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Thermal and chemical diffusion in the rapid solidification of binary alloys
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Via Madonna delle Carceri, I-62032, Camerino, Italy
~Received 28 June 1999; revised manuscript received 21 September 1999!

Solidification of binary alloys is characterized by the necessity to reject away from the advancing front two
conserved quantities: the latent heat released at the solid-liquid interface and the solute atoms that cannot be
accommodated in the solid phase. As thermal diffusion is much faster than chemical diffusion, the latter is
generally assumed to be the rate limiting mechanism for the process, and the problem is addressed through the
isothermal approximation. In the present paper we use the phase-field model to study the planar growth of a
solid germ, nucleated in its undercooled melt. We focus on the effects of a noninstantaneous thermal relax-
ation. The steady growth predicted at large supersaturation in the isothermal limit is prevented. Depending on
the value of the Lewis number the growth rate is limited by either mass or heat diffusion; in the latter case we
observe a sharp transition between two different regimes, in which originates a nonmonotonic time dependence
of the interface temperature. The effects of this transition reflect in the composition of the solidified alloy.

PACS number~s!: 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp
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I. INTRODUCTION

In rapid solidification processes the interfacial dynam
is the result of a competition between the nonequilibriu
conditions imposed at infinity and the necessity to rejec
least one conserved quantity away from the advancing fr
For pure substances the growth is controlled by the diffus
of the latent heat released at the solid-liquid interface;
alloy solidification ~the subject of the present study! both
heat and solute diffusion are the limiting factors to t
growth process.

The classical approach to describe the interfacial dyn
ics is formulated in terms of a moving boundary proble
@1,2#. The diffusion equation is utilized to model the tran
port of heat and solute through the bulk phases. The inter
boundary conditions reflect two different constraints:~i! the
energy and solute conservation across the moving front,
~ii ! constitutive laws that relate the local interface conditio
~concentrationc and temperatureT) to the front velocityv.
As the relaxation of the thermal field is much faster than
rearrangement of chemical species the process is o
treated as isothermal. In this limit Langer@3# pointed out
that, assuming local interfacial equilibrium and consider
the chemical potential rather than the solute concentratio
the diffusive field, the model for alloy solidification can b
formally mapped onto the same set of governing equati
which describe the solidification of a pure substance. T
relevance of nonequilibrium effects in rapid solidificatio
processes was pointed out by Aziz, Aziz, and Kaplan a
Aziz and Boettinger@4–6#. Within the continuous growth
model ~CGM! they were able to explain the phenomen
termed ‘‘solute trapping,’’ that is the increase of the partiti
coefficientk ~the ratiocs /cl of the solute concentration in th
growing solid to that in the liquid at the interface! from the
equilibrium valueke towards unity at large growth rates.

A more recent approach to investigate alloy solidificati
is based on the phase-field model~PFM! @7–13#. In this
PRE 611063-651X/2000/61~1!/642~9!/$15.00
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model an order parameter characterizes the phase of the
tem at each point. A suitable free-energy functional is th
constructed that depends on the order parameter as well a
the concentration and temperature fields and their gradie
The extremization of the functional in respect to these va
ables results in the dynamic equations for the process. S
eral theoretical and numerical studies@14–20# pointed out
that the PFM describes in a natural fashion nonequilibri
effects as solute trapping and the kinetic undercooling of
solid-liquid interface.

Basing on these models, the growth process has b
studied in different regimes, generally neglecting the dyna
ics of the thermal field. However, recent investigatio
pointed out that thermal diffusion enters as an essential
gredient into the evolution of the phase-change process.
example, the latent heat released at the interface significa
reduces the region of the parameters space where an os
tory instability of the solidification front can be expecte
@21–23#. Moreover, in a previous study@24# the author
showed that in the planar growth from a supercooled m
steady growth solutions, allowed within the isothermal a
proximation, are lost and the steady growth is driven into
diffusive regime. Then the effect of the heat diffusion on t
solidification of binary alloys is an interesting and still ope
question.

