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Floquet exponents of underdamped Josephson ladders:
A comparison with predictions of the discrete sine-Gordon equation

B. R. Trees and N. Hussain*
Department of Physics and Astronomy, Ohio Wesleyan University, Delaware, Ohio 43015

~Received 6 August 1999; revised manuscript received 15 March 2000!

We calculate Floquet exponents for phase-locked solutions in ladder arrays of Josephson junctions in zero
external field. We assume a resistively and capacitively shunted junction~RCSJ! model, and we allow for
critical current anisotropy between the horizontal and vertical junctions. The ladders range in size from 5 to 30
plaquettes and are biased along the rungs with uniform dc bias currents. The Floquet exponents quantify the
stability of the solutions and are calculated numerically for the RCSJ model as a function of junction capaci-
tance (bc) as well as critical current anisotropy (L). We also model the array with the discrete sine-Gordon
~DSG! equation, and we are able to calculate the exponents analytically in that case. We find the analytic
results from the DSG equation agree quantitatively with the numerical results from the RCSJ model over a
wide range ofbc andL values and even agree qualitatively forbc→1 andL→0. Based on the analytic result
we argue that perturbations in the array are damped by the small-angle phase oscillations of the underlying
lattice~the ‘‘phonons’’ of the lattice!, and like a classical harmonic oscillator with damping, each phonon mode
has a crossover~as a function of decreasingbc or L) from underdamped to overdamped dynamics. Such
crossover behavior is clearly visible in the results for the Floquet exponents and is manifested as a maximum
in the Floquet exponent as a function of the junction capacitance. This intriguing result speaks to the oppor-
tunity, in principle, of tuning the capacitance such as to optimize the stability of the phase-locked solutions.

PACS number~s!: 74.50.1r, 05.45.2a, 05.45.Xt, 74.60.Jg
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I. INTRODUCTION

Over the last decade there has existed considerable i
est in the dynamics of ladder arrays and the similar but
identical parallel arrays of Josephson junctions. Both exp
mental and theoretical work has been done by many@1–18#
in an attempt to understand the rich behavior such nonlin
systems can exhibit. One factor leading to interest in th
geometries has been that they are excellent examples of
world systems that can, under appropriate conditions,
modeled by the discrete sine-Gordon equat
@4,11,12,14,15,19–22#. As part of this work, we have bee
studying the so-called whirling mode solutions to the d
crete sine-Gordon equation. It is easy to understand how
adjective ‘‘whirling’’ is appropriate when one considers
common mechanical analog of a Josephson junction ar
namely a damped, driven set of pendula with nearest ne
bors connected by torsional springs. In such a system
quantity of importance is the angle of the pendulum’s ro
tion f, and the whirling mode describes the situation
which the driving torque on the pendula is large enough~in
the presence of gravity! to allow them to execute complet
rotations about their supports. It turns out that the sim
equationf5vt then describes a particular pendulum’s a
gular displacement with respect to time, wherev is an an-
gular velocity. In the language of the original Josephs
junctions, this behavior occurs when the bias current driv
the array is greater than a typical junction’s critical curre
The stability of such a solution will be part of the focus
this paper.

*Present address: Washington University, St. Louis, M
63130-4899.
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In generic terms the discrete sine-Gordon~DSG! equation
describes a system of damped, driven particles that are
nected to their nearest neighbors by springs and that
experience a sinusoidal external potential@23,24#. One of its
original manifestations was in studies of dislocations in cr
tals and in that context~zero damping and zero driving force!
it is known as the Frenkel-Kontorova model@25#. For de-
scribing underdamped Josephson junctions@26#, a common
model of choice is the resistively and capacitively shun
junction ~RCSJ! model @27#. It has been argued that th
RCSJ model is equivalent to the DSG equation in the limit
small spatial variations of the superconducting Joseph
phase differences along the ladder@4,12#. As a result of this
condition on the phase variations it is not surprising th
most previous work with the DSG equation as applied
Josephson ladders and parallel arrays has focused on
highly underdamped limit, corresponding to McCumber p
rameters (bc52eIcR

2C/\, whereI c , R, C are a junc-
tion’s critical current, resistance, and capacitance, resp
tively! of approximately 50 or greater@4,11,13,14,20,21#.
Nevertheless, it is natural to ask how well the DSG equat
describes the dynamics of the RCSJ model, well known
being an accurate predictor of the behavior of actual arr
of Josephson junctions over a wide range of parameters
smaller values ofbc , for example forbc&20.

In this paper we report on a comparison of the dynam
of the DSG equation with that of the RCSJ model for
ladder array of underdamped Josephson junctions in
whirling regime and for McCumber parameters in the ran
1,bc&40. Specifically, our geometry is shown in Fig.
The junctions parallel to thex axis ~the horizontal junctions!
have a critical currentI cx , while the vertical junctions~par-
allel to they axis! have a critical currentI cy . All other junc-
6415 ©2000 The American Physical Society
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6416 PRE 61B. R. TREES AND N. HUSSAIN
tions parameters, e.g., resistance~R! and capacitance (C),
are assumed identical. A spatially uniform, dc bias currenI B
is fed into the horizontal junctions on the left and extrac
from the right side. The long direction of the ladder~the y
direction! is constrained by periodic boundary condition
The number of cells~plaquettes! of the ladder is denoted b
N; typically we have studied ladders withN ranging from 5
to 30.

