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Correlated molecular-field theory for Ising models
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The critical temperatureTc of Ising models is obtained quite accurately by simple improvements over the
standard molecular-field theory. The important physical effect we include is that the effective field of neigh-
boring spins is influenced by the spin state of the central spin. When used in combination with a self-
consistency condition, this correlated molecular-field theory leads to estimates ofTc more accurate than those
obtained from the Bethe-Peierls-Weiss approximation.

PACS number~s!: 05.20.2y, 05.50.1q, 75.10.2b
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I. INTRODUCTION

Decades have passed since introduction of the Is
model@1# for magnetic phase transitions. The exact solut
in one dimension~1D! by Ising @1# exhibits no phase transi
tion at a nonzero temperature. In two dimensions, the e
critical temperatureTc for the square lattice Ising model wa
obtained by Kramers and Wannier@2#. In his famous work
shortly afterwards, Onsager@3# determined the free energ
exactly. Other exact results, includingTc , have been found
for honeycomb and triangular lattices@4–6#. For other lat-
tices and higher dimensions there is no exact calculation
Tc , however, various forms of molecular field theory@7#
have been applied and improved upon. In this work
present a simple, physically motivated modification
molecular-field theory that gives reasonably accurate e
mates ofTc .

In magnetism the molecular or mean-field~MF! approach
originally used by Pierre Weiss@8# was very successful a
showing the transition to a magnetically ordered state
Heisenberg and Ising models at a nonzero transition t
peratureTc . However, the usual mean-field approach can
shown to be equivalent to having each site interact
equally with all other sites; its prediction of critical temper
ture is not very accurate. Physically, having a particular s
interacting equally with all others of the system ignores b
the presence of a finite correlation length and the strong fl
tuations nearTc . MF theory has other faults; it can predict
phase transition at finite temperature in the 1D Ising mod
an impossibilty not present in the exact solution. Being
high-temperature and local theory, the MF approach does
produce the correct decay of the magnetization as expe
from spinwave theory (T3/2 Bloch law @9#! at very low tem-
perature. The influence of physically important effects n
Tc have been evaluated at length via the renormaliza
group approach due to Wilson@10#, Fisher @11#, Kadanoff
@12#, and others. Despite its known limitations, it is still in
teresting to consider how to improve the MF approach a
see whether it is possible for it to include, at the very lea
some local correlation effects.

This is a subject with a long history; here we can ment
some of the more notable approaches. The book by Sm
PRE 611063-651X/2000/61~6!/6399~5!/$15.00
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@13# gives an excellent review. Significant improvements
MF theory were achieved by Bethe@14#, who developed a
procedure to analyze exactly a small cluster of spins near
central one, and then the interaction of the edges of the c
ter with the rest of the system is effected by a mean fie
Bethe originally developed the procedure for an ord
disorder model; it was applied to the Ising model by Peie
@15# and the Heisenberg model by Weiss@16#. The Bethe-
Peierls-Weiss~BPW! approach includeslocal spin correla-
tions and fluctuations, and details of the type of lattice,
yond the effects of the coordination number,z. To obtain a
solution, a self-consistency condition is imposed: the me
values of the spins in the cluster~the central spin and som
set of neighbors! must all be the same. This condition dete
mines the mean-field due to the spins outside of the clus
In principle, this cluster approach can be carried out to lar
and larger clusters, resulting in a sequence of improvedTc
estimates. In practice, however, it is difficult to calcula
exactly beyond a few nearest neighbors.

Oguchi @17# applied a correction originally used by Va
Vleck @18#, by considering an interacting pair in the mea
field of its surrounding sites, however, the method gives li
improvement over the MF approach in the estimate ofTc . A
more systematic approach for correcting the MF theory
been developed by Callen@19,20# and co-workers, using a
diagrammatic expansion method. The zeroth order appr
mation in this scheme recovers the MF results, while the fi
order approximation tends to underestimateTc for Ising
models. More recently, Mattis@21# considered an Ising
model where each spin is subjected to the entire distribu
of all allowed values of the molecular field, based on ide
due to Marshall@22# and Klein and Brout@23#. The scheme
does not predictTc as accurately as the BPW approximatio

Thus we are interested in other MF approximations t
include correlation of the neighbors to the central spin a
total self-consistency. Here we present a simple impro
MF calculation where the molecular field acting on a cent
spin is allowed to depend on the state of the central s
While this type of effectis included in the BPW approxima
tion, the approximation we present is much simpler a
gives estimates ofTc better than the BPW approximation fo
most lattices.
6399 ©2000 The American Physical Society
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For Ising,XY, or Heisenberg models, characterized by
number of spin componentsn51,2,3, respectively, the On
sager reaction field~ORF! theory @24# is another approxi-
mate method that includes correlation effects. A clear rev
of the ORF method is given by White@25#.