In the present study this point will be addressed simu
ing the planar growth of a solid germ with the phase-fie
model. Extending the results of a previous work@24#, we
shall analyze the growth process at large supersaturatio
will be shown that, depending on the value of the Lew
number~i.e., the ratio of the chemical to the thermal diffu
sivity!, the growth rate is limited by either mass or he
diffusion. At Le50 ~i.e., with isothermal growth! after an
initial transient steady growth is attained. With Le valu
characteristic of metallic alloys the process enters a diffus
regime governed by the rejection of solute at the interfa
and the front velocity decays with time asv}t21/2. At inter-
642 ©2000 The American Physical Society
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PRE 61 643THERMAL AND CHEMICAL DIFFUSION IN THE RAPID . . .
mediate values of the thermal diffusivity an interesting ph
nomenon arises: the process undergoes a sharp transitio
tween two different regimes. The first stage is characteri
by a high growth rate which, however, decays with t
power law }t21/2. In this stage the interface temperatu
increases with time, and the concentration field show
strong trapping of solute into the solid phase. Then, when
interface temperature reaches a value near theT0 line ~where
the Helmoltz free energies of the liquid and solid are equ!,
an abrupt transition turns the process into a low veloc
regime, still characterized by the diffusive power law. T
interface temperature is now decreasing with time, and
solute segregation at the interface approaches the equilib
pattern.

The paper is organized as follows: in Sec. II the gove
ing equations of the model will be derived, through the e
tremization of an entropy functional. In Sec. III the nume
cal method will be explained, and in Sec. IV the results
the numerical simulations will be discussed. The conclusi
will follow in Sec. V.

II. THE GOVERNING EQUATIONS

The solidification of an ideal solution of componentsA
~solvent! and B ~solute! is described in terms of the scala
phase fieldf, the local solute concentrationc, and tempera-
tureT. The fieldf is an order parameter assuming the valu
f50 in the solid andf51 in the liquid; intermediate value
correspond to the interface between the two phases.
model directly follows the formulation given by Warren an
Boettinger@25# and incorporates also many of the ideas d
veloped by Caginalp and Xie@17#, Caginalp and Jones@16#,
Wheeleret al. @14,15#. Full details of the derivation are pre
sented elsewhere@26#, and for the sake of conciseness w
shall give below only a short review. As a starting point t
entropy of the system is written as

S5E Fs~e,f,c!2
e2

2
u¹fu2Gdv, ~1!

where integration is performed over the system volume;
last term in the integrand is a gradient correction to the th
modynamic entropy densitys, that depends on the interna
energy densitye, and on the concentration and phase fiel
To ensure a positive local entropy production, the govern
equations for the phase and solute fields can be written

ḟ5Mf

dS
df

, ~2!

ċ52¹•S Mc¹
dS
dc D , ~3!

and for the energy density,

ė52¹•S Me¹
dS
deD , ~4!

whereMc , Mf and Me are positive constants. Assuming
double-well Ginzburg-Landau free energy for the pure c
stituents, and evaluating the functional derivatives, gives
-
be-
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]f

]t
5Mf@e2¹2f2~12c!H̃A~f,T!2cH̃B~f,T!#, ~5!

]c

]t
52¹•H Dcc~12c!

vm

R
@H̃A~f,T!2H̃B~f,T!#¹f

2Dc¹c1Dcc~12c!
vm

R
G̃~f,T!¹TJ , ~6!

]T

]t
5DT¹2T2

1

x
@~12c!LA1cLB#

3
dp~f!

df

]f

]t
2

1

x
p~f!~LB2LA!

]c

]t
. ~7!

In Eqs.~5!–~7! R is the gas constant andvm is the molar
volume; the solute diffusivity is defined asDc
5(Mc R)/@vm c (12c)# and the thermal diffusivity asDT
5Me /(x T2), being x the specific heat, for which we as
sume equal values for both components in both phases.
function H̃A(f,T) is defined as

H̃A~f,T!5
dGA~f!

df
2

dp~f!

df
LA

T2TA

TTA , ~8!

where

GA~f!5
1

4
W̃Af2~12f!25W̃Ag~f! ~9!

is a symmetric double-well potential with equal minima
f50 andf51, scaled by the positive well heightW̃A; LA

and TA are the latent heat per unit volume and the melt
temperature of the pure component pureA; choosing the
function p(f) as p(f)5f3(10215f16f2) the condition
is enforced that bulk solid and liquid are described byf
50 andf51, respectively, for every value of temperatu
@12#.

Equations~8! and ~9! still hold for H̃B(f,T) andGB(f)
if all the material parameters, labeled with the superscripA
are replaced with the ones related to theB species. The func-
tion G̃(f,T) is defined as

G̃~f,T!52
p~f!