We consider phase-locked solutions for the horizon
junctions, by which we mean a solution in which the ho
zontal junctions have identical voltage versus time plots. O
numerical algorithm initializes the superconducting phase
the nodes of the ladder randomly, and it is easily determi
that the voltages, which are periodic in time, have inde
synchronized, i.e., phase locked, within a relatively few p
riods. To test the stability of phase-locking to mechani
perturbations, we calculate the Floquet exponents~see Sec.
II ! for these solutions. We do so both numerically for t
RCSJ model and analytically for the DSG equation. For
ladder sizes considered in detail (N510, 15, 20, and 25! the
exponents calculated for the two models agree quantitati
for bc*10, and perhaps surprisingly, agree at least qua
tively even for smallerbc ~see Fig. 7!. The results also show
a possibility of ‘‘tuning’’ the stability of phase locking in the
array in that the minimum Floquet exponent clearly sho
nonmonotonic behavior for decreasingbc with a peak~sig-
nifying the most stable phase locking! occuring at a certain
‘‘crossover’’ point, bc* (N), that is a function of array size
Furthermore, the analytic result for the Floquet expone
~from the DSG equation! gives us a physical picture to de
scribe, at least partially, the dynamics of the ladder resp

FIG. 1. Geometry of the ladder array of Josephson junctio
The horizontal junctions, along the rungs of the ladder, are par
to thex axis, while the vertical junctions are parallel to they axis.
This figure depicts a ladder withN53 cells and eight nodes, four o
which are explicitly labeled. A dc bias current,I B , is injected at
each node on the left side and extracted from the right sidea
denotes the dimension of each cell. We assume periodic boun
conditions along the long direction of the ladder, so that in t
figure nodes 1 and 7~and 2 and 8! are actually the same.
d
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sible for the phase locking. The organization of the rema
der of this paper is as follows. In Sec. II we describe t
numerical calculation of the Floquet exponents as based
the RCSJ model. Section III describes the dynamics of
discrete sine-Gordon equation in more detail and discus
the analytic calculation of the Floquet exponents from
equation. Finally, in Sec. IV we compare and contrast
results for the exponents from the two models.

II. RCSJ MODEL

It is expedient to use a system of dimensionless variab
for the subsequent calculations. Let the characteristic t
scale for a junction betc[\/2eIcxR, so that we can define a
dimensionless time variable,t[t/tc . The dimensionless dc
bias current entering or leaving nodej is i B, j[I B, j /I cx . Re-
ferring to Fig. 1, conservation of the charge at thej th node
yields

i B, j1(̂
k&

F i c, jk sin~u j2uk!1
d

dt
~u j2uk!

1bc

d2

dt2
~u j2uk!G50. ~1!

Here u j is the superconducting phase at nodej, and i c, jk
[I c, jk /I cx is the dimensionless critical current of the jun
tion between nodesj and k. The sum runs over all neares
neighbor nodes toj. We allow for critical current anisotropy
in that I cx andI cy need not be equal. In fact we will define
measure of the critical current anisotropy asL2[I cy/2I cx .
The McCumber parameterbc was defined in Sec. I. The
array is not subjected to any external magnetic field. Eq
tion ~1! is combined with the standard Josephson volta
expression for nodej,

Vj5
\

2e

du j

dt
,

which if we define a characteristic voltageVc[I cxR, can be
written in dimensionless form

v j[
Vj

Vc
5

du j

dt
. ~2!

We have solved Eqs.~1! and ~2! numerically using the
fourth-order Runge-Kutta method, with~dimensionless! time
steps ofDt50.001. Typically, the code was run for at lea
a time of t total5400 to allow the horizontal junctions to
phase lock. Then the Floquet~stability! analysis was per-
formed, which we now describe.

Suppose thatu0 j (t) is a solution to Eqs.~1! and ~2!. We
perturb the phase at nodej by an amounth j (t) so that the
new phase isu j (t)5u0 j (t)1h j (t). Linearizing Eq.~1! with
respect toh j , we arrive at the following:
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(̂
k&

F i c, jk cos~u0 j2u0k!~h j2hk!1
d

dt
~h j2hk!

1bc

d2

dt2
~h j2hk!G50. ~3!

Because the coefficients of theh j are periodic, with period
T/tc in dimensionless units, we can apply Floquet’s theor
@28#, which tells us that there exist solutions to Eq.~3! of the
form

h j S t1
T

tc
D5mh j~t!, ~4!

wherem is a ~possibly complex! number called the Floque
multiplier. We are interested in the case whenumu,1, which
corresponds to perturbations that diminish with time.
course,umu.1 denotes instability in that perturbations gro
over time, and the special case ofumu51 is called neutral
stability. There is a corresponding Floquet exponent,l,
which is related to the Floquet multiplier by

m5elT5e(ltc)(T/tc). ~5!

