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We calculate Floquet exponents for phase-locked solutions in ladder arrays of Josephson junctions in zero
external field. We assume a resistively and capacitively shunted jund@@$J) model, and we allow for
critical current anisotropy between the horizontal and vertical junctions. The ladders range in size from 5 to 30
plaquettes and are biased along the rungs with uniform dc bias currents. The Floquet exponents quantify the
stability of the solutions and are calculated numerically for the RCSJ model as a function of junction capaci-
tance B;) as well as critical current anisotropy\§. We also model the array with the discrete sine-Gordon
(DSG) equation, and we are able to calculate the exponents analytically in that case. We find the analytic
results from the DSG equation agree quantitatively with the numerical results from the RCSJ model over a
wide range of3; andA values and even agree qualitatively 84— 1 andA — 0. Based on the analytic result
we argue that perturbations in the array are damped by the small-angle phase oscillations of the underlying
lattice (the “phonons” of the latticg and like a classical harmonic oscillator with damping, each phonon mode
has a crossovefas a function of decreasing. or A) from underdamped to overdamped dynamics. Such
crossover behavior is clearly visible in the results for the Floquet exponents and is manifested as a maximum
in the Floguet exponent as a function of the junction capacitance. This intriguing result speaks to the oppor-
tunity, in principle, of tuning the capacitance such as to optimize the stability of the phase-locked solutions.

PACS numbgs): 74.50:+r, 05.45-a, 05.45.Xt, 74.60.Jg

I. INTRODUCTION In generic terms the discrete sine-Gord®8G) equation
describes a system of damped, driven particles that are con-
Over the last decade there has existed considerable intefiected to their nearest neighbors by springs and that also
est in the dynamics of ladder arrays and the similar but nOéxperience a sinusoidal external poter’ﬁm},24]. One of its
identical parallel arrays of Josephson junctions. Both experipriginal manifestations was in studies of dislocations in crys-
mental and theoretical work has been done by nfdRyl8  5is and in that contexzero damping and zero driving foice
in an attempt to understand the rich behavior such nonlineaf is known as the Frenkel-Kontorova modés). For de-

modeled by the discrete sine-Gordon equatio nction (RCSJ model [27]. It has been argued that the
[4.11,12,14,15,19-72As part of this work, we have been RCSJ model is equivalent to the DSG equation in the limit of

studying the so-called whirling mode solutions to the dis_smaII spatial variations of the superconducting Josephson

crete sine-Gordon equation. It is easy to understand how th%has_e_dﬁferences along the .Ia(.i(ﬂérl.Z]..As a result .OT this
adjective “whirling” is appropriate when one considers acondmon on the phase variations it is not surprising that

common mechanical analog of a Josephson junction arraj’oSt previous work with the DSG equation as applied to

namely a damped, driven set of pendula with nearest neighlSephson ladders and parallel arrays has focused on the
bors connected by torsional springs. In such a system on@ighly underdamped limit, corresponding to McCumber pa-
quantity of importance is the angle of the pendulum’s rotatfameters B.=2el.R°C/%, wherel, R, C are a junc-
tion ¢, and the whirling mode describes the situation intion’s critical current, resistance, and capacitance, respec-
which the driving torque on the pendula is large enotigh tively) of approximately 50 or greate,11,13,14,20,21
the presence of gravityto allow them to execute complete Nevertheless, it is natural to ask how well the DSG equation
rotations about their supports. It turns out that the simpledescribes the dynamics of the RCSJ model, well known for
equationg = wt then describes a particular pendulum’s an-being an accurate predictor of the behavior of actual arrays
gular displacement with respect to time, wherds an an-  of Josephson junctions over a wide range of parameters, for
gular velocity. In the language of the original Josephsorsmaller values of3., for example for3.=<20.
junctions, this behavior occurs when the bias current driving In this paper we report on a comparison of the dynamics
the array is greater than a typical junction’s critical current.of the DSG equation with that of the RCSJ model for a
The stability of such a solution will be part of the focus of ladder array of underdamped Josephson junctions in the
this paper. whirling regime and for McCumber parameters in the range
1<B.=40. Specifically, our geometry is shown in Fig. 1.
The junctions parallel to the axis (the horizontal junctions
*Present address: Washington University, St. Louis, MoOhave a critical current.,, while the vertical junctiongpar-
63130-4899. allel to they axis) have a critical currenit, . All other junc-
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Ig_, 1 - 2 sible for the phase locking. The organization of the remain-
-~ der of this paper is as follows. In Sec. Il we describe the
numerical calculation of the Floquet exponents as based on
X the RCSJ model. Section Il describes the dynamics of the
discrete sine-Gordon equation in more detail and discusses
the analytic calculation of the Floquet exponents from the
Ip +y equation. Finally, in Sec. IV we compare and contrast the
results for the exponents from the two models.
X |_ +x
Il. RCSJ MODEL
It is expedient to use a system of dimensionless variables
Ip Ay for the subsequent calculations. Let the characteristic time
\ scale for a junction b&,=%/2el.,R, so that we can define a
dimensionless time variable=t/t.. The dimensionless dc
X a bias current entering or leaving noflés ig j=1g;/l.x. Re-
ferring to Fig. 1, conservation of the charge at flie node
Is J yields
7 8
FIG. 1. Geometry of the ladder array of Josephson junctions. . . . d
The horizontal junctions, along the rungs of the ladder, are parallel gt % icji SIN(6;— 6i) + E.(aj — 0
to thex axis, while the vertical junctions are parallel to thaxis.
This figure depicts a ladder witki= 3 cells and eight nodes, four of g2
which are explicitly labeled. A dc bias curreng, is injected at +,3c_(9j —6,) |=0. 1)
each node on the left side and extracted from the right sade. dr?