T2 ~LA2LB!. ~10!

To allow for different diffusivities in the solid and liquid
phases, in the followingDc will be taken as Dc5Ds
1p(f)(Dl2Ds), Dl and Ds being the diffusivities in the
liquid and in the solid, respectively.

Equations~5!–~7! will be rephrased scaling lengths t
some reference lengthj and time toj2/Dl . Allowing Mf to
depend on the local composition asMf5(12c) Mf

A

1c Mf
B , and following the lines suggested by Warren a

Boettinger@25# to associate the model parameters to the m
terial properties, the governing equations become
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]f

]t
5@~12c!mA1c mB#

3@¹2f1~12c!QA~T,f!1cQB~T,f!#, ~11!

]c

]t
52¹•$c~12c!l~f!@HA~f,T!2HB~f,T!#¹f

1c~12c!l~f!G~f,T!¹T2l~f!¹c%, ~12!

]T

]t
5

1

Le
¹2T2

1

x
@~12c!LA1cLB#

3
dp~f!

df

]f

]t
2

1

x
p~f!~LB2LA!

]c

]t
, ~13!

where Le is the Lewis number, defined as Le5Dc /DT , and

HA,B~f,T!5WA,B
dg~f!

df
2LA,B

vm

R

dp~f!

df

T2TA,B

TTA,B

5
vm

R
H̃A,B~f,T!, ~14!

QA,B~f,T!52
j2

~hA,B!2

dg~f!

df

1
1

6A2

j2LA,B

sA,BhA,B

T2TA,B

T`

dp~f!

df
, ~15!

G~f,T!5
vm

R
G̃~f,T!, ~16!

l~f!5
Ds

Dl
1p~f!S 12

Ds

Dl
D . ~17!

In Eq. ~15! sA,B, hA,B indicate the surface tension and th
interface thickness of the pure componentsA andB, respec-
tively; T` is the initial melt temperature. The model param
etersmA,B, WA,B depend on the physical properties of t
alloy components through

mA,B5
bA,BsA,BTA,B

DlL
A,B , WA,B5

12

A2

vm

R

sA,B

TA,BhA,B ,

~18!

wherebA,B is the kinetic undercooling coefficient of pureA
or B, that relates the interface temperatureTI to the interface
velocity v throughv5bA,B(TA,B2TI).

To conduct the numerical simulations we referred to
phase diagram of an ideal solution of nickel~solvent! and
copper~solute!, using the data summarized in Table I; th
solute diffusivity in the solid phase was estimated asDs
510263Dl . The length scale was fixed a
j52.131024cm; the kinetic undercooling coefficient
were fixed to bA5128.64 cm s21 K21 and bB

5153.60 cm s21 K21, not far from the actual best estimate
@29# and a realistic value for the interface thickness was
lected as 1.6831027 cm. Using the above values it resul
that WA50.963; WB50.960; mA5mB5350.
-

e

-

III. THE NUMERICAL METHOD

The evolution of Eqs.~11!–~13! has been considered i
one spatial dimension, with fluxless boundary conditio
fx5cx5Tx50 at the domain’s walls. Initially in the under
cooled melt, at uniform temperature and concentrationT`

andc` , a solid germ was nucleated in the region 0<x<x0
with a composition equal toc` . To discretize the equation
second order in space and first order in time finite-differen
approximations were utilized. Then, an explicit scheme w
employed to advance forward in time the phase field a
concentration equations; the temperature equation was m
conveniently integrated with a fully implicit method. Th
choice of the computational grid posed some delicate pr
lems. The physical process involves intrinsic and quite d
ferent length scales. The width of the phase field and c
centration transition layer, across the interface, is of the or
of 1023 ~nondimensional units!; the solute diffusion length,
in our simulations, was in the range 1022–100, while the
thermal diffusion length reached values as high as 104. The
necessity to avoid finite-size effects and, at the same time
resolve accurately the phase and concentration fields,
gested the division of the computational domain into tw
parts: an inner region, of interest for the phase and conc

FIG. 1. The concentration profile for Le50 ~i.e., isothermal
growth!, at timet51023.

TABLE I. Material parameters for the Ni-Cu alloy.

