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Complete reduction of oscillators in resonancep:q

Antonio Elipe
Grupo de Meca´nica Espacial, Universidad de Zaragoza, 50009 Zaragoza, Spain

~Received 25 October 1999!

This paper extends to any type of resonance (p:q) the Lissajous transformation that handles the resonance
~1:1! in a Hamiltonian composed of two harmonic oscillators. The manifolds of constant energy for such a
system are two-dimensional surfaces of revolution that are spheres for the resonance 1:1, spheres pinched once
for the resonances (1:q) when 1,q, and spheres pinched twice for the resonances (p:q) when 1,p,q. The
extended Lissajous transformation is valid for resonant pseudo-oscillators~a nondefinite quadratic form!,
which allows us to find that the reduced phase flow lies on an unbounded surface of revolution.

PACS number~s!: 05.45.2a, 45.05.1x, 33.40.1f, 95.10.Ce
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I. INTRODUCTION

Under consideration in this paper are Hamiltonians of
type

H~X,Y,x,y!5H0~X,Y,x,y!1« P~X,Y,x,y,«!,

whose principal part

H05
1

2
~X21v1

2x2!1
1

2
~Y21v2

2y2!, ~1!

consists of two harmonic oscillators, whileP is a perturba-
tion proportional to a small parameter«. Hamiltonians of
this kind appear often in nonlinear dynamics. Indeed, th
are among the most studied in molecular spectroscopy,
lactic dynamics, and celestial mechanics~see, e.g.,@1# and
references therein!.

One typical example of Hamiltonians of the kind given
Eq. ~1! is the resonance originally described by Fermi@2# in
the molecule of CO2, this type of resonance has been o
served to be important in experimental studies of pho
somerization, excited ions, tunneling effect, as well as ot
experimental and theoretical works~see, e.g.,@3,4#!. In ga-
lactic dynamics, this type of perturbed Hamiltonians ha
been used for describing the motion of a star under the g
ity field of a galaxy@5–9#. In most of the cases, the oscilla
tors are in resonance 1:1, like the famous He´non-Heiles
Hamiltonian@10#, but dealing with less symmetric galaxie
like elliptical or barred galaxies, we meet resonances of
type p:q @11,12#.

Such systems have been profusely studied because
dynamical systems they represent show chaos above a
tain threshold of energy. As it has been indicated@13,1#,
incipient chaos creeps in at low energies depending on
existence of unstable equilibria and the homoclinic solutio
emanating from them. On the one hand, numerical integ
tion is not fit to reveal the fine details of the phase space n
those singularities; analytical studies are preferable. On
other hand, the usual techniques of normalization fail in
presence of resonances due to the resulting small divi
@14#, and the resonant and near resonant cases mus
treated in an specific way@5–7,15–19#.
PRE 611063-651X/2000/61~6!/6477~8!/$15.00
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These systems are calledsemisimple@20# because their
dominant term leads to a linear Hamiltonian vector field th
is semisimple. The concept of normalization for semisim
systems in equilibrium at the origin must be credited
Whittaker@21–23# who applied Poincare´’s nouvelle me´thode
@24#; Birkhoff @25# provides a different method for the no
malization~for an automated development of the generat
function, see, e.g.,@15#!. The introduction of the Lie trans
formation in the 1960s@26,27# made easier the automatiza
tion of the normalization, and a good example of it is giv
by Giorgilli @16#, where the normalization is carried out fo
several resonances and several degrees of freedom. A
the problem may be considered as a classical one, it
attracts the attention of many authors, see, e.g.,@28–38#

When the normalization is carried out by a Lie metho
especially when high orders are required, one must be aw
of the fact that the simpler is the Lie derivative associa
with the unperturbed Hamiltonian, the easier is the appli
tion of the method. With this aim, and for the resonan
~1:1!, Deprit defined the Lissajous transformation@39#. In-
deed, in the Lissajous variables, the Hamiltonian is sim
one of the conjugate moments (L), which simplifies drasti-
cally the computation of the normalized Hamiltonian. B
sides, for the resonance~1:1! Deprit @39# proved that the
most salient feature of the reduced phase space is that
manifold of L5 constant is a two-dimensional sphere, a
each point of this sphere represents an orbit. This fact is v
important when one is interested in finding the global pictu
of the phase portrait; indeed, the classical Mercator map
sents polelike singularities, and quite often@13,40,32,41,42#
bifurcations occur precisely at these points.

