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Correlated molecular-field theory for Ising models
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The critical temperatur@, of Ising models is obtained quite accurately by simple improvements over the
standard molecular-field theory. The important physical effect we include is that the effective field of neigh-
boring spins is influenced by the spin state of the central spin. When used in combination with a self-
consistency condition, this correlated molecular-field theory leads to estimaiesydre accurate than those
obtained from the Bethe-Peierls-Weiss approximation.

PACS numbds): 05.20-y, 05.50+q, 75.10-b

[. INTRODUCTION [13] gives an excellent review. Significant improvements to
MF theory were achieved by Betljé4], who developed a
Decades have passed since introduction of the Isingrocedure to analyze exactly a small cluster of spins near the
model[1] for magnetic phase transitions. The exact solutioncentral one, and then the interaction of the edges of the clus-
in one dimensior(1D) by Ising[1] exhibits no phase transi- ter with the rest of the system is effected by a mean field.
tion at a nonzero temperature. In two dimensions, the exa@ethe originally developed the procedure for an order-
critical temperaturd . for the square lattice Ising model was disorder model; it was applied to the Ising model by Peierls
obtained by Kramers and WannigZ]. In his famous work [15] and the Heisenberg model by Weisk6]. The Bethe-
shortly afterwards, Onsagé¢B] determined the free energy Peierls-WeisgBPW) approach includesocal spin correla-
exactly. Other exact results, includiig, have been found tions and fluctuations, and details of the type of lattice, be-
for honeycomb and triangular latticd—6]. For other lat- yond the effects of the coordination number,To obtain a
tices and higher dimensions there is no exact calculation afolution, a self-consistency condition is imposed: the mean
T., however, various forms of molecular field thedry]  values of the spins in the clustéhe central spin and some
have been applied and improved upon. In this work weset of neighborsmust all be the same. This condition deter-
present a simple, physically motivated modification tomines the mean-field due to the spins outside of the cluster.
molecular-field theory that gives reasonably accurate estin principle, this cluster approach can be carried out to larger
mates ofT,. and larger clusters, resulting in a sequence of improvgd
In magnetism the molecular or mean-fiéMF) approach estimates. In practice, however, it is difficult to calculate
originally used by Pierre Weigs] was very successful at exactly beyond a few nearest neighbors.
showing the transition to a magnetically ordered state for Oguchi[17] applied a correction originally used by Van
Heisenberg and Ising models at a nonzero transition temVleck [18], by considering an interacting pair in the mean
peratureT .. However, the usual mean-field approach can bdield of its surrounding sites, however, the method gives little
shown to be equivalent to having each site interactingmprovement over the MF approach in the estimaté& of A
equally with all other sites; its prediction of critical tempera- more systematic approach for correcting the MF theory has
ture is not very accurate. Physically, having a particular spirbeen developed by Callgii9,20 and co-workers, using a
interacting equally with all others of the system ignores bothdiagrammatic expansion method. The zeroth order approxi-
the presence of a finite correlation length and the strong flucmation in this scheme recovers the MF results, while the first
tuations neail .. MF theory has other faults; it can predict a order approximation tends to underestimdig for Ising
phase transition at finite temperature in the 1D Ising modelmodels. More recently, Matti$21] considered an Ising
an impossibilty not present in the exact solution. Being amodel where each spin is subjected to the entire distribution
high-temperature and local theory, the MF approach does natf all allowed values of the molecular field, based on ideas
produce the correct decay of the magnetization as expectailie to Marshal[22] and Klein and Brouf23]. The scheme
from spinwave theory %2 Bloch law[9]) at very low tem-  does not predicT, as accurately as the BPW approximation.
perature. The influence of physically important effects near Thus we are interested in other MF approximations that
T. have been evaluated at length via the renormalizatioinclude correlation of the neighbors to the central spin and
group approach due to Wilsdri0O], Fisher[11], Kadanoff total self-consistency. Here we present a simple improved
[12], and others. Despite its known limitations, it is still in- MF calculation where the molecular field acting on a central
teresting to consider how to improve the MF approach andgpin is allowed to depend on the state of the central spin.
see whether it is possible for it to include, at the very leastWhile this type of effecis included in the BPW approxima-
some local correlation effects. tion, the approximation we present is much simpler and
This is a subject with a long history; here we can mentiongives estimates of . better than the BPW approximation for
some of the more notable approaches. The book by Smanhost lattices.
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For Ising,XY, or Heisenberg models, characterized by theand J(q):EjJe*iq'ai is the Fourier-transformed exchange
number of spin components=1,2,3, respectively, the On- interaction (sum over displacements to nearest neighbors,
sager reaction fieldORF) theory [24] is another approxi- a&). From sums over the appropriate Brilluoin zones, the val-
mate method that includes correlation effects. A clear reviewies of | are 1.516, 1.393, and 1.345 for sc, bcc, and fcc
of the ORF method is given by Whi{@5]. lattices, respectively. When applied to the Ising model (