Before presenting our modified molecular-field approa
we summarize the procedures and results of the BPW
ORF methods, for later comparison of results.

II. THE BETHE-PEIERLS-WEISS APPROXIMATION

The Ising Hamiltonian under consideration is

H52J(
( i , j )

s is j , ~1!

where the sum is over near-neighbor pairs on some latticJ
is the bond coupling strength, and eachs i takes values61.
In the lowest approximation due to BPW, thez nearest
neighborss i8 of a sites i do not take on the mean-field va
ues. Instead, the second nearest neighborss i9 have the mean-
field values, the nearest neighbors are allowed to take on
values61 and are treated exactly. The constraint that
averageŝs i& and^s i8& must both give the same value lea
to the prediction for the critical couplingbc[J/(kBTc),

cothbc5z21. ~2!

The result is only a function of the coordination number a
is a surprising improvement over the mean-field result,bc
5z21. For the 2D square lattice Eq.~2! gives kBTc /J
52.885, compared with the mean-field result,kBTc /J54,
and the exact resultkBTc /J52.269 . . . from Onsager’s
equation@3# sinh 2bc51. There are corresponding~lesser!
improvements for other lattices with higher coordinati
number, these are summarized below after we discuss
improvements to the standard mean-field approach.

III. ONSAGER REACTION FIELD CORRECTION

In the ORF calculation~see Ref.@25# for more details!,
the spin at a chosen site interacts with the mean-field redu
by a ‘‘reaction field’’ that depends on the spin at that s
@24#. The idea is that the mean-field is strongly determin
by the polarization of the central spin being considered, s
essence one should subtract this reaction part to avoid co
ing a self-interaction part. The reaction field is determin
self-consistently, with the calculation realized in wave vec
space. The ORF procedure depends on a Fourier transfor
the spin fields i into the reciprocal space quantity,sq . As
such it includes effects dependent on the coordination n
berz, the number of spin componentsn, and the actual lattice
structure. For reference, the ORF theory predicts the crit
temperatureTc as

kBTc

J
5

z

nI
, ~3!

where the constantI is given from a q-space sum forN sites,

I 5
1

N (
q

1

12J~q!/J~0!
, ~4!
e
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and J(q)5( j Je2 iq•aj is the Fourier-transformed exchang
interaction ~sum over displacements to nearest neighbo
aj ). From sums over the appropriate Brilluoin zones, the v
ues of I are 1.516, 1.393, and 1.345 for sc, bcc, and
lattices, respectively. When applied to the Ising modeln
51) in three dimensions, one getskBTc /J53.957, 5.742,
8.924 for sc, bcc, and fcc lattices. The ORF procedure, h
ever, does not work in one or two dimensions, where the s
I diverges. Also, there are modifications necessary to ap
ORF to lattices with a basis@26#. For the diamond lattice
using the underlying fcc lattice with a basis, one getsI
51.79288 andkBTc /J52.2310.

IV. CORRELATED MOLECULAR-FIELD THEORY:
NEIGHBOR CORRELATIONS

Here we consider an even simpler idea to modify a
improve the standard MF theory for Ising models, that
refer to as ‘‘correlated field’’~CF! approximation. The cal-
culation is carried out in real space. A central spin direc
influences the mean-value of its nearest neighbors, wh
then act back on the central spin, similar in spirit to t
Onsager reaction field. Thus, it is reasonable to set the
lecular field of the nearest neighbors to be twodifferentval-
ues, say,m1 andm2, depending on whether the central si
has values11 or 21, respectively. With this ‘‘correlated
neighbor field,’’ the correlated-MF Hamiltonian for a give
spin s i can be written

HMMF52s iheff , ~5!

where the effective field due to itsz nearest neighbors is
taken as

heff5zJ~ds i ,1
m11ds i ,21m2!. ~6!

