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Potts fully frustrated model: Thermodynamics, percolation, and dynamics in two dimensions
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We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated
Potts model with variables having an integer absolute value and a sign. This model presents precursor phe-
nomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can
be related to a thermodynamic transition. Furthermore, this transition can be mapped onto a percolation
transition. We numerically study the phase diagram in two dimengRibsfor this model with frustration and
withoutdisorder and we compare it to the phase diagrarii)ahe model with frustratiomnd disorder andii)
the ferromagnetic model. Introducing a parameter that connects the three models, we generalize the exact
expression of the ferromagnetic Potts transition temperature in 2D to the other cases. Finally, we estimate the
dynamic critical exponents related to the Potts order parameter and to the energy.

PACS numbg(s): 64.60.Ak, 05.70.Fh, 67.57.Lm, 02.70.Lq

[. INTRODUCTION larity which disappears in the limit of zero external field and
which occurs at a temperature that goesltoin the same
The glass transition temperatufg for liquids is defined limit. This singularity is present only in disordered systems.
experimentally as the onset of calorimetric anomdllgsIt ~ The relationT* =T, has also been shown to be valid numeri-
is usually understood thaft, is not related to a thermody- cally in two dimensions2D) for a model with Potts vari-
namic transitior{ 2], but to the slowing down of one or more ables that generalizes the Ising $G3]. This generalized
degrees of freedom. This slowing down prevents the systemodel will be considered in the following and we will refer
from reaching equilibriumd3,4]. This question is of interest to it as the Potts SG.
because almost all liquids can form glasses if cooled at a Until now we talked about glass dynamics in systems
high enough rate. Moreover, many other materials such asyith disorder, but numerical simulations show that it is pos-
for example, polymers, microemulsions, granular materialsible to observe glassy behavior with precursor phenomena
vortex glasses, ionic conductors, colloids, plastic glassy crysfor spin systemswithout disorder but with frustration
tals, and spin glasséSG39 [5], show glassy properties. [14,15. These systems, due to the lack of disorder, are more
Even well aboveT,, where glassy systems actually can suitable for a theoretical approafh6,17. In particular, one
equilibrate, they show experimentally dynamic anomalies asan try to answer the question about the relation between the
precursor phenomena of the glass transif®6—8. From a  precursor phenomena and the thermodynamics of the system.
theoretical point of view, one of the open questions is if In Ref.[14] a simple case was considered: the fully frus-
these precursor phenomena are related to the thermodynainated (FF) Ising model[19] where ferromagnetic and anti-
ics of the systeni2,4,9,10Q, or if they are not, like the glass ferromagnetic interactions are ordered in such a way that any
transition occurring at lower temperatufg. In particular, lattice cell has an odd number of antiferromagnetic interac-
for the Ising SG 5] such a relation between precursor phe-tions (i.e., is frustrateyl It is shown(by simulations in 2D
nomena and a thermodynamic free enezggentiakingular-  and 3D that the onseT* of nonexponential relaxation pro-
ity has been showf®,11,13. Indeed, in this model there is a cesses is related to a random-bond percolation transition
dynamic anomaly at a temperaturé. Above T* the relax-  [14]. As for the Ising SG, it is possible to generalize the FF
ation processes have an exponential behavior, while belowsing model to a FF model with Potts variablgs3]: the
T* they have a nonexponential behavior. Theoretical andPotts FF model that will be described in detall in the follow-
numerical evidence shows that coincides with the Grif- ing. In Ref.[13] the dynamics of the Potts FF model was
fiths temperaturd . [11]. This T, is the transition tempera- compared with the dynamics of the Potts SG model and
ture that the model would have if the frustration due to dis-some anticipations about the relation between precursor phe-
order were removed. A way to remove the frustration is, fornomena and thermodynamics were given. In this work we
example, to substitute every antiferromagnetic interactiorstudy in detail the thermodynamics of the Potts FF model,
with a ferromagnetic interaction. In general, on removing theshowing thatT* corresponds to the thermodynamic transi-
frustration, the model will have ferromagnetic regions andtion temperaturdl, of the Potts variables. It is important to
antiferromagnetic regions and, will be the transition tem- note that in any FF model the Griffiths temperatiirecan-
perature of the unfrustrated model. To be more precise, theot be defined for the lack of disorder. Therefdigcannot
free energy of the Ising SG in an external field has a singuplay any role in these cases.
Comparison of the results presented here with the analo-
gous study of the Potts SG model with disordl&8] gives
*Present address: Center for Polymer Studies, Boston Universitynsight into the role of disorder. To this end we introduce a
590 Commonwealth Avenue, Boston, MA 02215. formal parameter & X< 1 that connects the two models. For
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X=0 we have the ferromagnetic Potts mof20] (without ,,( \g\\ _____ \ED\