The condition umu,1 corresponds to Re(l),0. We can
think physically of the exponents~or multipliers! as describ-
ing the stability of the characteristic modes of the array.At
least one of these exponents must equal zero, which i
result of the invariance of Eq.~1! to a time translation. Ex-
cluding the exponent of zero, we are interested in the rem
ing exponent ofsmallest magnitude, ulminu, as that tells us
by what factor the longest-lived mode of the array decays~or
grows! in one period after a perturbation@29#.

We have performed a stability analysis for ladders of s
N510, 15, 20, and 25 with 1,bc&40 and bias currents
from about 2I cx to 20I cx . Consider Fig. 2, which show

FIG. 2. Magnitude of the minimum Floquet exponent versus
McCumber parameter for four different ladder sizes. The bias
rent was fixed ati B510, and the critical current anisotropy wa
L51/A2. The exponent shows nonmonotonic behavior as a fu
tion of bc , with a maximum atbc* (N), which is a function of
ladder size. The value ofbc* (N) marks a crossover from unde
damped@bc.bc* (N)# to overdamped behavior@bc,bc* (N)#.
f

a

n-

e

2Re(lmintc) versusbc for i B510, L51/A2 ~correspond-
ing to I cx5I cy) and several values ofN. There is a genera
trend for decreasingbc of increasing stability~as demon-
strated by a growing magnitude of the Floquet expone!
down to a crossover value of the McCumber parame
bc* (N), which is dependent upon ladder size. For decreas
bc belowbc* (N), the phase locking takes increasingly long
to recover from a mechanical perturbation. As is clearly se
from the figure, this crossover behavior of the stability is
sharp function ofbc . Furthermore, above the crossov
@bc.bc* (N)#, the Floquet exponent has a simple form
namely Re(lmintc)521/2bc , which holds for all the ladder
sizes and bias currents we have looked at~as long as the
ladder is in the whirling regime, of course!.

The peak in the exponent, observed in Fig. 2 for a giv
ladder size, implies behavior similar to that of a classi
damped oscillator, in which the case of critical dampi
gives the largest decay constant compared to both the un
damped and overdamped cases. This comparison wi
damped oscillator is worthy of elaboration. It is well know
@30# that the solution for the position as a function of time
a classical, damped harmonic oscillator in the absence
driving force decays most rapidly when the damping para
eter ~representing the amount of friction in the system! is
tuned to the special value corresponding to critical dampi
If one were to plot the decay rate of the solutions for th
system~i.e., the coefficient of the time variable in the arg
ment of the exponential! as a function of the inverse of th
damping parameter one would observe a peak in the de
rate for the case of critical damping. We are arguing that
peak observed in Fig. 2 for a givenN is analogous to this
classical behavior. Furthermore, the comparison of our s
tem with classical damped oscillators is strengthened by
3, which plots thedifferenceof the voltages across the to
two horizontal junctions in a ladder withN55, i B55, and

e
r-

c-

FIG. 3. Difference of the voltages across the top two junctio
of an N55 ladder as a function of time for two different values
bc . The bias current wasi B55, and the critical current anisotrop
wasL51/A2. All voltages are initially randomized. In the largebc

case (bc515) the approach to phase locking shows characteri
underdamped behavior, while forbc50.1, the decay of the signa
appears to be overdamped. In both cases, the signals also exh
‘‘high frequency’’ oscillatory behavior with which we are not in
terested.
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6418 PRE 61B. R. TREES AND N. HUSSAIN
L51/A2. The characteristic shapes of the two curves
clearly reminiscent of underdamped (bc515) and over-
damped (bc50.1) behavior with some ‘‘high’’ frequency
oscillations superimposed. Also, the nonmonoticity of t
exponent’s dependence onbc seen in Fig. 2 suggests, at lea
in principle, the possibility of tuning the value ofbc to con-
trol the degree of stability of the array.

To offer the reader a better feeling for the numerical
sults obtained in our stability analysis, we include a table
all the Floquet exponents calculated for an array withN
55, i B510, L51/A2 and two different values ofbc .
The details of the numerical procedure used to calculate
exponents is essentially the same as that described elsew
@31#. For a ladder withN cells and periodic boundary cond
tions, there are 2(2N21) coupled first-order differentia
equations to be solved numerically. Correspondingly, th
are 2(2N21) Floquet exponents for a given set of circu
parameters. The first column of Table I shows all 18 ex
nents of a five cell ladder withbc51.1, which satisfies the
conditionbc.bc* (5). We seethere is one exponent approx
mately equal to zero, as expected and as explained ab
We also note the exponent with a value of21/2bc has a
high degree of degeneracy. The second column shows
exponents forbc50.7, which corresponds tobc,bc* (5).
Other than the exponent of~approximately! zero and the
highly degenerate exponent of21/2bc , we also note the
appearance of a single exponent of magnitude less
1/2bc . This signals the crossover from underdamping
overdamping has occured.

In Fig. 4, which plots2Re(lmintc) versus bc for N
515 andL51/A2, we see that the minimum Floquet exp
nent is independent of bias current over a wide range

TABLE I. The Floquet exponents obtained from a numeric
solution of Eq.~3! for a ladder withN55, i B510, andL51/A2.
There are 18 characteristic modes of such an array, each m
having a corresponding Floquet exponent. The exponents fobc

51.1 ~underdamped regime! andbc50.7 ~overdamped regime! are
shown.

