o~a4!,

whereak is the Fourier coefficient of the TWC. By numer
cal simulation, we know thatak(k.1) is much smaller than
a1 ando(a4) is a small amount corresponding toxS . Thus
when we takeX, Y, andZ into consideration, we eliminate
the TWC up to the small amount ofo(a4). As a result, if SC
is periodic ~or two-frequency quasiperiodicity! the system
will behave in the way of two-frequency~or three-frequency!
quasiperiodicity. Another important thing is that both the fr
quency and the strength of the TWC will increase with t
increase ofr in this region.
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FIG. 2. The Lyapunov exponents in the range ofr P(7.969,7.9712).~b! and ~d! The time sequences of variableX for the synchronous
motion for differentr, ~b! r 57.9705 and~d! r 57.965.~c! and~e! The profile of the minimum ofX with the same parameters as~b! and~d!,
respectively.~f! The Lyapunov exponents forN54, e516.
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We zoom in the Lyapunov exponents spectrum in the
gion of r P(7.969,7.9712) in Fig. 2~a!. Three zero Lyapunov
exponents are found, which means that three-frequency
siperiodicity exists in this region. To further confirm ou
findings, we plot the time sequence of quantityX for r
57.9705 in Fig. 2~b!. To magnify the weak periodic modu
lation, we show the profile of the minimum ofX in Fig. 3~c!.
In these plots we may find the slow periodic modulati
whose amplitude is very small on SC. In Fig. 2~d!, we show
the results forr 57.96 where the system is in two-frequen
quasiperiodicity. The profile of the minimum ofX is also
shown in Fig. 3~e!. In these plots, no periodic modulation
found and the SC is periodic. The fluctuations in Figs. 3~c!
and 3~e! are caused byo(a4). All of these results show tha
there exists three-frequency quasiperiodicity, and the th
frequency quasiperiodicity exists in a finite parameter ra
robustly. The three-frequency quasiperiodicity is develop
from the two-frequency quasiperiodicity via Hopf bifurc
tion at about r 57.9695 and then loses its stability an
changes to a different two-frequency quasiperiodicity via
saddle-node bifurcation at aroundr 57.9709. Actually, we
-

a-

e-
e
d

a

can also find various saddle-node bifurcations between t
and three-frequency quasiperiodicities. One section of
Lyapunov exponents spectrum fore516 is shown in Fig.
2~f!. We can find that the three-frequency quasiperiodic
finally settles down to two-frequency after a series of tran
tions between three-frequency and two-frequency quasip
odcity. It is noted that all of the transitions are saddle-no
bifurcation. In this system, we do not find the direct tran
tion to chaos from three-frequency quasiperiodicity.

Now we are interested in the transition to chaos arou
r 57.951. In Fig. 3~a!, we may notice that there exist sever
instabilities during the transition from two-frequency qua
periodicity to chaos such as those atr 57.953 andr 57.952.
These instabilities do not change the nature of the quasip
odicity. To investigate how the torus changes during th
instabilities, we study SC on theX-Z plane. In Fig. 3~b! r
57.9532 where SC rotates two cycles in the right half-pla
then rotates one cycle in the left-half plane@22#. When we
increaser to 7.9524 in Fig. 3~c!, we find that the rotation of
the torus doubles, namely, it rotates four cycles in one h
plane and two cycles in the other half-plane. If we only tra
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FIG. 3. ~a! The Lyapunov exponents versusr; ~b!, ~c! and~d! the trajectories of the synchronous motion for different parametersr, ~b!
r 57.9532,~c! r 57.9524, and~d! r 57.9513.~e!, ~f!, and~g! The bifurcation diagrams for the synchronous motion.
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a section of the trajectory in the planeX-Z, for example,X
P(212,210) @or XP(10,12)# andZP(34,38), we may find
two curves while there is only one curve forr 57.9532. If we
further decreaser, the period of SC will double again and s
will the number of the curves@Fig. 3~d!#.