frustration and without disordgrFor 0<X<1 we have the a b ¢ d
disorderedand frustrated Potts model. In particular, fot e f
=0.5 we have the Potts SG model. =1 we have the
Potts FF mode{without disordey. ’/ "/ \‘(a\ \'\ b
From Ref[18] and from the present work, it is possible to {
show that forX=0.5 orX=1 there are two thermodynamic ~ &* ¥ &F & . X
transitions. The lower transition is an Ising SG or a FF Ising "/ % ,/ )\
transition. The upper transition dt, is in the universality /@/
class of a ferromagnetic Potts transition. Furthermore, we
show that T, corresponds to a percolation temperature. /®/ ‘\ \.\ /./
Moreover, we show how it is possible to generalize the exact
expression off , for the model withX=0 in 2D [20] to the
casesX=0.5 andX=1.

FIG. 1. Example of Potts fully frustrated model on a square
lattice: on each vertex there is variablp=Sjo;=*=1,+2 ...*s

Th izati fth . foll Ins " with s=4 in the figure. Here we represent the si@) (of eachr;
. € organization of the paper IS as lollows. In Sec. Weby an open or a full circlérespectively, positive and negative, for
introduce the model and the known results Yor O (ferro- example and its orientational states{) by an arrow pointing in

magnetic cage X=0.5 (disordered and frustrated casand oy different directions. Ferromagnetiantiferromagneticinterac-
X=1 (ordered and frustrated casén Sec. Ill we introduce tions are represented by fulliotted lines.

the cluster formalism used to map the upper thermodynamic

transition atT,, onto a percolation transition. In Sec. IV we even (&) number of states. It shows a thermodynamic tran-
present the phase diagram in 2D ¥+ 1 as result of Monte sition at T¢(s) whose order depends o (ii) If € ; are
Carlo (MC) simulations and we compare it with the casesquenched random variables, the model corresponds to the
X=0 andX=0.5. In Sec. V we use the spin-flip MC dynam- Potts SG. This model is a generalization of the Ising SG
ics to study the dynamic critical exponent and the temperamodel that is recovered fg=1. It shows two thermody-
ture T*, the onset of stretched exponentials. In Sec. VI wenamic transitions[18]. The lower is a SG transition at

give the summary and conclusions. Tsd(s). The upper is a Potts transition &f,(s)>Tsg(S).
The transition afl ,(s) is in the universality class of a ferro-
Il. THE MODEL magnetics-state Potts model. Another relevant temperature

for this model is the temperatuig,(s) defined for the pre-
Structural glasses, such as dense molecular glasses, plagous casdthe ferromagnetic £state Potts modglIndeed,
tic crystals, or ortho-therphenyl at low temperature, can bet js possible to show that for finite external field a free en-
modeled to a first approximation as systems with orientaergy (Griffiths) singularity arise$11]. In the limit of external
tional degrees of freedom frustrated by geometrical hinfield going to zero, the temperature at which this singularity
drance between nonspherical molecules. For this reason Wecurs goes td.(s) and the singularity vanishe3(s) is
will consider the lattice model introduced in RE21], where  the Griffiths temperature for this model. Furthermore, nu-
the orientational degrees of freedom are represented by Potiserical simu|ations[]_3] show that TC(S)>Tp(S) corre-
variableq 20] with sstates ¢;=1, .. . s) and the frustration sponds to the onset*(s) of nonexponential correlation
is modeled by means of ferro/antiferromagnetically interactfunctions for the Ising spins; . This result generalizes what
ing Ising spins §=*1), coupled to the Potts variables.  happens in the Ising SGs€ 1 casg, where at the Griffiths
The model is defined by the Hamiltonian temperatureéT (1) nonexponential correlation functions are
seen12]. It is worth noting that the Ising spins are critical at
HJS 0] ’5i,j}:_s~]2 S o (€,SS+1), (1) Tsa(S), which is we_II _beIoch(s)=T*(s). M_oreover, .note
T that the relevant Griffiths temperature for this moder i§s)
of the variablesr;= S;o; and not the Griffiths temperature of
where the sum is extended over all the nearest neighbor siteghe variablesS; alone, which in our notation i$.(1). (iii) If
J is the strength of interactior; ;= +1 is a quenched vari- there is an odd number @f ;=—1 for each elementary cell
able that represents the sign of the ferro/antiferromagnetigas in Fig. 3, the system is fully frustrated. This means that
interaction, ands, ,=0,1 is a Kronecker delta. To empha- at least one interaction per cell is not satisfied, i.e., the rela-
size that the Ising and the Potts variables are interdependeniye energy contribution is 0 instead 6f2sJ (as for the

