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Complete reduction of oscillators in resonancep: q
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This paper extends to any type of resonange] the Lissajous transformation that handles the resonance
(1:1) in a Hamiltonian composed of two harmonic oscillators. The manifolds of constant energy for such a
system are two-dimensional surfaces of revolution that are spheres for the resonance 1:1, spheres pinched once
for the resonances () when 1<q, and spheres pinched twice for the resonanpeg)(when 1<p<g. The
extended Lissajous transformation is valid for resonant pseudo-oscill@on®ndefinite quadratic form
which allows us to find that the reduced phase flow lies on an unbounded surface of revolution.

PACS numbg(s): 05.45-a, 45.05+x, 33.40:+f, 95.10.Ce

[. INTRODUCTION These systems are callesgmisimple[20] because their
dominant term leads to a linear Hamiltonian vector field that
Under consideration in this paper are Hamiltonians of thés semisimple. The concept of normalization for semisimple
type systems in equilibrium at the origin must be credited to
Whittaker[21—-23 who applied Poincate nouvelle mtéhode
HX,Y,X,Y)=Ho(X,Y.X,y) +& P(X,Y,X,V,¢e), [24]; Birkhoff [25] provides a different method for the nor-
malization(for an automated development of the generating
function, see, e.g[,15]). The introduction of the Lie trans-
formation in the 1960$26,27] made easier the automatiza-
tion of the normalization, and a good example of it is given
HO=E(X2+w§X2)+1(Y2+ wgyz), (1) by Giorgilli [16], where the normalization is carried out for
2 2 several resonances and several degrees of freedom. Albeit
the problem may be considered as a classical one, it still
consists of two harmonic oscillators, while is a perturba-  attracts the attention of many authors, see, §28--39
tion proportional to a small parameter Hamiltonians of When the normalization is carried out by a Lie method,
this kind appear often in nonlinear dynamics. Indeed, theyespecially when high orders are required, one must be aware
are among the most studied in molecular spectroscopy, g&f the fact that the simpler is the Lie derivative associated
lactic dynamics, and celestial mechanisge, e.g.[1] and  with the unperturbed Hamiltonian, the easier is the applica-
references therejn tion of the method. With this aim, and for the resonance
One typical example of Hamiltonians of the kind given by (1:1), Deprit defined the Lissajous transformatif3e]. In-
Eg. (1) is the resonance originally described by Fef&iiin deed, in the Lissajous variables, the Hamiltonian is simply
the molecule of CQ, this type of resonance has been ob-one of the conjugate momentk)| which simplifies drasti-
served to be important in experimental studies of photoically the computation of the normalized Hamiltonian. Be-
somerization, excited ions, tunneling effect, as well as othegides, for the resonandd:1) Deprit [39] proved that the
experimental and theoretical worksee, e.g.[3,4]). In ga-  most salient feature of the reduced phase space is that each
lactic dynamics, this type of perturbed Hamiltonians havemanifold of L= constant is a two-dimensional sphere, and
been used for describing the motion of a star under the gravach point of this sphere represents an orbit. This fact is very
ity field of a galaxy[5—9]. In most of the cases, the oscilla- important when one is interested in finding the global picture
tors are in resonance 1:1, like the famousnbie-Heiles of the phase portrait; indeed, the classical Mercator map pre-
Hamiltonian[10], but dealing with less symmetric galaxies, sents polelike singularities, and quite oftei8,40,32,41,4pP
like elliptical or barred galaxies, we meet resonances of thdifurcations occur precisely at these points.
type p:q [11,12. Bearing in mind the advantages of the Lissajous transfor-
Such systems have been profusely studied because theation we proposed to extend this transformation. We faced
dynamical systems they represent show chaos above a cdhe problem head on the way it has been met for the reso-
tain threshold of energy. As it has been indicafd®,1],  nance(1:1) with the Lissajous transformatidi39].
incipient chaos creeps in at low energies depending on the Recently, Elipe and Depr[#43] obtained an extension of
existence of unstable equilibria and the homoclinic solutionghe Lissajous transformation to any finite combination of
emanating from them. On the one hand, numerical integraharmonic oscillators and this transformation is valid for any
tion is not fit to reveal the fine details of the phase space nedesonance mode. Indeed, for the Hamiltonian of the type
those singularities; analytical studies are preferable. On the

whose principal part

other hand, the usual techniques of normalization fail in the Ho== (X2+ w?p?x?), with p; R, ©
presence of resonances due to the resulting small divisors 2 15=n