It will be more convenient to investigate the transition
the bifurcation diagram is built up. We define a Poinca´
section for SC when the trajectory passes through theX-Z
plane from negativeY to positiveY. The results are shown in
Fig. 3~e!. The period-doubling bifurcation to chaos is o
served. In Ref.@23#, the authors suggested a model to sim
late the period-doubling bifurcation of a torus by applying
periodic driving to a system that manifests period-doubl
bifurcation to chaos. Differing from their model, our perio
doubling bifurcation of the torus is not artificial. The per
odic driving and the dynamics, which manifests perio
doubling bifurcation, occur spontaneously, and they can
exist in a single Lorenz system of the same parameters.
invites a question: will the period-doubling bifurcation u
dergo infinite time? The authors of@23# stated that the bifur-
cation only proceeds several times or even transforms
chaos without period-doubling bifurcation when the coupli
between the driving and the system of period-doubling bif
cation is strong. We also find that the period-doubling bif
cation only occurs for a few times in Fig. 3~f!. After the
bifurcation from period 8 to period 16, we cannot obser
period-doubling bifurcation any more. For the interruption
the period-doubling bifurcation sequence, we can hav
good understanding based on the separation of the dyna
of the system. We know from Eq.~2! that the effect of the
TWC cannot be eliminated completely.

There still exists a small quantityo(a4). The main effect
of o(a4) is to thicken all the branches of the solution on t
synchronous manifold. The thickening phenomenon can
e
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observed in Figs. 3~d! and 3~e!. When the distance betwee
any pair of adjacent branches of the solution of SC becom
smaller than the thickness of the corresponding solut
branches, SC will no longer obey the original periodic pa
It will jump between the two branches under the control
TWC. With further decreasingr, SC will jump between two
more distant branches. It is the jump between the differ
branches that interrupts the bifurcation sequence. Though
do not know the exact form of the coupling between t
TWC and SC, we know that the strength of the coupli
between the TWC and SC is determined by the quan
o(a4). Therefore, it is interesting to notice that the coupli
between the SC and TWC in our case is not a constant. T
conclusion is different from that of Ref.@23#. For the transi-
tion nearr 57.951, the bifurcation sequence terminates a
weak coupling. However, we can also observe the peri
doubling bifurcation, which terminates at a strong couplin
for example, the transition to chaos at the higherr end @see
Fig. 3~g!#. In the case shown in Fig. 3~g!, the two-frequency
quasiperiodicity is developed from the three-frequency q
siperiodicity and its SC has a high period. As a result, its
has a more branches than those in Figs. 3~e! and 3~f!, and the
distances between any adjacent branches are much smal
is also the reason why fewer period-doubling bifurcations
observed.

Some remarks are necessary to be made. First, the pe
doubling bifurcation of the torus discussed above is one
ample that shows the two-frequency quasiperiodicity yie
to chaos without frequency locking and wrinkle of the toru
The torus keeps its smoothness until becoming chaos~in Fig.
3!. Though our results are obtained from SC, we can dr
the same conclusion even if we construct other Poincare´ sec-
tions such as anx(1)2y(1) plane withz(1) taking its maxi-
mum. Second, it is important to notice that there is only o
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FIG. 4. ~a! The Lyapunov exponents in the range ofr P@7.9711,7.9717#. ~b! and~c! The magnified plots of the Lyapunov exponents
~a! around ~b! r P@7.97139,7.97142# and ~c! r P@7.9716,7.97163#. ~d! and ~e! The evolutions ofX in the Poincare´ section for r
57.971 394 3 andr 57.971 394 612.~f! ln^T& vs lnur2rcu.
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positive Lyapunov exponent and two zero Lyapunov ex
nents after the onset of the chaos. According to the Kap
Yorke conjecture@24#, we know the dimension of the attrac
tor is larger than 3. That is, a high-dimension chaos
period-doubling bifurcation of the two-frequency torus is
tained. Finally, as shown in Fig. 4~a!, we can find that super
chaos will appear after the birth of the high-dimension
chaos. Here the second Lyapunov exponent gradually
comes positive at a parameter with a finite distance from
onset of the chaos, which is in agreement with the statem
provided by Harrison and Lai@5# that the superchaos is in
duced gradually. Nonetheless, the difference is obvious:
first encounter the high-dimensional chaos just when
regular motion loses stability, while Harrisonet al. first en-
counter a low-dimensional chaos.