we can rewrite the Hamiltonian in El) as edgesb, d, andf in Fig. 1). The model is called a Potts FF
model and is a generalization of the FF Ising mo[id]
_ which is recovered fos=1. It has frustration but no disor-
Holrioeiih= 28‘]%:) O o7y @ der. For any integes= 1 the model has in 2D a second-order
phase transition af =0. Nonexponential correlation func-
where 7=So;=*1,£2,...,=s is a variables with 8 tions are reported below a finite temperatdr&(s) for s
states and the frustration now is explicitly on the new vari-=2, 1, and 1/2the last case is defined in Sec.)I[lL4,13.
able. Any r; has an absolute valug, and a sigrS; . This dynamic anomaly cannot be related, as in the previous

The model depends on the interaction configurafign}.  case, to the Griffiths temperature. Indeed, the Griffiths tem-
Possible choices are the following) If all € ;=1 (i.e., all  perature is not defined in FF models for the lack of disorder.
interactions are ferromagnetjdg. (2) is the Hamiltonian of  The aim of this work is to study the phase diagram of the FF
the ferromagnetic Potts modg0] with variablesr; with an  model as a function of and to show thal* (s) corresponds
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to a Potts transition. Furthermore, using a percolation aper a loop composed of the external edges of any three adja-

proach, it is possible to show that the Potts transition correeent elementary cells in a FF lattiéar of any odd number of

sponds to a percolation transition, defined also for nonintegemdjacent cells

values ofs. Note that forX=0 there are no frustrated loops and the
The previous three cases can be generalized to a class ofiginal Fortuin-Kasteleyn cluster definition is recovered.

Hamiltonians. Consider, as model parameter, the deb&ity Since the above cluster definition holds for angnd X, for

of frustrated elementary cells. F&t=0 there are no frus- any model described by the general Hamiltonian in @Bgit

trated cells(as in a ferromagngtwhile for X=1 every cell is possible to define a percolation temperature for these clus-

is frustrated FF casg¢ For 0<X<1 it is possible to partition ters.

the lattice into two nonoverlapping subsét$X) andF(X) Moreover, the right-hand side of E4) is well defined
of unfrustrated cells and frustrated cells, respectively. Thereeven for noninteger values &f In these cases it does not
fore Eq.(2) can be written as define a Hamiltonian model, but it still defines a percolation
model. In particular, thes=1/2 case forX>0 is thefrus-
Hox{m}=Hdr & ;(X)} trated percolationmodel[14].
For X=0, in the general case in which we consider Potts
= —2s] S variablesr; with a generic numbeq of states instead of an
Gyeopg T even (X) number of states in Eq$3) and(5), it is possible
to show[20] that the percolation temperatufg(q,X=0) of
—2s] ' &) the above defined clusters coincides with the ferromagnetic
(LiyeFpg T g-state Potts critical temperatufe(q). In particular, in 2D it

is possible to prov§20] the relation

In this way the ferromagnetic Potts model with an even num-

ber of statedcase(i)] is recovered forX=0, since,F(X keTc(q) 1

=0) is empty; the Potts SG modelase(ii)] for X=0.5; the qd In(1+ \/a) ' ©®
Potts FF modelcase (iii)] for X=1, since U(X=1) is

empty; intermediate disordered models are obtained for other por x=0.5 the same kind of relation between the perco-

values of 6<X<1. _ lation temperatureT,(q,X=0.5) and the Potts transition
To make the comparison between te=0.5 andX=1  temperature fog=2s in 2D has been obtaindd8]. Further-
models, we will follow the line of Ref{18] where the phase more, it was shown numerically that it is possible to gener-

diagram of the former has been studied. In particularXor gjize Eq.(6) using a fitting parametea(X) [18]. The result-
=1 we consider a square lattice with ogg=—1 per cell  jng relation is

as shown in Fig. 1.

keTp(a,X) 1
Ill. PERCOLATION a(X)ad  In[1++a(X)q]

We now introduce the percolation map, following Ref.
[21]. It is a generalization tX=0 of Fortuin-Kasteleyfi22] ~ With a(X=0.5)=0.800+0.003 [18]. Note that T,(q,X

)

cluster formalism, defined originally only fof=0. In Ref. = =0.5) represents a percolation temperature forgwy and
[21] it is shown that the partition functiof x of the Hamil- also a Potts transition temperature for even integer vajues
tonian in Eq.(3) can be written in terms of bond configura- =28. Furthermore, for &:X<1 and g=2s Eq. (6) for
tions C as T.(2s) gives by definition the Griffiths temperature of the

disordered model.

