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Quantum algorithmic integrability: The metaphor of classical polygonal billiards

Giorgio Mantica*
International Center for the Study of Dynamical Systems, Universita` della Insubria, via Lucini 3, 22100 Como, Italy;

Istituto Nazionale di Fisica della Materia, Unita` di Milano;
and Istituto Nazionale di Fisica Nucleare, sezione di Milano

~Received 17 May 1999!

We study the algorithmic complexity of motions in classical polygonal billiards, which, as the number of
sides increases, tend to curved billiards, both regular and chaotic. This study unveils the equivalence of this
problem to the procedure of quantization: the average complexity of symbolic trajectories in polygonal bil-
liards features the same scaling relations~with respect to the number of sides! that govern quantum systems
when a semiclassical parameter is varied. Two cases, the polygonal approximations of the circle and of the
stadium, are examined in detail and are presented as paradigms of quantization of integrable and chaotic
systems.

PACS number~s!: 05.45.Mt, 89.70.1c
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I. INTRODUCTION

Chaos is certainly the most significant concept that h
issued from the theory of dynamical systems and yet its
meaning, most concisely and universally encompassed in
equation chaos equals deterministic randomness, has not
been fully adopted in the literature and in the scientific co
munity. This is somehow paradoxical, for even in popu
magazines the idea has spread that the discovery of c
might be considered the third scientific revolution of t
century—after relativity theory and quantum mechanics.
my opinion, there are two main reasons behind this failu
first, the information-theoretical concepts implied in the n
tion of deterministic randomness are unfamiliar to most s
entists; second, for the vast majority of physicists the ‘‘tru
mechanics is not classical—where chaos is commo
found—but quantum, where chaos is, quite significantly
we know, absent.

A clash is implied in this last statement: if chaos is abs
in quantum mechanics, should it not be also absent in c
sical mechanics, which is just the limiting case of t
former? This clash has led people to draw all sorts of c
clusions. Many have claimed that classical chaos must im
quantum chaos, via thecorrespondence principle@1#, while
others on the same basis have pretended that classical c
theory should be derived from quantum dynamics. Others
have seen in the collapse postulate~or any other addition to
Schrödinger equation required to make physical predictio!
the origin of randomness—but randomness alone is
chaos. And on the opposite side of the radical fringe oth
have argued that, since chaos is absent in the quantum
chanical theory of nature, it should be absent in nature a
gether, in particular at the macroscopic level, and so farew
classical chaos. Taken at face value, this last statement
plies a logical inconsistency, for quantum mechanics is ju
theory, a description of nature. Yet many physicists cons
it a very good description in all respects, including chaos

*Electronic address: giorgio@fis.unico.it
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its lack. The fact remains that chaos in nature is an un
puted reality, quite well described by classical dynamics.
previous work we have put forward the idea that the g
between the two mechanics, classical and quantum, is w
than what can be naively expected from the corresponde
principle, and that the former is more than the limiting ca
of the latter@2–6#.

In this paper I shall show that a similar situation is met
the dynamics of purely classical billiards: here, rational p
lygonal billiards play the role of quantum systems, who
‘‘classical limit’’ are curved billiards, to which they tend
geometrically as the number of polygonal sides increases
definitely. Indeed, while it has long been recognized t
rational polygonal billiards are nonchaotic systems@7–11#,
one can use them to approximate chaotic curved billi
tables to arbitrary precision, and ask what happens the
the character of their motion. In addition, the observation
recently been made of positive ‘‘effective’’ Lyapunov num
bers in polygonal billiards@12#, and a paradox of the sam
flavor as ‘‘quantum chaos’’ seems to arise, where chaos
pears and disappears at his wish, like the Cheshire cat.

To resolve this paradox, in this paper I shall introduce
elementary, physically motivated version of algorithm
complexity theory. In applying this theory, it will becom
clear that the procedure of approximating curved billiards
polygons is quite analogous to that of quantizing class
systems: understanding the complexity of the motion
polygons can then be used with profit to clarify the issu
involved in the other, more important problem.

Our arguments are organized as follows: in the next s
tion we review the fundamentals on integrable and cha
billiards, and the notion ofalgorithmic integrability. To
adapt algorithmic complexity theory to physical purposes
Sec. III a simplecoding of trajectories in billiards is intro-
duced, which translates these into symbolic sequences:
algorithmic complexityis the object of this paper. We at
tribute special importance to thescalingof this quantity with
respect to time, within certain time intervals: this leads to
concept ofrandomness (or order) within a range, which is
presented in Sec. IV. Rather than studying orbital complex
6434 ©2000 The American Physical Society
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PRE 61 6435QUANTUM ALGORITHMIC INTEGRABILITY: TH E . . .
directly, we define in Sec. V theaverage coding length,
which has a clear physical meaning, and can be used to
timate the former. The theory is immediately applied to t
case at hand: the circle~an integrable system!, the stadium~a
fully chaotic one!, and their rational polygonal approxima
tions, which by analogy to quantum mechanics we also
polygonal quantizations. The case of circle quantizations
studied in Sec. VI, where the paradox presented abov
resolved. The stadium billiard is put to the same test in S
VII, and the problem ofcorrespondenceis addressed. This
finally prompts the conclusions, where the position of Ch
ikov in this debate is briefly reviewed@59#.