[14], and the resonant and near resonant cases must be

treated in an specific wayp—7,15—-19. the canonical transformation
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N (5, W)= (x,X): T"X (DC R")—R?" * Ho= 0wV, (5)

given by and henceforth, the Lissajous variables are a set of action-
and-angle variables.
When the perturbatiof® is

1 .
X1= [(n—2)¥;+31¥sinp, 0,

- o',
— n
X;= ¥ (n—2)¥,;+3]1"cosp; 0, P= ng’n & Hn(%,X),
and for 1<j=n, (3 a power series in the algebra of real polynomialsnX{,
the normalization takes place within that algebra. The Lissa-
1 o jous transformatioii4) convertspP into a Fourier series of the
Xj = (V1= W) 7sinpj(—2¢;+0), type
W7P;
_ AR 1/2 Cos
X = ()T eosp(— 24+ o), P=F= & s”cj,k,n[ . }(j vatkyn), (6)
j=0Jk|=0n=1 sin
where we used the shorthand=3,_;_,¥; and o
=3 <i<nti, reduces the Hamiltoniaf®) to the function with coefficients in the real algebra of polynomialssand
4 d. Even more, ifG is a homogeneous polynomial of degree
NHo=0W,. in the Cartesian variablex (y), the coefficients in the Fou-

‘ier seriesf” G are homogeneous polynomials of degnde
sandd.

The Lie derivative associated witH; is the partial dif-
' ferential operator

Details about how this transformation has been obtained wil
appear elsewhel&3,44. It was proved, too, that the trans-
formation is valid for linear combinations of oscillators and
with slight modifications, for diffusers.

In this paper we deal exclusively with the resonapce.
Let us assume that the Hamiltoni@h) corresponds to two

oscil_lator_s in resonancp:q, that is to say, there exist two mappingF onto its Poisson bracket to the right witty,. The
coprime integersp,q and a frequency such thatw;=pw  emelof L, is the set of function& such thalo(F)=0; the
andw,=qw. Without loss of generality, we can assume thatimageof Lo, the set of functions of the form F=L(G).
1<p=aq. , ) Normalization of a Hamiltonian of type

Let us consider the convex sét={(V,,¥,)eR*:¥,
>0,|W,/<¥,)}, then a torus T?={(¢,¥,)

Lo:F—(F,Hyp)

e R%: yymod(27),,mod(27)}. For this two degrees of H(p,P,e)=ZO €"Hn(p,P),
freedom problem, the generalized Lissajous transformation "~
3 we recall[27], is a one-parameter family of canonical trans-
f:(dll11702!"Plv‘I'Z)H(lelXuY):TZXFHRA formatlons
is defined by vi(p',P',e)—(p,P)
U+, _ that change$t into a function
X= wLp sinp (1 + ) =slpsinp (1 + i), .
1 @ v"H(p', P’ ,e)=H(p(p',P’,e),P(p’,P ,€),€)
ST in the kernel ofL,,.
y=\/———2sinq (1 — Ph,) =d/q sing (4, — 1), In the Cartesian variablexy,X,Y), the Lie derivative
w2q associated with the elliptic oscillatét) is represented by the

partial differential operator

L_Xé’ Yé’ of 9 d 7
0= _+Ww )

0 (V1+V,)
X= Tcosp (Y + o) = w scosp (Y1 + i),
ax XX Yoy

_ w2 (V1—W¥5) .
Y=1 q €0sq (1~ o) = w d cosq (b1~ ), however, in the Lissajous variableg(,,, ¥,V ,), the Lie

derivative associated with the Hamiltoniaf®) is very

where we puts?=(¥,+WV,)/w and d’=(¥,—W¥,)/w to  simple, namely, the operator
remove the irrational expressions from the definition. For the
resonance 1:1, this set of Lissajous variables L= J
(1,45, ¥41,¥,) coincides with the second set of Lissajous O_wa_lpl'
variables ¢’,g’',L’,G") defined by Deprif39].)