denotes the dimension of each cell. We assume periodic boundary
conditions along the long direction of the ladder, so that in this ) ) ) )
figure nodes 1 and fand 2 and Bare actually the same. Here 6; is the superconducting phase at ngdeand i j
=l j/l¢x is the dimensionless critical current of the junc-

tions parameters, e.g., resistan@® and capacitanceQ) tion between nodegandk. The sum runs over all nearest-
are assumed identical. A spatially uniform, dc bias curkgnt _nelghbor nodes th We allow for critical current a.nlsotr.opy

is fed into the horizontal junctions on the left and extracted” that!cx andlcy need not be equal. In fact we will define a
from the right side. The long direction of the laddemey  Mmeasure of the critical current anisotropy {agEley/Zl cx-
direction is constrained by periodic boundary conditions. The McCumber parametg8. was defined in Sec. I. The
The number of cell§plaquettesof the ladder is denoted by &rray is not subjected to any external magnetic field. Equa-
N: typically we have studied ladders witt ranging from 5 tion (1) is combined with the standard Josephson voltage

to 30. expression for nodg
We consider phase-locked solutions for the horizontal
junctions, by which we mean a solution in which the hori- P
_ J

zontal junctions have identical voltage versus time plots. Our
numerical algorithm initializes the superconducting phases at
the nodes of the ladder randomly, and it is easily determined

that the voltages, which are periodic in time, have indeethiCh if we define a characteristic voltaye=1,R, can be
synchronized, i.e., phase locked, within a relatively few pe- o

; o . F=written in dimensionless form
riods. To test the stability of phase-locking to mechanical

perturbations, we calculate the Floquet exponésée Sec.

II) for these solutions. We do so both numerically for the \Y

RCSJ model and analytically for the DSG equation. For the Vi=y T dr 2
ladder sizes considered in detal€ 10, 15, 20, and 25the ¢

exponents calculated for the two models agree quantitatively

for B.=10, and perhaps surprisingly, agree at least qualitawe have solved Eqs(l) and (2) numerically using the
tively even for smallep. (see Fig. 7. The results also show fourth-order Runge-Kutta method, witdimensionlesstime

a possibility of “tuning” the stability of phase locking in the steps ofA 7=0.001. Typically, the code was run for at least
array in that the minimum Floquet exponent clearly showsa time of 74, =400 to allow the horizontal junctions to
nonmonotonic behavior for decreasigg with a peak(sig- phase lock. Then the Floquéstability) analysis was per-
nifying the most stable phase lockingccuring at a certain  formed, which we now describe.

“crossover” point, 8% (N), that is a function of array size. Suppose thab;(7) is a solution to Eqgs(1) and(2). We
Furthermore, the analytic result for the Floquet exponentperturb the phase at nodleoy an amounty;(7) so that the
(from the DSG equationgives us a physical picture to de- new phase i9;(7) = 6y;(7) + 7;(7). Linearizing Eq(1) with
scribe, at least partially, the dynamics of the ladder responrespect toz;, we arrive at the following:

17 2e dt’
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FIG. 2. Magnitude of the minimum Floguet exponent versus theof anN=5 ladder as a function of time for two different values of

McCumber parameter for four different ladder sizes. The bias curﬁc‘ Irflk/)%s ;lflrrer;t Waj%:S’_ a_ndl;[he cr(;ﬂca! CL:jrr(Ienttr?mlsotropy
rent was fixed aig=10, and the critical current anisotropy was wasA = - All voltages are initially randomized. In the large

A=1/\2. The exponent shows nonmonotonic behavior as a func$3s€ B.=15) the ap_proach_ to phase locking shows charapteristic
tion of B, with a maximum atg* (N), which is a function of underdamped behavior, while f@gt,=0.1, the decay of the signal
) ¢ (N),

ladder size. The value g8*(N) marks a crossover from under- appears to be overdamped. In both cases, the signals also exhibit a
N C

damped B> 8% (N)] to overdamped behavidB.< 8% (N)]. t:rlgzt;‘:jequency oscillatory behavior with which we are not in-

d
> [ic,jk cog Oo; — o) (17— 18 +d—( 7= M) —Re(\minte) VersusB, forig=10, A=1/\/2 (correspond-
0 T ing to I,=1.y) and several values df. There is a general
trend for decreasingd. of increasing stability(as demon-
=0. (3 strated by a growing magnitude of the Floquet exponent
down to a crossover value of the McCumber parameter,
Bz (N), which is dependent upon ladder size. For decreasing
- below g% (N), the phase locking takes increasingly longer
o recover from a mechanical perturbation. As is clearly seen
from the figure, this crossover behavior of the stability is a
sharp function of3.. Furthermore, above the crossover
T [Bc> B (N)], the Floguet exponent has a simple form,
T+ t_) =pni(7), (4)  namely Ref mintc) = — 1/28., which holds for all the ladder
¢ sizes and bias currents we have lookedat long as the