Zox=2, efHS'X{T‘}/(kBT):zc‘« W5 x(C), (4) IV. NUMERICAL RESULTS IN 2D FOR X =1

. . _ To study the phase diagram of the model with 1 (Potts
wherekg is the Boltzmann constanWs x(C)=0 if C in-  FF) we have simulated it fos=2,7,20,50 on square FF lat-

cludes anyfrustrated loop(defined below and otherwise tices with periodic boundary conditions and linear slze
from 10 to 80. At low temperature all the Potts variables tend
W, x(C)=p/Cl(1—p)A(25)N© (5)  to order ferromagnetically wherever the Ising spins satisfy

the ferro/antiferromagnetic interactiofie., 56 s 3—1) In

wherep=1—exd —2s¥(ksT)] is the probability of placing a particular, atT=0 the system in 2D has a second order
bond between two nearest neighbor sit23]; N(C) is the  phase transition of the Ising spins, as in the FF Ising model
number of clustergdefined as maximal sets of connected[19]. We will show that the interplay between Potts variables
bonds in the configuratiorC; |C| is the number of bonds; and Ising spins affects the phase diagram at finite tempera-
and|C|+|A| is the total number of interactions. A loop of ture. As in Ref[18], to study the finite temperature range we
bonds is calledrustratedif the product of all the signg; ; of  can use an efficient cluster dynamics with an annealing pro-
the interactions along it is equal tel. For a frustrated loop cedure. We define a MC step as an update of the whole
there is no{ 7} configuration able to minimize the energy of system. At each temperature we average the data over 10
all the interactions along it. An example of such a frustratedMC steps, discarding the first&10° MC steps.

loop is the one composed of the edges,g, andf in Fig. 1 In our systematic analysis we calculated for eactine
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Binder parametef24] for the energy densitf defined as >
E* |
Ve1— (E%) ®) 0.666
3<E2>2

(angular brackets denote the thermal averagbis quantity
allows us to distinguish between first-order and second-order

phase transitions. Indeed, in a second-order phase transition o6+ T
for L—oo it is V=2/3 for all temperatures, while in a first-
order phase transitiolV has a well pronounced minimum ;@
near the transition temperature. The thermodynamic of the % L=80 b
model is studied by means of the Potts order parameter 0.662 ¥ t:gg 0.6662 |
> = .
& [=50 I
M= W (9) (o =40 0.666 \/
s—1 | & L=;>>O : r
| | | o 9 =30 osess Lo
(wherei=1,...s, M, is the density of Potts spins in thh 0.66 F———1— e
tatg, the susceptibility
2\ _ 2
_ i (M) —(M) (10) FIG. 2. X=1 ands=2: Binder's paramete¥ vs T for the lattice
kgT N sizesL listed in the figure. Inset: Enlarged view. Where not shown,

) N errors are smaller than symbol size. Lines are only guides for the
(whereN is the total number of Potts spingind the specific  eyes. For increasing, V goes to 2/3 for all temperatures, showing

heat a second-order phase transition.
_ 1 (E*)—(E)? 11 linear cluster size and P~|T—Tp|ﬁp~§;ﬁp/”P,S~|T
: KgT? N ' —Tp|‘7p~§gp/”p. Applying the standard scaling analysis

) ] for percolation[27], one obtains in a consistent way the re-
To study the Fortuin-Kasteleyn percolation we calculated thgyjts summarized in Fig. 4 using the corresponding thermo-

percolation probability per spirPn=l.—ml and the mean  gynamic critical exponents for the 2D Ising model. The nu-
cluster sizeS=m, (wherem,=Z2k"ny is thenth moment of  merical estimate for the percolation temperaturég , /J

the distribution of density of clusters with size). =2.73+0.03, coincident with the estimates Bf. Therefore
the percolation transition and the Potts transition occur at the
A. The second-order transition for s=2 same temperature and with the same set of critical exponents,

For X=1 ands=2 the Binder paramete¥ goes to the |-, they coincide.
constant value 2/3 for all temperatures lasncreasedsee

Fig. 2 revealing a second-order phase transition. The transi- _ v=1
tion temperaturd’q in the thermodynamic limit can be esti- 315 | keTs/J=2.72+0.01 B/v=0.125
mated, together with all the critical exponents, using the —J | * e % Leg0
standard scaling analysi&5] for second-order phase transi- =, [ Ko o % L=70
. . . *
tions. By definition of the critical exponenis 3, y, anda, [ L * =60
it is é~|T—Te ", & being the correlation lengthVl ~|T os b
ST B | TTY g,y [T-TY ol %
__¢ealv ; [

