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Thermal and chemical diffusion in the rapid solidification of binary alloys
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Solidification of binary alloys is characterized by the necessity to reject away from the advancing front two
conserved quantities: the latent heat released at the solid-liquid interface and the solute atoms that cannot be
accommodated in the solid phase. As thermal diffusion is much faster than chemical diffusion, the latter is
generally assumed to be the rate limiting mechanism for the process, and the problem is addressed through the
isothermal approximation. In the present paper we use the phase-field model to study the planar growth of a
solid germ, nucleated in its undercooled melt. We focus on the effects of a noninstantaneous thermal relax-
ation. The steady growth predicted at large supersaturation in the isothermal limit is prevented. Depending on
the value of the Lewis number the growth rate is limited by either mass or heat diffusion; in the latter case we
observe a sharp transition between two different regimes, in which originates a nonmonotonic time dependence
of the interface temperature. The effects of this transition reflect in the composition of the solidified alloy.

PACS numbe(s): 64.70.Dv, 68.10.Gw, 81.30.Bx, 82.65.Dp

[. INTRODUCTION model an order parameter characterizes the phase of the sys-
tem at each point. A suitable free-energy functional is then
In rapid solidification processes the interfacial dynamicsconstructed that depends on the order parameter as well as on
is the result of a competition between the nonequilibriumthe concentration and temperature fields and their gradients.
conditions imposed at infinity and the necessity to reject affhe extremization of the functional in respect to these vari-
least one conserved quantity away from the advancing frontables results in the dynamic equations for the process. Sev-
For pure substances the growth is controlled by the diffusioreral theoretical and numerical studigs4—2Q pointed out
of the latent heat released at the solid-liquid interface; fothat the PFM describes in a natural fashion nonequilibrium
alloy solidification (the subject of the present stydpoth  effects as solute trapping and the kinetic undercooling of the
heat and solute diffusion are the limiting factors to thesolid-liquid interface.
growth process. Basing on these models, the growth process has been
The classical approach to describe the interfacial dynamstudied in different regimes, generally neglecting the dynam-
ics is formulated in terms of a moving boundary problemics of the thermal field. However, recent investigations
[1,2]. The diffusion equation is utilized to model the trans- pointed out that thermal diffusion enters as an essential in-
port of heat and solute through the bulk phases. The interfacgredient into the evolution of the phase-change process. For
boundary conditions reflect two different constrair(t3:the ~ example, the latent heat released at the interface significantly
energy and solute conservation across the moving front, anetduces the region of the parameters space where an oscilla-
(i) constitutive laws that relate the local interface conditionstory instability of the solidification front can be expected
(concentratiorc and temperatur&) to the front velocityv. [21-23. Moreover, in a previous studj24] the author
As the relaxation of the thermal field is much faster than theshowed that in the planar growth from a supercooled melt
rearrangement of chemical species the process is oftesteady growth solutions, allowed within the isothermal ap-
treated as isothermal. In this limit LangE8] pointed out proximation, are lost and the steady growth is driven into a
that, assuming local interfacial equilibrium and consideringdiffusive regime. Then the effect of the heat diffusion on the
the chemical potential rather than the solute concentration asolidification of binary alloys is an interesting and still open
the diffusive field, the model for alloy solidification can be question.
formally mapped onto the same set of governing equations In the present study this point will be addressed simulat-
which describe the solidification of a pure substance. Théng the planar growth of a solid germ with the phase-field
relevance of nonequilibrium effects in rapid solidification model. Extending the results of a previous wdgd], we
processes was pointed out by Aziz, Aziz, and Kaplan andghall analyze the growth process at large supersaturation. It
Aziz and Boettingef4-6]. Within the continuous growth will be shown that, depending on the value of the Lewis
model (CGM) they were able to explain the phenomenonnumber(i.e., the ratio of the chemical to the thermal diffu-
termed ‘“solute trapping,” that is the increase of the partitionsivity), the growth rate is limited by either mass or heat
coefficientk (the ratiocg/c, of the solute concentration in the diffusion. At Le=0 (i.e., with isothermal growthafter an
growing solid to that in the liquid at the interfagcfom the initial transient steady growth is attained. With Le values
equilibrium valuek, towards unity at large growth rates.  characteristic of metallic alloys the process enters a diffusive
A more recent approach to investigate alloy solidificationregime governed by the rejection of solute at the interface,
is based on the phase-field mod&FM) [7—13. In this  and the front velocity decays with time as't ~ Y2 At inter-
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mediate values of the thermal diffusivity an interesting phe- 9 oo ~ A .