where is a (possibly complexnumber called the Floquet ladder is in the whirling regime, of course _
multiplier. We are interested in the case whgm<1, which The peak in the exponent, observed in Fig. 2 for a given
corresponds to perturbations that diminish with time. ofladder size, implies behavior similar to that of a classical

course|>1 denotes instability in that perturbations grow d@mped oscillator, in which the case of critical damping
over time, and the special case |af|=1 is called neutral 91VeS the largest decay constant compared to both the under-

stability. There is a corresponding Floquet exponent, damped and overdamped cases. This comparison with a
which is related to the Floquet multiplier by damped oscnlator_ is worthy of e_Igboratlon. It is well k_nown
[30] that the solution for the position as a function of time of
w=eT=el (o), (5) a classical, damped harmonic oscillator in the absence of a
driving force decays most rapidly when the damping param-
The condition|u|<1 corresponds to R&j<0. We can eter (representing the amount of friction in the sysjeim
think physically of the exponen{®r multipliers as describ-  tuned to the special value corresponding to critical damping.
ing the stability of the characteristic modes of the arsaly. If one were to plot the decay rate of the solutions for this
least one of these exponents must equal zero, which is &ystem(i.e., the coefficient of the time variable in the argu-
result of the invariance of Ed1) to a time translation. Ex- ment of the exponentighs a function of the inverse of the
cluding the exponent of zero, we are interested in the remairdamping parameter one would observe a peak in the decay
ing exponent ofsmallest magnitudg\ ,in|, as that tells us rate for the case of critical damping. We are arguing that the
by what factor the longest-lived mode of the array dedays peak observed in Fig. 2 for a givew is analogous to this
grows in one period after a perturbatig29]. classical behavior. Furthermore, the comparison of our sys-
We have performed a stability analysis for ladders of sizaem with classical damped oscillators is strengthened by Fig.
N=10, 15, 20, and 25 with £ 8.=<40 and bias currents 3, which plots thedifferenceof the voltages across the top
from about 2., to 20 .,. Consider Fig. 2, which shows two horizontal junctions in a ladder witN=5, iz=5, and

d2

+ﬁcﬁ(7lj_77k)

Because the coefficients of thg are periodic, with period
T/t in dimensionless units, we can apply Floquet's theore
[28], which tells us that there exist solutions to E8). of the
form

7]
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TABLE |. The Floquet exponents obtained from a numerical 0.12
solution of Eq.(3) for a ladder withN=5, iz=10, andA = 1/\/5. .
There are 18 characteristic modes of such an array, each mode 0.0 . * i=2
having a corresponding Floquet exponent. The exponentg for H m i=5
=1.1(underdamped regimend .= 0.7 (overdamped regimeare H . A =10
shown. 3 008+ . | . v =20
5 a® "
g & e .
Re(\ty) for B.=1.1 Reft,) for 8.=0.7 = i .
= o6 ©® .
0.0004 —0.0003 * .
—0.4543 —0.5432 .
0.04 4 -
—0.4543 —0.7139 . |
—0.4543 —0.7139
—0.4543 —0.7139 0.02 T v
—0.4543 ~0.7139 o s 10 18
~0.4543 ~0.7139 P,
—0.4543 —0.7139 FIG. 4. Magnitude of the minimum Floguet exponent versus the
—0.4543 —0.7139 McCumber parameter for ad= 15 ladder and for four different dc
—0.4543 —0.7139 bias currents. The critical current anisotropy was 1/y/2. Except
—0.4543 —0.7139 for ig=2 in the region8.<2, the exponents are independent of the
—0.4547 —-0.7139 bias current.
—0.4547 —0.7143
—0.4735 —0.7143 currents. There is some observable deviation for s@afbr
—0.4735 —0.7361 ig=2, presumably because of the proximity of the boundary
—0.4900 —0.7361 to the whirling regime(i.e., we are neaig=1). We see
—0.4900 —0.9631 similar behavior for other size ladders. Figure 5 shows the
—1.4392 —2.3104 dependence of the minimum Floquet exponent on the critical

current anisotropy\ for three different ladder sizes. All re-
sults are forig=10 and 8.=20. Here the dependence on
A=1/\2. The characteristic shapes of the two curves ar@nisotropy is flat forA greater than some crossover value
clearly reminiscent of underdampe@/=15) and over- thatis dependent on ladder size; (N), and then the expo-
damped (.=0.1) behavior with some “high” frequency nents drop rather sharply towards zero. Ror A*(N) we
oscillations superimposed. Also, the nonmonoticity of thehave the typical underdamped result that RKRgftc)
exponent’'s dependence @ seen in Fig. 2 suggests, at least = — 1/28., independent oN andig for all values of those
in principle, the possibility of tuning the value @ to con-  parameters that we have tried. The fact thaRe(\ pintc)
trol the degree of stability of the array. —0 for sufficiently smallA is easy to understand. As we

To offer the reader a better feeling for the numerical re-shall see in the context of the DSG equatidn,is also a
sults obtained in our stability analysis, we include a table ofmeasure of the coupling between a horizontal junction and
all the Floquet exponents calculated for an array with

