
PHYSICAL REVIEW E JUNE 2000VOLUME 61, NUMBER 6
Potts fully frustrated model: Thermodynamics, percolation, and dynamics in two dimensions
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Dipartimento di Fisica ‘‘E. Amaldi,’’ Universita` Roma Tre, via della Vasca Navale 84, I-00146 Roma, Italy

and Istituto Nazionale per la Fisica della Materia, Unita` di Napoli Mostra d’Oltremare, Pad. 19, I-80125 Napoli, Italy
~Received 10 May 1999; revised manuscript received 18 February 2000!

We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated
Potts model with variables having an integer absolute value and a sign. This model presents precursor phe-
nomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can
be related to a thermodynamic transition. Furthermore, this transition can be mapped onto a percolation
transition. We numerically study the phase diagram in two dimensions~2D! for this model with frustration and
withoutdisorder and we compare it to the phase diagram of~i! the model with frustrationanddisorder and~ii !
the ferromagnetic model. Introducing a parameter that connects the three models, we generalize the exact
expression of the ferromagnetic Potts transition temperature in 2D to the other cases. Finally, we estimate the
dynamic critical exponents related to the Potts order parameter and to the energy.

PACS number~s!: 64.60.Ak, 05.70.Fh, 67.57.Lm, 02.70.Lq
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I. INTRODUCTION

The glass transition temperatureTg for liquids is defined
experimentally as the onset of calorimetric anomalies@1#. It
is usually understood thatTg is not related to a thermody
namic transition@2#, but to the slowing down of one or mor
degrees of freedom. This slowing down prevents the sys
from reaching equilibrium@3,4#. This question is of interes
because almost all liquids can form glasses if cooled a
high enough rate. Moreover, many other materials such
for example, polymers, microemulsions, granular mater
vortex glasses, ionic conductors, colloids, plastic glassy c
tals, and spin glasses~SGs! @5#, show glassy properties.

Even well aboveTg , where glassy systems actually ca
equilibrate, they show experimentally dynamic anomalies
precursor phenomena of the glass transition@3,6–8#. From a
theoretical point of view, one of the open questions is
these precursor phenomena are related to the thermody
ics of the system@2,4,9,10#, or if they are not, like the glas
transition occurring at lower temperatureTg . In particular,
for the Ising SG@5# such a relation between precursor ph
nomena and a thermodynamic free energyessentialsingular-
ity has been shown@9,11,12#. Indeed, in this model there is
dynamic anomaly at a temperatureT* . AboveT* the relax-
ation processes have an exponential behavior, while be
T* they have a nonexponential behavior. Theoretical a
numerical evidence shows thatT* coincides with the Grif-
fiths temperatureTc @11#. This Tc is the transition tempera
ture that the model would have if the frustration due to d
order were removed. A way to remove the frustration is,
example, to substitute every antiferromagnetic interact
with a ferromagnetic interaction. In general, on removing
frustration, the model will have ferromagnetic regions a
antiferromagnetic regions andTc will be the transition tem-
perature of the unfrustrated model. To be more precise,
free energy of the Ising SG in an external field has a sin
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larity which disappears in the limit of zero external field a
which occurs at a temperature that goes toTc in the same
limit. This singularity is present only in disordered system
The relationT* 5Tc has also been shown to be valid nume
cally in two dimensions~2D! for a model with Potts vari-
ables that generalizes the Ising SG@13#. This generalized
model will be considered in the following and we will refe
to it as the Potts SG.

Until now we talked about glass dynamics in syste
with disorder, but numerical simulations show that it is po
sible to observe glassy behavior with precursor phenom
for spin systemswithout disorder but with frustration
@14,15#. These systems, due to the lack of disorder, are m
suitable for a theoretical approach@16,17#. In particular, one
can try to answer the question about the relation between
precursor phenomena and the thermodynamics of the sys

In Ref. @14# a simple case was considered: the fully fru
trated ~FF! Ising model@19# where ferromagnetic and ant
ferromagnetic interactions are ordered in such a way that
lattice cell has an odd number of antiferromagnetic inter
tions ~i.e., is frustrated!. It is shown~by simulations in 2D
and 3D! that the onsetT* of nonexponential relaxation pro
cesses is related to a random-bond percolation trans
@14#. As for the Ising SG, it is possible to generalize the
Ising model to a FF model with Potts variables@13#: the
Potts FF model that will be described in detail in the follow
ing. In Ref. @13# the dynamics of the Potts FF model wa
compared with the dynamics of the Potts SG model a
some anticipations about the relation between precursor
nomena and thermodynamics were given. In this work
study in detail the thermodynamics of the Potts FF mod
showing thatT* corresponds to the thermodynamic tran
tion temperatureTp of the Potts variables. It is important t
note that in any FF model the Griffiths temperatureTc can-
not be defined for the lack of disorder. ThereforeTc cannot
play any role in these cases.