Bearing in mind the advantages of the Lissajous trans
mation we proposed to extend this transformation. We fa
the problem head on the way it has been met for the re
nance~1:1! with the Lissajous transformation@39#.

Recently, Elipe and Deprit@43# obtained an extension o
the Lissajous transformation to any finite combination
harmonic oscillators and this transformation is valid for a
resonance mode. Indeed, for the Hamiltonian of the type

H05
1

2 (
1< i<n

~Xi
21v2pi

2xi
2!, with piPR, ~2!

the canonical transformation
6477 ©2000 The American Physical Society
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l:~c,C!°~x,X!:Tn3~D,Rn!°R2n

given by

x15
1

v1/2p1

@~n22!C11S#1/2sinp1s,

X15v1/2@~n22!C11S#1/2cosp1s,

and for 1, j <n, ~3!

xj5
1

v1/2pj

~C12C j !
1/2sinpj~22c j1s!,

Xj5v1/2~C12C j !
1/2cospj~22c j1s!,

where we used the shorthandS5(1< i<nC i and s
5(1< i<nc i , reduces the Hamiltonian~2! to the function

l#H05vC1 .

Details about how this transformation has been obtained
appear elsewhere@43,44#. It was proved, too, that the trans
formation is valid for linear combinations of oscillators an
with slight modifications, for diffusers.

In this paper we deal exclusively with the resonancep:q.
Let us assume that the Hamiltonian~1! corresponds to two
oscillators in resonancep:q, that is to say, there exist tw
coprime integers,p,q and a frequencyv such thatv15pv
andv25qv. Without loss of generality, we can assume th
1<p<q.

Let us consider the convex setG5$(C1 ,C2)PR2:C1
.0, uC2u,C1)%, then a torus T25$(c1 ,c2)
PR2:c1mod(2p),c2mod(2p)%. For this two degrees o
freedom problem, the generalized Lissajous transforma
~3!

f :~c1 ,c2 ,C1 ,C2!°~x,y,X,Y!:T23G°R4

is defined by

x5AC11C2

v1 p
sinp ~c11c2!5s/p sinp ~c11c2!,

~4!

y5AC12C2

v2 q
sinq ~c12c2!5d/q sinq ~c12c2!,

X5Av1 ~C11C2!

p
cosp ~c11c2!5v s cosp ~c11c2!,

Y5Av2 ~C12C2!

q
cosq ~c12c2!5v d cosq ~c12c2!,

where we puts25(C11C2)/v and d25(C12C2)/v to
remove the irrational expressions from the definition. For
resonance 1:1, this set of Lissajous variab
(c1 ,c2 ,C1 ,C2) coincides with the second set of Lissajo
variables (l 8,g8,L8,G8) defined by Deprit@39#.!

In this set of Lissajous variables, the pullbackf # H0 takes
the simple form
ill

,

t

n

e
s

f # H05vC1 , ~5!

and henceforth, the Lissajous variables are a set of act
and-angle variables.

When the perturbationP is

P5 (
n>n

«nHn~x,X!,

a power series in the algebra of real polynomials in (x,X),
the normalization takes place within that algebra. The Lis
jous transformation~4! convertsP into a Fourier series of the
type

f # P5F5 (
j >0,uku>0,n>1

«nCj ,k,nH cos

sinJ ~ j c21k c1!, ~6!

with coefficients in the real algebra of polynomials ins and
d. Even more, ifG is a homogeneous polynomial of degreen
in the Cartesian variables (x,y), the coefficients in the Fou
rier seriesf # G are homogeneous polynomials of degreen in
s andd.