In this set of Lissajous variables, the pullbaékH, takes  Thus, any series of the ty[6) may be decomposed into its
the simple form components
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Fim S anCiol 1w Ll 2w, v= Logiwrw
= & i . = —— —_— = —
j=0n=1 1001 sin 192 y \/E w wa ' z(waw ),
in the kernel ofL, and and its inverse
1 1 1
cos — ; _ ;
Fb— ne. i vtk z——(x——|x), Z=—=(X—wpix), (9)
j>0,\k§0,n>l ¢ J’k’”[ sln}(J Yatky) V2o ep V2
. . 1 1 1
in the image oflo. SR w=—(y——i Y), W=——(Y=wqiy),
Thus, when the perturbation is periodic in the Lissajous V2 w( V2
variable ¢, normalizing a perturbed elliptic oscillator
amounts to averaging the dynamical system aygr wherei=—1.
Normalization has a second interpretation: it isealuc- In those variables, the Hamiltonidf) yields
tion [45]. In the process of normalization, the number of
degrees of freedom has fallen by one unit. Upon analyzing Ho=w i (pzZ+qwW), (10

this fact from a geometric standpoint, one will recognize that
ignoring the coordinaté; and holding its conjugate moment and now, its associated Lie derivative is the operator
¥, as a parameter amounts to partitioning the phase space
into leaves consisting of all states for which the parameter )
(the moment¥;) has a given value, collecting into classes Lo=wl
all points within that leaf which are images of one another by
the canonical transformations generated by the inte§iral  The image by the Lie derivative of an expression of the type
and then “reducing” the phase space on each H&f  zwPzowd s
=constant by handling each class as an individual phase
space. Lo(Z2WPZ°W9) = i w[p(a—c)+q(b—d)]Z2wPZ°We,

We find (Sec. 1) a set of functions that play an analogous
role to the Hopf variables in the 1:1 resonari@]; with  hence, the monomia®w®Z°W¢ belongs to the kernel df,
these functions, we show that the phase portrait of the reif and only if
duced Hamiltonian has the structure of a two-dimensional

A
Pl25z %oz

revolution surface, namely, a sphere for the 1:1 resonance; a p(a—c)+q(b—d)=0. (11
single pinchedsphere for resonances dL:(1<q), and a
double pinchedphere for resonancgsq (1<p<q). Simi-  Taking into account this relation, there follows immediately

lar results are obtained by the subtraction of two oscillatorghat
(Sec. ll) and for two diffusergSec. IV); in these cases, as it
is expected, the phase portrait is an unbounded surface. Lo(zZ)=Lo(WW)=0,

1. TWO-DIMENSIONAL PINCHED SPHERES which proves that the functiond ;, M, defined by
After normalization, the reduced problem is one degree of I

freedom in ¢/1,¥,). In those variables the phase space is a Mi(p.a)= E(pzZ+quV), (12

cylinder, but as it happened for elliptic oscillatqresonance

1:1) where the reduced phase space was made of two- i

dimensional spheres, we will show that for anharmonic os- M,(p,q)= E(p zZ—qwW),

cillators a Mercator map does not provide a good represen-

tatlon: and 'Fhat acFuaIIy, the reduced phase space is made g}ce integrals. Observe thall,<Mj; observe further that
two-dimensional pinched spheres.

. M,=M, if and only if q=0.
To prove that, we proceed from scratch. Our first step sz vilrtue of (11)ythg functionsfWP andwPzP are inte-

consists of finding a set of integrals, analogous to the ones 7~ . S : .
found in[39], and which eventually will lead us to the ad- grals; hence, their linear combinations will be integrals too.

equate orbit space where the reduced Hamiltonian should dgowever, we are not interested in obtaining collections of

studied. After several trials, we found that this taskmtegrals, but in finding integrals that will provide some in-

was easier to be accomplished in complex variables. Let u%'ght tp the Lissajous transformati4). After several trials
define  the  following canonical  transformation and with '_[he _help of a computer algebra system, we choose
(z,w,Z,W)—(x,y,X,Y) from complex to Cartesian vari- the combinations

ables(a modification of Birkhoff's transformation L o .
Co(p.a)=3 o~ PV (i 0 q)PZWP+ (i w p)I29WP],

(13

1 1 1
= —|z+ —iz|, X="(wpiz+2), (8
X ﬁ(HwD' ) BRI B o =i b e PR 0 q)PZWP— (i @ p)IEWP].
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The four integralg12) and (13) cannot be independent. In- (~ .g1_ 1 M:+MD9 L (Ma=M-)YP " (a+0) M
deed, as we have the integrals expressed in complex varfi 2:5}= 2 pa(M, 2" (My 2" 1atp) M,

ables, one can easily check that +(p—q) M4],
C3+S5=iP9pIgPwPWPzIZd (S,:Ml=pqGC,.
and that In the particular case of the resonance 1:1, we recover the
. classicalrigid body Poisson structurg¢46] in R, already
(M1+M3)%(My—M,)P=iPT9pigPwPWPzaZ4, found in[39].