&', for which we expect O_lq)l L K

~20 —-10 0 10 20
M~L Ay (T-ToL) (12)
5 _KeTs/J=2.7240.02 keTs/J=2.7340.03

(and analogous scaling laws fgrandC,) wheref,(x) is a I ¢ a/v=0 X 05T y/v=1.75
universal function of the dimensionless variakleThe val- U 3 % « Leg0 J,_I a
ues at. yvhich the scaling laws are sat!sfied give estimates of _éz 3 Fx % L=70| >02F ¥ ¥ L=80
the critical exponents and ofs. In Fig. 3 we show the © * % =60 r % ¥ L=70
large-size data collapse using the set of Ising critical expo- -3 F % o1k @ g :; tigg
nents[26] and leaving onlyT as a free parameter, giving an B o+ * [ o L=40
estimatekgT,/J=2.73+0.03. Eb) o ) %ﬁ% .

Study of the percolation quantities shows a smooth behav- 05> ———(————"75, 60 a5 90
ior of P and a cusp irsincreasing withL. Therefore one can (T—Ts) |_(1/V) <-|-_-|-5> |_(1/v)

make the ansatz that the percolation transition is of second
order. Let us define a Fortuin-Kasteleyn percolation tempera- FiG. 3. X=1 ands=2: Collapse oM, C,,, and data in(a),
ture T, and a set of percolation critical exponents, 8,,  (b), and (c), respectively, for the Ising critical exponents

and y, by means of the relation,~|T—T,| ", whereé,  (v,8,a,). Each collapse gives an independent estimate of the
is the connectedness length of the clust@es, the typical critical temperaturd, (indicated in each pankel
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keTp/J=2.7310.03 v=1 TABLE I. X=1 ands=7,20,50: Numerical estimates of ther-
= -~ modynamic transition temperatufig(s) and percolation transition
R g/v=125 | R £ 5/v=175 temperaturd (s). For anysthey are consistent within the numeri-
E' & L1003 : cal error.
15 b Ty ¥ L=80 d ! % X% L=80
%{ ¥ L=70 I * L=70 s T T
* L=60 I * L=60 S P
% & =50 [« * % L=50 7 6.87£0.04 6.85-0.06
¢ =0 Ll 20 15.3:0.1 15.3-0.1
1+ # 50 31.7#0.1 31.5:0.1

3
* sition, since, for each considered lattice sizdetween 10
% - and 50,V has a nonvanishing minimum, as shown in Fig. 5
0.5 | 001 F for s=7. In these cases the estimates of infinite-size transi-
I % [ tion temperature§ 4(s) and T,(s) for the thermodynamic
I *% [ and percolation transition, respectively, can be made through
CH]

[ [ | ¥ the relation[25]
L Q) & L b) %
S - E— 0 Tma)é(L)_Tmm&oo)wLiDy (13)

O—45 7.5 , 60 0 ?O
(T-T )L (T-T,)L"”

FIG. 4. X=1 ands=2: Collapse ofP andSdata in(a) and(b),
respectively, for the Ising critical exponents. Each collapse gives a
estimate of the percolation temperatbggl,/J=2.73+ 0.03.

where D=2 is the Euclidean dimensionl, (L) is the
finite-size temperature of the maximum @f; or S and
Tma{®) is the transition temperature in the thermodynamic
ﬂmit. ThereforeTg(s) andT,(s) can be evaluated by linear
fits on a log-log scale with one free parameter. The results
_ - are summarized in Table. I. For asyT(s) andT,(s) are
B. The first-order transition for s=7, 20, and 50 consistent within the numerical error.
For X=1 ands=7, 20, and 50 we have considered sys-
tems withL from 10 to 50 lattice steps with periodic bound- C. Phase diagram
ary conditions. On the base of the mean field requ# for . . o
the Potts FF model and the knowledge of the Potts modQ[heThﬁagzrg?;'an:e%(IflmItszcsh%g t‘ia\l/ne(lj I\;iai?z;;l?on;eeto
[20], we expect that the order of the transition will change h P diaar n?fox—o 5[18] n (Ili 6 we c}c/)m are both of
for s>4. In fact, the thermodynamic order parametebe- phase diagra e ’ 9. P
comes more and more discontinuoussascreases. At the them with the phase diagrams fée=0.

same time the percolation order paramé&eievelops a more . tFor Xt:ho (P_otts model W'tht. S’/fstate varla?le)sf;])r anty .
and more pronounced discontinuity. integers there is a paramagnetic/ferromagnetic phase transi-