II. ORDER, CHAOS, AND COMPLEXITY IN BILLIARDS

Billiards are dynamical systems that require little intr
duction, and just a few formal definitions are necessary
billiard table B is a bounded, connected domain of the pla
with piecewise smooth boundary. Anideal billiard in B is
the dynamical system originating from the uniform moti
of a point particle—a ball—insideB, with elastic reflections
at the boundary, following the familiar law that the angle
incidence equals angles of reflection.

In many games that can be played with a billiard, atte
tion is paid to such reflections: one discretizes time~the in-
tegern meaning the time of thenth rebound! and considers
the subsetS of the tangent space ofB, which consists of unit
vectors, attached at boundary points and pointing insideB. S
can easily be parametrized by the pair (l ,f), wherel is the
arc length along the boundary, andf is the angle between
the unit vector and the inner normal to the bounda
2p/2,f,p/2. In so doing, the dynamics is a functionT
from S to itself, that maps the bounce occurring atl n21 with
‘‘exit angle’’ fn21 into the new collision pointl n and exit
anglefn :

~ l n ,fn!5T~ l n21 ,fn21!. ~1!

Since this mapping preserves the canonical measuredm
5cosf dl df, billiards are among the simplest and most su
cessful examples of Hamiltonian dynamics. But perhaps t
mostly owe their success to the fact that a member of t
family can be found at virtually all levels in the famou
ergodic hierarchy: there are integrable ones—the circle—
well asK—the stadium, which is therefore also ergodic, a
mixing. Gallavotti and Ornstein have shown@13# that bil-
liards can also be Bernoulli, and Ornstein and Weiss@14#
have conjectured that chaos in nature is mostly of this ty
not without reason, we can say that billiards have serve
shape our view of reality. In a sense, the present paper a
at the same ambitious goal.

An interesting subclass will be studied here, which cov
part of the ergodic hierarchy, but falls short of produci
chaotic representatives: the polygonal billiards@10#. Sinai
has indeed proven@9# that these billiards have null metri
entropy, and Ford has termed polygonal billiards with rat
nal angles algorithmically integrable~A! @15#, where the let-
ter A was also intended to honor the memory of V. M. Ale
seev and his work@16# in which orbits of null entropy sys-
tems are shown to have null algorithmic complexity als
The terminology makes it evident that a shift in perspect
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has taken place: while the ergodic hierarchy is concer
with statistical properties of ensembles of orbits, algorithm
theory deals with a new object, the complexity of the d
scription of the motion, which will be the basis of our inve
tigation @17#.

Seminal work@18# on A-integrable billiards is Zemlyakov
and Katok’s@8# study of polygons whose vertex angles a
all rational multiples ofp: it shows that these billiards sa
isfy the conditions for integrability except for the effect o
vertices. Rationality of the angles provides a second cons
of the motion ~the angle of reflectionf times a suitable
integer multiple ofp), butsplittingof trajectories heading on
a vertex provides theerror @19# which prevents the system
from being integrable. Notwithstanding these errors, traj
tories are still computable, in the sense that effective al
rithms can be devised, in such a way that the number
informational bits in the output~the trajectory! is much
greater than the number of informational bits in the inp
~the algorithm plus the initial condition of the motion!.
Echardt et al. in @7# call such trajectories algorithmically
meaningful. Therefore,A-integrable systems are comput
tionally akin to Liouville-Arnol’d ~L-A ! integrable ones
@20,21#. We shall come back to these concepts later.

A few years after Ref.@7# Vega, Uzer, and Ford returne
to the theme of rational billiards, presenting a seemingly d
ferent set of conclusions@12#: they examined the rate of di
vergence of nearby trajectories and found that this rate
exponential, even for rational billiards. The key factor
their derivation is the fact that nearby trajectories differ
time zero by a finite, fixed amount, and they are reinitializ
to this fixed amount at each iteration of the Benettin-Strelc
algorithm for computing Lyapunov numbers. In the mind
these authors, this upper bound to precision stands for
human limitation to the dogma of infinite precision. If w
take this limitation into account, they claim, trajectories e
fectively live on a multisheeted surface to which splitting
rational vertices gives an average negative curvature: the
sulting motion is, practically speaking, chaotic.

The first aim of this paper is to put order in these confli
ing observations, by utilizing a scaling approach to algori
mic complexity theory. But first, let us define the rules of o
game.