The functionsM,, C,, and S, just found, determine a

hence, they are bound by the constraint .
transformation

C2+S3=(M;+M)%M;—M,)P. (14 (x,y,X,Y)—=(M,,C,,S,)

In an analogous way, we can define the functionsma ing the three-dimensional sphere
C.(p,q) andS;(p,q), which do not belong to the kernel of pping P

the Lie derivativel o, as S3L) : X2+ Y2+ 02(p2X2+g2y2) = 20V = 4wM;

C1(p,q)= % 0 PTIIWPZI4 (i w q W)P(i w p 2)9], in the phase spacew(px,wqy,X,Y) onto the two-
(15  dimensional surface

S(p.)=i } 0 P V2[WPZI—(i & qW)P(i @ p 2)7]. G(My) : Cot S3= (M1 +Mo){(My = My)".

The phase space of of the normalized Hamiltonian system
may be regarded as a foliation of invariant manifolds. In-
C§+ 5§=(M1+ M,)9(M;—M,)P. (16) deed, the reduced phase space above each point along the
axis ¥, (equivalently M;) exhibits itself as a two-
By composition of the transformation®) and (4), we  dimensional surface Ed14). This surfaceG(M,) is a sur-
obtain the explicit expressions of the four integrél8) and  face of revolution generated by rotating the functgM )

These functions satisfy the relation

the two functiong(15) in terms of the Lissajous variables = (M;+M,)¥2(M;—M,)P? (for a fixed value oM ;) about
the axisM,. Some of these figures for several resonances are
My(p,q)=3 ¥y, (17 shown in Fig. 1.
For the resonance 1:1, the surfaGéM,) is the two-
M,(p,q)= 3V, dimensional sphere
Ca(p.q) =2 P+ (W, =W, (W 1+ ) %2 cos D i, S(My): M+ Cot S= M,

such as Deprif39] proved. However for other resonances,
the surface is no longer a sphere. It isiagle pinchedphere
when eithep=1 org=1; and adouble pinchegpherd 47|
when bothp,q#1.

Indeed, since/M,|<M; (remember that by definition
|V,|<W¥,, W¥,;>0), the function g(Mjy)=(M;
and conversely, by inverting these formulas, we can deter+ M2)¥4(M1—M3)P” the generator of the surface of revo-
mine unambiguously the Lissajous variable® (¥, lution, is derivable everywhere except, perhaps, at the ex-

1 ,,) from the integralsM,, M,, C,, S, and the state {rema of the interval of definition, that is to say, at the points
functionsC,, S, as M,=—-M; andM,=+M,. The derivative of the function

Sy(p,q)=2"PHD2 (W —W,)P2 (W +W,)¥2sin 2pq i,
Ci(p,q)=2" P2 (P, —W,)P2 (W) +W,) 2 cos 2pq gy,

Si(p,q)=2"PTD2 (W, —W,)P2 (W, +W,)¥2sin2pq

g(My) is
V1=2My, V,=2M,, (18
A9M2) _ P 1 M) @2 DM+ M)
cos 200 #,=C, (M1 —My) P2(M+M;)~ 92, d M, 20t e v
Sin 2pq ;=S (M1 = M) P2 (M +M,) =9, M, —M,P2 (@/2-1)
+ 5 (M1=M2)P2(My+ M) @270, (20)
cos 20q ¢1=Cy (M1—M,) " P2(M;+M,) 92,
and
sin2 =S, (M1—My) P2(My+My) 92
P ¢1=S; (M1—M3) "< (M1+My) C dg(My) . .
o . i lim =oo ffand only if p=1,
Taking into account the relationd7), it is a matter of My +M, dM,
computing Poisson brackets to discover that the subjacent
Lie algebra is determined by the relations dg(M,)
im ———=xifandonlyifg=1.