Before presenting our modified molecular-field approach=1) in three dimensions, one gekgT./J=3.957, 5.742,
we summarize the procedures and results of the BPW an@.924 for sc, bcc, and fcc lattices. The ORF procedure, how-

ORF methods, for later comparison of results. ever, does not work in one or two dimensions, where the sum
| diverges. Also, there are modifications necessary to apply

Il. THE BETHE-PEIERLS-WEISS APPROXIMATION ORF to lattices with a basig26]. For the diamond lattice,

The Ising Hamiltoni d deration using the underlying fcc lattice with a basis, one gekts

e Ising Hamiltonian under consideration is =1.79288 andkg T, /J=2.2310.
H= —JZ oi0j, (1) IV. CORRELATED MOLECULAR-FIELD THEORY:
. NEIGHBOR CORRELATIONS

where the sum is over near-neighbor pairS on some lattice, Here we consider an even Simp]er idea to mod|fy and
is the bond coupling strength, and eaghtakes values=1.  jmprove the standard MF theory for Ising models, that we

In the lowest approximation due to BPW, tlenearest refer to as “correlated field"(CF) approximation. The cal-
neighborsay of a siteo; do not take on the mean-field val- culation is carried out in real space. A central spin directly
ues. Instead, the second nearest neighbfisave the mean- influences the mean-value of its nearest neighbors, which
field values, the nearest neighbors are allowed to take on thtben act back on the central spin, similar in spirit to the
values+1 and are treated exactly. The constraint that theDnsager reaction field. Thus, it is reasonable to set the mo-
averagego;) and(o) must both give the same value leads lecular field of the nearest neighbors to be tlitierentval-

to the prediction for the critical coupling.=J/(kgT), ues, saym” andm™, depending on whether the central site
has valuest1 or —1, respectively. With this “correlated
cothB.=z—1. (2 neighbor field,” the correlated-MF Hamiltonian for a given

. . N spin o; can be written
The result is only a function of the coordination number and pin i

is a surprising improvement over the mean-field resgl, Hume= — oiNesr (5)
=z"1. For the 2D square lattice Eq2) gives kgT./J

=2.885, compared with the mean-field reskT./J=4, Where the effective field due to it nearest neighbors is
and the exact resulkgT./J=2.280 ... from Onsager's taken as

equation[3] sinh 28,=1. There are correspondindessey
improvements for other lattices with higher coordination
number, these are summarized below after we discuss o
improvements to the standard mean-field approach.

hef-f:ZJ( 50.i’1m++6a.i ’_1m_). (6)

L‘|Ihe delta functions constrain the neighbor-field to the differ-
ent valuesn™ andm™ according to the value of the central
spin o;. The neighbor fieldsn® and m~ are determined
self-consistently in this theory, below. Averaging over the
In the ORF calculatior(see Ref[25] for more detaily,  values*1 of sitei, with this Hamiltonian, gives
the spin at a chosen site interacts with the mean-field reduced
by a “reaction field” that depends on the spin at that site
[24]. The idea is that the mean-field is strongly determined
by the polarization of the central spin being considered, so in
essence one should subtract this reaction part to avoid counithere B=J/(kgT) is the inverse temperature.
ing a self-interaction part. The reaction field is determined Now suppose the average value of one of the nearest
self-consistently, with the calculation realized in wave vectorneighbors ¢;) of sitei is evaluated, separately for the two
space. The ORF procedure depends on a Fourier transform ghses,o;=+1 ando;=—1. There are £—1) near neigh-
the spin fieldo; into the reciprocal space quantity,. As  bors of sit§ which are second nearest neighbors toisigad
such it includes effects dependent on the coordination numwe can suppose in a first approximation that they take some
berz, the number of spin componentsand the actual lattice mean magnetization valuen. This is reminiscent of the
structure. For reference, the ORF theory predicts the criticaBPW approximation. The average valuesagf, depending