FIG. 1. The initial portions of two trajectories in a circular bi
liard table, characterized by slightly different initial anglesf. Their
common initial position is at the bottom of the table. Also shown
a coding of rebounds with two symbols,s50 ~light portion of the
boundary! ands51 ~dark portion!.
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6436 PRE 61GIORGIO MANTICA
III. SYMBOLIC SEQUENCES IN BILLIARDS: A GAME

The billiard in a circle~Fig. 1! is a noticeable example o
Liouville-Arnol’d integrability: the second, smooth integra
of the motion being the angular momentum with respec
the center. Cutting the circle into two equal pieces and
serting a rectangular strip between the two halves gives
to a fully chaotic billiard: the stadium@22#. We shall get rid
of all symmetries in this geometrical figure, and study t
quarter stadium~Fig. 2!. Let us now replace the circula
sides in both billiards by a polygonal approximation wi
equal sides: it is apparent that this can be done so as to
a rational billiard. In both these cases, Vega, Uzer, and F
@12# have found exponentially divergent trajectories, with
their approximation scheme of course. In the following
shall show that the two cases are nonetheless profou
different. To do this, I first need to introduce a symbo
coding of this problem.

How to code a dynamical object into a symbolic seque
is something that follows from physical insight, or practic
convenience, or mathematical efficacy@23#. In our case, we
elect to code trajectories according to the bounce coordi
l alone: for this, we assume that the circular parts of
boundary ~or their polygonal approximations! are divided
into a finite numberSof equal regions, each of which corre
sponds to a symbols which can be taken to be a natur
number from 0 toS21. We also decide that bounces on t
straight segments of the stadium are not registered. This
ing is indicated in Figs. 1 and 2, forS52. For simplicity, we
shall always present the results forS52 in this paper, al-
though in the Appendix the general case is considered.

In a billiard table like this, we may think of putting de
tectors all around the boundaries, which are set off whene
the ball hits them. In the polygons, nearby sides can be c
nected to the same detector, so that the total number of
put channels isS also whenM—the number of sides—is
much larger thanS and is allowed to increase while keepin
S fixed as we shall do in the following. The history of
trajectory is then coded in the records1 ,s2 , . . . of bound-
ary reflections.

Now, let us play a game: the ball is initially set still at
fixed point, and a test player—chosen appropriately am
our friends—can aim it by hitting it properly with the fami
iar cue. As the departing anglef is varied different trajec-
tories are initiated, and different symbolic sequences$s j%

FIG. 2. Same as Fig. 1, now for the quarter stadium billia
table studied in this paper. Notice that rebounds are coded onl
the circular part of the boundary, bys50 ~light thick portion of the
boundary! and bys51 ~dark thick portion!.
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are recorded. Let us now ask the player to do it twice, tha
to aim the ball a second time so that the sequence of bou
obtained in the first shot is repeated@24#. It comes as no
surprise that the player will not be able to set the initial an
f to exactly the same value in both tries: the difference
this quantity causes the two resulting symbolic trajectories
agree only over a finite time-span. Trajectories of this ki
are pictured in Figs. 1 and 2. But how is this sport related
algorithmic complexity and to our problem?

IV. DETERMINISTIC RANDOMNESS
OF FINITE TRAJECTORIES

The symbolic coding just described has reduced any fi
trajectory into a sequence of symbolss1 , . . . ,sN , and the
billiard game can be thought of as a computer program
signed to output this sequence. Of course, this computer
gram can also be translated into a sequence of b
p1 , . . . ,pL . The relation between a sequence and its ‘‘ge
erating’’ programs is the object of algorithmic complexi
theory. In fact, the algorithmic complexityK(N) of a se-
quence$s j% j 51, . . . ,N is defined very roughly as the length o
the shortest computer program capable of outputting the
quence, and stopping afterward@25,26#. Since this program
uniquely defines its output, we can say that the complexity
a sequence is the length of its shortest definition:

p1 , . . . ,pL ⇒
outputs

s1 , . . . ,sN implies K~N!<L. ~2!

Algorithmic complexity theory teaches us that mo
sequences—in a probabilistic sense—of lengthN have com-
plexity close to maximal, i.e.,N. Moreover, in the limit of
increasingN, almost all of them are random, in the sense t
their complexityK(N) grows asN @27#. At the same time,
computable sequences exist, for whichK(N) is much less
thanN, and grows less than linearly. Whens is generated by
a dynamical system, as in our case, we shall follow Aleks
and Yakobson@16#, Chirikov et al. @28#, and Ford@29#, and
identify order with computability, and chaoswith random-
ness, whence the definition put forward in the Introduction

Let us return now to our billiard problem, and study th
complexity K(N,f) of its dynamical sequences@30#. We
have explicitly indicated that complexity may depend on t
initial condition of the motion, the anglef. The central issue
is then to find an optimal computer code to output the spe
fied sequence. A possible candidate is obtained—in any
stract language—by an encoding of~a! the geometrical rules
of the game, which requires a fixed number of bitsCmachine
~which depends only on the machine on which the rules
coded!; ~b! the instructions set for fixing the billiard bound
aries, of coding lengthCboundary; ~c! the number of rebounds
N; and~d! a certain number of digits off. Accordingly, the
lengthL(N,f) of this program can be estimated as

L~N,f!.Cmachine1Cboundary1 log2 N1L~N,f!, ~3!

where the functionL(N,f) is defined as thenumber of bits
of f necessary and sufficient to determine the first N symb
in the sequences.