Parameter Nickel Copper

Tm (K) 1728 1358
L (J/cm3) 2350 1728
vm (cm3/mole) a 7.0 7.8
s (J/cm2) 3.731025 2.831025

b (cm/K s) b 128.64 153.60
Dl (cm2/s) 1025 1025

aAn average value of 7.4 will be taken.
bFrom the estimation of Willneckeret al. @29#.
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FIG. 2. The interface velocity~a!, the interface temperature~b!, and the solute concentration at the interface~c! versus time. Le56.45
31029. The straight line in~a! is representative of the power law}t21/2, and the arrow indicates the operating point corresponding to
maximum acceleration.
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tration dynamics, and an outer region, where only the te
perature equation was integrated. In the inner region 0<x
<xi the grid spacing was selected asDxi5431024, that is
half of the nominal interface thickness. This value was
standard choice in previous studies@18,19,24#, where it was
proven to ensure accurate solutions of the phase and con
tration equations. In the outer regionxi<x<xo , we used a
nonuniform grid, stretching the mesh spacing with the l
Dxo5Dxi1Dx`@12exp((x2xi)/xL)#. The values ofDx` and
xL were chosen, for each simulation, to ensure accurac
well as computational economy; in any case the tempera
field was never resolved with less than 43104 grid points,
and the temperature differences between adjacent grid p
never exceeded 1023 K.

For the same reason of computational economy, e
-

a

en-

as
re

nts

n

along the time axis we used different grids. The concen
tion equation~12! requires, for numerical stability, a tim
step Dtc which scales as (Dx)2/Dl , being Dl51. On the
other side, the phase-field equation~11! is a diffusion-
reaction equation with diffusivityDf5mA,B5350; in this
case the time step for stabilityDtf is expected to scale a
(Dx)2/Df . No stability problems arise for the temperatu
equation, which is integrated with an implicit method with
time stepDtT5Dtc . Due to the large value ofDf , we used
a value forDtf much smaller thanDtT5Dtc . In practice we
iterated 320 times the phase-field equation within a sin
time step~equal to 531028! of the temperature and concen
tration equations.

The convergence of the numerical scheme was chec
accurately in different cases with respect to the refinemen
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646 PRE 61MASSIMO CONTI
the computational grid in both the outer and the inner regi
moreover we checked that using a different time step for
phase-field equation had no influence on the numerical
sults.

IV. NUMERICAL RESULTS

The isothermal version of the model, corresponding
Le50 was analyzed in a previous study@18#; for the reader’s
commodity we assume here some of the main results.
fixed T`51700 K corresponding to equilibrium concentr
tions, on the solidus and liquidus lines, respectively,cs*

FIG. 3. The concentration profile with Le56.4531029, at time
t51021. The arrow indicates the effect of the sharp decrease of
growth rate.

FIG. 4. The actual partition coefficient~solid circles! compared
with the predictions of Eq.~19! ~solid line! during the growth pro-
cess. The agreement between the two sets of data is within 0.
;
e
e-

o

e

50.071 611 andcl* 50.089 945; the concentration of th
melt was set toc`5cs , on the solidus line. With these va
ues after a short transient the process reaches a steady
and the solid-liquid front advances at constant velocityv
57973. Here and in the following, except for temperatu
physical quantities will be expressed in nondimensio
units. In Fig. 1 we show the solute profile taken att
51023. The peak of the curve,cl57.212931022 identifies
the liquid side of the interface; the dynamic partition coef
cient is k(v)5c` /cl50.992 81. To compare these resu

e

.

FIG. 5. The interface temperature versus the interface veloc
The solid line refers to the steady solutions for isothermal grow
The solid circles refer to the present numerical solution, with
56.4531029. The arrow indicates the effect of the sharp decre
of the growth rate.

FIG. 6. The actual interface acceleration~solid line!, compared
with the predictions of Eq.~21!.
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FIG. 7. The interface velocity~a!, the interface temperature~b!, and the solute concentration at the interface~c! versus time. Le56.45
31028. The straight line in~a! is representative of the power law}t21/2.
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with the predictions of the continuous growth model~CGM!
we recall that the latter gives, for steady growth, the dep
dence of the partition coefficient and the interface tempe
ture on the growth velocity in the form:

k~v !5
ke1v/vd

11v/vd
, ~19!

