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Chaos and fractals in geodesic motions around a nonrotating black hole with halos
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We study the escape dynamics of test particles in general-relativistic gravitational fields generated by
core-shell models, which are used in astrophysics as idealized models to observed mass distributions, such as
the interior of galaxies. As a general-relativistic core-halo system, we use exact axisymmetric static solutions
of Einstein’s field equations which represent the superposition of a central Schwarzschild bla¢kénalare
and multipolar fields from external masgéise halg. We are particularly interested in the occurrence of chaos
in the escape, which is characterized by a great sensitivity of the choice of escape by a test particle to initial
conditions. The motion of both material particles and zero rest mass particles is considered. Chaos is quantified
by the fractal dimension of the boundary between the basins of the different escapes. We find chaos in the
motion of both material particles and null geodesics, but its intensity depends strongly on the halo. We have
found for all the cases we have considered that massless particles are less chaotic than massive particles.

PACS numbgs): 05.45.Df, 95.10.Fh, 95.30.Sf, 05.45.Pq

[. INTRODUCTION This article is concerned with the motion of test particles
(both massive particles and light will be consideréd a
Core-shell gravitational systems play an important role incore-shell system in the region between the dareich we
astrophysics, because they can be used as approximations@gsume to be a nonrotating black hated the halo, whose
observed astronomical distributions of masses. These sygravitational field in this region is described by a multipole
tems are characterized by a central massive guussibly a sum, in which we ke.ep terms OT up to the third ordecto'-
black hole and a surrounding halo of matter. The space be_pole). The treatment is fully relativistic, using exact solutions

4 of Einstein’s equations that describe the gravitational
tween the core and the halo is assumed to be empty, a’.‘dt acuum field due to the superposition of the fields of a

) ) I : nts of the halo; in some cases we also use the correspond-
core and the halo is empty is clearly not satisfied, but it may,g Newtonian field to compare the results. The motion of
be approximately valid in some cases. _ test particles in the core-halo field may depend on several
In Newtonian gravitation, a general way of treating the parameters: the energy, the angular momentum, the multi-
field of the halo is by means of a multipole expansion. Eactpole strengths, etc. Depending on the values of these param-
multipole term is a solution of Laplace’s equation, which eters, the motion may be either bounded or unbounded.
increase with distance, contrary to the more usual decreasirBounded motion means that the particle is restricted to a
multipoles. The field of a general halo can always be writterfinite volume of phase space; unboundedness means that a
as a linear superposition of such multipole terms. In genergparticle has access to an infinite phase-space volume. In this
relativity, the situation is more complicated, because Einpaper, we are interested in the escape properties of these
stein’s field equations are not linear. However, in the particusystems. If a system has two or more physically well-defined
lar case of axisymmetri@and stati¢ vacuum fields, a general escapes for a given set of parameters of the méfoicin-
solution of the field equations is known, and this solution isstance, regions where a particle runs away to infinity, or

parametrized by a certain metric function that is related in avhere it falls into an event horizonthen the escape it
simple way to the Newtonian gravitational field in the limit chooses depends on the initial conditions; when the basins of
of weak fields, and it can be used to perform a multipole€SCape have a fractal structure, we have a well-defined kind

expansion. Although such expansion is by no means uniqu€! chaos, and the corresponding fractal dimension gives a
and its relationship with the Newtonian expansion is far fromgOOd quantitative characterization of chaos, besides having a

straightforward, it is still valuable and can be used to de_simple physical interpretation as a measure of the sensitivity

. o I ' to initial conditions(see Sec. ll. Since the fractal nature of
f];rllc?e the general-relativistic gravitational field of a generalthe boundary between the basins of escape is a topological

feature, it is independent of the choice of the space-time
coordinates; this assures the meaningfulness of this charac-
_ ~ terization for general relativity.
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Building, University of Maryland, College Park, MD 20742-3511. orhits is relatively recenl]. The characterization of chaos
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destruction of Kolmogorov-Arnol'd-MosdgiKAM) tori. One  tum on the symmetry axisthat are conserved along the
of the most important situations with unbounded motion istrajectories of test particles in the metfi. They are given
that of the escape of particles from a certain region; thidy

problem is closely related to scattering, the difference be-

tween the two being essentially the choice of the initial con- E=p,=0gyt, (4)
ditions. Escapes have been studied for several systems: two-
dimensional autonomous Hamiltonian systeni@—4], L= p¢:g¢¢¢, (5)

nonlinear oscillationg5,6], two-dimensional conservative

mappings[ 7], chaotic cosmology8,9], and multiple-black- where the overdot denotes differentiation with respect to the

hole space-timegl0—-17 are only a few examples. proper time in the case of a massive test particle, or an affine
This paper is organized as follows: in Sec. Il we reviewparameter, in the case of particles with zero rest mass. The

the general vacuum static axisymmetric metric and some ofnly independent dynamical variables are thusnd z and

its properties; and in Sec. Ill we define the box-countingtheir momentap, andp,: the time evolution oft and ¢ is

dimension and discuss its physical significance. In Sec. IVgiven by the quadratures above. This means that the dynami-

we investigate the basins of escape in the motion of materiatal system corresponding to the motion of test particles in

particles for some choices of static axisymmetric metricsthe Weyl metric has only two degrees of freedom.