The functionL(N,f) can serve to estimate the comple
ity K(N,f) in its most relevant aspect: theN dependence.

on
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FIG. 3. Coding lengthN(L,f) vs f for an
octagonal billiard, withS58. The starting point
is at the center of one of the sides. Two values
« are used:«50.01~bottom continuous line! and
«50.005~top broken line!. The arrows mark the
valuesf1 andf2 described in the text.
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On the one hand, it is clear that any computer program fos
must include this contribution; on the other hand, this fun
tion features the most relevantN dependence in Eq.~3!, and
serves therefore to discriminate between order and chao
fact, when in a range of sequence lengthNl<N<Nu the
function L(N,f) grows linearly,L(N,f);lN, the com-
plexity K(N,f) has the same leading behavior, and the
quence $s j% should duly be termed random, or chaot
When, in a similar interval,L(N,f) grows less than lin-
early, $s j% should be called computable, or ordered. W
therefore introduce the notion of order~and randomness!
within a range. The physical significance of such order~or
randomness! will then be proportional to the importance o
such range.

We have emphasized this scaling approach in@3# to rebut
a common objection to the application of complexity theo
to finite dynamical sequences@31#. The rationale behind ou
idea is evident and is quite similar to that adopted in
independent theory of computational time complexity: not
much the value of complexity is relevant, but the way
increases as the problem size grows, for this may rend
quickly unfeasible. In fact, there is no point in practicing f
our billiard player if he is playing a chaotic billiard: for eac
additional bounce he wants to set correctly, his aiming p
cision in the initial anglef must increase geometrically
Leaving the metaphor, when the role of the billiard is play
by a system whose symbolic dynamics we want to predic
obtain a linear increase in forecast precision we must ex
nentially increase the accuracy in the initial conditions@32#.
In most instances this demands an exponential increas
resources.

V. CODING UNDER FINITE PRECISION

The algorithmic theory explained so far rests on the qu
tion, ‘‘How many bits of information do I need to describe
symbolic sequence?’’ The answer is mostly given by
functionL. Clearly, this theory is in line with common usag
in dynamical systems, and the letterL can be thought of as
the L in Lyapunov. Yet we now pretend that this theory
still inadequate for physical purposes. In fact, if we are
describe a world under finite precision, it is then more s
-
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nificant to study theinverse function of L(N,f), that is,
N(L,f), which certainly exists, forL is a nondecreasing
function of N.

This function quantifies the numberN of symbolss j that
can be predicted knowing the firstL digits of the binary
expansion of f. It is clear that the computability o
randomness—hence the order or chaos—of a dynamica
quence can also be inferred from the study ofN(L,f) and,
at this level, nothing has been lost by adopting this n
definition. Moreover, the new function has a transpar
physical meaning: if we let«ª22L, in this new independen
variable the functionÑ(«,f)ªN(2 log2 «,f) can be called
the length of the codable trajectory underuncertainty«.

Let us go back to our example. The player is capable
setting the anglef only with a certain error«. Under these
circumstances, only finitely many dynamical symbols w
typically coincide in the initial portions of the symbolic se
quencess ands8 of two independent shots—their number
N(L,f): in other words,N(L,f) is the smallest integerk
such thats15s18 , . . . ,sk5sk8 ,sk11Þsk118 .

Following @34# we also say thatÑ(«,f) ~plus 1! is the
first error time, when the information onf is no longer
sufficient to compute~i.e., forecast! the symbolic sequence
This function is rather straightforward to compute nume
cally, and its theoretical analysis can be carried out in f
detail ~see the Appendix and below!. It is plotted in Fig. 3
versusf at fixed uncertainty«, for theM58 quantization of
the circle ~a regular octagonal billiard!. One observes tha
low values, like that seen atf1, are associated with trajecto
ries heading very early in history toward a vertex, where
symbolic error may occur@7,34#. Large values ofN(L,f)
are found when this happens much later:f2 is associated
with a periodic trajectory that stays far away from the ver
ces@35#.

It can be shown that the behavior ofN at the periodicity
values is at the root of the dynamical properties of the s
tem. In fact, let the ideal, frictionless ball run for an infini
time. A coding functionF of the initial anglef can be de-
fined as F(f)5( j 51

` s jS
2 j . This function represents th

translation dictionary between the trivial code~the infinite
sequence of digits off), and the dynamical code~the infinite
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6438 PRE 61GIORGIO MANTICA
sequences of bounces!. In chaotic systems, like the motio
over surfaces of constant negative curvature and the an
tropic Kepler problem, the relation between the properties
N and the functionF can be fully exposed. This relatio
justifies the multifractal properties of the coding functionF,
which were originally investigated by Gutzwiller and Ma
delbrot @36,37#. We defer the study ofF(f) to further pub-
lications.