nomenon arises: the process undergoes a sharp transition be- —-=My[e°V°¢—(1-c)H"($,T)—cH (4, T)], (5)
tween two different regimes. The first stage is characterized

by a high growth rate which, however, decays with the
power law ot~ Y2 In this stage the interface temperature f9_C__ . o\ VYm A B
increases with time, and the concentration field shows a gt V- Pec(l=c) R [H*(6T)=HY$ TV
strong trapping of solute into the solid phase. Then, when the

interface temperature reaches a value neaf ghee (where —D.Ve+D.o(l— V_m'f VT

the Helmoltz free energies of the liquid and solid are egual eVetDec(l—c) R (¢.T) ' ®)
an abrupt transition turns the process into a low velocity

regime, still characterized by the diffusive power law. The T 1
interface temperature is now decreasing with time, and the —=D¢V?T— —[(1—c)LA+cLB]
solute segregation at the interface approaches the equilibrium Jt X
pattern. - . . dp(¢) dé Jc
The paper is organized as follows: in Sec. Il the govern- X———"—— —p()(LBE—LA—. (7
ing equations of the model will be derived, through the ex- d¢ at  x at

tremization of an entropy functional. In Sec. Il the numeri- . .
cal method will be explained, and in Sec. IV the results of In Egs.(5)—(7) Ris the gas constant and, is the molar
the numerical simulations will be discussed. The conclusiongolume; the solute diffusivity is defined asD.

will follow in Sec. V. =(M.R)/[vh,c(1—c)] and the thermal diffusivity a®+
=M./(x T?), being y the specific heat, for which we as-
IIl. THE GOVERNING EQUATIONS sume equal values for both components in both phases. The

e , , function HA(¢,T) is defined as
The solidification of an ideal solution of componemts

(solven) and B (solute is described in terms of the scalar

phase fieldp, the local solute concentratian and tempera- HA(¢,T) =
tureT. The field¢ is an order parameter assuming the values dé dé
¢ =0 in the solid andp=1 in the liquid; intermediate values

correspond to the interface between the two phases. Thehere

model directly follows the formulation given by Warren and

Boettinger[25] and incorporates also many of the ideas de- 1. _
veloped by Caginalp and Xigl7], Caginalp and Jond46], GA(¢p)= ZWA¢2(1— $)2=WAg(¢) 9)

dG? d T-TA
(¢) dp(e) LA . ®

Wheeleret al.[14,15. Full details of the derivation are pre-
shall give below only a short review. As a starting point theis @ symmetric double-well potential with equal minima at
entropy of the system is written as ¢=0 and¢=1, scaled by the positive well heighv*; L*
2 .
€ 2 temperature of the pure component puke choosing the

s(e,¢.c) =5 [Vo[*|dv, @ function p(¢) asp($)= (10— 15¢+642) the condition
where integration is performed over the system volume; the=0 and¢=1, respectively, for every value of temperature
last term in the integrand is a gradient correction to the therf12)].
energy density, and on the concentration and phase fieldsif all the material parameters, labeled with the supersdipt
To ensure a positive local entropy production, the governingyre replaced with the ones related to Bxepecies. The func-

sented elsewherf26], and for the sake of conciseness we
and TA are the latent heat per unit volume and the melting
|
is enforced that bulk solid and liquid are described ¢y
modynamic entropy density, that depends on the internal  Equations(8) and (9) still hold for HB(¢,T) and GB(¢)
equations for the phase and solute fields can be written aSion T'(4,T) is defined as