Re(ltc) for bc51.1 Re(ltc) for bc50.7

0.0004 20.0003
20.4543 20.5432
20.4543 20.7139
20.4543 20.7139
20.4543 20.7139
20.4543 20.7139
20.4543 20.7139
20.4543 20.7139
20.4543 20.7139
20.4543 20.7139
20.4543 20.7139
20.4547 20.7139
20.4547 20.7143
20.4735 20.7143
20.4735 20.7361
20.4900 20.7361
20.4900 20.9631
21.4392 22.3104
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currents. There is some observable deviation for smallbc for
i B52, presumably because of the proximity of the bound
to the whirling regime~i.e., we are neari B51). We see
similar behavior for other size ladders. Figure 5 shows
dependence of the minimum Floquet exponent on the crit
current anisotropyL for three different ladder sizes. All re
sults are fori B510 andbc520. Here the dependence o
anisotropy is flat forL greater than some crossover val
that is dependent on ladder size,L* (N), and then the expo-
nents drop rather sharply towards zero. ForL.L* (N) we
have the typical underdamped result that Re(lmintc)
521/2bc , independent ofN and i B for all values of those
parameters that we have tried. The fact that2Re(lmintc)
→0 for sufficiently smallL is easy to understand. As w
shall see in the context of the DSG equation,L is also a
measure of the coupling between a horizontal junction a

FIG. 4. Magnitude of the minimum Floquet exponent versus
McCumber parameter for anN515 ladder and for four different dc
bias currents. The critical current anisotropy wasL51/A2. Except
for i B52 in the regionbc<2, the exponents are independent of t
bias current.

FIG. 5. Magnitude of the minimum Floquet exponent vers
critical current anisotropy for three different sized ladders. The M
Cumber parameter wasbc520 and the dc bias current wasi B

510. The exponent equals21/2bc independent ofN andL for L
greater than some crossover value,L* (N), which is dependent on
ladder size. ForL,L* (N), the exponents quickly drop toward
zero.

l

de



t
tio
ion
n
e

o-

he
S
a
o-
s
no

p
o
he
s’
e
e

he
C

ld
tw

-

jun

l t
w

s
n

an
d

,

ad

si
p

en
n
s.
v

ia

h
on
y

el.
o-

al
al

by

ew
ua-

e-

e

and

the

size
s
n
the

t
wn,
ur-

PRE 61 6419FLOQUET EXPONENTS OF UNDERDAMPED JOSEPHSON . . .
its nearest-neighbor horizontal junctions. AsL gets small we
are approaching a limit ofN independent junctions. In tha
case, a mechanical perturbation applied to a given junc
cannot decay by in turn perturbing a neighboring junct
and thereby propagating along the ladder. Thus, as is ge
ally the case with a set of independent oscillators, we exp
to see evidence of neutral stability (lmin→0), which is in-
deed the observed behavior.

III. DISCRETE SINE-GORDON EQUATION

Kardar @12# first introduced the ladder of anisotropic J
sephson junctions as a system whose dynamics could
modeled by the discrete sine-Gordon equation. Since t
several groups have worked on the dynamics of the D
equation as applied to ladder arrays and parallel arr
@4,11,14,15,20,21#. For example, van der Zant and collab
rators @13,14# fabricated and studied so-called ring array
which are examples of parallel arrays that are similar but
identical to ladders@32#. With an eight cell ring,L2'3, and
bc'50, they measured resonance steps in theIV character-
istics of their arrays. They were able to explain the ste
within the context of the DSG equation by focusing on s
called parametric instabilities of the system, in which t
whirling modes can become unstable by exciting ‘‘phonon
@33# in a kind of positive feedback loop. By contrast, th
values ofi B , bc , andL used in our simulations do not plac
us near to such instabilities~see Sec. IV!.

We wish to see how well our numerical results for t
Floquet exponents for Josephson ladders, based on the R
model, are in agreement with what the DSG equation yie
It is important to understand that agreement between the
models is expected to breakdown asbc is decreased suffi
ciently, since ~as we approach the overdamped limit,bc
→0) the Josephson phase differences across horizontal
tions can vary appreciably along the ladder. The physics
this statement is worth discussing. To do so, it is usefu
change slightly how we label the junctions in the array. No
let j index only thehorizontal junctions~along the rungs of
the ladder!, and letf j represent the superconducting pha
differenceacross thej th junction, that is, using the notatio
of Fig. 1, f15u12u2. Consider Fig. 6, which plots thedif-
ferenceof the phase differences across junctions one
two, f12f2, and the same quantity for junctions six an
seven, f62f7, versus time for a ten cell ladder. Att
5200, the phase differencef1 is mechanically perturbed
and by looking at the two plots,f12f2 andf62f7, we can
get a feeling for how the perturbation travels along the l
der. In Fig. 6~a!, which is calculated forbc5100, there is
clearly a time lag for the perturbation to reach junctions
and seven, but the disturbance still has a measurable am
tude when it does reach those junctions. In Fig. 6~b!, which
corresponds tobc51, we see that the disturbance is ess
tially completely damped before reaching junctions six a
seven.~Also note the different time scales of the two graph!
Clearly, Fig. 6~b! shows a large variation between the beha
ior of junctions one and six, for example. It is this spat
variation, evident for smallbc , that we expect the DSG
equation to be unable to describe quantitatively. Nevert
less, we claim the DSG equation may still be useful to c
sider even forbc'1, since it offers us more of a physicall
n
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intuitive picture of the dynamics than does the RCSJ mod
The details of the analytic calculation of the Floquet exp
nents from the DSG equation follow.