. : tion at finite temperaturd@.(s). The transition is of second
In particular, study of the Binder parametéreveals that ¢ )
the model fors=7, 20, and 50 has a first-order phase tran-Order for =<4 and of first order for 8>4 [20]. T¢(s) is

given by Eq.(6) with g=2s. It coincides with the Fortuin-

> : =
A=k /-(n\ : O1fe
o X \¥/  _ ooo0o \N/ [
i < - 0.9 -
i [
5 1 = 0.8 F [ J
A r
0.664 | : :
- £-‘ 0.7 - o
[ L Wi NP P P |
i E 0 0.25 05075 1
0.662 3 =530 PSG
s 3 .
[0 [=20 05T
O L=10
0.66
[ \-I- PFF
A 2° order transition P
0658 L L — 1% order transition
O . ) . 5 o 1 . . < 1 . . 4 U  , . |
. 0 20 40 60 80 100
5 2s

FIG. 6. Numerical phase diagram in 2D f&=0 (Potts model:
FIG. 5. X=1 ands=7: Binder's paramete¥ as in Fig. 2V has  T), X=0.5 (Potts SG modelT}®9 and X=1 (Potts FF model:
a well defined minimum for any size, showing a first-order phaseT,fFF). The data are fitted with Eq.7) with fit parametera(X)
transition. shown in the inset. Errors are smaller than symbol size.



6388

Kasteleyn percolation temperature. The percolation tempera-
ture is defined even for noninteger valuessof

For X=0.5 (Potts SG model with frustration induced by
disorder and with 2 state variablesthere are two phase
transitions for integer values & The lower transition is a
SG transition. It is assumed to occurTaiz=0 for anysin
2D and afT 5¢(s)>0 in higher dimensions as in the Ising SG
[28]. The high-temperature transition is arstate Potts fer-
romagnetic transition occurring at,(s,X) given by Eq.(7)
with g=2s and a(X=0.5)=0.800+0.003 [18]. It is a
second-order transition f@<4 and a first-order transition
for s>4. T,(s,X) corresponds also to the Fortuin-Kasteleyn
percolation temperature, which is defined even for noninte-
gers[18]. This model is disordered and its Griffiths tempera-

GIANCARLO FRANZESE
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ture is by definition the transition temperature of tres2ate
Potts modelT.(s), given by Eq.(6) with q=2s. It is pos-
sible to see thafl.(s) is numerically consistent with the
onset of nonexponential relaxationsTat T* (s) for s=2 in
2D [13] and fors=1 (Ising SG in 2D and 3D[12,29.

For X=1 (Potts FF model with frustration and no disor-
der and with 2 state variablesconsidered here, there are
two transitions for integer values «f as well as forX
=0.5. The lower transition is af =0 in 2D and at

Te(s)>0 in higher dimensions, as for the FF Ising model
(s=1)[19,37. As seen in this section, in this case the upper

transition is ans state Potts ferromagnetic transition at
To(s,X=1). As shown in Fig. 6, Eq(7) describesT y(s,X
=1) well, using a fit parametea(X=1)=0.690+0.003.

o
~ 7
3
7 6.5
6
5.5
E
5
zE=1.1:tO-.__1_ ......... E
J 8
e
4 e
3!2 3!4 316 3?8
Log L

FIG. 7. X=1 ands=2: The logarithm of correlation timeg
(see text at the finite-size transition temperatufg(L) [33] as
function of the logarithm(base 10 of size L, for the correlation
function of the Potts order parametdr(circles and of the energy
densityE (squarey for L=20,24,30,40, and 50. The slopes give the
exponentg,, andzg .

_(ALTDAOT))—(AT)?
(A(OT)?) —(A(T))*

fa(t,T) , (14

wheret is the time. More then one definition ef, is possible
for any A, but all of them, even if numerically different, have

Furthermore we have shown that it coincides with a Fortuiny,e same qualitative behavipt2]. In particular, facing the
Kasteleyn percolation transition. As a consequence thﬁifficulty that the greater the size, the greatg(T(L),L),

Fortuin-Kasteleyn clusters represent the regions of correlat

Potts variables. This means that the cluster’s characteristi

e definery, and ¢ for the Potts order parametkt and the
Energy densityE as the timer, (in units of MC step at

linear size is equal to the correlation length of the Potts VariWhich fu (70, To(L))=0.4 andfe(ro,To(L))=0.3, respec-
1 p - 1 p . 1

ables. Analyses fos=1/2 (frustrated percolationands=1
(FF Ising model in 2D and 3D are given in Refl4].