. S
=M=, 2 ~
M5 ? T(aT)=- g LA-Le) (10
) oS
c= —V'(McV 5—C)' 3 To allow for different diffusivities in the solid and liquid
phases, in the followingD. will be taken asD =Dy
and for the energy density, +p(4)(D,—Dg), D, and Dg being the diffusivities in the
liquid and in the solid, respectively.
. S Equations(5)—(7) will be rephrased scaling lengths to
e=—-V. ( MeV %)' (4 some reference lengthand time tog?/D, . Allowing M s 1O

depend on the local composition aWl,=(1-c) Mg
whereM., M, and M, are positive constants. Assuming a +c¢ Mg, and following the lines suggested by Warren and
double-well Ginzburg-Landau free energy for the pure conBoettinger[25] to associate the model parameters to the ma-
stituents, and evaluating the functional derivatives, gives terial properties, the governing equations become
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d¢
W=[(1—C)m’*+c m®]

X[V2¢+(1-c)QAN(T,¢) +cQT,4)], (11)

Jc
—=—V-A{c1-cNHHAS T)-H$, )V

+c(1-c)A(P)'(p, T)VT—N(¢p)Vc}, (12
oT 1 1
il ;[(1—C)LA+CLB]
dp(¢) d¢p 1 ac
Wﬁ‘;D((ﬁ)(LB—LA)E, (13

where Le is the Lewis number, defined ase./D, and

1A T)=wred9(8) | agVm dR(9) T-T"O

d¢ R d¢ TTAB
Vi~
= ﬁHA'B(qﬁ,T), (14
& dg(o)
A,B - - =
Q™=(o,T) ("AB7 dg
1 ALM8 T-TABdp(e)
+ , (15
6vV2 o*BnAE T d¢
Ve
I'(¢.T)=FT(eT), (16)
D¢ ( Ds
)\(¢)—E+p(¢) 1—5 : (17)
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FIG. 1. The concentration profile for & (i.e., isothermal
growth), at timet=10"3.

IIl. THE NUMERICAL METHOD

The evolution of Eqs(11)—(13) has been considered in
one spatial dimension, with fluxless boundary conditions
¢y=c,=T,=0 at the domain’s walls. Initially in the under-
cooled melt, at uniform temperature and concentrafign
andc,,, a solid germ was nucleated in the regiog0<x,
with a composition equal to.,. To discretize the equations
second order in space and first order in time finite-difference
approximations were utilized. Then, an explicit scheme was
employed to advance forward in time the phase field and
concentration equations; the temperature equation was more
conveniently integrated with a fully implicit method. The

In Eq. (15) ¢*B, h*B indicate the surface tension and the choice of the computational grid posed some delicate prob-

interface thickness of the pure componefAtandB, respec-

lems. The physical process involves intrinsic and quite dif-

tively; T.. is the initial melt temperature. The model param-ferent length scales. The width of the phase field and con-
etersm™B, WAB depend on the physical properties of the centration transition layer, across the interface, is of the order

alloy components through

AB BA’BO'A'BTA’B B 12 Vi O'A’B

=T WS G R TRepAE

(18
where 8B is the kinetic undercooling coefficient of pufe

or B, that relates the interface temperattifeto the interface
velocity v throughv = BAB(TAB—T)).

To conduct the numerical simulations we referred to the

of 10" 2 (nondimensional uniis the solute diffusion length,

in our simulations, was in the range 19-10°, while the
thermal diffusion length reached values as high & The
necessity to avoid finite-size effects and, at the same time, to
resolve accurately the phase and concentration fields, sug-
gested the division of the computational domain into two
parts: an inner region, of interest for the phase and concen-

TABLE |. Material parameters for the Ni-Cu alloy.

phase diagram of an ideal solution of nicksblven} and ~ Parameter Nickel Copper
copper(solutg, using the data summarized in Table I; the T, (K) 1728 1358
solute diffusivity in the solid phase was estimateds | (y/cnd) 2350 1728
=10 ®xD,. The Iength scale was flxeq. at v, (cm¥mole)? 70 78
£=2.1x10 “cm; the kinetic undercooling coefficients o (Jen?) 3.7%x10°5 28x10°5
were fixed to pB*=128.64cms'K™t and g®B 8 (cm/Ks)® 128.64 15360
=153.60 cm s*K ™%, not far from the actual best estimates D, (cnls) 105 105

[29] and a realistic value for the interface thickness was se-

lected as 1.68 10"/ cm. Using the above values it results 2An average value of 7.4 will be taken.