The Lie derivative associated withH0 is the partial dif-
ferential operator

L0 :F→~F,H0!

mappingF onto its Poisson bracket to the right withH0. The
kernelof L0 is the set of functionsF such thatL0(F)50; the
imageof L0, the set of functionsF of the form F5L0(G).
Normalization of a Hamiltonian of type

H~p,P,e!5 (
n>0

enHn~p,P!,

we recall@27#, is a one-parameter family of canonical tran
formations

n:~p8,P8,e!→~p,P!

that changesH into a function

n#H~p8, P8,e!5H„p~p8,P8,e!,P~p8,P8,e!,e…

in the kernel ofL0.
In the Cartesian variables (x,y,X,Y), the Lie derivative

associated with the elliptic oscillator~1! is represented by the
partial differential operator

L05X
]

]x
1Y

]

]y
2v2S x

]

]X
1y

]

]YD , ~7!

however, in the Lissajous variables (c1 ,c2 ,C1 ,C2), the Lie
derivative associated with the Hamiltonian~5! is very
simple, namely, the operator

L05v
]

]c1
.

Thus, any series of the type~6! may be decomposed into it
components
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F\5 (
j >0,n>1

«n Cj ,0,nH cos

sinJ j c2

in the kernel ofL0 and

F[5 (
j >0,uku.0,n>1

«n Cj ,k,nH cos

sinJ ~ j c21k c1!

in the image ofL0.
Thus, when the perturbation is periodic in the Lissajo

variable c1, normalizing a perturbed elliptic oscillato
amounts to averaging the dynamical system overc1.

Normalization has a second interpretation: it is areduc-
tion @45#. In the process of normalization, the number
degrees of freedom has fallen by one unit. Upon analyz
this fact from a geometric standpoint, one will recognize t
ignoring the coordinatec1 and holding its conjugate momen
C1 as a parameter amounts to partitioning the phase s
into leaves consisting of all states for which the parame
~the momentC1) has a given value, collecting into class
all points within that leaf which are images of one another
the canonical transformations generated by the integralC1,
and then ‘‘reducing’’ the phase space on each leafC1
5constant by handling each class as an individual ph
space.

We find ~Sec. II! a set of functions that play an analogo
role to the Hopf variables in the 1:1 resonance@39#; with
these functions, we show that the phase portrait of the
duced Hamiltonian has the structure of a two-dimensio
revolution surface, namely, a sphere for the 1:1 resonanc
single pinchedsphere for resonances 1:q (1,q), and a
double pinchedsphere for resonancesp:q (1,p,q). Simi-
lar results are obtained by the subtraction of two oscillat
~Sec. III! and for two diffusers~Sec. IV!; in these cases, as
is expected, the phase portrait is an unbounded surface.

II. TWO-DIMENSIONAL PINCHED SPHERES

After normalization, the reduced problem is one degree
freedom in (c1 ,C1). In those variables the phase space i
cylinder, but as it happened for elliptic oscillators~resonance
1:1! where the reduced phase space was made of
dimensional spheres, we will show that for anharmonic
cillators a Mercator map does not provide a good repres
tation, and that actually, the reduced phase space is mad
two-dimensional pinched spheres.