In the context of the DSG equation, the role of the vertic
junctions is to provide the coupling for a given horizont
junction with its nearest-neighbor horizontal junctions@34#.
It turns out that the strength of this coupling is measured
the quantityL25I cy/2I cx , whereL is the same critical cur-
rent anisotropy parameter defined in Sec. I. Using our n
labeling scheme for the horizontal junctions, the DSG eq
tion takes the following form in dimensionless units:

bc

d2f j

dt2
1

df j

dt
1sin~f j !2L2¹2f j1 i B50, ~6!

FIG. 6. Differencein the superconducting phase difference b
tween neighboring horizontal junctions versus time for anN510
ladder withi B510 andL51/A2. In both plots, the phase differenc
across the first junctionf1 was mechanically perturbed att5200.
~a! The difference between the phase differences for the first
second, and sixth and seventh, junctions are shown forbc5100.
We see that the perturbation travels from the first junction to
sixth and seventh junctions in a time interval of roughlyDt'300,
and that the amplitude of the perturbation still has measurable
by the time the sixth junction is reached.~b! The same difference a
in ~a! is plotted, but now forbc51. We see that a perturbatio
created at the first junction has no appreciable magnitude at
sixth junction during any time.@The data were calculated for plo
~b! for t up to 700, but the scale of the horizontal axis is as sho
since the only time interval where junction six shows any dist
bance at all is fort near 210.#
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6420 PRE 61B. R. TREES AND N. HUSSAIN
where ¹2f j5f j 1122f j1f j 21 is the discrete Laplacian
and where all distances are measured in terms of the cell
a ~see Fig. 1!.

A stability analysis of Eq.~6! leads to the damped
Mathieu equation, as shown by Watanabe and co-work
@14,20,21#. One letsf i5f0 j1h j and linearizes the DSG
equation with respect toh j . The result is

bc

d2h j

dt2
1

dh j

dt
1@cos~f0 j !#h j2L2¹2h j50. ~7!

Since we are interested in the whirling regime we consi
i B.1. Then the junction voltages have a well defined per
T and, as can be verified from the numerics, we can write
unperturbed phase differences as

f0 j5S 2p

T D t5S 2p

T/tc
D S t

tc
D[vt,

wherev is a dimensionless angular frequency. Next, we
sume periodic boundary conditions,h j 1N5h j , and we ex-
pand the perturbations as a Fourier series,

h j~t!5 (
m50

N21

Am~t!e2p im j /N.

When this expression is substituted into Eq.~7!, the Fourier
modes decouple and we have

bc

d2Am

dt2
1

dAm

dt
1F4L2 sin2S pm

N D1cos~vt!GAm50.

~8!

It is common to make the definitionvm
2 [4L2 sin2(pm/N),

where we can think of thevm as frequencies of small am
plitude oscillations of an analogous pendulum system~the
so-called ‘‘phonon’’ frequencies, or normal mode freque
cies!. To simplify a comparison of Eq.~8! with the standard
Mathieu equation, lett8[vt; then, after dividing through
by bc we arrive at

d2Am

dt82
1

1

vbc

dAm

dt8
1Fvm

2 1cost8

bcv
2 GAm50. ~9!

Next, we define a set of dimensionless quantities,k
[1/vbc , nm[vm

2 /v2bc , andg[1/v2bc . Note that for the
our simulations of the whirling regime, we havev.1 ~see
below!. Also note that as long as the coupling parameter,L,
is not much larger than one and the system is highly und
damped (bc@1), all three of these quantities (k, nm , andg)
are small.

At this point we make the standard transformation

Am~t8!5e2kt8/2rm~t8!, ~10!

which introduces the new functionrm(t8). Equation~9! then
becomes

d2rm

dt82
1Fnm2

k2

4
1g cost8Grm50, ~11!
ize

rs

r
d
e

-

-

r-

which has the standard form of a Mathieu equation. Note t
this equation can be written in the general form

dX

dt8
5P~t8!X, ~12!

where

X5S drm

dt8

rm

D
and where the 232 matrixP(t8) is periodic with a minimal
period of 2p. From Floquet’s theorem@28# we know there
are solutions to Eq.~11! of the form

rm~t8!5e(l̄mtc)t8Qm~t8!, ~13!

whereQm(t8) is a periodic function with the same period a
the coefficient matrixP(t8), namely 2p, and (lmtc) is the
Floquet exponent for the solutionsrm . @Note the similarity
of the argument of the exponential to that in Eq.~5!. Also
note the overbar notation is merely to indicate the Floq
exponents of the ‘‘intermediate’’ functionsrm(t8)]. We
want a solution for the Fourier coefficientsAm(t8) that cor-
responds to Eq.~13!. Based on Eq.~10! such a solution
would be

Am~t8!5e(lmtc2k/2)t8Qm~t8!.