Let us consider Fig. 3 again. In players’ terms, the an
f2 is an easy shot andf1 a tough one. Recall now that w
are not in a position to specifyf exactly: we find it neces-
sary, and convenient, to average over initial angles, so de
ing the average coding lengthA(«):

A~«!ªE N~2 log2 «,f!cosfdf, ~4!

which will become our main indicator of the complexity o
the motion. The fundamental question now becom
~roughly!: ‘‘How many symbols can I compute on averag
with N52 log2 « bits of program?’’

A canonical average over the full phase space can als
defined and computed, with quantitatively similar results
those we are going to describe. Let us pause no more,
compare the behavior of this quantity in the circular billiar
the stadium, and their polygonal approximations.

VI. ORBITAL COMPLEXITY IN INTEGRABLE
AND POLYGONAL BILLIARDS

To draw a parallel with quantum mechanics@33# suppose
now that nature, by means of our observations, clearly sh
that curved billiard boundaries are a mathematical ideal
tion and that physically we can just have polygonal billiar
with an arbitrary but finite number of sides,M. These sides
will be inscribed in the circle and in the stadium, and I sh
call the resulting polygonal billiards a quantization of t
curved ones. In this context,M is a crucial quantity, which
plays the role of a semiclassical parameter. Clearly, when
let M go to infinity we regain geometrically the origina
table. The question is, will we obtain the same kind of d
namics?

We start now to answer this question in the case of
circle and its polygonal quantizations: the stadium will
treated in the next section. Before resorting to exact analy
let us have a look at the numerical data. Figure 4 reports
average coding lengthAM(«) of a regularM-gon versus«,
for various values ofM. The scale is doubly logarithmic
according to Eq.~3! the power-law behavior of these curve
for small« is a manifestation of the ordered character of
motion, which is well assessed in the literature@9,7,16#.

Yet the physical picture evident in Fig. 4 is much riche
First, asM grows at fixed~large! «, AM(«) tends to the
coding function for the exact circular billiard, the earlier th
larger the value of«. This is easy to understand: at large«
the coding length is short, and differences between polygo
boundaries with largeM and the circle are not significant.

If we turn our attention now to the left part of Fig. 4
where relatively smaller values of« are plotted, a less ex
pected phenomenon appears: with increasingM at fixed« the
difference betweenAM(«) and Acircle(«) seems to grow
o-
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rather than vanish. Moreover, this discrepancy is brou
about by a decreasingAM(«). Recall thatAM(«) is the av-
erage of the inverse function ofL(N,f) ~if you rotate the
graph clockwise by 90°,N appears plotted on the horizont
axis and«522L(N) on the vertical!: in this region the com-
plexity of a trajectory of fixed lengthN5AM grows whenM
is increased. This is the phenomenon observed by Ve
Uzer, and Ford: polygonal billiards have their own brand
instability, generated by splitting of trajectories at vertice
The more vertices, the larger the Lyapunov numbers co
puted in@12#. The paradox presented in Sec. II is thus de
onstrated.

But we are now equipped to resolve it. Observe first t
the increase in complexity obtained by raisingM at fixed« is
only temporary; if we keep going, we find thatAM(«)
reaches a minimum, and then inverts its course to re
quickly ~we shall come back to the rate of this convergen
later on! the circle valueAcircle @38#.

Furthermore, a deeper argument must be made: remai
at fixed« is not a proper thing to do, not even in the presen
of human limitations to finite precision. In fact, we cann
increase precisionindefinitely, but we certainly can over a
finite, physically reasonable range. For instance, this may
dictated by the computational power of the machine
which Fig. 4 has been computed. Exploring this range, fr
larger to smaller uncertainties, we discover thatAM(«) starts
off like the L-A integrable circle,Acircle(«);«21/2, then
‘‘feels’’ the effect of vertices, and successively redirects
course on a different line, with the same exponent: a tra
tion from L-A to A integrability has taken place.

FIG. 4. Average coding lengthAM(«) vs « with S52 for the
circle ~hearts! and its polygonal quantizations. The number of sid
of M is chosen to be twice a prime, in a roughly geometrica
increasing sequence:M562 ~open circles!, M5134 ~open tri-
angles!, M5254 ~open squares!, M5514 ~open diamonds!, M
51042 ~filled circles!, M52062 ~filled triangles!, M54106 ~filled
squares!, M58198 ~filled diamonds!. The continuous line is the
second formula in Eq.~5! with M562.
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These numerical observations can be derived in full de
from the analysis developed in the Appendix. We are able
prove that the average coding length is given by

AM~«!.5
p

2

1

A2«
for M«@H

p

2

1

AM«
for M«!H,

~5!

where the crucial functional dependence onM and« is ap-
parent, and whereH is a constant, which plays a similar ro
to Planck’s constant in the ‘‘usual’’ quantum mechanics.