and show numerically the existence of chaos; the axial and Besides the energy and tlzecomponent of the angular

temporal symmetries of the space-time allow us to define amomentum, there is another quantity that is conserved along

two-dimensional “effective potential,” which as in the New- the trajectory of a test particle, namely, its rest mass. This

tonian case determines the regions in space that are accesnserved quantity is given by

sible to the particle, thereby making the analysis of the rela-

tivistic system analogous to that of the Newtonian systems in 9“"p,p,=E%g"+L2g%¢+f(r?+2%)=mj, (6)
many ways. In Sec. V, we show that null geodesics are regu- piu .
lar (nonchaotit in the field of a dipolar haldplus the black ~Wheref=—g, =—g,,=e*?¥~? andm, is the rest mass of

hole), but chaos arises if we add multipole moments ofthe test particle, which must satisfy,<1. Dividing both
higher order to the halo; and in Sec. VI we summarize ousides bym, (if my#0), we rewrite the above equation in a
results and draw some conclusions. more convenient form:
2 A1t 2 r2 52y

Il. THE WEYL METRIC EglHLig?t i+ ) =5, "

Many astrophysical systems have axial symmetry, andvhere E=E/m, is the test particle’s energy per mags,
their mass distribution can often be approximated by a statie- |A_Z/m0 is the z component of the angular momentum per
configuration. Throughout this article, we consider only axi-mass, and the overdot now means differentiation with respect
symmetric static gravitational fields, and use the Weyl metricto the new affine parameter obtained from the previous one
to describe a general static axisymmetric space-fib3¢ by multiplication bymy. =1 for massive particles, anél

=0 for particles with zero rest mass. The conservation equa-
ds?=e?’dt?— e 2[e?"(dr?+dZ) +r?d¢?], (1) tions for the scaled quantitigsandL, are

wherer andz are the radial and axial coordinates, apds E=0ut, ®)
the angle about the axis, which is the axial symmetry axis. .
Throughout this article, we will use units such tleat 1 and L;=0ye0- 9

m= 1, wherem is the mass of the central black hdl®.
andy are functions of andz only. In these coordinates, the
vacuum Einstein equations reduce to

Remember that the differentiation is performed with the
scaled affine parameter.

The equations of motion for the test particles are
Py Loy °
_li/ + — _l'b + _l/l = 0, (2)
grz 1o 572

o\ %) {5

The first expression is just Laplace’s equation in cylindri-
cal coordinates; the second equation defirgence ¢ is
found. From Eq(2) and the form of the metri€l) it is clear
that in the weak-field limit¥ can be identified as the New- . 1 4 boy 2 oy .
tonian scalar gravitational field. 2= 5r[9E + gL L+ (27— ) +2f rz]. (12

The metric(1) is independent of the time and of the
symmetry anglep. From this we obtain the two constants of  To proceed further, it is convenient to define the prolate
motion E (energy andL, (projection of the angular momen- spheroidal coordinates andv by

XH+ T4 x*xF=0, (10

wherel'}; are the Christoffel symbols. The equations for
ow o and ¢ reduce to the quadraturg8) and (9). Using these
dr+2r — —dz (3)  equations and Eq1), we cast the equations for the remain-
ar oz ing variablesr andz in the convenient form

. 1 oo ..
r=—S[QrEP+ g LI+ (12— 29 +2f rz], (1D
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7=uv, (13) Ill. FRACTAL BASIN BOUNDARIES

We now review briefly some basic concepts on fractals in
r’=(u?-1)(1-v?, u=1, —1sv<1. (14 dynamical systems with escapes; a complete discussion is
found in [1]. Systems allowing escapes have isolated un-
In these coordinates, E(R) separates, and a general solutionstable periodic orbits lying near the openings of the potential
is obtained in a series of products of Legendre polynomialéwe are considering Hamiltonian systems with two degrees
and zonal harmonicgl4]. We must select a class of solu- of freedom, such as those treated hetbese are the so-
tions that represents the physical system we are interested icalled Lyapunov orbit§2]. We define thénner regionof the
the field (1) should be the result of the superposition of asystem to consist of the closed region in the configuration
Schwarzschild black hole and multipolar contributions fromspace bounded by the Lyapunov orbits and by the equipoten-
an external halo. It is well known that in Weyl's coordinatestial curves of a given energy. In order to simplify the discus-
the black hole’s event horizon is represented as a singular bajon, we suppose for the moment that we have an inner re-
lying on the symmetry axis, the inner region being excludedyion which has two distinct escapes, denoted by 1 afttie?
from the picturg[13]; the “bar” singularity is therefore due generalization of the discussion for a higher number of es-
to the c_h0|ce of coordinates, which do not cover the wholecapes is straightforwaydBy escapewe mean a route that
space-time. On the other hand, the halo field, being the resuly s the particle to leave the inner region permanently.

of gxte_rnal matter sources, cannot have singularities i_n .th%he particular escape chosen by a particle is dependent on
region interior to the halo. The general solution that sausﬁe?he initial conditions of that particle. For a given dynamical

these conditions is . 2
system and a given energy, the set of points in phase space
that correspond to initial conditions such that the particle
= lln(E chooses escape 1 is thasincorresponding to escape 1; the
2 \u+1 basin corresponding to escape 2 is defined analogously. A
point in phase space is defined to be a boundary point if
every neighborhood of such a point contains points belong-
ng to both basins. The basin boundary is the set formed by
all the boundary points.

This system is chaotic if its basin boundary is fractal.
fNear a fractal basin boundary the points belonging to the
&jifferent basins are mixed in a very complex way, down to
arbitrarily small scales. If we draw a plot of the basins with
a finite resolution, and amplify a region containing a fractal
boundary, then no matter how much we amplify it, we will
always find complex structures of intermixing points of both
basins. This implies a strong dependency on the initial con-
ditions near a fractal basin boundary.