=5, ig=10, A=1/J2 and two different values oB.. 0.030

The details of the numerical procedure used to calculate the

exponents is essentially the same as that described elsewhe 00251 S P ssamasszazsnaae
[31]. For a ladder withN cells and periodic boundary condi- e "

tions, there are 2(2—1) coupled first-order differential ~__ o.0201 . R

equations to be solved numerically. Correspondingly, there- .

are 2(N—1) Floquet exponents for a given set of circuit £ 0.015 . e N=10
parameters. The first column of Table | shows all 18 expo- & * a N =15
nents of a five cell ladder witi8,=1.1, which satisfies the oo+ P s N=20
conditionB.> B (5). We sedhere is one exponent approxi- ° 4

mately equal to zero, as expected and as explained above  c.005 4 "a

We also note the exponent with a value ofLl/28; has a ot

high degree of degeneracy. The second column shows al 0000 4> X . . . .
exponents forB.=0.7, which corresponds t@.< g5 (5). 0.00 0.25 0.50 0.7 1.00
Other than the exponent dapproximately zero and the A

highly degenerate gxponent of1/28., we al§0 note the FIG. 5. Magnitude of the minimum Floquet exponent versus
appearanc_e O_f a single exponent of magnitude Ie&_“,s tharpritical current anisotropy for three different sized ladders. The Mc-
1/28.. Th.IS signals the crossover from underdamping tocmper parameter wag,=20 and the dc bias current wag
overdar_nplng has_ occured. =10. The exponent equals 1/283. independent oN and A for A

In Fig. 4, which plots —Re(\minte) versusS. for N greater than some crossover valie,(N), which is dependent on
=15 andA =1/\/2, we see that the minimum Floquet expo- ladder size. For\ <A*(N), the exponents quickly drop towards
nent is independent of bias current over a wide range ofero.
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its nearest-neighbor horizontal junctions. Agets small we
are approaching a limit oN independent junctions. In that
case, a mechanical perturbation applied to a given junctior 1+
cannot decay by in turn perturbing a neighboring junction
and thereby propagating along the ladder. Thus, as is geners
ally the case with a set of independent oscillators, we expecé’,
to see evidence of neutral stabiliti ;,—0), which is in- &
deed the observed behavior. 3
<

Ill. DISCRETE SINE-GORDON EQUATION

Kardar[12] first introduced the ladder of anisotropic Jo- 04
sephson junctions as a system whose dynamics could b ' ' ' r
modeled by the discrete sine-Gordon equation. Since then 200 300 400 500 600 700
several groups have worked on the dynamics of the DSC T
equation as applied to ladder arrays and parallel arrays
[4,11,14,15,20,2]1 For example, van der Zant and collabo- (b)
rators[13,14] fabricated and studied so-called ring arrays, 14 Be =1
which are examples of parallel arrays that are similar but not
identical to ladder$32]. With an eight cell ringA?~3, and =
B:.~50, they measured resonance steps inltheharacter- ®
istics of their arrays. They were able to explain the steps;;
within the context of the DSG equation by focusing on so- |
called parametric instabilities of the system, in which the &
whirling modes can become unstable by exciting “phonons”

[33] in a kind of positive feedback loop. By contrast, the
values ofig, B., andA used in our simulations do not place
us near to such instabilitigsee Sec. IV.

We wish to see how well our numerical results for the 260 250
Floguet exponents for Josephson ladders, based on the RC!
model, are in agreement with what the DSG equation yields.
Itis important to understand that agreement between the two G, 6. Differencein the superconducting phase difference be-

models is expected to breakdown As is decreased suffi- tween neighboring horizontal junctions versus time forNsa 10
ciently, since(as we approach the overdamped limil;  ladder withig=10 andA =1/y/2. In both plots, the phase difference
—0) the Josephson phase differences across horizontal jungeross the first junctiogp; was mechanically perturbed at 200.
tions can vary appreciably along the ladder. The physics ofa) The difference between the phase differences for the first and
this statement is worth discussing. To do so, it is useful tesecond, and sixth and seventh, junctions are showrsfer100.
change slightly how we label the junctions in the array. Now,We see that the perturbation travels from the first junction to the
let j index only thehorizontaljunctions(along the rungs of sixth and seventh junctions in a time interval of roughly~ 300,
the laddey, and let; represent the superconducting phaseand that the amplitude of the perturbation still has measurable size
differenceacross theth junction, that is, using the notation _by the_time the sixth junction is reachgtl) The same difference as
of Fig. 1, ¢,= 6, — 6,. Consider Fig. 6, which plots theif- in (a) is plotted,_ but_ now forB.=1. We see that a per_turbatlon
ferenceof the phase differences across junctions one an&,retit?d att. thedf|r§t J““Ct"t),“ :[‘f‘l_sh ”3 atlppreuablel mla?nétl;de El‘ttthe
_ : : : . sixth junction during any time[The data were calculated for plo
tsvé?,érfl%?%fnsegﬁssimz ?g?n;ti/eaorcgjnnci‘gggzrjsl);qtand (l_J) for 7 up to 7(_)0, b_ut the scale of t_he hprizontal axis is as shown.
—200, the phase difference, is mechanically perturbed, since the onlly time interval where junction six shows any distur-
_p 1 bance at all is forr near 210}
and by looking at the two plotgh; — ¢, and ¢g— ¢, we can
get a feeling for how the perturbation travels along the lad-intuitive picture of the dynamics than does the RCSJ model.
der. In Fig. &a), which is calculated foB.=100, there is The details of the analytic calculation of the Floquet expo-
clearly a time lag for the perturbation to reach junctions sixnents from the DSG equation follow.
and seven, but the disturbance still has a measurable ampli- In the context of the DSG equation, the role of the vertical
tude when it does reach those junctions. In Figp) 6which  junctions is to provide the coupling for a given horizontal
corresponds tg8.=1, we see that the disturbance is essenjunction with its nearest-neighbor horizontal junctidgl].
tially completely damped before reaching junctions six andt turns out that the strength of this coupling is measured by
seven(Also note the different time scales of the two graphs. the quantityA>=1.,/2l,, whereA is the same critical cur-
Clearly, Fig. 6b) shows a large variation between the behav-rent anisotropy parameter defined in Sec. I. Using our new
ior of junctions one and six, for example. It is this spatial labeling scheme for the horizontal junctions, the DSG equa-
variation, evident for smalj3,, that we expect the DSG tion takes the following form in dimensionless units:
equation to.be unable to despribe quan;itatively. Neverthe- 2¢ do,
Igss, we claim the DS_G eq_uatlon may still be useful t_o con- . [ —'+sin(¢>-)—A2V2<b-+iB=O, (6)
sider even forB.~1, since it offers us more of a physically d2 dr J '