TI~v !5TA1
mlcl

12ke
$12k1@k1~12k!g# ln~k/ke!%2

v
bA ,

~20!

ke being the equilibrium value for a stationary interface (ke
50.797 in our case!, andvd is the diffusional velocity for the
solute redistribution across the moving front;vd is generally
expressed asvd5D/a, whereD is an interface diffusivity
-
a-

anda is the width of the concentration transition layer. Th
slope of the equilibrium liquidus line is indicated asml and
the parameterg describes the dissipation of free energy d
to solute drag across the interface: this phenomenon is c
pletely neglected withg50 and accounted for withg51.

A previous investigation@19# identified a best value o
vd5290 andg50.65; with these values Eqs.~19!, ~20! give
k(v)50.992 84 andTI(v)51700.04 K, respectively, which
is in good agreement with the numerical data.

A quite different picture emerges when the dynamics
the thermal field is taken into account, assuming a high
finite thermal diffusivity. We setDT515.53107, that is
larger than the actual values characteristic of metallic all
by a factor of 104; this means Le56.4531029. Figure 2~a!
shows the interface velocity versus time~circles!. The solid
line is representative of the diffusive law}t21/2. In a first
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648 PRE 61MASSIMO CONTI
stage the process is characterized by a high growth rate
interface slows down with a slope not far from21/2. At t
51023 we observe a transition; the interface velocity is su
denly decreased of an order of magnitude and finally reac
a new diffusive regime. The sharp transition from the hi
velocity to the low velocity regime is reflected on the tim
dependence of the interface temperatureTI , shown in Fig.
2~b!. During the first stageTI increases, reaching a max
mum of 1701.97 K. Then, in the low velocity regimeTI
decreases with time. Figure 2~c! shows versus timecs and
cl , i.e., the solute concentration on the solid side and
liquid side of the interface, respectively. As expected at h
velocities, due to solute trapping, the concentration gap at
interface is very low~and increasing with time!. Subsequent
to the abrupt decrease of the growth rate we observe tha
solute redistribution across the interface becomes more
fective and the gap suddenly increases. The sharp tran
leaves a trace in the solidified alloy. In Fig. 3 we see
solute profile att51021: the negative peak indicated by th
arrow reflects the depletion of solute on the solid side of
interface shown in Fig. 2~c!.

A clear theoretical explanation for the phenomena
scribed in the above pictures is at present difficult to find,
they originate from the complex interplay between the rej
tion of both heat and solute away from the advancing fro
However, to get some insight into this interesting behav
we can start from an analysis of the two diffusional tim
scales. Being thatDc /v2!DT /v2, we expect a quasi
instantaneous adaptation of the solute field to the variat
of the thermal field. Moreover, Eqs.~19! and ~20!, derived
for steady growth, are generally assumed to work even
time-dependent processes when the time variation of the
terface temperature is sufficiently slow in respect to the ch
acteristic time for the solute relaxation across the interfa
that is t;a2/D5a/vd . In the present case we havet
,1025 and this condition is likely to be fulfilled excep
perhaps, immediately after the transition@see Fig. 2~b!#
where we observe a high rate of change ofTI(t). Then, if the
interfacial temperature is consistent with a steady solu
for isothermal growth it seems reasonable to decouple
some extent the heat and solute diffusion, assuming tha
phase and solute fields evolve with a quasisteady dynam
following the local~interfacial! temperature conditions. Thi
suggestion is confirmed observing in Fig. 4, along the en
process, the close agreement~within 0.5%! between the val-
ues of the actual partition coefficient and the predictions
Eq. ~19!.

On the other side, Eq.~20!, as well as analytical and nu
merical studies based on the phase-field model, were ab
fix, for a given supersaturation, the conditions for isotherm
steady growth. The interface temperature is a nonmonot
function of the interface velocity, resulting from the comp
tition of two opposite effects. At low velocities, due to solu
trapping~and to the consequent reduction of solute conc
tration on the liquid side of the interface!, TI is an increasing
function ofv. At higher velocities the undercooling require
to advance the solidification front becomes important:
TI(v) curve traverses a maximum near theT0 line ~where the
Helmoltz free energies of the liquid and solid are equal;T0
51703.01 K in our case! and then exhibits a descendin
branch. In the low velocity branch of the curve the drivin
he
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force for the process~i.e., the thermodynamic undercooling!
is a decreasing function of the associate flux~the growth
rate!, resulting in unstable growth. Notice that for temper
tures above the maximum of theTI(v) curve the growth
process is characterized by a diffusive regime, with the r
limiting mechanism due to chemical diffusion. Figure
shows, in thev,T plane the locus of steady solutions fo
isothermal growth~solid line!. These data, quoted from
previous study, have been obtained solving the model in
rectional solidification conditions and fit, in quite goo
agreement, the predictions of Eq.~20! @19#. On the same
graph we superimposed~solid circles! the path described by
the operating point of the process. We see that during
high velocity regime the process evolves strictly along
stable branch of the steadyTI(v) curve, indicating that the
quasisteady assumption is well satisfied. As expected,
observe a deviation between the two sets of data across
transition and immediately after, when the process is driv
towards the low velocity branch of the curve. The abo
considerations show that the interface dynamics is subs
tially slaved by the evolution of the thermal field, and th
rejection of heat is the limiting mechanism for the proces