(M2:C2l=pq S, (19 Mz-my M2
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Ill. PSEUDO-OSCILLATORS

The generalized Lissajous transformati@) above pre-
sented is not only valid for Hamiltonians of the ty(g, but
also for the Hamiltonian made by the subtraction of two
harmonic oscillators

Ho=3(X2+ wix?) — 3 (Y2+ wdy?). (21)

This type of Hamiltonians appears in some problems of cos-
mology like the study of the dynamics of a Friedmann-
Robertson-Walker universgt8,49, but it also appears in
more general problems, for instance, in finding the orbital
stability of perturbed Hamiltonians in which the principal
part is made of a nondefinite sign quadratic in the form of
(21), and the perturbation is a series made of homogeneous
polynomials in the coordinates. A typical example is the
problem of the stability of the Lagrangian points in the re-
stricted three body problef®0,51, where a normalization
must be carried out in order to apply the well-known theo-
rem of Arnold[52]. By means of our Lissajous transforma-
tion, the Hamiltonian may be normalized up to any arbitrary
high order, even at the resonant cal&3.

For this problem of pseudo-oscillators, the Lissajous
transformation(4) is valid, but now, the pullback of the
Hamiltonian(21) is now

f#HO:(I)\I,ZZZ(DMz.

For this Hamiltonian, the function®,, M, are integrals,
but nowC,, S, are not. However, for the Hamiltonia1)
the functionsC,, S; are integrals. Thus, by switching¢,
S,) with (C,, S;), the preceding section is valid for this
case. Hence, the functiohs, , C;, andS; determine a trans-
formation

(XY, X,Y)—=>(M,Cq1,Sy)
FIG. 1. Left column: Surface[C3+S5=(M;+My)%(M,
—M,)P] with M;=1 and for several resonancésom top to bot- mapping the nondefinite form
tom 1:1, 1:2, 2:1, 1:3, 5)7 Right column: Section§,=0 of these
surfaces. X2—Y2+ w?(p?X?—q?%y?) =20V ,=4wM,

For the rest of the cases, these limits are finite. Hence, thia the phase space w(p X,w qYy,X,Y) onto the two-
surface is completely smooth for the resonance(d4pherg,  dimensional surface
and since we consider resonanges with p<gq, there re-

sults that for resonancesd {g>1), there is only one sin- F(My) : C2+S2=(M;+M5)%(M;—M,)P. (22
gular point(single pinched spherenamely, the point ¥,
=—-M,, C,=0, S,=0). For resonances @:(1<p<q), The Lie algebra in this case is obtained by the Poisson

there are two singular pointglouble pinched spherédM,  brackets
:iMl, C2:0, 82:0)

Incidentally, let us mention, too, that the tangent to the {M1;C}=pq S,
curveg(M,) at the pinched pointsM,= +M,) is zero, ex-
cept forp=1 org=1 (where the tangeqt i®, as we just [C1:St=— 1 pg(M;+My)% L (My—M,)P?
have seenand forp=2 orqg=2. Indeed, in the latter, from
(20), there results that X[(gq+p)M;+(p—q) M,],
(p=2) lim %:—(ZMQWZ, {S1:M4}=pqC;.
My—+Mq 2
Normalization of a perturbed Hamiltonian system in
d g(M,) which the unperturbed part is made of pseudo-oscillators as
(9=2) lim ————=—=+(2M)P?. given in(21), consists of averaging over the Lissajous vari-

Mo— =My d M able ¢,. Hence, in the normalized Hamiltonia, is an



6482 ANTONIO ELIPE PRE 61

Indeed, with this transformation, the Hamiltonié2B) reads
H(): (J),\Ifl .

In order to find integrals of the Hamiltonian syst€28),
we define a symplectic transformation with multiplier
=+/—1 in complex variables, given by the equations