11
-2 0

I
I
|
— -
[Tl
_@ o
—
11

T
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where Vngj =¢;+1—2¢;+ ¢;_1 is the discrete Laplacian which has the standard form of a Mathieu equation. Note that
and where all distances are measured in terms of the cell sizbis equation can be written in the general form

a (see Fig. 1
A stability analysis of Eq.(6) leads to the damped dax |
Mathieu equation, as shown by Watanabe and co-workers @_P(T )X, (12
[14,20,21. One lets¢;= ¢+ 7; and linearizes the DSG
equation with respect tg; . The result is where
d?n; dy, dp
——+ —+[co )17 —A%V25=0. (7) -
Be 4.2 dr [ 5(¢OJ ]77] 7; x=| dr
Since we are interested in the whirling regime we consider Pm

ig>1. Then the junction voltages have a well defined perioda
T and, as can be verified from the numerics, we can write th

unperturbed phase differences as
t_) =wT, Pm(TI):e()\mtc)TlQm(T,)i (13)
Cc

2 2
e[l
_ ) ) whereQ,(7") is a periodic function with the same period as
wherew is a.dlmensmnless an.g.ular frequency. Next, we asihe coefficient matrixP('), namely 27, and {to) is the
sume periodic boundary conditiong; . y=7;, and we ex-  Fjoquet exponent for the solutions, . [Note the similarity

nd where the 22 matrixP(7") is periodic with a minimal
%eriod of 2. From Floquet's theorerf28] we know there
are solutions to Eq(11) of the form

t

pand the perturbations as a Fourier series, of the argument of the exponential to that in E§). Also
N-1 note the overbar notation is merely to indicate the Floquet

(7= Z A, (7)e2mmilN. exponents qf the “intermediate” fgnctionpm(r’)]. We

m=0 want a solution for the Fourier coefficiends,(7') that cor-

. o . _ . responds to Eq(13). Based on Eq(10) such a solution
When this expression is substituted into Ef), the Fourier \yould be
modes decouple and we have .
Am( 7_/): e()\mtc—K/Z)'r'Qm( 7_/).
d?A,, . dA, .
Be d dr

22| ™M
4A S|n2(N

+cogwT) |An=0. After restoring the original time variable= 7'/, we have

® An(7)=ete 207 (),
. . . 2 _ 2 .
It is common to make the definitiomy,=4A?sir’(amN),  from which we have an expression for the desired Floquet

where we can think of the, as frequencies of small am- eyponent for the Fourier coefficients,
plitude oscillations of an analogous pendulum sysi¢hne

so-called “phonon” frequencies, or normal mode frequen- _ K

cies. To simplify a comparison of Eq8) with the standard (Amtc)= ( )\mtc_g) . (14)
Mathieu equation, let' =w7; then, after dividing through

by B. we arrive at It remains to find a functional form forn(,t;)-

We substitute Eq(13) into Eq. (11) to get a differential

d?A 1 dA, |w3+cosr’ equation for theQ,,,
=+ Tt T |An=0. (9 q On
dr’ wBc dr’ Bcw d2 d 2
Qm+2()\ t)&+ v —K—+()\_t )2+ ycost |Q
Next, we define a set of dimensionless quantitias,  dr'2 ™ mo4 me) Y "
=1/wf;, vm=w2/0?B., andy=1/w?B. . Note that for the
our simulations of the whirling regime, we hawe>1 (see =0.

below). Also note that as long as the coupling parameser, . .
is not much larger than one and the system is highly under\-Ne use the standard Lindstedt perturbation technigis

—1/m2 : ; :
damped B.>1), all three of these quantitie ( v,,, andy) for small y=1/w?B. and arrive at the following expression
are small. for Nptc:

At this point we make the standard transformation »
, )\_tz_ii\/——v .
An(T') =€ Pp(7"), (10 e 4

which introduces the new functign,(7'). Equation(9) then ~ The expression for the desired Floguet exponent then is

becomes 5
. o K WK
2 Apte=Flo=* \lw(j—vm)—T.