If a system has a fractal basin boundary, then it has a
fractal set of unstable “eternal” bounded orbits that never
escape in the past and in the futyaebits that have never
) ) entered nor will ever leave the inner regipnalled thecha-

+(O/10)uv (5u”=3)(50°-3), (16) otic saddle The basin boundary is formed by trajectories

belonging to the stable manifold of the chaotic saddle, that

whereD, Q, andO are related to the dipole, quadrupole, andis, by trajectories that never escape in the fuilfteapped”
octopole moments; we will refer to them as the dipole, quadirajectorie$; the unstable manifold is formed by orbits that
rupole, and octopole strengths, respectively. Now an explicitlo not escape for— —co. The chaotic saddle, as well as its
expression fory may be found by direct integration. Since stable and unstable manifolds, are sets of zero measure
the expressions are cumbersome and not particularly illumiwithin the phase space. The chaotic saddle is made by the
nating, we will not write them here; they can be found in infinite number of unstable periodic orbitthose that are not
[15-17. We observe only that due to the nonlinearity of confined within KAM tor) and their homoclinic and hetero-
Einstein’s equation, there are nonlinear terms of interactiorelinic crossings, which in the absence of KAM surfaces is
between the multipole terms i the gravitational field due the set of orbits that remain in the inner region for all times.
to the different terms in the expansi¢tb) is not simply the It contains a countable infinity of periodic orbits and an un-
superposition of the fields due to each term separately; this isountable infinity of aperiodic orbits. The chaotic saddle is
a dramatic difference between the Newtonian and the relgpart of the fullinvariant set which is the set ofill eternal
tivistic theories. orbits. Notice that in general not all eternal trajectories be-

We finish this discussion by recalling again that the coordong to the chaotic saddle: if the system has a stable periodic
dinatesu andv describe the metric only outside the black orbit for energies above the escape energy, then orbits near
hole; in these coordinates, the event horizon is given by théhis one will also be eternal, and they form a nonzero-
segment =0,/z|<1. Since we are interested only in the mo- measure set of eternal orbits that are not part of the chaotic
tion of particles outside the event horizon, this singular besaddle. For Hamiltonian systems with two degrees of free-
havior of the coordinates will not concern us here. dom such as the ones considered in this article, these orbits

o)

+ 2 anPy(U)Py(v). (15)

n=

The first term represents a Schwarzschild black hole wit
unit massm=1, and the terms under the summation sign ar
multipolar contributions from the halo.

Using the coordinates andv and the expressiofi5) for
¢,y can be obtained from a straightforward integration o
Eq. (3); the constant of integration is chosen so as to avoi
conical singularities on the axis, by imposingy=0 for r
=0 and|z|>1.

In this article, we are interested in the multipole contribu-
tions only up to the octopole terfm=3 in Eq.(15)]. Rede-
fining the coefficients in the expansion, we can wijt@s

y=13In

! D /6)(3u?—1)(3v2-1
o7 1) " Puv+(Q/6)(3u~1)(3v°~1)
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are bounded by the outermost KAM torus, which separates We observe that since the fractal structure of the basin
the inner region filled with bounded orbits from the outer boundary is a topological feature of the dynamical system, it
regions filled with escaping orbifsvith the exception of the is a valid characterizations of chaos in general relativity.
zero-measure set or orbits on the stable manifold of the cha-
otic saddle. The region of phase space bounded by the out- IV. DYNAMICS OF MATERIAL PARTICLES
ermost KAM torus consists in general of a mixture of chaotic
and regular orbits. This region is a nonhyperbolic part of the In this section, we study the motion of material test par-
invariant set. ticles in the metric(16) for some choices of the multipole
We note that, for a systelfat a given energyto have a momentsD, Q, andO. Important properties of the dynamics
fractal basin boundary, it not only needs to be nonintegrablec@n be understood by means of the “effective potential”
but also it must be such as to allow the presence of such @ssociated with this metrid9].
fractal set of trapped trajectories. In other words, the poten- The boundary of the region in configuration space that is
tial must be such that the particle can bounce back and forthccessible to the particle is found by settirgz=0 in Eq.
many times before it escapes, if the system is to have &), with §=1 for massive test particles:
fractal basin boundary. The existence of such “bouncing or-
bits” is not a sufficient condition for a fractal boundary, but E%g"+L2g??—1=0. (18
it is necessary. An example of a nonintegrable dynamical
system with regular basin boundaries is given by the motiorf he “effective potential”V(r,z) is then given by
of null geodesics in the black hole plus dipole field, dis- 5
cussed in Sec. V. __, 1-L39”
The presence of a fractal set of unstable orbits is the result V(r.z)=g"= gtt
of transversal crossings of the stable and unstable manifolds
of the Lyapunov orbit§2]. The basin boundaries between sypstituting for the Weyl metri¢l), we have
the different escapes are the stable manifolds of the
Lyapunov orbits. The homoclinic and heteroclinic crossings 2y 2
imply a horseshoe symbolic dynamics, which is responsible V(r,z):e”’( 1+ —; z) . (20
for the chaos and the fractal character of the basin bound- r

aries. The horseshoe dynamics results also in the existence of

a set of countable unstable periodic orbits, which thus musf "€ region on thez plane accessible to the particle is given
exist if the system has a fractal basin boundary. by V(r,z)<E*. Using Eq.(16) for ¢, we thus have an ex-