that WA= 0.963; WE=0.960; m"=m®=350.

bFrom the estimation of Willneckeet al.[29].
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FIG. 2. The interface velocitya), the interface temperatufe), and the solute concentration at the interféeversus time. Le-6.45

X 107°. The straight line ina) is representative of the power lamt =2, and the arrow indicates the operating point corresponding to the
maximum acceleration.

tration dynamics, and an outer region, where only the temalong the time axis we used different grids. The concentra-
perature equation was integrated. In the inner registx0 tion equation(12) requires, for numerical stability, a time
<x; the grid spacing was selected A%;=4x 104, thatis  step At, which scales asAx)?/D,, beingD,;=1. On the
half of the nominal interface thickness. This value was aother side, the phase-field equatighl) is a diffusion-
standard choice in previous studids,19,24, where it was reaction equation with diffusivityD¢=mA'B=350; in this
proven to ensure accurate solutions of the phase and concerase the time step for stabilitt,, is expected to scale as
tration equations. In the outer regisfi=<x<x,, we used a (Ax)Z/D¢. No stability problems arise for the temperature
nonuniform grid, stretching the mesh spacing with the lawequation, which is integrated with an implicit method with a
AXy=AX;+ AX,[ 1—exp(k—x)/x )] The values ofAx.. and  time stepAty=At.. Due to the large value d ,, we used
X, were chosen, for each simulation, to ensure accuracy asvalue forAt, much smaller thalt;=At.. In practice we
well as computational economy; in any case the temperaturiéerated 320 times the phase-field equation within a single
field was never resolved with less tharx40* grid points, time step(equal to 5< 10" 8) of the temperature and concen-
and the temperature differences between adjacent grid pointsation equations.
never exceeded 16 K. The convergence of the numerical scheme was checked
For the same reason of computational economy, eveaccurately in different cases with respect to the refinement of
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moreover we checked that using a different time step for the

ggﬁlsse—ﬂeld equation had no influence on the numerical €= 0071611 andc¥ =0.089 945 the concentration of the

melt was set ta@,.=cg, on the solidus line. With these val-
ues after a short transient the process reaches a steady state
IV. NUMERICAL RESULTS and the solid-liquid front advances at constant velogity

The isothermal version of the model, corresponding to=7973. Here and in the following, except for temperature,
Le=0 was ana|yzed in a previous Stum]' for the reader’s phySicaI quantities will be expressed in nondimensional
commodity we assume here some of the main results. Wehits. In Fig. 1 we show the solute profile taken tat
fixed T,.=1700 K corresponding to equilibrium concentra- =10~ °. The peak of the curve,=7.2129< 10" * identifies

cient isk(v)=c./c;=0.99281. To compare these results
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FIG. 4. The actual partition coefficiefgolid circleg compared
with the predictions of Eq(19) (solid line) during the growth pro- FIG. 6. The actual interface accelerati@olid line), compared

cess. The agreement between the two sets of data is within 0.5%with the predictions of Eq(21).
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FIG. 7. The interface velocitya), the interface temperatuf®), and the solute concentration at the interféeversus time. Le-6.45
x 1078, The straight line ina) is representative of the power lamt ™2,

with the predictions of the continuous growth mo¢elGM)

anda is the width of the concentration transition layer. The

we recall that the latter gives, for steady growth, the depenslope of the equilibrium liquidus line is indicated as and
dence of the partition coefficient and the interface temperathe parametey describes the dissipation of free energy due

ture on the growth velocity in the form:

(19

A m,C, \Y
T,(v)=T"+ 1_—ke{1—k+[k+(1—k)‘y]|n(k/ke)}_ E,

(20

to solute drag across the interface: this phenomenon is com-
pletely neglected withy=0 and accounted for witly=1.

A previous investigatior19] identified a best value of
V4= 290 andy=0.65; with these values Egkl9), (20) give
k(v)=0.992 84 andr(v)=1700.04 K, respectively, which
is in good agreement with the numerical data.