Eom | + 'lpm=0 (11)
Vm— — T yYCOST |pm=0,
dr2 |'" 4 " Using the definitions ok and v, gives
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1 w2 1 We have not performed simulations with such a high degree
Amte=*io* _2__’“_ . (15) of anisotropy(or with such a large nearest-neighbor junction
4B Be 2Bc coupling. Our typical values forA, namely 0.xA<2,
) . o places us nearer to the origin of the stability diagram, which
Since stability of phase locking is signaled by Rgf:)<<0, s in a region ofstablephase-locked solutions, than it does to
we are interested in the real part of E5), which is the pointF =1/4, G=0.

We see that our analytic result for the Floquet exponent,
. (16 Eq. (19, which follows from a straightforward perturbation
method, is nearly the same form as that for the decay con-

2P
Thi it will b d with th ical Its 1 stant of a damped, harmonic oscillator with damping con-
IS result will be compared wi € numerical results 1or g, ¢ 1B, and characteristic angular frequency)(z)

the Floguet exponents from the RCSJ model. Some com-

ments about Eq16) are in order. Note that all factors of the _hw’t“/ Be .hThe. onlly d|ffei\r?'nce 'Slihi |m|z(ijgt|)nar3l/)tte'rm|daf.
angular frequency have canceled out. In fact, it can be show at such a simpie analytic resutt should be obtainec 1S per=

that in this formalism(20] =g or T/t,=2x/ig, and in- aps surprising, but it can hopefully offer us some physical

deed we have checked numerically that the period of th(j)nsight into the dynamics of the ladder, as we discuss in the

voltages across the horizontal junctions satisfies this simpIBext section. One could, in prmmple, use thg Lindstedt
expression very well over a wide range of bias currents. Thu ethod to calculate&m to the next higher o_rder iry. The
we have a simple way to keep track of the angular frequenc;f'esmtant expression Sh.OUId’ of course, deviate from(E_.E). .
it is merely equal to the numerical value of the bias current.by a sm_aII amount. [t is not clear if such a calculation is
Equation(16) implies that the Floquet exponents should beworthwhlle.
independent of the bias current, as is indeed observed in Fig.
4. IV. DISCUSSION

Note that Eq(16) can also provide the Floquet exponents
for a single junction, which follow by simply taking the limit
as A—0. Such a limit physically corresponds to zero cou
pling between neighboring junctions. In this case we o

course lose the phonon modesy, 0, and Eq.(16) gives is the largest possible magnitude exponent one can obtain

the two values of zero and 1/, for the exponent. Based on :
Fig. 2, we see that over a wide range of junction Capaci]‘rom Eqg. (16) and represents the fastest decaying mode of

. . - the array(As mentioned in Sec. Ill these are just the Floquet
tances, specificall.> Bz (N), the minimum nonzero expo- f inale i : I d h
nent for the array;- 1/28., is one-half that of a single junc- expo_gclants ora stmg N JlJt)nct(lenI;o(rja tmto esmt>0, the d
. ' ' ossible exponents can be divided into two categories, de-
tion. Furthermore, foiB.< B3 (N), the effects of them=1 P P g

. ending on whether the argument of the square root in Eq.
mode(see Sec. IYof the array are to reduce the magnltudep g ¢ q d

fthe d further bel h fasingle i .~ (16) is less than or greater than zero. We shall refer to the
ofthe decay rate even further below that of a single Junction.,qa of when the argument of the square root is (gssatey
The issue of the stability to solutions of Mathieu’s equa-

. ; " than zero as the “overdamped*underdamped’) regime.
tion has been well studied, and the results are presented in@g, ;s we have ped ped) reg

so-called stability diagrarf28]. If the generic Mathieu equa-
tion has the formd?x/dt?+ (F + G cost)x=0, then the stabil-

1
V1-4B.07,

1
Re(\pte) = — ﬁi R{

Consider the set of all possible exponents resulting from
_Eq. (16) when the normal mode index runs over its range,
f0< m=N-1. For them=0 mode, we see that the two pos-
sible values are Ret;,)=0, —1/8., where in fact—1/8.

ity diagram is just a representation, in tikeG plane, of - if 4B.02>1

those values of andG for which stable solutions exist. The Re(A ) = 2B¢

work of van der Zant and collaboratdrk3,14], as mentioned me 1 > ’
previously, studied instabilities of the whirling mode solu- ~ 25 [1xV1-4Bcwy] if 4B.0n<1.
tions near one of the so-called Mathieu tongues, in the neigh- ¢ (18)

borhood of the poinE=1/4 andG=0. Comparing our Eq.
(11) with the generic Mathieu equation we make the ObserFigure 7 offers a comparison of the numeri¢RICSJ and