The main difference between thée=1 andX=0.5 cases
is that the Griffiths temperature is defined in the lattis-
ordered modeg) but not in the forme(for the lack of disor-
den. The important consequence of this fact is that Xor
=1 the dynamic anomalies are present only belbys, X
=1) [30], while for X=0.5 they are present also above
Tp(s,X=0.5) and belowT(s) [31].

Note that all the Potts percolation transition temperature

for X=0, 0.5, and 1 can be described by the same form i
Eqg. (7) as a function ofs with an X-dependent parameter
a(X). This parameter has a regular behavior as functiox of
(see the inset in Fig.)6

V. DYNAMIC CRITICAL EXPONENT
As shown in Sec. IVA, all ,(s=2,X=1) the Potts vari-

ables have a second-order phase transition. Therefore their
correlation length diverges and their dynamics slows down.

A measure of the slowing down for any observaBles
given by the dynamic critical exponerz defined by
7a(Tp(L),L)~L% Here, omitting for the sake of simplicity
the dependence omandX, T,(L) is the transition tempera-
ture for the system with finite siZe[33] and 75(T,L) is the
correlation time at temperatuiieand sizel. associated with
the correlation function foA,

tively. The data for sizek =20, 24, 30, 40, 50 are shown in
Fig. 7 and the dynamic critical exponents are estimated by
linear fits on a log-log plot agy,=0.9+0.1 andzz=1.1
+0.1[34].

To study the behavior dfy, andfg in the thermodynamic
limit we have extrapolated the data in the infinite-size limit
following the procedure suggested in Rg6]. It consists in
plotting at anyt the generid (t,T,L) for finite-sizeL versus
1/L and in extrapolating for 1/—0. We consider the tem-

erature range 2.65kgT/J<3.25 [35]. The results are

hown in Figs. 8 and 9. To check the formfgf andfg, we
have fitted the data with three different plausible functions:
(@ a simple exponentialf,exp(—t/7); (b) a Kolraush-
Williams-Watts stretched exponentifyjexd —(t/7)?]; (c) the
Ogielski form

e—(t/r)ﬁ
f(t,T)=",

(15

]

which is a combination of forntb) with a power law. In the
previous functionsf,, 7, x, and 8 are T-dependent param-
eters. Note that for the forrT) it is possible to estimaté,
and x separately from3 and r, since the first two describe
the short-time behavior and the second two the long-time
regime.
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FIG. 8. X=1 ands=2: Correlation function of the Potts order FIG. 10. X=1 ands=2: Fit parameters fof,, data with form
parameteiM in the thermodynamic limitsee text. For clarity we 55 in Eq.(15) (circles and for stretched exponential forfiri-
show only some of the recorded data for the simulated temperagngles. In the lower panel we show also the integral correlation
tures. Symbols are results of simulations, solid lines are fits with thgimes 7, estimated with Eq(16) (squares The arrow and the

form in Eq.(15), dashed linegon this scale indistinguishable from yartical lines showT, and the numerical indeterminacy on it, re-
solid lineg with stretched exponential form and dotted lines with gpectively.

exponential form. Where not shown, the errors are smaller than the

symbol size. Temperature is measurediks . From Fig. 10 for the parametg of f,,, we see that it is

B=1 above the Potts transition k§T,/J=2.73+0.03 and
The Ogielski form turns out to descrildg, and fg very ~ 8<1 belowT,. Therefore there is a dynamic transition be-

well as shown in Figs. 8 and 9. The fitting parameters aréween a high-temperature exponential behavior and a low-
presented in Fig. 9 and 10. The foriti and(c) always give  temperature stretched exponential behaviof @f This re-
compatible estimates of the exponent, consistent with the sult shows the presence of a complex dynamics bélgw
very low values of (which is approximately the slope of the consistent with analysis of the nonlinear susceptibility corre-
function att=0 in Figs. 8 and 2 lation function of the Ising spingl3]. It is important to note
that, while the Potts variables have a transitionTg{ the
Ising spins have no transition at, and, in principle, no
1k Sami s e oy dynamical anomalies are expected for them.

I 4 On the other hand, the data fiyr show that the long-time
behavior is well described by an exponential function. In
particular, the form(c) with =1 and a nonzera fits very
well also the data for the lowest temperature considered here.
Note that, in principle, one can expect a dynamical anomaly
even for the energy density, since it depends explicitly on
the critical Potts variables.

In the fitting forms used, the correlation timds defined
as a fitting parameter. Another possible definition is the fol-
lowing (integral correlation time

fe(t)

"man S
~—..
~.