To give a quantitative measure of the sensitivity to initial PFeSSion for the effective potential in terms of the multipole
conditions of a system with a fractal basin boundary, wemoments. We note that depends only or), and not ony.
define the box-counting dimensida8] of the boundary as . N the following subsections, we will analyze the dynam-
follows: Let two points chosen randomically in a region of IS for some interesting choices bf Q, andO. For bounded
the phase space be separated by a small disi@rités then trajectorles, this .system was shown through Poincae
generally the case that the probability that the two pointdions to be chaoti¢15-17.
belong to different basins scales as

(19

A. Dipole potential

P(e)xeP™d, 17 If we makeQ=0=0 in Eq.(16), we have a pure dipole
field together with a Schwarzschild black hole. The Newton-

whereD is the (intege) dimension of the region where the ian system equivalent to this is the field due to a point mass
ensemble of points was chosen, ahé the (possibly non-  superposed on a Newtonian shell dipole field, which is sim-
integey dimension of the intersection of the basin boundaryply a field of constant acceleration. Bounded trajectories of
with this region. If the boundary is nonfractal, thelr=D the relativistic system have been studied, and chaos has been
—1, while if the boundary is fractal, we haee>D—1. By  found using Poincarsections[16]; the Newtonian system
choosing randomly a large number of points in a region ofcan be shown to be integrable, so the chaos is due to general
the phase space for a certain fixedwe can calculat®(e) relativistic contributions to the dynamics. We shall now
numerically, and by doing this for several valuesegfwe  study this system in the open regime, that is, with energies
can calculate the fractal dimensionthis is the method we large enough to allow them to escape either to infinity or to
use in this articlgsee[18] for more details the event horizon.

If our system has a stable periodic orbit for energies In Fig. 1 we show some contour levels of the effective
above escape, then as we said above it has a set of positipetential V(r,z) for D=3X 10 % and Q=0=0, with L,
measure of nonescaping orbits bounded by tori in phase 3.0. The first feature we notice is the “tunnel” formed by
space. Escaping orbits that come close to this set stay in itfie equipotential curves for small valuesrofvhich leads to
neighborhood for a long time before leaving; in other wordsthe event horizor{fremember that, in these coordinates, the
this set is “sticky” [7]. This complicates the task of calcu- event horizon is given by=0 and|z|<1). This is the route
lating the box-counting dimension, for it demands a greatefollowed by particles that fall into the black hole. We ob-
integration time. We also observe that for this same reasorserve thatV is invariant under the transformatian- — z;
the boundary between the escaping and the nonescapifid— —D.
regular orbits does not have a well-defined box-counting di- If a particle has high enough energg4 higher than about
mension. 0.94 for the parameters of Fig),lit can also escape to in-
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FIG. 1. Level contours of the effective potential for the dipole
field (Q=0=0), with D=3x10* andL,=3.0. The values oE?
for the equipotentials are, from the inside out, 0.93, 0.94, 0.95, and
0.96. Since we have chosen units such thatc=m=1 (m is the
black hole’s mass all quantities in this and the other figures are
dimensionless. In regular unitsandz are given in units o5 m/c?,
which is half the Schwarzschild radius of the black hole.

finity. This is shown clearly in Fig. 1 by the opening that 0.7428
appears in the equipotentials for high energies.

Now let us pick one specific value for the energy, for
instanceE?=0.95. At this energy, a particle’s orbit can have
three outcomed(l) escape into the black hol€) escape to
infinity; and (3) bouncing back and forth forever, and never
leaving the inner region.

To investigate the nature of the basin boundaries, we need 0
a portrait of the basins; to do this, we define a two-
dimensional section of the three-dimensional energy shell of
the phase space that is accessible to the particle.Eor
=0.95 we define this section as the set of initial conditions
with spatial coordinates lying on the segment given zy

=0 and 15<r=25, with velocities given by 0.7420 | |
) ) " 22322 22.324
r=vcog0), z=vsino), (21 r

where FIG. 2. Basin portrait of the sectiddof the phase space for the

dipole field, with initial conditions on the axig=0, for D=3
o 1 X104, L,=3.0, andE?=0.95. The black areas correspond to re-
v=(r’+z%)¥=_(1-E%g""- L%g%?) (22)  gions ofSwhose trajectories fall into the event horizon; white areas
f correspond to trajectories that escape to infinity; and gray areas

. . . . . B correspond to trajectories that remain trapped inside the confining
is defined by .the Cor]ser.vatlon equatich V_V'th 6=1, and region. This figure was calculated on a grid of 40000 points.(b)
0=<#<2m. This section is thus a topological segment of ajq 5 magpnification ofa).