After restoring the original time variable,t5t8/v, we have

Am~t!5e(lmtc2k/2)vtQm~t!,

from which we have an expression for the desired Floq
exponent for the Fourier coefficients,

~lmtc!5S lmtc2
k

2Dv. ~14!

It remains to find a functional form for (lmtc).
We substitute Eq.~13! into Eq. ~11! to get a differential

equation for theQm ,

d2Qm

dt82
12~lm̄tc!

dQm

dt8
1Fnm2

k2

4
1~lmtc!

21g cost8GQm

50.

We use the standard Lindstedt perturbation technique@28#
for small g51/v2bc and arrive at the following expressio
for lm̄tc :

lmtc56 i 6Ak2

4
2nm.

The expression for the desired Floquet exponent then is

lmtc56 iv6Av2S k2

4
2nmD2

vk

2
.

Using the definitions ofk andnm gives
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lmtc56 iv6A 1

4bc
2

2
vm

2

bc
2

1

2bc
. ~15!

Since stability of phase locking is signaled by Re(lmtc),0,
we are interested in the real part of Eq.~15!, which is

Re~lmtc!52
1

2bc
6ReF 1

2bc
A124bcvm

2 G . ~16!

This result will be compared with the numerical results
the Floquet exponents from the RCSJ model. Some c
ments about Eq.~16! are in order. Note that all factors of th
angular frequency have canceled out. In fact, it can be sh
that in this formalism@20# v5 i B or T/tc52p/ i B , and in-
deed we have checked numerically that the period of
voltages across the horizontal junctions satisfies this sim
expression very well over a wide range of bias currents. T
we have a simple way to keep track of the angular frequen
it is merely equal to the numerical value of the bias curre
Equation~16! implies that the Floquet exponents should
independent of the bias current, as is indeed observed in
4.

Note that Eq.~16! can also provide the Floquet exponen
for a single junction, which follow by simply taking the limi
as L→0. Such a limit physically corresponds to zero co
pling between neighboring junctions. In this case we
course lose the phonon modes,vm→0, and Eq.~16! gives
the two values of zero and21/bc for the exponent. Based o
Fig. 2, we see that over a wide range of junction capa
tances, specificallybc.bc* (N), the minimum nonzero expo
nent for the array,21/2bc , is one-half that of a single junc
tion. Furthermore, forbc,bc* (N), the effects of them51
mode~see Sec. IV! of the array are to reduce the magnitu
of the decay rate even further below that of a single juncti

The issue of the stability to solutions of Mathieu’s equ
tion has been well studied, and the results are presented
so-called stability diagram@28#. If the generic Mathieu equa
tion has the formd2x/dt21(F1G cost)x50, then the stabil-
ity diagram is just a representation, in theF-G plane, of
those values ofF andG for which stable solutions exist. Th
work of van der Zant and collaborators@13,14#, as mentioned
previously, studied instabilities of the whirling mode sol
tions near one of the so-called Mathieu tongues, in the ne
borhood of the pointF51/4 andG50. Comparing our Eq.
~11! with the generic Mathieu equation we make the obs
vations that

F5
vm

2

v2bc

2
1

4bc
2v2

, G5
1

v2bc

. ~17!

Using values typical of our numerical simulations, for e
amplev55, bc510, andN510, would give a value ofG
50.004. To have anunstablewhirling solution, we would
need the value ofF to be approximately 1/4. Plugging thi
number into Eq.~17! then yieldsvm57.91. Given that the
functional form of the normal mode frequencies isvm
52L sin(mp/N), and considering the long-wavelength mo
m51 @35#, gives us an approximate value for the critic
current anisotropy needed for an unstable whirling mode
lution. One getsL518, which corresponds toI cy /I cx5648.
r
-

n

e
le
s

y;
t.

ig.

-
f

i-

.
-

a

h-

r-

l
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We have not performed simulations with such a high deg
of anisotropy~or with such a large nearest-neighbor juncti
coupling!. Our typical values forL, namely 0.1<L<2,
places us nearer to the origin of the stability diagram, wh
is in a region ofstablephase-locked solutions, than it does
the pointF51/4, G50.

We see that our analytic result for the Floquet expone
Eq. ~15!, which follows from a straightforward perturbatio
method, is nearly the same form as that for the decay c
stant of a damped, harmonic oscillator with damping co
stant 1/bc and characteristic angular frequencyv0

2

5vm
2 /bc . The only difference is the imaginary term6 iv.

That such a simple analytic result should be obtained is p
haps surprising, but it can hopefully offer us some physi
insight into the dynamics of the ladder, as we discuss in
next section. One could, in principle, use the Lindste
method to calculatelm to the next higher order ing. The
resultant expression should, of course, deviate from Eq.~15!
by a small amount. It is not clear if such a calculation
worthwhile.