0.75

tmax

Tinea(T)= lim 3+2 fa(t,T). (16)
’ 2 =0

tmax—®

0.25

Due to the divergence of the correlation time, the definition
T RS in Eq.(16) does not converge near the transition temperature.
t(MC steps)+1 Therefore it is not shown in Figs. 9 and 10 for the tempera-
ture with the largest. However, where it converges, all the

FIG. 9. X=1 ands=2: Correlation function of the energy den- different estimates of the correlation time are numerically
sity E in the thermodynamic limit as in Fig. 8. Inset: The correlation consistent as shown in Figs. 9 and 10. Note that, even if the
times estimated by exponential ficircles and by Eq. (16) data are extrapolated to the thermodynamic limit, finite-size
(squares The arrow shows the numerical estimateTaf. effects are still present. Indeed, the critical temperature esti-
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mated fromr measurements, within our temperature mesh, igheir behaviors. They have an exponential behavior aligve
between 2.78%kg and 2.89/kg, which is at variance with and a nonexponential behavior beldw. This behavior is
the estimate off ;. expected at least for arg<4, because it is associated with
the free energy singularity occurring at the second-order
transition of the Potts variables. Therefore the complex dy-
. ] namics corresponds to a real thermodynamic transition.

We have studied a schematic model for glasses where pqorx=0.5 ands=2 the onset of this dynamic anomaly is
frustrated orientational degrees of freedom, associated withhifted to a higher temperaturabove T,. It occurs in cor-
2s state Potts variableg, induce complex dynamics. In real yespondence with the Griffiths essential singularity of the
systems the frustration can be .assouated, for gxample, Withee energy. This singularity is not defined in the-1 case.
steric hindrance of nonspherical molecules in structuralgr zero external field it goes to the transition temperature of
glasses. Each; has an absolute valuer(=1, ... 5) and @  the ferromagnetic state Potts model(2s) and vanishes.
sign (§=*1). The frustration is over the signs and can beTherefore the onset of complex behavior does not corre-
with disorder orwithoutdisorder, depending on a model pa- spond to a real thermodynamic transition.
ramete_rx. For 0<X<1 there_ is dlso_rder, while foX=1 the We have shown that the Potts transitionTa(s,X) for
model is(fully) frustrated without disorder. F&K=0 there  any s and X considered here coincides with a percolation
is no frustration, and the model recovers trestate ferro-  transition. It is not worthless to note that the dynamic tran-
magnetic Potts model. _ _ sition atT,(s,X=1) persists also fos=1 ands=1/2[14].
_ For 0<X<1 the model has two thermodynamic transi- | these cases,(s,X=1) does not correspond to a thermo-
tions. The high-temperature transition 8f(s,X) for the  gynamic transition, but only to a percolation transition.
model with % states is in the universality class of thetate  Therefore fors<2 the dynamic anomaly is no longer related
ferromagnetic Potts model. Therefore the fluctuatiopsitd  to a thermodynamic transition, but to a percolation transition
Cy) of the orientational degrees of freedom diverge afin real spacg14]. This result could be related to experimen-
Tp(s,X) (for s<4), as well as the correlation times of quan- ta| results on microemulsiori$].
tities depending on thertlike the Potts order parametif or Finally, we have shown that it is possible to generalize the
the energy densit§). For them we estimated the dynamic exact relation for the ferromagnetic Potts transition tempera-
critical exponentgy, andze . The low-temperature transition tyre T.(s) in 2D to a transition temperatuig,(s,X) for any
is a spin glass transition foX=0.5, or a fully frustrated 0<x<1, using a fitting parametex(X). In particular,a(X)
transition forX=1, and marks the ordering transition of the acts like a renormalization factor for the number of states of
signsS; (Ising variables the model; it isa(X=0)=1 (ferromagnetic cageanda(X)

The diverging fluctuations at the upper and lower transi-decreasing regularly with increasing
tion temperatures are expected to be experimentally observ-
able only using specific probes that couple with them. Ex-
amples of such probes could be those associated with
dielectric measurements in supercooled liquids and plastic | am grateful to A. Coniglio for many stimulating obser-
glassy crystals or with electron spin resonance spectroscopsations. | would like to thank G. Parisi, S. Franz, and Y.
measurements, 7]. Feldman for interesting discussion and L. Amaral and A.

For X=1 ands=2 the model shows a complex dynamics Scala for a critical reading of the manuscript. Partial support
corresponding tdl,. In particular, the correlation function was given by the European TMR Network—Fractals Contract
for M and the correlation function for the sigi® change No. FMRXCT980183.

VI. SUMMARY AND CONCLUSIONS
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