To prove that, we proceed from scratch. Our first s
consists of finding a set of integrals, analogous to the o
found in @39#, and which eventually will lead us to the ad
equate orbit space where the reduced Hamiltonian shoul
studied. After several trials, we found that this ta
was easier to be accomplished in complex variables. Le
define the following canonical transformatio
(z,w,Z,W)°(x,y,X,Y) from complex to Cartesian vari
ables~a modification of Birkhoff’s transformation!

x5
1

A2
S z1

1

vp
i Z D , X5

1

A2
~vp i z1Z!, ~8!
s

f
g
t

ce
r

y

se

e-
l

; a

s

f
a

o-
-
n-
of

p
es

be

us

y5
1

A2
S w1

1

vq
i WD , Y5

1

A2
~vq i w1W!,

and its inverse

z5
1

A2
S x2

1

vp
i X D , Z5

1

A2
~X2vp i x!, ~9!

w5
1

A2
S y2

1

vq
i Y D , W52

1

A2
~Y2vq i y!,

wherei 5A21.
In those variables, the Hamiltonian~1! yields

H05v i ~p zZ1q wW!, ~10!

and now, its associated Lie derivative is the operator

L05v i FpS z
]

]z
2Z

]

]ZD1qS w
]

]w
2W

]

]WD G .
The image by the Lie derivative of an expression of the ty
zawbZcWd is

L0~zawbZcWd!5 i v@p~a2c!1q~b2d!#zawbZcWd,

hence, the monomialzawbZcWd belongs to the kernel ofL0
if and only if

p~a2c!1q~b2d!50. ~11!

Taking into account this relation, there follows immediate
that

L0~zZ!5L0~wW!50,

which proves that the functionsM1 , M2 defined by

M1~p,q!5
i

2
~pzZ1qwW!, ~12!

M2~p,q!5
i

2
~p zZ2q wW!,

are integrals. Observe thatM2<M1; observe further that
M25M1 if and only if q50.

By virtue of ~11!, the functionszqWp andwpZp are inte-
grals; hence, their linear combinations will be integrals to
However, we are not interested in obtaining collections
integrals, but in finding integrals that will provide some i
sight to the Lissajous transformation~4!. After several trials
and with the help of a computer algebra system, we cho
the combinations

C2~p,q!5 1
2 v2(p1q)/2@~ i v q!pZqwp1~ i v p!qzqWp#,

~13!

S2~p,q!5 i 1
2 v2(p1q)/2 @~ i v q!pZqwp2~ i v p!qzqWp#.
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The four integrals~12! and ~13! cannot be independent. In
deed, as we have the integrals expressed in complex
ables, one can easily check that

C2
21S2

25 i p1qpqqpwpWpzqZq

and that

~M11M2!q~M12M2!p5 i p1qpqqpwpWpzqZq,

hence, they are bound by the constraint

C2
21S2

25~M11M2!q~M12M2!p. ~14!

In an analogous way, we can define the functio
C1(p,q) andS1(p,q), which do not belong to the kernel o
the Lie derivativeL0, as

C1~p,q!5 1
2 v2(p1q)/2@WpZq1~ i v q w!p~ i v p z!q#,

~15!

S1~p,q!5 i 1
2 v2(p1q)/2 @WpZq2~ i v q w!p~ i v p z!q#.

These functions satisfy the relation

C1
21S1

25~M11M2!q~M12M2!p. ~16!

By composition of the transformations~9! and ~4!, we
obtain the explicit expressions of the four integrals~13! and
the two functions~15! in terms of the Lissajous variables

M1~p,q!5 1
2 C1 , ~17!

M2~p,q!5 1
2 C2 ,

C2~p,q!522(p1q)/2 ~C12C2!p/2 ~C11C2!q/2 cos 2pq c2 ,

S2~p,q!522(p1q)/2 ~C12C2!p/2 ~C11C2!q/2 sin 2pq c2 ,

C1~p,q!522(p1q)/2 ~C12C2!p/2 ~C11C2!q/2 cos 2pq c1 ,

S1~p,q!522(p1q)/2 ~C12C2!p/2 ~C11C2!q/2 sin 2pq c1 ,

and conversely, by inverting these formulas, we can de
mine unambiguously the Lissajous variables (C1 ,C2 ,
c1 ,c2) from the integralsM1 , M2 , C2 , S2 and the state
functionsC1 , S1 as

C152M1 , C252M2 , ~18!

cos 2pq c25C2 ~M12M2!2p/2 ~M11M2!2q/2,

sin 2pq c25S2 ~M12M2!2p/2 ~M11M2!2q/2,

cos 2pq c15C1 ~M12M2!2p/2 ~M11M2!2q/2,

sin 2pq c15S1 ~M12M2!2p/2 ~M11M2!2q/2.