cylinder embedded within the phase space, and we will de-
note it by S ) o
To obtain numerically the intersection of the basins with W& chooserna, such that the set of “trapped” trajectories is
this section, we divide the intervals €5<25 and 6<¢  Well resolved for the scale of the grid we use.
<24 into 400 equa' parts each; this defines a g”d dn The results of this calculation are shown in F|ga)2A
composed of 408 400 points. For each of these points, we black dot means that the corresponding pom®j in S be-
integrate numerically the equations of motion for the dipolelongs to basin 1; a white dot indicates that it belongs to basin
metric, and record the outcome: if the trajectory falls into the2; and a gray dot means it belongs to the set of “trapped”
black hole(numerically, ifr becomes too small, or less than trajectories. We notice a complex Cantor-like mixing of ba-
0.5 in this casg that initial condition belongs to basin 1; if sins, indicating that the structure continues down to smaller
the trajectory escapes to infinityhumerically, ifr or z be-  scales. This is confirmed by the amplification of a detail of
comes too large, larger than 60 in this gasebelongs to  Fig. 2(a) shown in Fig. 2b). The area covered by Fig(l® is
basin 2; and if after a certain proper timg,, (in this case about 10 orders of magnitude smaller than that of Fig),2
we have chosenrr,,,,=100000; for reference, the typical giving strong evidence that the basin boundary is indeed
exit time is about 2000the trajectory chooses none of the fractal. We note that the set of trapped trajectories has a
two escapes above, then we admit that it belongs to the set abnzero measure; this is clear from Figa)2 Figure 3a)
“trapped” trajectories that never leaves the confining region.shows the intersection of some of these trapped orbits with
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(b) FIG. 4. Box-counting dimension of the basin boundary as a

function of the dipole strengtB, for E=0.95 andL,=3.0.

such thatN’>100; this means a statistical uncertainty of
0 ] about 10% irf. We see that the points lie on a clearly defined
straight line; the angular coefficient is=0.47+0.02, which
gives a dimension ofl=1.53+0.02, showing unambigu-
ously that the boundary is fractal. We remember thiat the
dimension of the intersection of the basin boundary with the
w0 L ] two-dimensional sectionS, the dimension of the basin
boundary in the accessible three-dimensional spade-is.
We have calculated for some subregions @&, and we have
always obtained the same value to within the statistical un-
certainty, showing that the method is self-consistent and the
100 L s s s result is meaningful.
1 " A 1 We have studied how the box-counting dimension
changes as we change the various parameters of the metric.
FIG. 3. (a) Poincaresection of trapped orbits, with the surface of If D=0, a particle needs an ener@yhigher than 1 to be
sectionz=0, for D=3x10"*, L,=3.0, andE*=0.95; A is an  able to escape to infinity. ID+0, the escape energy be-
affine parametei(b) Plot of the fraction of “uncertain” point§(e) ~ comes less than 1, and depends on the angular momentum
as a function of the separatian L,. We denote the escape energyly=E(L,). The basin
) boundary dimensionl is defined only forE>E,. We have
the surface of section=0. The parameters are the same asfound that forE>1, d=1 (to within the statistical errgrand
in Fig. 2. the basin boundary is regular. We have verified this result for
To have a more precise and quantitative characterizatiogeveral values of , andE, and three different values @.
of the fractal structure seen in Fig. 2, we proceed to the We have also investigated halwchanges with the dipole
calculation of the fractal dimension, as discussed in Sec. llistrengthD. In the limit |D|— <, we have a field dominated
The random points are chosenSnand for each pointr(, ) by the dipole component; the geodesics defined by a pure
we find through numerical integration to which of the basinsdipole field are integrable, and thus we expat¢d approach
it belongs, and then do the same for two nearby phase-spadefor high values oD. If we decreas® enough, we end up
points given byr +e andr — e and the samd. If all three  reaching a valu®, below which the particle can no longer
points do not belong to the same basin, then the poift)(  €scape to infinity, and is no longer well defined. Nedb
is considered an “uncertain” point, meaning that it lies close = Do, With D>Dy, the opening of the equipotential to the
to a basin boundary. For a large numBérof points ran-  €Scape to infinity is small, and the particle is likely to bounce
domly chosen inS, the fraction of uncertain points i(e) ~ More times before it escapes through this route than in the
—N'/N, whereN' is the number of uncertain points found in ¢ase of h|ghe“r value”s_db, and we accordingly expect the
the sample oN points. ForN large enought is proportional ~ €haos to be “larger” in this case, that ig, to be larger.
to P in Eq. (17); finding in this wayf for several values o, Thesg: features are indeed venflgd ina plottingl @ersusD
a log-log plot of f(e) should give a straight line, and the for E“=0.95 andL,=3.0, shown I[14Flg. 4. For these values
basin boundary dimensiomis found by the angular coeffi- Of D andL;, we haveDoEZ.ESff 10°". The system is regular
cient through Eq(17). For reasons explained in Sec. Ill, we (d=1%+0.01) for D=9X10"", and d reaches its highest
calculated by choosing points in a region that does not in- value of about 1.6 ab =D,.
tersect the trapped region bounded by KAM tori. By getting
rid in this way of the “stickiness” of the regular region, we
are able to obtain a meaningful result fr We next turn to the cade =0=0. This quadrupole field
The results are shown in Fig(l8. We have choseN  has a reflection symmetry with respect to thexis: the

f®)
o)

B. Quadrupole potential
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FIG. 5. Level contours of the effective potential for a quadru-
pole field ©@=0=0) with a prolate halo Q=—-4x10 %) and
L,=2.6. The values oE? for the equipotentials are, from the inside
out, 0.93, 0.94, 0.95, and 0.96.