A quite different picture emerges when the dynamics of
the thermal field is taken into account, assuming a high but
finite thermal diffusivity. We setD;=15.5x10/, that is

ke being the equilibrium value for a stationary interfade (
=0.797 in our caseandvy is the diffusional velocity for the
solute redistribution across the moving fromg; is generally
expressed asy=D/a, whereD is an interface diffusivity

larger than the actual values characteristic of metallic alloys
by a factor of 16; this means Le 6.45x 10 °. Figure 2a)
shows the interface velocity versus tirfwrcles. The solid
line is representative of the diffusive lawt =2 In a first
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stage the process is characterized by a high growth rate; th 17025
interface slows down with a slope not far from1/2. Att
=102 we observe a transition; the interface velocity is sud-
denly decreased of an order of magnitude and finally reache
a new diffusive regime. The sharp transition from the high
velocity to the low velocity regime is reflected on the time
dependence of the interface temperatilire shown in Fig.
2(b). During the first stag€l, increases, reaching a maxi-
mum of 1701.97 K. Then, in the low velocity reginig
decreases with time. Figurg@ shows versus timeg and

c,, i.e., the solute concentration on the solid side and theg
liquid side of the interface, respectively. As expected at high%’ 1700.5
velocities, due to solute trapping, the concentration gap at theg
interface is very low(and increasing with time Subsequent

to the abrupt decrease of the growth rate we observe that th

solute redistribution across the interface becomes more ef
fective and the gap suddenly increases. The sharp transiet

leaves a trace in the solidified alloy. In Fig. 3 we see the 16995 bbb o o o o 0 W o o
solute profile at=10"1: the negative peak indicated by the 0 2000 4000 6000 8000
arrow reflects the depletion of solute on the solid side of the
interface shown in Fig. @).

A clear theoretical explanation for the phenomena de- FIG. 8. The interface temperature versus the interface velocity.
scribed in the above pictures is at present difficult to find, ashe solid line refers to the steady solutions for isothermal growth.
they originate from the complex interplay between the rejecThe solid circles refer to the present numerical solution, with Le
tion of both heat and solute away from the advancing front=6.45x 108,

However, to get some insight into this interesting behavior,

we can start from an analysis of the two diffusional timeforce for the proces§.e., the thermodynamic undercooling

scales. Being thaD V2<D-/V2 we expect a quasi is a decreasing function of the associate fltixe growth
. c T ’ -

instantaneous adaptation of the solute field to the variationttc,ata‘ resultln%hm unstgble grOfV\{[tr? . Notice thattgor temﬁra—
of the thermal field. Moreover, Eq$19) and (20), derived ures above the maximum of tg(v) curve the gro

for steady growth, are generally assumed to work even f?frocess is characterized by a diffusive regime, with the rate
’ i

time-dependent processes when the time variation of the i miting mechanism due to chemical diffusion. Figure 5

: . : hows, in thev,T plane the locus of steady solutions for
terface temperature is sufficiently slow in respect to the char> ' ’ Lo
b y P isothermal growth(solid line). These data, quoted from a

acteristic time for the solute relaxation across the interface . . ; R
that is 7~a%?/D=alv4. In the present case we have pre\_/lous study, have been obtained solving the model in di-
<1075 and this condition is likely to be fulfilled except rectional sol|d|f|cat|on _condltlons and fit, in quite good
perhaps, immediately after the transitijpee Fig. )] agreement, the predictions of EQO) [19]. On the same

where we observe a high rate of chang&dt). Then, if the graph we superimpose@olid circled the path described by

interfacial temperature is consistent with a steady solutioﬁhe operating point of the process. We see _that during the
high velocity regime the process evolves strictly along the

for isothermal growth it seems reasonable to decouple to T
some extent the heat and solute diffusion, assuming that thsetable branch of the steady(v) curve, indicating that the

phase and solute fields evolve with a quasisteady dynamicgg::‘?’/fzdé’e%is;%?lpgggv éser\therL St\?vté)sgigs. g}s dg?;iitgi’s\ffe
following the local(interfacia) temperature conditions. This

suggestion is confirmed observing in Fig. 4, along the entir(%ransmon and immediately after, when the process is driven

process, the close agreeménithin 0.5% between the val- %anirggr;?i?)nls V;Ih\cl)sxllotﬂz tbhrg1 ri]g[]er?zl;gg eol Cr?a:\éﬁ;:s-rihsesig(s);/;n-
ues of the actual partition coefficient and the predictions of X y ,
Eq. (19) tially slaved by the evolution of the thermal field, and the

rejection of heat is the limiting mechanism for the process.