IV. DISCUSSION

Consider the set of all possible exponents resulting fr
Eq. ~16! when the normal mode index runs over its rang
0<m<N21. For them50 mode, we see that the two po
sible values are Re(l0tc)50, 21/bc , where in fact21/bc
is the largest possible magnitude exponent one can ob
from Eq. ~16! and represents the fastest decaying mode
the array.~As mentioned in Sec. III these are just the Floqu
exponents for a single junction.! For all modesm.0, the
possible exponents can be divided into two categories,
pending on whether the argument of the square root in
~16! is less than or greater than zero. We shall refer to
case of when the argument of the square root is less~greater!
than zero as the ‘‘overdamped’’~‘‘underdamped’’! regime.
Thus we have

Re~lmtc!5H 2
1

2bc
if 4bcvm

2 .1

2
1

2bc
@16A124bcvm

2 # if 4bcvm
2 ,1.

~18!

Figure 7 offers a comparison of the numerical~RCSJ! and
analytic ~DSG! results for the Floquet exponents for seve
array sizes and zero external field. The analytic resu
shown as line plots, were obtained by plotting, for a givenbc
andN, the exponent from Eq.~18! with the smallest magni-
tude. For a givenN we see from the figure that the tw
models give Re(lmin)521/2bc over an appreciable rang
of bc values. The quantitative agreement fails in the reg
of the crossover value,bc* (N), from underdamped to over
damped behavior. However, the two models are in qual
tive agreement in that they both show that a crossover ind
occurs. In the case of the DSG equation, the crossover
served in Fig. 7~for all values ofN shown! results from the
long-wavelength phonon mode,m51, making the change
from underdamped to overdamped dynamics asbc is de-
creased. In essence, below the crossover, the long
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wavelength phonon mode has become less effective at da
ing out perturbations. As a result, forbc,bc* (N), the
smallest magnitude exponent decreases asbc decreases. Fig
ure 7 also shows that the DSG equation consistently pred
the crossover to occur at a value of the McCumber param
that is smaller than that from the numeric results.

From the analytic results it is easy to see that the cro
over point,bc* (N), increases asN increases. The crossove
results when the square root in Eq.~16! vanishes, i.e., when

bc* ~N!5
1

4vm
2

.

Clearly, for any value ofm,vm decreases asN increases, and
thusbc* (N) should increase. Physically, as the ladder len
increases, why doesn’t it take as much dampingper junction
for the longest-lived mode to crossover to overdamped
havior? Simply put, the more junctions one has available
more elements in the array there are absorbing energy. T
each junction does not have to absorb as much energ
have the same overall effect on the damping in the ladde
in a shorter array. Note, also, that our analytic result tells
that in the limit of an infinitely long ladder the crossov
point bc* (N) also approaches infinity. In such a limit, ev
dently, all the modes of the ladder must be considered to
in the overdamped regime.

It is interesting to consider the limit of Eq.~18! for bc

→0. One findsRe(lmtc)52vm
2 in this limit. For the values

m51 andN510, say, a quick check of Fig. 7 shows that t
analytic result does indeed approach the expected value
2v1

2. It is also clear that the corresponding results from
RCSJ model are approaching a finite value less than the D

FIG. 7. Magnitude of the minimum Floquet exponent versus
McCumber parameter for four different ladder sizes. The pl
show the results for both the resistively and capacitively shun
junction ~RCSJ! model and discrete sine-Gordon~DSG! equation.
For a given ladder size, there is quantitative agreement betwee
two models for a reasonable range ofbc values, and both model
show nonmonotonic behavior, with a maximum value that is dep
dent on ladder size. The lack of quantitative agreement for all
ues ofbc shown reflects the different physics inherent in the mod
and the fact that that difference becomes more pronounced at s
bc .
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result asbc→0. It would be of interest to calculate the Flo
quet exponents for the RCSJ model numerically in the ov
damped (bc→0) regime.

We would like to emphasize that, even though the res
based on the DSG equation do not quantitatively agree w
those from the RCSJ model for allbc values shown in the
figure, the DSG work is worthwhile for a couple of reason
The fact that both models show the crossover behaviorat all
seems to suggest that they carry similar physics. One m
indeed have feared that in the smallbc limit ~say,bc&2) the
two models might have differed even more than Fig.
shows. Also, the analytic result, with its overdamped a
underdamped regimes, offers a simple way to think about
physics of the array that hopefully offers some insight in
the dynamics of the RCSJ model as well.

Figure 8 simply shows that, forN510, i B510, andL
51/A2 the analytic and numerical results are in reasona
agreement for the shortest-lived mode of the array~with a
stability determined by what we could calllmax as opposed
to lmin) over an even larger range ofbc values than for the
longest-lived mode. This could be due to the fact that
shortest-lived ladder modes are dependent on the higher
quency lattice normal modes, thevm with m.1. These
higher frequency normal modes simply have not made
crossover from underdamped to overdamped behavior for
values ofbc shown in the figure. In fact, for the values ofN
andL used to produce the plots in Fig. 8, the DSG equat
would predict them52 mode to crossover at a McCumb
parameter of 0.36, clearly smaller than the smallestbc used
in the simulations.