vations that analytic (DSG) results for the Floquet exponents for several
5 array sizes and zero external field. The analytic results,
__Ym 1 G= 1 17) shown as line plots, were obtained by plotting, for a giygn
w’B; 4B2w? w?Be andN, the exponent from Eq18) with the smallest magni-
tude For a givenN we see from the figure that the two
Using values typical of our numerical simulations, for ex- models give ReX,;,) = —1/28. over an appreciable range
amplew=5, B.=10, andN=10, would give a value ofs of B. values. The quantitative agreement fails in the region
=0.004. To have amnstablewhirling solution, we would of the crossover valued; (N), from underdamped to over-
need the value oF to be approximately 1/4. Plugging this damped behavior. However, the two models are in qualita-
number into Eq(17) then yieldsw,,=7.91. Given that the tive agreement in that they both show that a crossover indeed
functional form of the normal mode frequencies ds,  occurs. In the case of the DSG equation, the crossover ob-
=2A sin(m=/N), and considering the long-wavelength modeserved in Fig. Afor all values ofN shown results from the
m=1 [35], gives us an approximate value for the critical long-wavelength phonon moden=1, making the change
current anisotropy needed for an unstable whirling mode soffom underdamped to overdamped dynamicsgasis de-
lution. One gets\ = 18, which corresponds tq,/l.,=648. creased. In essence, below the crossover, the longest-

w
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0.75 1
°
® shortest-lived mode (RCSJ)
0.50 - shortest-lived mode (DSG)
. g . m longest-lived mode (RCSJ)
= T ——- longest-lived mode (DSG)
=z \
| 0.25 -
0.00 -
0 5 10 15 20 25 30
Be

FIG. 8. Magnitude of both the minimum and maximum Floquet

exponent versus the McCumber parameter foNanl0 ladder with

FIG. 7. Magnitude of the minimum Flogquet exponent versus the L A
McCumber parameter for four different ladder sizes. The plots8=10 andA =1/y2. The minimum(maximun) exponent corre-

show the results for both the resistively and capacitively shuntePONds to the longest-live@hortest-livedt mode of the array. The
junction (RCSJ model and discrete sine-Gord¢BSG) equation. results from both the RCSJ model and DSG equation are shown.

For a given ladder size, there is quantitative agreement between tfgPth models show a monotonic increase in the exponerg.as
two models for a reasonable range &f values, and both models decreased for the shortest-lived mode. This may be due to the fact

show nonmonotonic behavior, with a maximum value that is depenth@t the dynamics driving this mode have not crossed over from
dent on ladder size. The lack of quantitative agreement for all valUnderdamped to overdamped behavior. The results for the longest-

ues of 3. shown reflects the different physics inherent in the modeldVed mode are the same as in Fig. 7.

and the fact that that difference becomes more pronounced at Sm%sult asB.—0. It would be of interest to calculate the Flo-
c .

quet exponents for the RCSJ model numerically in the over-
mped 3.—0) regime.
We would like to emphasize that, even though the results

.
wavelength phonon mode has become less effective at damB‘-”1

; ; *
Isnrgalcl);stt Egtl;ri?féfr;' :fena': dr:;lg;s qu;;'f rce(aNs)e,s tf;ie _ based on the DSG equation do not quantitatively agree with
9 P €8 ™9 those from the RCSJ model for gl values shown in the

ure 7 also shows that the DSG equation consistently predic% ure, the DSG work is worthwhile for a couple of reasons,

the crossover to occur at a value of the McCumber paramete[r?]e fact that both models show the crossover behatial

that is smaller than that from the numeric results. seems to suagest that thev carry similar phvsics. One miaht
From the analytic results it is easy to see that the cross- 99 Y y pRysICS. 9

. ) : h f hat in th [imi =2)th
over point, Bz (N), increases abl increases. The crossover Indeed have feared that in the smalllimit (say,5.=2) the

| hen th i 6 shes. i h two models might have differed even more than Fig. 7
results when the square root in H46) vanishes, i.e., when g0\ Also, the analytic result, with its overdamped and

1 underdamped regimes, offers a simple way to think about the
BX(N)= —. physics of the array that hopefully offers some insight into
o, the dynamics of the RCSJ model as well.
) Figure 8 simply shows that, foN=10, ig=10, andA
Clearly, for any value ofn, wy, decreases adincreases, and  —1/,/2 the analytic and numerical results are in reasonable
thus B¢ (N) should increase. Physically, as the ladder lengttagreement for the shortest-lived mode of the arfaith a
increases, why doesn't it take as much dampgrgjunction  stability determined by what we could call,,, as opposed
for the longest-lived mode to crossover to overdamped ber ) .;) over an even larger range @ values than for the
havior? Simply put, the more junctions one has available thgongest-lived mode. This could be due to the fact that the
more elements in the array there are absorbing energy. Thighortest-lived ladder modes are dependent on the higher fre-
each junction does not have to absorb as much energy Quency lattice normal modes, the,, with m>1. These
have the same overall effect on the damping in the ladder agigher frequency normal modes simply have not made the
in a shorter array. Note, also, that our analytic result tells ugrossover from underdamped to overdamped behavior for the
that in the limit of an |nf|n|te|y |Ong ladder the crossover values OfIBC shown in the ﬁgure_ In fact’ for the values Mf
point 8% (N) also approaches infinity. In such a limit, evi- and A used to produce the plots in Fig. 8, the DSG equation
dently, all the modes of the ladder must be considered to bﬁlOU'd predict them=2 mode to crossover at a McCumber

in the overdamped regime. parameter of 0.36, clearly smaller than the smal@stised
It is interesting to consider the limit of Eq18) for B, in the simulations.
—0. One findsRe(At) = — w, in this limit. For the values Figure 9 compares RR(,.t.) for the two models as a

m=1 andN=10, say, a quick check of Fig. 7 shows that thefunction of the critical current anisotropy for a fixed damping
analytic result does indeed approach the expected value, i.&f g,=20. Based on Eq.(18) and the fact thatw