25

metric is unchanged by— —z. For the oblate caseQ
>0), the open equipotentials are similar to the pure dipole
case discussed abo(except for the aforementioned symme- 0.7624
try). A more interesting choice ®<0 (prolate casg in this
case, as shown in Fig. 5, there are two different escapes to
infinity, besides the escape into the event horizon. We inves-
tigate this system for the ener@f=0.97, withL,=2.6 and
Q=-4x10 °. For these parameters, the invariant set ap-
pears to have zero measure, since we were not able to find 0
any stable orbit in the inner region.
We proceed as we did for the dipole case. We choose
initial conditions in the segment=25.0, |z|<25.0; the ve-
locities are given by Eq(21). The results are in Fig.(8),
with black dots denoting trajectories that escape upward,
white dots denoting trajectories that escape downward, and
gray dots denoting trajectories that fall into the event hori- 0-76_1398 633 = bl "_18 623
zon. Figure @) shows an amplification of a very small area ' - '
of Fig. 6(a), and the absence of smoothness in the basin
boundary shows clearly its fractal character. The fractal di- FIG. 6. Basin portrait for the quadrupole field, wib=—4
mension was computed as described above, and the value wel0 ® andL,=2.6. Black areas denote regions whose trajectories
obtained wasd=1.60+0.03. In the corresponding oblate fall into the event horizon; gray areas correspond to trajectories that
case, withQ=+4x 1078 and all other parameters being escape toward— +c; and white areas correspond to trajectories
equal, we found no detectable chaos, and the basin boundaifjat escape towarz— —c. (b) is a magnification ofa).
was found to be regular, with=1 to within our numerical
accuracy. This is in agreement with the results founfdlifi, initial conditions may make a different number of bounces
where it was foundby using Poincaresection$ that for a  before escaping, leading to very different escapmpe)
black hole plus oblate quadrupole field the bounded orbitdsimes. We have illustrated this by finding numerically the
show an almost regular behavior, the chaotic regions beingscape proper times, for orbits starting from a fixed posi-
restricted to very small volumes in phase space, while théion r =25, z=0, for several velocity angleg, as defined by
corresponding prolate field shows strong chaos. Eq.(21). We plot7,(6) in Fig. 7(a). The “spiked” character
We have calculated for other values of the energy and of the graph is striking, suggesting a fractal structure. This is
angular momentum, and we found that, as opposed to theonfirmed by Fig. #), which shows that the function.(9)
dipolar halo system studied in the previous section, this syshas a fractal set of singular points, whetg 6) goes to in-
tem is chaotic fole>1. In fact, we found that the boundary finity; this set is the intersection of the line of initial condi-
is fractal for arbitrarily large values of the energfpr Q tions with the basin boundary. We observe that the escape
<0), as far as we have been able to investigate; this appeatisne 7, is to some extent arbitrary, because it depends on
to be an important difference between the dipolar and quawhere we stop the integrations of the trajectories before we
drupolar halos. consider them to have escaped. However, the fractal struc-
Since the basin boundary between the escapes is thiare seen in Fig. 7 is topological, and is not affected by this
stable manifold of the chaotic saddle, we have associatechoice. These features of the escape time function remain the
with the chaos in the choice of the escape route a chaos isame forr andz within the inner region.
the escape time as well, as is well known in chaotic scatter- In order to gain more insight into the fractal structure of
ing. This happens because orbits starting from very closéhe basin boundary and its related complex dynamics, we
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10000 - - - and more complicated: every step— 1, .4 results in taking

(a) from |,, increasing numbers of ever thinner strips, alternately.
We recognize this as the mechanism for the construction of a
Cantor set, in the limih— +oo.

We can follow in the same way the construction of the
chaotic saddle itself: in Fig.(8) we showR,; compare this
with Fig. 8b).

000 1 I The Newtonian system equivalent to the multipole field
we are dealing with is given by the Hamiltonian

Escape Time

H=3(p?+p2)+V(r,2), (24)

0 . . .
0.0 20 40 6.0 whereV/(r,z) is the effective potential

12000 . : . 2 4
V(r,z)=?—F+1p(r,z), (25)

and ¢ is given by Eq.(16). For the dipole field Q=0
=0), as we mentioned before, the Hamiltoni@4) is inte-

8000 | ] grable. For the quadrupole field, however, it is hibb], so

we expect to have a fractal basin boundary for this case as
well. Figure 9 shows some level contours @fwith L,

U _ =2.6 andQ=—-4x10"% D=0=0; these are the same pa-
rameters we have used for the relativistic case. For this nega-
tive value ofQ, we have two escapéfor Q>0, there is only
one escape Since we want to compare the Newtonian and
00825340 3223360 3223380 the relativistic cases, we choose the energy toEbel,
whereE is the energy we used in the relativistic case, which
gives —0.0151. We proceed as in the relativistic case to
calculate the basin boundary dimension. The initial condi-
tions are chosen in the segmenit<5, r=13. The result is
d=1.64+0.02, which is roughly the same val(actually a
little largen we obtained for the relativistic case.

Escape Time

FIG. 7. Time of escape versus the velocity angle=(—4
X 1078 L,=2.6), forr=25 andz=0. (b) is a magnification ofa).

now define a surface of section in phase space denoté by

and given byz=0, for a givenE andL,. We definel,(n
=1) as the set of points on the surface of initial conditi&ns

that generate orbits that crogsat leastn times in the nega- C. Quadrupole + octopole potential

tiye directi.on(that s, satis'fying'é<0) before escaping. Ob- The last case we investigate in this section is the field

viously I, is a subset of if k<n, and we have that formed by the superposition of the quadrupole and octopole
1,001,050 - (23) componentsP =0 with Q, O#0. The octopole term breaks

the reflection symmetry of the quadrupole potential, as can

of the quadrupole field with the parameters of Fig, the effec_ti;/e potential for D=0, Q=-4x10"° O=-1
basin boundary is given by lim _I,. If we letl,, with n X10"‘, andL,=2.6. We still have three escapes as in the