In the above equation, the first behavior coincides w
the result we find for the circular billiard:

Acircle~«!.
p

2

1

A2«
, ~6!

so that at fixed« we have limM→` AM(«)5Acircle(«). This is
clearly a form of correspondence, to the relevance of wh
we shall return in the next section.

The average coding length computed in the second Eq~5!
and in Eq.~6! leads to an estimate for the average compl
ity which increases only logarithmically withN andM: first,
the functionL satisfies

L~N!<C12 log2 N1 log2 M , ~7!

whereC is a positive constant independent ofM andN, and
where M52 must be set for the circular billiard, whic
therefore turns out to be the simplest member in the fam
as it should. Following suit, from Eqs.~3! and ~7! one ob-
tains @39# that the average program length is

L~N!<C813 log2 N12 log2 M , ~8!

whereC8 is another positive constant. This result should
compared with the existing literature on thetopologicalcom-
plexity of symbolic dynamics@40#.

In conclusion, we see that vertices add logarithmically
the complexity, but only as long asM«!H, i.e., logM
,logH1L. We have thus reconciled the observation of R
@12# and the established knowledge on polygonal billiar
We can now turn to a more delicate problem: what happ
to orbital complexity in the polygonal approximations of
chaotic billiard.

VII. ORBITAL COMPLEXITY IN CHAOTIC BILLIARDS
AND CORRESPONDENCE

In the previous section we have established that ratio
approximations of the circle cannot be called chaotic,
even under the assumption of finite precision. Is this achie
ment possible to their more sophisticated relatives, those
scribed in the stadium? After all, asM tends to infinity, these
billiards tend to a fully chaotic system, andone thing is
certain, the correspondence principle must be obeyed@43#.

Figure 5 is the analog of Fig. 4, now for the quarter s
dium billiard table. Differences and similarities between t
two are evident: whileAM(«) is ultimately a power law in
both cases,Astadium(«) is never such. The logarithmic cha
il
to
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acter of this curve clearly reveals that the complexity of t
jectories grows linearly with length: chaos is here manifes
its essence. For large values ofM«, AM(«) is approximately
equal to Astadium(«). For instance, over the interva
(1025,1022), the coding lengthA32768 is a logarithmic func-
tion of «. We can therefore expect that a corresponding ra
in N exists so that the average complexityK(N) grows lin-
early in N: here, trajectories are random, in the sense
plained in Sec. IV. Notice that the existence of this range
what permits ‘‘sensible’’ numerical experiments of chao
motion on finite digital computers.

The effect of vertices noticed in the circle quantizati
~Sec. VI! appears again when following the curvesAM(«) to
the left, as they leaveAstadium(«) staying slightly lower than
this latter, i.e., showing a relative increase in the complex
of the motion. As before, this increase is quantified by
logarithmic contribution logM. Alas, this excess of zeal rap
idly turns into failure: the algorithmic simplicity of the mo
tion within polygonal boundaries is soon detected, a
AM(«) starts to grow like«21/2. What has happened is tha
the complexity estimate~7!, previously dominated by that o
the curved stadium, takes over for good.

An exact analysis can be performed here too~see the Ap-
pendix!, showing that the average coding length satisfies

AM~«!.H C2D log« for M«@H

p

4

1

ArM«
for M«!H,

~9!

whereC, D, r, andH are suitable constants, the last playin
the same role as in the previous section. Consequently, in

FIG. 5. Average coding lengthAM(«) vs « for the quarter sta-
dium ~filled triangles! and its polygonal quantizations, withS52.
The values ofM are powers of 2:M5128 ~open circles!, M
5512 ~open triangles!, M52048 ~open squares!, M58192 ~open
diamonds!, M532 768~filled circles!. The solid and dotted curve
are given in Eq.~9! with M5` and M5128, respectively, andC
521.731,D50.831,r51.78.
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regionM«!H complexity estimates of the form~7! and~8!
still apply, and the motion is clearly ordered in this regim

The end of this paper is in sight, and we must start dra
ing conclusions. There is a significant difference between
case of the circle@Fig. 4 and Eq.~5!# and that of the stadium
quantization@Fig. 5 and Eq.~9!#: while the former, as we
noted, shows a transition from L-A to A integrability, th
second matchesA integrability with chaos, and this mating i
troublesome, to say the least. Perhaps the most evident
sequence is the following. Let me ask how long a symbo
sequence must be to perceive the finiteness of the numb
boundary sides via its algorithmic manifestations. The
swer is instructive. In the polygonal quantization of t
circle, and of the stadium as well, the critical value of« at
which the functionsAM and their limitsAcircle and Astadium
start to differ significantly~call it «M) scales as«M;H/M .
Yet, at the same time, the different structure of the two pr
lems implies that the length of polygonal-curved accorda
is proportional toAM in the integrable case and only to th
logarithm ofM for the chaotic stadium@44#.