- wi. It is also clear that the corresponding results from the=2A sin(m#/N), we see that tuning the anisotropy can affect
RCSJ model are approaching a finite value less than the DSthe crossover from underdamping to overdamping. Analyti-
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0.030 cally, such a crossover should occur at
0.025 1 f
* = S E——
. 00204 A*(N) o5 a1 mw)' (19
4 PesSIT| N
é 0.015
i

This result makes it clear, mathematically, why the crossover
increases abl increases, as is clearly observed in the figure.
And above the crossover, of course, we have\Rgft.)
=-—1/283., independent ofA, as expected. As discussed
with respect to Fig. 5, physically one expeots,;,—0 as
A—0. Mathematically, we can see from E{.8) why this
behavior is observed. A4 —0 clearly 4,80wr2n<1 and the

FIG. 9. Magnitude of the minimum Floquet exponent versussqi"/";re l()l(/); appr]?achheks] unlty: Thus we lglave )\R?}%)Th
critical current anisotropy for three different ladder sizes. The Mc- Be* . B, © W_'C Z€ero |s_0ne possible resuit. The
Cumber parameter wag,=20, and the dc bias current wag other possible result is-1/8., which represents the expo-

=10. Shown are results both for the RCSJ and DSG models. ~ Nént for the shortest-lived mode.
Figure 10 shows the Floquet exponent’s dependenck on

(a) o030 for two widely different values of3.. The larger discrep-
ancy between analytic and numerical results would be ex-
pected for the case of the smallgx. The analytic result is
easy to understand from Eq48) and(19). The error bars on
the numerical results fo8.= 100 arise because of an inter-
esting effect, which is presumably due to the low damping
per junction (3.=100) and the low coupling between junc-
tions (A~0.2). The numerical value of the exponent, in the
two cases for which the error bars appear, is dependent upon
how long the code runs to “equilibrate” the phases before
the perturbation is applied that will result in the calculation
of \. As the run time before perturbing is increased steadily,

0.010 4

0.005

0.00 025 0.50 0.75 1.00
A

0.25 <

0.20

~Re(n,; te)

0.00 T T T
0.00 0.25 0.50 0.75 1.00

for example, the numerically calculated valuengf;, varies
A smoothly back and forth between a maximum and minimum
(b) oo0s value. The results shown in Fig. 10 represent an average

Nmin Over severalaround ten different run times, and the
error bars represent the standard deviation of the mean of
these values. Similar behavior of the exponent, but not so

0.005 1

0.004 4

)

= 0.4
£ 0.003

< N=10
<) L ] =

A 0.002 -
| 0.3 = N=I5

0.001 4 4 N=20
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FIG. 10. Magnitude of the minimum Floquet exponent versus

critical current anisotropy for aN=10 ladder andg=10. Results 0 5 10 15 20

are shown for both the RCSJ and DSG modéds corresponds to B,

B.=2. We would expect a larger discrepancy between the two

models for the case of smallg, . (b) corresponds t@.=100. The FIG. 11. A comparison of the magnitude of the minimum Flo-

error bars on the results from the RCSJ model for the smallest twguet exponent versus the McCumber parameter as calculated for the
values ofA are a consequence of the fact that the numerical valugliscrete sine-Gordon equation in two different ways: analytically,
of the exponent is a weakly periodic function of the run time of thebased on the Lindstedt method and resulting in @6), and nu-
computer code. Those two data points represent an average oveerically, based on Eq®) directly. These results correspond to
many different run times, and the error bars give the standard deé=10, A=1/\2, and four different ladder sizes. Agreement be-
viation of the average of the results. tween the two sets of solutions is excellent.
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pronounced, was observed for some other valueS.cind  qualitatively for 8.—1 and A—0. The analytic result
A, but the resulting error bars were never larger than the sizbelped us to understand that perturbations to the supercon-
of the symbol itself. ducting phase differences across the horizontal junctions
Finally, as a useful check of our analytic results for the(whose lifetime is in essence measured by the inverse of the
Floguet exponents, we have calculated the exponents Floquet exponenjsare damped by the small-angle oscilla-
merically for Eq. (6) directly. Figure 11 compares the nu- tion (norma) modes of the lattice. And like a simple, classi-
meric and analytic results for the exponents of the DSGcal harmonic oscillator with damping, each normal mode has
equation forig=10, A=1/\/2, and four different ladder a crossovefas a function of some parameter suchgasor
sizes. The agreement is clearly excellent, even for “small”A) from underdamped to overdamped dynamics. Such cross-
junction capacitances3.<1. Equation(16) truly does de- over behavior is clearly visible in the plots of Rg(itc)
scribe the decay rate for perturbations to the solutions of EqversuspB. and Red inte) versusA. The peak in the Floguet
(6) in the whirling regime, at least for the longest-lived mode exponent for the longest-lived ladder mode as a function of
of the array. the McCumber parameter is intriguing in that it speaks of the
opportunity, at least in principle, to contr@, such as to
optimize the stability of the phase-locked solutions. Such a
V. CONCLUSION capability may be useful to applications-oriented researchers.

We have studied the dynamics of a ladder of Josephson
junctions via the RCSJ model and the DSG equation. We ACKNOWLEDGMENTS
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