Ill. ONSAGER REACTION FIELD CORRECTION

eBzm+ — e Bzm’
m= ()=

: ()

eh? m* + e Bzm

temperaturel . as on whether site is +1 or — 1, are
keTe 2z m*=(o})|, - +1=tanhB[(z—1)m+1], (8)
T ©) :
m™=(o})|,,-—1=tanhp[(z—1)m—1]. 9)

where the constaritis given from a g-space sum fot sites,

Substitution of Eqs(8) and (9) into Eq. (7), followed by

| = i E ; (4) expansion fom<1, which is the limitT—T. from below,
NG 1-3(q)/I(0)’ leads to
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TABLE I. kgT./J from various approximations and exact/series

coshB.=Vz(z—1);.
Be ( JBe [27,28 values. Dashes indicate where a theory fails.
The equation gives a modest improvement over the standard

(10

mean-field approach. For example, applied to the 2D squareattice z Exact/Series BPW ORF CF  SCCF
lattice,z=4, this predictkgT./J=3.312, less accurate than honeycomb 3 1.518... 1.820 . 2920 j
the BPW approximation, but simpler to obtain. However,Square 4 226@. 2885 i 3312 2595
this correlated-field approximation contains an interestinqriangular 6 3.6409 4933 i 5384 4788
physical effect—the local neighbor fielda™ and m~ as diamond 4 2'70@ 2.885 2931 ?;312 2'595
determined by Eqs8) and (9) do not go to zero even for IO ' ' ' '
T>T,, although the average magnetizatiommoes. Thus the s¢ 6 4518... 4933 3955 5384 4.788
theory in some sense includes fluctuations away from thgCC 8 6.35... 6952 5743 7416 6.853
mean magnetization. fcc 12 9.79% ... 10.97 8.932 1144 10.91
V. SELF-CONSISTENT CORRELATED FIELD where
APPROXIMATION
x=(z—1)p. (19

As described above, the correlated field approximation,
and Eqs(8) and(9), do not fully implement the idea that the

neighbor fields should depend on the central spin. That is,

the (z—1) neighbors of sitg that were given valuesn
should really also be allowed to have valu@s or m~,
corresponding to whew; has values+1 or —1, respec-

tively. This further improvement we refer to as “self-

consistent correlated field” approximatig8 CCH. Then av-
eraging ovewrj= £ 1, with oy held fixed at the values 1 or
—1, Egs.(8) and(9) are replaced by

eBl(z=1)m" +1]_ o= Bl(z-1)m™ +1]

+— . =
m* =(o)]s~+1 QBlz— 1M +1] | o Al(z-1)m +1]"
13

eBl(z=1)m" —1]_ o= Bl(z-1)m™ —1]

M=o 1= G i g A D 1T
12

As T—T, from below, the mean magnetization given
in Eq. (7) goes to zero, while the local molecular fielos
andm™ remain nonzero. Their algebraic average,

m™+m~

A 5

13

however, by symmetry, must go to zero Bt. Thus it is
advantageous to express m* andm™ in terms ofA, and
make an expansion fak<1 to determin€elT.. One has

m=tanhzpBA, (14
m* =tanhgB[(z—1)A+1], (15)
m~ =tanhp[(z—1)A—1]. (16)

Equations(13), (15) and (16) result in an equation that de-

terminesA:

2A=tanhpB[1+(z—1)A]—-tanhB[1—(z—1)A].