Of course, as in the previous section, we observe tha
fixed « the sequenceAM(«) tends to the curved billiard
value Astadium(«), when the number of sidesM tends to in-
finity. This is certainly a form of correspondence. Noneth
less, according to the reasoning of Sec. IV, what is import
is the scaling of complexity with respect to the length
dynamical sequences, and the relevance of the rang
which this scaling is validated. But this is precisely what w
have just computed. Therefore, we are inevitably led to
conclusion that the range of correspondence in theM quan-
tization of the stadium is negligibly small, in physical term

It would look rather awkward now to try to avoid thi
conclusion by clinging to the weak form of corresponden
at fixed« and appealing to the perused observation that
‘‘classical limit ~here, M→`) and the infinite-time limit
~here, «→0) do not commute.’’ This is irrelevant~recall
note @31#!: chaos can and must be detected over finite ti
scales of physical relevance, and over these time scale
can perceive the inadequacy of polygonal billiards to
scribe the richness of motions in the stadium@46#.

These results have been obtained by the explicit calc
tion reported in the Appendix. Yet I believe that their true
meaning lies within their algorithmic nature: in a sense, th
could not have been different, given the premises. In fact,
must realize that both circle and stadium polygonal qua
zations are dynamical systems endowed with an amoun
complexity which scales as the logarithm ofM. Yet, while
the M-circle dynamics unfolds this complexity slowly, at
logarithmic pace, itsM-stadium relative does it eagerly, lin
early in time, so that the complexity reservoir is quick
exhausted. I shall now briefly present my views on the phy
cal implications of these facts.

VIII. CONCLUSIONS: CHAOS IN NATURE,
IS THERE ANY?

Algorithmic complexity theory, used here in a physicis
fashion via the concept of average coding length, clarifies
simplicity of the dynamics of polygonal billiards, and offe
a solution of the paradox that arises from the juxtaposition
Refs.@7# and @12#. At the same time, this theory provides
.
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complete characterization, in all ranges of parameters, of
dynamical properties of the families of billiards studied
this paper. We have thus discovered that even under the
sumption of finite precision measurements the motion in
lygonal billiards is to be considered mostly ordered: the
fect of vertices can be quantified by a logarithm
contribution to the average algorithmic complexity of sym
bolic trajectories.

Since our technique is based on a very general the
algorithmic complexity, and on a basic assumption about
finite precision of our measurements, which can also be u
as a testing hypothesis in ‘‘exact’’ situations, we believe th
it is well suited to treat the general case of the approximat
of a complex theory by a sequence of simpler descriptio
with results that we expect to be fairly similar to those p
sented in this paper@45#. In fact, the algorithmic estimate
derived in this paper are manifestations of the same phen
enon observed in the Schro¨dinger quantization of the
Arnol’d cat @47,2,3,5# @see Eqs.~8! and ~9! of Ref. @3## and
of bounded systems@4#, in the sequence of energy levels
integrable and non-integrable Hamiltonians@48#, and also in
the classical dynamics of discrete systems~see Sec. IV of
Ref. @34#!. Truly then, the nature of chaos and order is info
mation content.

Yet, if we admit this, we must be prepared to bear t
consequences when going back to the problem of quan
mechanics: the metaphor of rational billiards used here p
mits us to understand the claim that the correspondence p
ciple is validated for integrable systems and violated for c
otic ones. It was shown in the last section, in fact, that in
first case a discrete nature—in which only polygons
allowed—would let us play with our curved theoretical mo
els for a long time. For the same reason, in the quan
mechanics of an integrable system, the action of increasin
semiclassical parameter draws complexity from a reser
that keeps up with the classical description for a time sp
that grows appreciably, as a power law, in this parameter
the second case, on the contrary, the time of chaotic free
is logarithmically short, and the essence of corresponde
to regain classical/curved complexity by quantum/polygo
computations is exponentially remote in the semiclassical
rameter@46#.

In the end, what we have rediscovered might even se
trivial: the correspondence principle demands that class
objects be ‘‘computed’’ quantum mechanically—this is ce
tainly possible, as we have seen in the metaphor of class
billiards. The point is that for most classical objects th
computation is unfeasible, in the algorithmic sense explai
in this paper. In a sentence: quantum dynamics is a com
able theory@49# and can ‘‘correspond’’@50# to the uncom-
putable classical mechanics only as far as its algorithmic
simple nature allows it@51#.

Notwithstanding this evidence, people have been reluc
for a long time to admit that there is not such a thing
‘‘quantum chaos,’’ or that this chaos is something differe
from, and less than, deterministic randomness. This h
drance is now history. On the contrary, Chirikov has app
ciated this fact since the very beginning, and his notions
transient chaos@28# and pseudochaos@52,53# show this very
clearly. Moreover, he has put a strong emphasis on this la
concept: largely simplifying, but I believe appropriately, o
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could say that Chirikov views the pseudochaos~that we call
A integrability! of discrete systems~and as a consequence
digital computers as well! as a faithful representation of wha
takes place in quantum mechanics@54# and in nature, at all
levels@55#. At this very last point we part company: in fac
an unsettled debate@56,57# still holds on the meaning an
validity of the correspondence principle and on the rela
and more crucial question of whether quantumA integrabil-
ity is enough to cope with a world in which chaos seems
be essential. In my work with Ford a negative answer to t
question has been presented, suggesting that in this s
quantum dynamics is incomplete.