The sudden jump of the interface velocity shown in F
2~a! can be explained writing an equation for the accelerat
of the solid-liquid front in the form:

aI5
dv
dTI

•

dTI

dt
. ~21!

We see that near the maximum of theTI(v) curve the
front acceleration given by Eq.~21! is infinite, as dTI /dv
50 and the transition between the high and low veloc
regimes is described as instantaneous@in this limit, obvi-
ously, the quasisteady approximation is no longer valid a
Eq. ~21! fails to work#. The arrows drawn in Figs. 2~a! and 5
indicate the operating point corresponding to the maxim

FIG. 8. The interface temperature versus the interface veloc
The solid line refers to the steady solutions for isothermal grow
The solid circles refer to the present numerical solution, with
56.4531028.
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FIG. 9. The interface velocity~a!, the interface temperature~b!, and the solute concentration at the interface~c! versus time. Le56.45
31025. The straight line in~a! is representative of the power law}t21/2.
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interface acceleration (t51.1931023,v5823), which is in-
deed very close to the maximum ofTI(v). To better clarify
this issue, Fig. 6 shows the interface acceleration, as g
by Eq. ~21! ~solid circles! compared with the results of ou
simulation~solid line!. The dependenceTI(t) in Eq. ~21! is
extracted from the numerical data. We see that the m
features of the actual interface acceleration are capture
the above simple picture to a good extent of accuracy. I
worth noting that sharp transitions between the stable
unstable branches of theTI(v) curve were observed also i
the dynamics of the banding phenomena@21,27,28# and were
ascribed to the same mechanism.

In Figs. 7~a!–7~c! we show the data obtained with L
56.4531028. We still observe a transition of the proce
between a high and a low velocity regime but the transit
is here much slower than in the previous case and the
en

in
by
is
d

n
a-

sisteady picture should work much better. This is confirm
in Fig. 8 where we see that the actual interface dynam
closely follows the steadyTI(v) dependence.

When the Lewis number is further increased the reject
of heat becomes less effective and the interface warms
Eventually the interface temperature reaches values ab
the steadyTI(v); then the quasisteady picture breaks dow
and the growth process enters a diffusive regime gover
by the rejection of solute. This situation is illustrated in Fig
9~a!–9~c! obtained with a Lewis number Le56.4531025

characteristic of metallic alloys. We see that along the en
duration of the process the interface velocity follows the d
fusive law }t21/2 and the interface temperature is close
1703 K, well above the limit for isothermal steady growt
The concentration gap at the interfacecl2cs increases with
time, approaching asymptotically the equilibrium value.
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650 PRE 61MASSIMO CONTI
V. CONCLUSIONS

Rapid solidification of binary alloys is generally ad
dressed in the isothermal approximation, because of the l
ratio of heat to solute diffusivity. On the contrary, the resu
of the present study show that the evolution of the therm
field is of central interest to understand the interface dyna
ics. The steady growth regime, predicted at large supers
ration when Le50, is no longer allowed when thermal di
fusion is taken into account. The different time sca
characteristic of thermal and chemical diffusion allow one
-

R

ys
ge

l
-

tu-

s

decouple to some extent the two processes. At low value
the Lewis number the growth rate is determined by
steady solutions consistent with the interface temperatur
transition between high and low velocity states is observ
accordingly to the nonmonotonic dependenceTI(v). This
simple picture allows one to predict the interface accelera
with some accuracy. The effects of the transition can be
served through the solute field frozen in the solidified allo
As the Lewis number increases, the interface warms up,
the process enters a regime in which the rate limiting mec
nism is the diffusion of solute.
ys.
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