In Fig. 4~a!, we may notice an interesting phenomenon.
the super-chaotic region, we find that there exists reg
motion windows located atr P@7.971 39,7.971 42# and r
P@7.9716,7.971 63#. The regular motion windows can b
observed in Fig. 3~g! also. We plot in Figs. 4~b! and 4~c! the
detailed Lyapunov exponents of the spectrum. To our s
prise, we find that they are both two-frequency quasiperi
icity in these two windows~to our knowledge, this is firs
time that the quasiperiodicitiy window is observed! and the
quasiperiodic windows come from superchaos abruptly.
the first window, the two-frequency quasiperiodicity first u
dergoes the Hopf bifurcation to three-frequency quasiper
-
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icity followed by frequency locking, then undergoes th
period-doubling bifurcation to chaos. In the second windo
there exists no three-frequency quasiperiodicity, and the t
frequency quasiperiodicity moves to chaos directly via p
riod doubling of the torus. In both windows, the supercha
is restored continuously from the high-dimension chaos w
one positive and two zero Lyapunov exponents. The e
tence of the quasiperiodic windows may be explained ba
on the separation of the dynamics of the system. We kn
that all the qualitative changes of the system are mainly
lated to the SC. The existence of the quasiperiodic windo
is due to the existence of the periodic windows for the S
The sudden appearance of the quasiperiodic windows is
cause the periodic windows appear via tangent bifurcati
for the SC. The evolutions ofX in the Poincare´ section de-
fined above forr 57.971 394 3 andr 57.971 394 612 are re
corded in Figs. 4~d! and 4~e!. The intermittency is clear in
these two plots. The closer to the criticalr c
.7.971 394 613 7, the longer is the duration of the perio
phase. The averaged life for periodic phase^T& is plotted vs
ur 2r cu. The power law is clear and the exponent is2 1

2 , that
is, ^T&;ur 2r cu21/2. It agrees with the result for the intermit
tency of saddle-node type@25#. The same conclusion can b
drawn for the second quasiperiodic window.

For different parameter sets, we can observe similar p
tures as those discussed above. The effects of different
rameters are changing the location of the quaiperio
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FIG. 5. The Lyapunov exponents whene528. ~b! The symmetric periodic synchronous orbit fore528. and r 512.15. ~c! The
Lyapunov exponents whenN510 ande550.
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’’dent’’ and selecting the periodic synchronous orbit. In F
5~a!, we show the first four Lyapunov exponents whene
528. A similar structure to the Lyapunov exponents is fou
in Fig. 3~a! and shows the period-doubling bifurcation of
torus to chaos. It is worth mentioning that the periodic sy
chronous orbit is different from the one in Fig. 3. In th
case, the synchronous orbit is invariant under the transfor
tion (X,Y,Z)→(2X,2Y,Z) @Fig. 5~b!#. Furthermore, the
phenomena observed here are independent of the dimen
of the system. We show the first four Lyapunov exponents
a section of the quasiperiodic ’’dent’’ in Fig. 5~c! where
i-
d

-

a-

ion
n

three-frequency quasiperiodicity and the period-doubling
furcation are seen. The quasiperiodic windows in superch
can be found also if we zoom in on this plot.

It is necessary to note that the results obtained here
not limited to the coupled Lorenz systems. One possible
perimental setup to realize those phenomena is the cou
Chua’s circuits, which are used in Ref.@20#.
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