Certainly, classical mechanics is inadequate to desc
microscopic reality, but it contains the gene of noncomp
ability, which we believe should be present in a compl
theory of nature; at the same time, the more fundame
quantum mechanics inherited this gene in too tame a form
be effective. This is,in nuce, the point of contention. Will
time settle the matter—or will it be that the general indet
minacy principle foreseen by Ford@58# will change every-
thing around?
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APPENDIX: AVERAGE FIRST ERROR
TIME CALCULATION

We shall now justify the formulas presented in Secs.
and VII via a direct calculation of the average coding leng
first error timeA(«). First, let us consider the case of th
~integrable! circular billiard. The anglef is a constant of the
motion: lettingvªp22f the motion isl n5 l n211v, the
usual ergodic~for irrationalv/p) rotation of the circle. Tra-
jectories with different initial anglef separate at a linea
speed 2«, where« has the same meaning as in the main bo
of the paper. Consequently, a bunch of trajectories open
linearly in time like a slightly unfocused light beam~see Fig.
1!. An error occurs when a boundary point of the circle p
tition that determines the coding enters this light cone. Le
now estimate the average time required for this to happe

Let Sbe the number of cells of the partition of the boun
ary, and dSª2p/S their common length. Let alsoun
ª l n moddS , n51,2, . . . .According to what we have jus
said, an error occurs when the angleun of the reference
trajectory~the center of the beam! comes withinn«̃/2 of zero
or 1, where«̃ª(4/dS)«. Let pn(«) be the probability that the
first error occurs at timen. Ergodicity implies thatp1(«)
5 «̃. Certain approximations are required to evaluatepn for
n.1: we assume that$un%, n51,2, . . . , areuncorrelated
random variables, so thatpn(«)5n«̃) j 51

n21(12 j «̃). Estimat-

ing then the asymptotic~small «̃) behavior of A(«)
5(nnpn(«) by standard techniques givesA(«)
.Ap/2«̃21/2, and therefore
d
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Acircle~«!.
p

2
S21/2«21/2, ~A1!

which accurately reproduces the behavior found numeric
in Sec. VI, both in the exponent and in the prefactor.

For the stadium, one can simply invoke the positivity
the Lyapunov exponentl, which implies that the transvers
dimensiond of a beam of trajectories grows on average ge
metrically in the number of bounces:d(n);const3lhn«,
where the constanth takes into account the average tim
elapsed between two coded bounces. Under these circ
stances, we do not need a detailed analysis as in the circ
case, but we can safely assume that for the large majorit
initial angles the first symbolic error occurs whend(n) is of
the order of the length of boundary partitions,dS . We there-
fore obtain

Astadium~«!.C2D log~S«!, ~A2!

whereC andD are constants.
Surprisingly, the same« dependence of the average co

ing length found for the circle can be shown to hold for t
polygonal billiards considered in this paper. The presence
the vertices imposes a more sophisticated analysis than in
two cases considered so far. When the beam bounces
on the same polygonal side, its angular amplitude is c
served, and its transverse dimension grows linearly in ti
on average, exactly as it does in the circular billiard. To
contrary, when the beam impinges on a vertex of amplitu
a, its angular amplitude is increased by the amount 2p
2a). In the polygonal approximations of the circle, we ha
a5(122/M )p, while a5(121/2M )p holds for the quar-
ter stadium, so thatfM

(c)
ª4p/M is the resulting perturbation

in the circular case, andfM
(s)
ªp/M in the quarter stadium.

Two regimes must now be considered. When« is much
larger thanfM , the effect of vertices is negligible, trajecto
ries behave as in the corresponding curved billiards,
AM(«) coincides to a good approximation with Eqs.~A1!
and ~A2!.

In the opposite regime, whenfM is much larger than«,
impinging on a vertex causes a major enlargement of
beam. We can assume that this leads almost immediate
an error: a similar analysis to that performed in the circu
case can then be carried out. We letdM52p/M be the ap-
proximate length of the polygonal sides: this quantity pla
here the same role thatdS did above. The result is then

AM~«!.
p

2
M 21/2«21/2, ~A3!

for the M-circle, and

AM~«!.
p

4
r21/2M 21/2«21/2 ~A4!

for theM-stadium, wherer is a parameter that measures t
effective length of trajectories between two coded bounc

Finally, the intermediate region between the two regim
is determined by the conditionfM;« described above
which becomes the ‘‘indeterminacy principle’’M«;H,
whereH is a constant.
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