The delta functions constrain the neighbor-field to the diff
ent valuesm1 andm2 according to the value of the centra
spin s i . The neighbor fieldsm1 and m2 are determined
self-consistently in this theory, below. Averaging over t
values61 of site i, with this Hamiltonian, gives

m[^s i&5
ebzm1

2e2bzm2

ebzm1
1e2bzm2 , ~7!

whereb[J/(kBT) is the inverse temperature.
Now suppose the average value of one of the nea

neighbors (s j ) of site i is evaluated, separately for the tw
cases,s i511 ands i521. There are (z21) near neigh-
bors of sitej which are second nearest neighbors to sitei, and
we can suppose in a first approximation that they take so
mean magnetization value,m. This is reminiscent of the
BPW approximation. The average values ofs j , depending
on whether sitei is 11 or 21, are

m15^s j&us i5115tanhb@~z21!m11#, ~8!

m25^s j&us i5215tanhb@~z21!m21#. ~9!

Substitution of Eqs.~8! and ~9! into Eq. ~7!, followed by
expansion form!1, which is the limitT→Tc from below,
leads to
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coshbc5Az~z21!bc . ~10!

The equation gives a modest improvement over the stan
mean-field approach. For example, applied to the 2D squ
lattice,z54, this predictskBTc /J53.312, less accurate tha
the BPW approximation, but simpler to obtain. Howev
this correlated-field approximation contains an interest
physical effect—the local neighbor fieldsm1 and m2 as
determined by Eqs.~8! and ~9! do not go to zero even fo
T.Tc , although the average magnetizationm does. Thus the
theory in some sense includes fluctuations away from
mean magnetization.

V. SELF-CONSISTENT CORRELATED FIELD
APPROXIMATION

As described above, the correlated field approximati
and Eqs.~8! and~9!, do not fully implement the idea that th
neighbor fields should depend on the central spin. Tha
the (z21) neighbors of sitej that were given valuesm
should really also be allowed to have valuesm1 or m2,
corresponding to whens j has values11 or 21, respec-
tively. This further improvement we refer to as ‘‘sel
consistent correlated field’’ approximation~SCCF!. Then av-
eraging overs j561, with s i held fixed at the values11 or
21, Eqs.~8! and ~9! are replaced by

m15^s j&us i5115
eb[(z21)m111]2e2b[(z21)m211]

eb[(z21)m111]1e2b[(z21)m211]
,

~11!

m25^s j&us i5215
eb[(z21)m121]2e2b[(z21)m221]

eb[(z21)m121]1e2b[(z21)m221]
.

~12!

As T→Tc from below, the mean magnetizationm given
in Eq. ~7! goes to zero, while the local molecular fieldsm1

andm2 remain nonzero. Their algebraic average,

D[
m11m2

2
, ~13!

however, by symmetry, must go to zero atTc . Thus it is
advantageous to expressm, m1 andm2 in terms ofD, and
make an expansion forD!1 to determineTc . One has

m5tanhzbD, ~14!

m15tanhb@~z21!D11#, ~15!

m25tanhb@~z21!D21#. ~16!

Equations~13!, ~15! and ~16! result in an equation that de
terminesD:

2D5tanhb@11~z21!D#2tanhb@12~z21!D#.
~17!

Expansion aroundD50 gives leading terms,

D5x sech2bH D1S 2

3
2sech2b D x2D31•••J , ~18!
rd
re

,
g

e

,

s,

where

x[~z21!b. ~19!

The critical temperature occurs where the linear order te
cancel, and only aD50 solution remains, leading to

cosh2bc5~z21!bc . ~20!

This equation gives a further improved estimate ofTc , ex-
cept for the lowest values ofz.

VI. DISCUSSION OF RESULTS

In Table I we displayTc from SCCF, Eq.~20!, and from
CF, Eq. ~10!, as well as the ORF and mean-field resul
together with either exact or approximate values from se
estimates@27#, for various lattices. Our CF and SCCF calc
lations almost always overestimateTc , just as the simple
mean-field prediction. In particular, for the 2D square latt
Ising model Eq.~20! giveskBTc /J52.595, closer to the ex
act result than the BPW approximation. We could also co
pare with the Mattis@21# approach, which giveskBTc /J
53.090 forz54 andkBTc /J55.073 forz56, both some-
what higher than the BPW results. The ORF calculation d
not work in 2D or 1D, however, in 3D, where it is appl
cable, it consistently underestimates the true value ofTc ,
and gives results quite close to the diagrammatic expan
of Horwitz and Callen@19#. Both Eqs.~10! and ~20! do not
give a phase transition at the 1D limit,z52, just as in the
BPW approximation.