Taking into account the relations~17!, it is a matter of
computing Poisson brackets to discover that the subja
Lie algebra is determined by the relations

$M2 ;C2%5p q S2 , ~19!
ri-

s

r-

nt

$C2 ;S2%5 1
2 p q ~M11M2!q21 ~M12M2!p21@~q1p! M2

1~p2q! M1#,

$S2 ;M2%5p q C2 .

In the particular case of the resonance 1:1, we recover
classical rigid body Poisson structure@46# in R3, already
found in @39#.

The functionsM2 , C2, and S2 just found, determine a
transformation

~x,y,X,Y!°~M2 ,C2 ,S2!

mapping the three-dimensional sphere

S3~L ! : X21Y21v2~p2x21q2y2!52vC154vM1

in the phase space (v p x,v q y,X,Y) onto the two-
dimensional surface

G~M1! : C2
21S2

25~M11M2!q~M12M2!p.

The phase space of of the normalized Hamiltonian sys
may be regarded as a foliation of invariant manifolds.
deed, the reduced phase space above each point alon
axis C1 ~equivalently M1) exhibits itself as a two-
dimensional surface Eq.~14!. This surfaceG(M1) is a sur-
face of revolution generated by rotating the functiong(M2)
5(M11M2)q/2(M12M2)p/2 ~for a fixed value ofM1) about
the axisM2. Some of these figures for several resonances
shown in Fig. 1.

For the resonance 1:1, the surfaceG(M1) is the two-
dimensional sphere

S2~M1! : M2
21C2

21S2
25M1

2 ,

such as Deprit@39# proved. However for other resonance
the surface is no longer a sphere. It is asingle pinchedsphere
when eitherp51 or q51; and adouble pinchedsphere@47#
when bothp,qÞ1.

Indeed, sinceuM2u<M1 ~remember that by definition
uC2u<C1 , C1.0), the function g(M2)5(M1
1M2)q/2(M12M2)p/2, the generator of the surface of revo
lution, is derivable everywhere except, perhaps, at the
trema of the interval of definition, that is to say, at the poin
M252M1 and M251M1. The derivative of the function
g(M2) is

d g~M2!

d M2
52

p

2
~M12M2!(p/221)~M11M2!q/2

1
q

2
~M12M2!p/2~M11M2!(q/221), ~20!

and

lim
M2→1M1

d g~M2!

d M2
5` if and only if p51,

lim
M2→2M1

d g~M2!

d M2
5` if and only if q51.
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For the rest of the cases, these limits are finite. Hence,
surface is completely smooth for the resonance 1:1~sphere!,
and since we consider resonancesp:q with p<q, there re-
sults that for resonances 1:q (q.1), there is only one sin-
gular point ~single pinched sphere!, namely, the point (M2
52M1 , C250, S250). For resonances p:q (1,p,q),
there are two singular points~double pinched sphere! (M2
56M1 , C250, S250).

Incidentally, let us mention, too, that the tangent to t
curveg(M2) at the pinched points (M256M1) is zero, ex-
cept for p51 or q51 ~where the tangent is̀ , as we just
have seen! and forp52 or q52. Indeed, in the latter, from
~20!, there results that

~p52! lim
M2→1M1

d g~M2!

d M2
52~2M1!q/2,

~q52! lim
M2→2M1

d g~M2!

d M2
51~2M1!p/2.