. . L previous case, but the equipotentials are distorted, and are no
being a negative integer, denpte the set O.f pointS OOITe- — 1onger symmetrical with respect to tize=0 axis. We select
sponding to past-directed orbits that cr@3sn the negative the energyE?=0.97, and pick the initial conditions on the
direction at leasfn| times, then the unstable manifold of the segment|z| <20 B :’20 Using these parameters, we have
chaotic saddle is analogously given _by Almwln._ Defining calculated the ,basin .boundary dimension, ani:i fouhd
now the setRn_=In.ﬂI,n, the chaotic saddlg IS given by =1.59+0.02, which is practically the same value obtained
lim,_,.Rn. This simply states that the chaotic saddle is thei, the nure quadrupole fiel@=0. If we calculated for the
intersection of its stable and unstable manifolds. pure octopole field=—10"7, Q=0, keeping the other pa-
The mechanism of the construction of the fractal basirrameters fixed, we find=1.70+0.02, which islarger than
boundary by the dynamics of the system may be followed bythe value obtained for the mixed field. This is a somewhat
examining the set$,(n>0). Figures &), 8(b), and &c) surprising result, and it shows that a “more complicated”
showl ¢, I,, andl 3, respectively, using the same grid as thatfield does not necessarily result in a more complicgtad
of Fig. 7(a). As nincreases, the structure lgf becomes more “more chaotic”) motion.
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(d)

0
=25 0.0 25

FIG. 8. (a) 14, (b) I, (©) I3, (d) Ry, for Q=—4%x10"%, L,=2.6, andD=0=0.
V. THE NULL GEODESICS with f=—g,,=—g,;. The effective potential is then given

We will now study the dynamics of the null geodesics in by
the metric(16). For null geodesicsjs>=0 and8=0 in Eq.

(7), and we have S -
. EEE:V(LZ):*ﬁ:j, (27
E2g!+ L2g¢*+f(r2+22) =0, (26 ‘ T
50
50
o zZ 0
-50
-
10 40 70 10 N ”
. r

FIG. 9. Level contours of the effective potential for the classical FIG. 10. Level contours of the effective potential for the field
quadrupole field wittQ=—4x 10" andL,=2.6. The values oE>  with D=0, Q=—-4x10"% O0=-10"7, andL,=2.6. The values
for the equipotentials are, from the inside out-®).01,—0.02, and  of E? for the equipotentials are, from the inside out, 0.94, 0.95,
—0.03. 0.96, and 0.97.
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FIG. 11. Level contours of the effective potential for null geo-
desics for the quadrupole fie@= —0.05,D=0=0. The values of
b? (b is the impact parameter with respect to the symmetry)axis
are, from the inside out, 10.0, 15.0, and 20.0.

whereb is the impact parameter with respect to thaxis.
The curveV(r,z)=1/b?=const is the boundary of the re- (b)
gions of therz plane accessible to a particle having an im- 2.3878
pact parameter of. We notice that in the case of massive
particles, the effective potential depends separatell end
L., while for the case of massless particles, it depends only
on the ratioE/L,=b. The equations of motion for the null
geodesics are Eq¢ll) and (12), together with the quadra-
tures (8) and (9), with E and L, related byb=L,/E. The
initial conditions must be such as to satisfy the constraint
(26).

In the case of the dipole field=0=0), we find that
below a certain value of the impact parameighe equipo-
tential curves open, and the orbits can either fall into the
event horizon or escape to infinity. We find, however, by
numerical calculations of pictures of the basins, which show 5
regular basin boundaries, and by the computation of the ba- 1.14880 1.14888
sin boundary dimension, which givels=1 to within the sta- 2
tistical uncertainty, that the basin k_)oundaries are regular and 5 15 Rasin portrait for null geodesics wit@=—0.05,
the system presents no chaos. This re;ult holds for all valueﬁzozoy andb2=12.5. Areas in black correspond to trajectories
of D andb we have investigated, and it seems safe t0 CONg4¢ fall into the event horizon: areas in gray correspond to trajec-
clude that massless test particles in the field of a black holgyies that escape toward- +«, and areas in white denote trajec-
surrounded by a dipolar material halo move in regular orbitsories that escape — — .

When we introduce terms of higher order in the multipo-
lar expansion of the halo, this situation changes. We illus- . . .
trate this with a pure quadrupolar halo.@>0, there are ma_sslgss pa_rt|cles in the met(it6). The absence of stable
only two escapegoward infinity and toward the event hori- P€riodic orbits, and therefore of a nonzero-measure set of
zon), and the orbits are again regular.Qi<0, however, we confined or_blts, was verified in all cases we haye investi-
have three escape routésward the event horizon, toward 9ated, leading us to make the hypothesis that this is a general
z—, and towardz— —), and chaotic behavior arises. feature of the motion of zero mass particles in the black-
This can be seen in Fig. 11, where we show some equipdl0le—halo field; we speculate that this may be the case for all
tential curves forQ=—0.05, withD=0=0. Choosingb? static axisymmetric metrics. We also observed that, in all
=12.5, we obtain a picture of the basins by numerical intecases in which there are only two escafses for instance, in
gration, with the initial conditions in the segment2z|  the dipolar halo field and in the quadrupolar field wigh
< 2. The result is shown in Fig. 18, and an amplification >0), the motion of zero rest mass particles is always regu-
of several orders of magnitud€&ig. 12b)] shows that the lar, as opposed to the motion of material particles in the
basin boundary is fractal. This is further confirmed by thesame fields. When there are three or more escapes, on the
calculation of the basin boundary box-counting dimensionpther hand, chaotic behavior appears. We have found, how-
which yieldsd=1.25+0.02. We have verified that an octo- ever, that the motion of massless particles is always less
pole halo also gives rise to chaos, as is probably the case fohaotic (that is, the box-counting dimensiahof the basin
multipole terms of higher order. boundary is lowerthan the motion of massive particles for