! ( ! z) = iz+2), (25
Xx=—|iz—— =— iz

R\ et Tl
1 ( 1 ) 1 _
y_ﬁ IW—w—qW, Y_E(quWJFW)'

and its inverse

1 1
X+ w—X), Z=—=(—wpx+X), (26

z=——
. 2\ wp 2
Sy
FIG. 2. The surfac§C3+ S7=(M;+M,)%(M;—M,)P] corre- W:_I_ y+ iy) Wzi(—wq y+Y).
sponding to two pseudo-oscillators for several resonaffoa® top \/5 w( \/5

to bottom, resonances 1:1, 1:2, and)213:ft column: Positive val-
ues of the integraM,(=+1). Right column: Negative values of The Hamiltonian(23) after this transformation becomes
the integralM,(=—1).
Ko=1Ho=—w(pzZ+qwW);
integral. Again, the phase space of the normalized Hamil-
tonian system may be regarded as a foliation of invarianhence, a monomia®w®Z°W¢ belongs to the kernel df if

manifolds. and only if
At first glance, it seems that the surfa@®) is identical to
the one appearing in Fig. 1. However, this is not the case, p(a—c)+q(b—d)=0.

since when the Hamiltonian is normalized, the momint
becomes an integrginstead ofM ), and two things must be Taking into account this relation, we readily check that the
taken into account. Firstyl, may be positive or negative, functions
and secondM, is such thatM,|<M;. In Fig. 2 we present
the surfacg22) for several values o, (positive and nega-

[
tive) and several resonances. As we could guess, we have Ma(p.q)= E(pZZ-ﬁ-qu\/}, (27)
unbounded surfaces.
[
IV. TWO DIFFUSERS Ma(p.a)=5(pzZ-qwW),

Let us end this paper by defining a transformation that has
the same effect as the Lissajous transformation, but now for Cx(p,q)= 3 o~ ®P*D2[(i w q)PZWP+ (i w p)9z9WP],
Hamiltonians that are combinations of diffusers like
i
Ho=3(X2=p?0®x®)+3 (Y2=q?0?y?). (23 So(p.a)=5 0 PTV2[(i © q)PZWP— (i @ p)IZIWP]
By analogy with the anharmonic oscillator, the Lissajous

transformation sought is are integrals. Besides, we can define the functions

X= o (W, + W) coshp (¢1+ ), (24) C1(p.q)=7 &~ PTVIWPZI+ (i w qW)P(i @ p 2)],
Y=o (W,=W,) coshq (1~ ihy). Si(p.9)=7 & PTVZWPZI—(i w gW)P(i @ p )]
W+, tha‘lt':lzcsct-:‘hi;rll—lcetlilz;ri:tson\i\?r?eﬁree;;;)rte?stggr?r:S.Lissajous variables
x= wp? sinhp (Y1 + i), (26) become ,
VW, Mi(p,a)=3 ¥y,
y= > sinhq (1= ¢).

wq M,(p,q)=3 ¥,
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After some algebra, we find that the Poisson brackets of
the integraldM,, C,, S, satisfy the properties

i ol i ,,f‘éé"vt"»_.: ! “ y .
0.5 X \ mﬂ,‘«ﬁ“ . X Ry {Mz,Cz}:p q %,

{CoiSt=—3pq(M;+ M4 (M3—M,)P?
X[(g+1)My—(q—1) M4],

FIG. 3. Surface[C3—S2=(M;+M,)%M;—M,)P] for the {S;;My}=—pqGC,.
resonances 1:2 and 2:3 of two diffusers.
Analogously to the case of the pseudo-oscillat(Bec.
Co(p,q)=2"(PHD2(y, P2 1), the transformatiori24) is also valid for Hamiltonians of
the kind
X (W1+W,)%%cosh 2q ¢y,
Ho=3 (X*—p?0™x®) — 3 (Y2~ q?w?y?). (29)
Sy(p,g)=—2" P2 (W, —p,)P2
Indeed, the transformatiof4) converts this Hamiltonian

X(W1+W,)¥sinh 2pq iy, into
Cy(p,q)=2" V2 (W, —,)P2 Ho= V5.
X (W,+¥,)%cosh ,
(Vs 2) Pavs Now, the functionsM,, M,, C4, and S; are integrals,
Si(p,q)=—2"(PTa2(y, —p,)P2 whereasC, andS, are not. _ _
. The phase flow of the normalized systéthat is a per-
X(W1+W,)¥sinh 2pq ¢ . turbed Hamiltonian where the angle has been eliminated

L by a Lie transformationtakes place on the manifold
Again, it is easy to see that

2_g2-— q — p
C%—SEI(Mﬁ—Mz)q(Ml—Mz)p CJ_ Sl (M1+M2) (My MZ) , (30)
and that whereC,, S;, andM, are variables andi1, is constant.
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