FIG. 1. Left column: Surface@C2
21S2

25(M11M2)q(M1

2M2)p# with M151 and for several resonances~from top to bot-
tom 1:1, 1:2, 2:1, 1:3, 5:7!. Right column: SectionsS250 of these
surfaces.
he

e

III. PSEUDO-OSCILLATORS

The generalized Lissajous transformation~4! above pre-
sented is not only valid for Hamiltonians of the type~1!, but
also for the Hamiltonian made by the subtraction of tw
harmonic oscillators

H05 1
2 ~X21v1

2x2!2 1
2 ~Y21v2

2y2!. ~21!

This type of Hamiltonians appears in some problems of c
mology like the study of the dynamics of a Friedman
Robertson-Walker universe@48,49#, but it also appears in
more general problems, for instance, in finding the orb
stability of perturbed Hamiltonians in which the princip
part is made of a nondefinite sign quadratic in the form
~21!, and the perturbation is a series made of homogene
polynomials in the coordinates. A typical example is t
problem of the stability of the Lagrangian points in the r
stricted three body problem@50,51#, where a normalization
must be carried out in order to apply the well-known the
rem of Arnold @52#. By means of our Lissajous transforma
tion, the Hamiltonian may be normalized up to any arbitra
high order, even at the resonant cases@53#.

For this problem of pseudo-oscillators, the Lissajo
transformation~4! is valid, but now, the pullback of the
Hamiltonian~21! is now

f #H05vC252vM2 .

For this Hamiltonian, the functionsM1 , M2 are integrals,
but nowC2 , S2 are not. However, for the Hamiltonian~21!
the functionsC1 , S1 are integrals. Thus, by switching (C2 ,
S2) with (C1 , S1), the preceding section is valid for thi
case. Hence, the functionsM1 , C1, andS1 determine a trans-
formation

~x,y,X,Y!°~M1 ,C1 ,S1!

mapping the nondefinite form

X22Y21v2~p2x22q2y2!52vC254vM2

in the phase space (v p x,v q y,X,Y) onto the two-
dimensional surface

F~M1! : C1
21S1

25~M11M2!q~M12M2!p. ~22!

The Lie algebra in this case is obtained by the Pois
brackets

$M1 ;C1%5p q S1 ,

$C1 ;S1%52 1
2 p q ~M11M2!q21 ~M22M1!p21

3@~q1p! M11~p2q! M2#,

$S1 ;M1%5p q C1 .

Normalization of a perturbed Hamiltonian system
which the unperturbed part is made of pseudo-oscillators
given in ~21!, consists of averaging over the Lissajous va
able c2. Hence, in the normalized Hamiltonian,M2 is an
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integral. Again, the phase space of the normalized Ham
tonian system may be regarded as a foliation of invari
manifolds.

At first glance, it seems that the surface~22! is identical to
the one appearing in Fig. 1. However, this is not the ca
since when the Hamiltonian is normalized, the momentM2
becomes an integral~instead ofM1), and two things must be
taken into account. First,M2 may be positive or negative
and second,M1 is such thatuM2u<M1. In Fig. 2 we present
the surface~22! for several values ofM2 ~positive and nega-
tive! and several resonances. As we could guess, we h
unbounded surfaces.

IV. TWO DIFFUSERS

Let us end this paper by defining a transformation that
the same effect as the Lissajous transformation, but now
Hamiltonians that are combinations of diffusers like

H05 1
2 ~X22p2v2x2!1 1

2 ~Y22q2v2y2!. ~23!

By analogy with the anharmonic oscillator, the Lissajo
transformation sought is

X5Av~C11C2! coshp ~c11c2!, ~24!

Y5Av~C12C2! coshq ~c12c2!,

x5AC11C2

vp2
sinhp ~c11c2!,

y5AC12C2

vq2
sinhq ~c12c2!.

FIG. 2. The surface@C1
21S1

25(M11M2)q(M12M2)p# corre-
sponding to two pseudo-oscillators for several resonances~from top
to bottom, resonances 1:1, 1:2, and 2:3!. Left column: Positive val-
ues of the integralM2(511). Right column: Negative values o
the integralM2(521).
l-
t

e,

ve

s
or

s

Indeed, with this transformation, the Hamiltonian~23! reads

H05vC1 .