Figure 9 compares Re(lmintc) for the two models as a
function of the critical current anisotropy for a fixed dampin
of bc520. Based on Eq.~18! and the fact thatvm
52L sin(mp/N), we see that tuning the anisotropy can affe
the crossover from underdamping to overdamping. Anal

e
s
d

the

-
l-
s
all

FIG. 8. Magnitude of both the minimum and maximum Floqu
exponent versus the McCumber parameter for anN510 ladder with
i B510 andL51/A2. The minimum~maximum! exponent corre-
sponds to the longest-lived~shortest-lived! mode of the array. The
results from both the RCSJ model and DSG equation are sho
Both models show a monotonic increase in the exponent asbc is
decreased for the shortest-lived mode. This may be due to the
that the dynamics driving this mode have not crossed over fr
underdamped to overdamped behavior. The results for the long
lived mode are the same as in Fig. 7.
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FIG. 9. Magnitude of the minimum Floquet exponent vers
critical current anisotropy for three different ladder sizes. The M
Cumber parameter wasbc520, and the dc bias current wasi B

510. Shown are results both for the RCSJ and DSG models.

FIG. 10. Magnitude of the minimum Floquet exponent vers
critical current anisotropy for anN510 ladder andi B510. Results
are shown for both the RCSJ and DSG models.~a! corresponds to
bc52. We would expect a larger discrepancy between the
models for the case of smallerbc . ~b! corresponds tobc5100. The
error bars on the results from the RCSJ model for the smallest
values ofL are a consequence of the fact that the numerical va
of the exponent is a weakly periodic function of the run time of t
computer code. Those two data points represent an average
many different run times, and the error bars give the standard
viation of the average of the results.
cally, such a crossover should occur at

L* ~N!5A 1

16bc sin2S mp

N D . ~19!

This result makes it clear, mathematically, why the crosso
increases asN increases, as is clearly observed in the figu
And above the crossover, of course, we have Re(lmintc)
521/2bc , independent ofL, as expected. As discusse
with respect to Fig. 5, physically one expectslmin→0 as
L→0. Mathematically, we can see from Eq.~18! why this
behavior is observed. AsL→0 clearly 4bcvm

2 ,1 and the
square root approaches unity. Thus we have Re(lm)→
21/2bc61/2bc , of which zero is one possible result. Th
other possible result is21/bc , which represents the expo
nent for the shortest-lived mode.

Figure 10 shows the Floquet exponent’s dependence oL
for two widely different values ofbc . The larger discrep-
ancy between analytic and numerical results would be
pected for the case of the smallerbc . The analytic result is
easy to understand from Eqs.~18! and~19!. The error bars on
the numerical results forbc5100 arise because of an inte
esting effect, which is presumably due to the low damp
per junction (bc5100) and the low coupling between junc
tions (L'0.2). The numerical value of the exponent, in t
two cases for which the error bars appear, is dependent u
how long the code runs to ‘‘equilibrate’’ the phases befo
the perturbation is applied that will result in the calculati
of l. As the run time before perturbing is increased stead
for example, the numerically calculated value oflmin varies
smoothly back and forth between a maximum and minim
value. The results shown in Fig. 10 represent an aver
lmin over several~around ten! different run times, and the
error bars represent the standard deviation of the mea
these values. Similar behavior of the exponent, but not
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FIG. 11. A comparison of the magnitude of the minimum Fl
quet exponent versus the McCumber parameter as calculated fo
discrete sine-Gordon equation in two different ways: analytica
based on the Lindstedt method and resulting in Eq.~16!, and nu-
merically, based on Eq.~6! directly. These results correspond
i B510, L51/A2, and four different ladder sizes. Agreement b
tween the two sets of solutions is excellent.
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pronounced, was observed for some other values ofbc and
L, but the resulting error bars were never larger than the
of the symbol itself.

Finally, as a useful check of our analytic results for t
Floquet exponents, we have calculated the exponentsnu-
merically for Eq. ~6! directly. Figure 11 compares the nu
meric and analytic results for the exponents of the D
equation for i B510, L51/A2, and four different ladder
sizes. The agreement is clearly excellent, even for ‘‘sma
junction capacitances,bc,1. Equation~16! truly does de-
scribe the decay rate for perturbations to the solutions of
~6! in the whirling regime, at least for the longest-lived mo
of the array.

V. CONCLUSION

We have studied the dynamics of a ladder of Joseph
junctions via the RCSJ model and the DSG equation.
calculated the Floquet exponents for phase locking in
horizontal junctions for a range of values of bias curre
junction capacitance, and critical current anisotropy
which stable solutions to the model equations exist.
found the analytic results from the DSG equation ag
quantitatively with the numerical results from the RC
model over a wide range ofbc andL values and even agre
.
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ze
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q.

n
e
e
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r
e
e

qualitatively for bc→1 and L→0. The analytic result
helped us to understand that perturbations to the super
ducting phase differences across the horizontal juncti
~whose lifetime is in essence measured by the inverse of
Floquet exponents! are damped by the small-angle oscill
tion ~normal! modes of the lattice. And like a simple, class
cal harmonic oscillator with damping, each normal mode h
a crossover~as a function of some parameter such asbc or
L) from underdamped to overdamped dynamics. Such cr
over behavior is clearly visible in the plots of Re(lmintc)
versusbc and Re(lmintc) versusL. The peak in the Floque
exponent for the longest-lived ladder mode as a function
the McCumber parameter is intriguing in that it speaks of
opportunity, at least in principle, to controlbc such as to
optimize the stability of the phase-locked solutions. Suc
capability may be useful to applications-oriented research
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