Now we make some general remarks on the motion othe same field, for all cases considered by us.
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VI. CONCLUSIONS If the halo is composed of a pure quadrupole term, the
ituation changes. For a prolate hal@<0), there can be
hree escape routes, as opposed to only two present in the

dipole case, and in this case the system is chaotic for arbi-

axies. Our study focused on the dynamics of test part'deﬁarily large values of the energy, as far as we could deter-

moving in the gravitational field of such objects, and we .
have particularly studied unbounded motions and their assor e Oblate halos@>0) show no detectable chaos for the
rameters we have used, as opposed to the prolate ones.

ciated escape dynamics, both for massive test particles ar%i. L ) )
is is in agreement with results found previously for

for light. _ _ .., bounded orbit$17], which show that oblate halos have very
In the case of massive particles, chaos was found in thﬁttle chaos

form of fractal basin boundaries. We single out the case of a In the case of massless particlesill geodesics we find
dipolar halo, which has a Newtonian counterpart that iS’hat the black holet di olarphalo S ste?n is not chaotic, the
known to be integrable; the chaos for this case is thus a resuttl)t P y '

of relativistic corrections to the dynamics. This is compatibIeVZISl‘J gsb;u%(laryart;(?nt\gfeerg \f\t‘: h?\/c(:aa?ne\/sesk,)t?g?eée?fu\l/?; g)dr dag
with earlier results obtained with bounded orHit%]. Also P 9 '

for this case, we have investigated the set of trapped orbit; uggtutﬂzleo;tgirtr; ;(r)etziamh?elom?refmoilgn fszhoeTiznchaﬁ“C if
with nonzero measure, and we showed that it is formed b ’ 9 R ’
ng that oblate halos are a weak source of chaos. Terms of

orbits that are bound by KAM tori in phase space. This; her order also introduce chaos in the system. In contrast
means that even for energies above the escape energy, th id . . y '
(o the case of material particles, we have not found any

re regions in ph wherein the motion remain oo . L ;
are regions phase space erein the motion rema éable periodic orbit, with its accompanying nonzero-

bounded. Such stable regions are surrounded by unstab? easure set of confined orbits. We believe the absence of

ones, where particles either fall into the black hole or escapg:able ariodic orbits of massless particles is a general fea-
to infinity, these two outcomes being separated in phas P P 9

space by a fractal basin boundary. ure of axisymmetric static gravitational fields.
We have found that the core-dipole system is not chaotic

In this article we have considered core-shell gravitationa
models, which could describe inner regions of elliptical gal-

for energies a_bove 1, which is the escape energy for an iso- ACKNOWLEDGMENT

lated nonrotating black hole. The system appears to be most

chaotic(its boundary dimension attains its highest valios This research was partially funded by FAPESP and
energies near escape. CNPq.

[1] E. Ott, Chaos in Dynamical Systeni€ambridge University [11] G. Contopoulos, Proc. R. Soc. London, Ser.485 551

Press, Cambridge, 1993 (1991
[2] G. Contopoulos, Astron. Astrophy231, 41 (1990. [12] C.P. Dettmann, N.E. Frankel, and N.J. Cornish, Fra@al$1
[3] G. Contopoulos, H.E. Kandrup, and D. Kaufmann, Physica D (1995.

64, 310(1993. [13] D. Kramer, H. Stephani, and E. Herfxact Solutions of Ein-
[4] S. Bleher, C. Grebogi, E. Ott, and R. Brown, Phys. Re\38A stein’s Field EquationgCambridge University Press, Cam-

930(1988. bridge, 1980.

[5] J.M.T. Thompson, Proc. R. Soc. London, Ser.421 195  [14] A G. WebsterPartial Differential Equations of Mathematical
(1988. Physics(Dover Publications, New York, 1966

[6] H.B. Stewart, J.M.T. Thompson, Y. Ueda, and A.N. Lansbury,[ls] W.M. Vieira and P.S. Letelier, Phys. Rev. Lef6, 1409
Physica D85, 259 (1995. (1996

7] (Fl'ggg“s“anse” and P. Grassberger, Phys. Let84, 47 1 ¢ \y 1 Vieira and P.S. Letelier, Phys. Lett. 228, 22 (1997,
) [17] W.M. Vieira and P.S. Letelier, Astrophys. 313 383(1999.

[8] Deterministic Chaos in General Relativjtgdited by D. Ho- 181 C. Grebodi. S.W. McDonald. E. Ot and JA. Yorke. Ph
bill, A. Burd, and A. Coley(Plenum Press, New York, 1994 [18] C. Grebogi, S.W. McDonald, E. » and J.A. Yorke, Fhys.
Lett. 99A, 415(1983.

[9] N.J. Cornish and J.J. Levin, Phys. Rev5B, 3022(1996. ) o
[10] G. Contopoulos, Proc. R. Soc. London, Ser.481 183 [19] C.W. Misner, K.S. Thorne, and J.A. Wheelggravitation

(1990. (W.H. Freeman and Company, New York, 1973