In order to find integrals of the Hamiltonian system~23!,
we define a symplectic transformation with multiplieri
5A21 in complex variables, given by the equations

x5
1

A2
S i z2

1

vp
ZD , X5

1

A2
~vp i z1Z!, ~25!

y5
1

A2
S i w2

1

vq
WD , Y5

1

A2
~vq i w1W!,

and its inverse

z52
i

A2
S x1

1

vp
XD , Z5

1

A2
~2vp x1X!, ~26!

w52
i

A2
S y1

1

vq
YD , W5

1

A2
~2vq y1Y!.

The Hamiltonian~23! after this transformation becomes

K05 i H052v~p z Z1q w W!;

hence, a monomialzawbZcWd belongs to the kernel ofL0 if
and only if

p~a2c!1q~b2d!50.

Taking into account this relation, we readily check that t
functions

M1~p,q!5
i

2
~pzZ1qwW!, ~27!

M2~p,q!5
i

2
~p zZ2q wW!,

C2~p,q!5 1
2 v2(p1q)/2@~ i v q!pZqwp1~ i v p!qzqWp#,

S2~p,q!5
i

2
v2(p1q)/2 @~ i v q!pZqwp2~ i v p!qzqWp#

are integrals. Besides, we can define the functions

C1~p,q!5 1
2 v2(p1q)/2@WpZq1~ i v q w!p~ i v p z!q#,

S1~p,q!5 1
2 v2(p1q)/2 @WpZq2~ i v q w!p~ i v p z!q#

that for this Hamiltonian are not integrals.
These functions, when expressed in Lissajous variab

~26! become

M1~p,q!5 1
2 C1 ,

M2~p,q!5 1
2 C2 ,
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C2~p,q!522(p1q)/2 ~C12C2!p/2

3~C11C2!q/2 cosh 2pq c2 ,

S2~p,q!5222(p1q)/2 ~C12C2!p/2

3~C11C2!q/2 sinh 2pq c2 ,

C1~p,q!522(p1q)/2 ~C12C2!p/2

3~C11C2!q/2 cosh 2pq c1 ,

S1~p,q!5222(p1q)/2 ~C12C2!p/2

3~C11C2!q/2 sinh 2pq c1 .

Again, it is easy to see that

C2
22S2

25~M11M2!q~M12M2!p

and that

C1
22S1

25~M11M2!q~M12M2!p.

Hence, the phase flow of the normalized system~that is a
perturbed Hamiltonian where the anglec1 has been elimi-
nated by a Lie transformation! takes place in the unbounde
surface~see Fig. 3!

C2
22S2

25~M11M2!q~M12M2!p. ~28!

FIG. 3. Surface@C2
22S2

25(M11M2)q(M12M2)p# for the
resonances 1:2 and 2:3 of two diffusers.
After some algebra, we find that the Poisson brackets
the integralsM2 , C2 , S2 satisfy the properties

$M2 ;C2%5p q S2 ,

$C2 ;S2%52 1
2 p q ~M11M2!q21 ~M12M2!p21

3@~q11! M22~q21! M1#,

$S2 ;M2%52p q C2 .

Analogously to the case of the pseudo-oscillators~Sec.
III !, the transformation~24! is also valid for Hamiltonians of
the kind

H05 1
2 ~X22p2v2x2!2 1

2 ~Y22q2v2y2!. ~29!

Indeed, the transformation~24! converts this Hamiltonian
into

H05vC2 .

Now, the functionsM1 , M2 , C1, and S1 are integrals,
whereasC2 andS2 are not.

The phase flow of the normalized system~that is a per-
turbed Hamiltonian where the anglec2 has been eliminated
by a Lie transformation! takes place on the manifold

C1
22S1

25~M11M2!q~M12M2!p, ~30!

whereC1 , S1, andM1 are variables andM2 is constant.
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