Note, however, that atz54, the transition temperatur
from the SCCF estimate isbelow the exactTc for the dia-
mond lattice, as determined from series. For this unus
case SCCF somehow is overestimating the fluctuation eff
and thus underestimatingTc , although not by very much
However, we realize this accuracy seen for the SCCF pre
tion of the diamond latticeTc is at odds with the correspond
ing higher error for the 2D square lattice. As SCCF uses o
the coordination numberz as input, it certainly cannot accu
rately predictTc for both of these lattices simultaneousl
For the 3D lattices considered, however, it is interesting
note that the ORF calculation ofTc also is most inaccurate
for the diamond lattice; it seems to be a difficult case for
ORF approach.~The ORF proceduredoestake into account
the specific lattice structure, beyond the coordination nu
ber, but unfortunately does not work in 2D.!

Unfortunately, atz53 ~2D honeycomb lattice! the situa-

TABLE I. kBTc /J from various approximations and exact/seri
@27,28# values. Dashes indicate where a theory fails.

Lattice z Exact/Series BPW ORF CF SCCF

honeycomb 3 1.51865 . . . 1.820 - 2.220 -
square 4 2.26918 . . . 2.885 - 3.312 2.595
triangular 6 3.64095 . . . 4.933 - 5.384 4.788
diamond 4 2.7040 . . . 2.885 2.231 3.312 2.595
sc 6 4.5103 . . . 4.933 3.955 5.384 4.788
bcc 8 6.3508 . . . 6.952 5.743 7.416 6.853
fcc 12 9.794 . . . 10.97 8.932 11.44 10.91
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6402 PRE 61G. M. WYSIN AND J. KAPLAN
tion is worse: Eq.~20! has no solution and this SCCF a
proximation wrongly predicts a disordered phase for all te
peratures, whereas the CF and BPW approximations
better and still overestimateTc . For comparison, the Mattis
approach@21# gives kBTc /J52.10373, slightly better than
CF but not as good as the BPW result. Nevertheless, with
exception of these most open lattices, the SCCF approxi
tion makes notably good estimates forTc .

As expected for a mean-field theory, the magnetizat
nearTc behaves asm;(Tc2T)1/2 just below the transition.
It is interesting to note, however, that the local neighb
fields m1 andm2 do not go to zero, even aboveTc . Only
the sumD becomes zero in the disordered phase. In Fig
we show this effect forz54, which was obtained by solving
Eq. ~17! iteratively for D. For higher values ofz, similar
curves are obtained, but with smaller differences betw
m1 andm2 for all temperatures.

We can use the nearest neighbor pair correlation func
^s is j&, to calculate the internal energyU and specific hea
C, from

U52
1

2
zNĴ s is j&, C5

dU

dT
. ~21!

The needed average value is

^s is j&5
m1ebzm1

2m2e2bzm2

ebzm1
1e2bzm2 , ~22!

FIG. 1. The mean and nearest-neighbor magnetizations ve
temperature from the improved mean-field theory~SCCF! for z
54, usingD obtained by iterating Eq.~17!.
cs
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n

where we averaged over the two possibilities,s i511 with
s j5m1 ands i521 with s j5m2. Using Eq.~13! this be-
comes

^s is j&5D tanhzbD1
1

2
~m12m2!. ~23!

The internal energy and specific heat, forz54, are shown in
Fig. 2. For larger values ofz, the specific heat peak become
weaker. Note that the first term of Eq.~23! vanishes above
Tc , while the second vanishes only atT50, which leads to
a discontinuity in the slope of the internal energy atTc . Thus
there is a discontinuity in the specific heat atTc , which
maintains a nonzero value aboveTc , like the BPW results
but unlike the usual MF results.

In conclusion, this correlated-field approximation, that
cludes the correlation of the local neighbor-fields to the c
tral spin, contains a simple physical picture of local sp
fluctuations nearTc , and is able to give fairly good predic
tions of Tc for the Ising model, except forz,4. It gives
values forTc quite accurately, because both the site be
considered and it neighbors interact with a self-consiste
determined fluctuating molecular field, represented bym1

andm2, rather than a single-valued mean field. Because
its simplicity and accuracy, in the future it will be interestin
to consider whether such a picture can be applied with
success to other discrete-valued lattice models.

us FIG. 2. The internal energy and specific heat per site, from
improved mean-field theory~SCCF! for z54.
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