1701.5

temperature (K)

interface velocity

On the other side, Eq20), as well as analytical and nu-
merical studies based on the phase-field model, were able gz
fix, for a given supersaturation, the conditions for isotherma
steady growth. The interface temperature is a nonmonotoni

The sudden jump of the interface velocity shown in Fig.
a) can be explained writing an equation for the acceleration
%f the solid-liquid front in the form:

function of the interface velocity, resulting from the compe- dv dT,

tition of two opposite effects. At low velocities, due to solute Q=97 a (22)
trapping(and to the consequent reduction of solute concen- :

tration on the liquid side of the interfagd, is an increasing We see that near the maximum of thg(v) curve the

function ofv. At higher velocities the undercooling required front acceleration given by Eq21) is infinite, as @, /dv
to advance the solidification front becomes important: the=0 and the transition between the high and low velocity
T,(v) curve traverses a maximum near fgline (where the  regimes is described as instantanefinsthis limit, obvi-
Helmoltz free energies of the liquid and solid are eqial; ously, the quasisteady approximation is no longer valid and
=1703.01 K in our cageand then exhibits a descending Eq.(21) fails to work]. The arrows drawn in Figs.(& and 5
branch. In the low velocity branch of the curve the driving indicate the operating point corresponding to the maximum
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FIG. 9. The interface velocit{a), the interface temperatufe), and the solute concentration at the interféeversus time. Le 6.45
X 1075, The straight line ina) is representative of the power lawnt 2,

interface accelerationt £1.19< 10" 3,v=2823), which is in-  sisteady picture should work much better. This is confirmed
deed very close to the maximum ®f(v). To better clarify in Fig. 8 where we see that the actual interface dynamics
this issue, Fig. 6 shows the interface acceleration, as givedosely follows the steady,(v) dependence.
by Eq. (21) (solid circles compared with the results of our When the Lewis number is further increased the rejection
simulation(solid line). The dependencg(t) in Eqg. (21) is  of heat becomes less effective and the interface warms up.
extracted from the numerical data. We see that the maikventually the interface temperature reaches values above
features of the actual interface acceleration are captured ke steadyT(v); then the quasisteady picture breaks down,
the above simple picture to a good extent of accuracy. It i@nd the growth process enters a diffusive regime governed
worth noting that sharp transitions between the stable anby the rejection of solute. This situation is illustrated in Figs.
unstable branches of tHg(v) curve were observed also in 9(a)-9(c) obtained with a Lewis number e6.45x<10 °
the dynamics of the banding phenomé¢@4,27,28§ and were  characteristic of metallic alloys. We see that along the entire
ascribed to the same mechanism. duration of the process the interface velocity follows the dif-
In Figs. 7a)—7(c) we show the data obtained with Le fusive law ot Y2 and the interface temperature is close to
=6.45<10 8. We still observe a transition of the process 1703 K, well above the limit for isothermal steady growth.
between a high and a low velocity regime but the transitionThe concentration gap at the interfage- ¢ increases with
is here much slower than in the previous case and the qudime, approaching asymptotically the equilibrium value.
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V. CONCLUSIONS decouple to some extent the two processes. At low values of
. e . . the Lewis number the growth rate is determined by the
Rapid solidification of binary alloys is generally ad- goqqy solutions consistent with the interface temperature; a
dressed in the isothermal approximation, because of the largg; nsition between high and low velocity states is observed,
ratio of heat to solute diffusivity. On the contrary, the reSU“Saccordineg to the nonmonotonic dependerfév). This
of the present study show that the evolution of the thermakjmple picture allows one to predict the interface acceleration
field is of central interest to understand the interface dynampith some accuracy. The effects of the transition can be ob-
ics. The steady growth regime, predicted at large supersatigerved through the solute field frozen in the solidified alloy.
ration when Le=0, is no longer allowed when thermal dif- As the Lewis number increases, the interface warms up, and
fusion is taken into account. The different time scalesthe process enters a regime in which the rate limiting mecha-
characteristic of thermal and chemical diffusion allow one tonism is the diffusion of solute.
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