17
Expansion around =0 gives leading terms,
2
A=xsecRB{ A+ §—secﬁ,8)x2A3+-~- , (19

The critical temperature occurs where the linear order terms
cancel, and only & =0 solution remains, leading to

cositB.=(z—1)B.. (20)
This equation gives a further improved estimateTef ex-
cept for the lowest values af

VI. DISCUSSION OF RESULTS

In Table | we displayT. from SCCF, Eq(20), and from
CF, Eq.(10), as well as the ORF and mean-field results,
together with either exact or approximate values from series
estimateg27], for various lattices. Our CF and SCCF calcu-
lations almost always overestimalg, just as the simple
mean-field prediction. In particular, for the 2D square lattice
Ising model Eq(20) giveskgT./J=2.595, closer to the ex-
act result than the BPW approximation. We could also com-
pare with the Mattis[21] approach, which give&gT./J
=3.090 forz=4 andkgT./J=5.073 forz=6, both some-
what higher than the BPW results. The ORF calculation does
not work in 2D or 1D, however, in 3D, where it is appli-
cable, it consistently underestimates the true valud gf
and gives results quite close to the diagrammatic expansion
of Horwitz and Callen19]. Both Egs.(10) and (20) do not
give a phase transition at the 1D limit=2, just as in the
BPW approximation.

Note, however, that az=4, the transition temperature
from the SCCF estimate igelowthe exactT, for the dia-
mond lattice, as determined from series. For this unusual
case SCCF somehow is overestimating the fluctuation effects
and thus underestimating., although not by very much.
However, we realize this accuracy seen for the SCCF predic-
tion of the diamond lattic& .. is at odds with the correspond-
ing higher error for the 2D square lattice. As SCCF uses only
the coordination number as input, it certainly cannot accu-
rately predictT, for both of these lattices simultaneously.
For the 3D lattices considered, however, it is interesting to
note that the ORF calculation df. also is most inaccurate
for the diamond lattice; it seems to be a difficult case for the
ORF approach(The ORF procedurdoestake into account
the specific lattice structure, beyond the coordination num-
ber, but unfortunately does not work in 2D.

Unfortunately, atz=3 (2D honeycomb latticethe situa-
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FIG. 1. The mean and nearest-neighbor magnetizations versus FIG. 2. The internal energy and specific heat per site, from the
temperature from the improved mean-field the¢8CCBH for z improved mean-field theorgSCCH for z=4.
=4, usingA obtained by iterating Eq17).
tion is worse: Eq.(20) has no solution and this SCCF ap- whf:re+we averilged over thf two pos_S|b|I|t|e$,— +1 with
proximation wrongly predicts a disordered phase for all temZi=M  a@ndo;=—1 with g;=m". Using Eq.(13) this be-
peratures, whereas the CF and BPW approximations ar omes
better and still overestimaftg,. For comparison, the Mattis
approach[21] gives kgT./J=2.10373, slightly better than 1
CF but not as good as the BPW result. Nevertheless, with the (o a-j>=A tanhzBA + E(m+ -—m). (23
exception of these most open lattices, the SCCF approxima-
tion makes notably good estimates foy.

As expected for a mean-field theory, the magnetizationrhe internal energy and specific heat, #o¥ 4, are shown in
nearT, behaves am~ (T.—T)?just below the transition. Fig. 2. For larger values c the specific heat peak becomes
It is interesting to note, however, that the local neighbor-yeaker. Note that the first term of E(3) vanishes above
fieldsm™ andm™ do not go to zero, even abo. Only  T_, while the second vanishes only Bt 0, which leads to
the sumA becomes zero in the disordered phase. In Fig.  discontinuity in the slope of the internal energyrat Thus
we show this effect for=4, which was obtained by solving there is a discontinuity in the specific heat Bt, which
Eq. (17) iteratively for A. For higher values of, similar  maintains a nonzero value aboVe, like the BPW results
curves are obtained, but with smaller differences betweeRyt unlike the usual MF results.

m* andm™ for all temperatures. In conclusion, this correlated-field approximation, that in-

We can use the nearest neighbor pair correlation functiogjudes the correlation of the local neighbor-fields to the cen-
(oj0;), to calculate the internal enerdy and specific heat tral spin, contains a simple physical picture of local spin
C, from fluctuations neafl;, and is able to give fairly good predic-

1 du tions of T, for the Ising model, except for<4. It gives '
U=->zNXo0), C=-= (21)  values forT. quite accurately, because both the site being
2 dT considered and it neighbors interact with a self-consistently
determined fluctuating molecular field, representedniy
andm™, rather than a single-valued mean field. Because of
its simplicity and accuracy, in the future it will be interesting

The needed average value is

ere,Bszr —m e Azm

(oi07)= S (220  to consider whether such a picture can be applied with any
efzm’” 4 g=pzm success to other discrete-valued lattice models.
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