Comparison of the results presented here with the an
gous study of the Potts SG model with disorder@18# gives
insight into the role of disorder. To this end we introduce
formal parameter 0<X<1 that connects the two models. Fo

ty,
6383 ©2000 The American Physical Society
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6384 PRE 61GIANCARLO FRANZESE
X50 we have the ferromagnetic Potts model@20# ~without
frustration and without disorder!. For 0,X,1 we have the
disorderedand frustrated Potts model. In particular, forX
50.5 we have the Potts SG model. ForX51 we have the
Potts FF model~without disorder!.

From Ref.@18# and from the present work, it is possible
show that forX50.5 orX51 there are two thermodynami
transitions. The lower transition is an Ising SG or a FF Is
transition. The upper transition atTp is in the universality
class of a ferromagnetic Potts transition. Furthermore,
show that Tp corresponds to a percolation temperatu
Moreover, we show how it is possible to generalize the ex
expression ofTp for the model withX50 in 2D @20# to the
casesX50.5 andX51.

The organization of the paper is as follows. In Sec. II
introduce the model and the known results forX50 ~ferro-
magnetic case!, X50.5 ~disordered and frustrated case!, and
X51 ~ordered and frustrated case!. In Sec. III we introduce
the cluster formalism used to map the upper thermodyna
transition atTp onto a percolation transition. In Sec. IV w
present the phase diagram in 2D forX51 as result of Monte
Carlo ~MC! simulations and we compare it with the cas
X50 andX50.5. In Sec. V we use the spin-flip MC dynam
ics to study the dynamic critical exponent and the tempe
ture T* , the onset of stretched exponentials. In Sec. VI
give the summary and conclusions.

II. THE MODEL

Structural glasses, such as dense molecular glasses,
tic crystals, or ortho-therphenyl at low temperature, can
modeled to a first approximation as systems with orien
tional degrees of freedom frustrated by geometrical h
drance between nonspherical molecules. For this reason
will consider the lattice model introduced in Ref.@21#, where
the orientational degrees of freedom are represented by P
variables@20# with s states (s i51, . . . ,s) and the frustration
is modeled by means of ferro/antiferromagnetically intera
ing Ising spins (Si561), coupled to the Potts variables.

The model is defined by the Hamiltonian

Hs$Si ,s i ,e i , j%52sJ(
^ i , j &

ds i ,s j
~e i , jSiSj11!, ~1!

where the sum is extended over all the nearest neighbor s
J is the strength of interaction,e i , j561 is a quenched vari
able that represents the sign of the ferro/antiferromagn
interaction, anddn,m50,1 is a Kronecker delta. To empha
size that the Ising and the Potts variables are interdepend
we can rewrite the Hamiltonian in Eq.~1! as

Hs$t i ,e i , j%522sJ(
^ i , j &

de i , jt i ,t j
, ~2!

where t i[Sis i561,62, . . . ,6s is a variables with 2s
states and the frustration now is explicitly on the new va
able. Anyt i has an absolute values i and a signSi .

The model depends on the interaction configuration$e i , j%.
Possible choices are the following.~i! If all e i , j51 ~i.e., all
interactions are ferromagnetic!, Eq. ~2! is the Hamiltonian of
the ferromagnetic Potts model@20# with variablest i with an
g
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even (2s) number of states. It shows a thermodynamic tra
sition at Tc(s) whose order depends ons. ~ii ! If e i , j are
quenched random variables, the model corresponds to
Potts SG. This model is a generalization of the Ising S
model that is recovered fors51. It shows two thermody-
namic transitions@18#. The lower is a SG transition a
TSG(s). The upper is a Potts transition atTp(s).TSG(s).
The transition atTp(s) is in the universality class of a ferro
magnetics-state Potts model. Another relevant temperat
for this model is the temperatureTc(s) defined for the pre-
vious case~the ferromagnetic 2s-state Potts model!. Indeed,
it is possible to show that for finite external field a free e
ergy~Griffiths! singularity arises@11#. In the limit of external
field going to zero, the temperature at which this singular
occurs goes toTc(s) and the singularity vanishes.Tc(s) is
the Griffiths temperature for this model. Furthermore, n
merical simulations@13# show that Tc(s).Tp(s) corre-
sponds to the onsetT* (s) of nonexponential correlation
functions for the Ising spinsSi . This result generalizes wha
happens in the Ising SG (s51 case!, where at the Griffiths
temperatureTc(1) nonexponential correlation functions a
seen@12#. It is worth noting that the Ising spins are critical
TSG(s), which is well belowTc(s)5T* (s). Moreover, note
that the relevant Griffiths temperature for this model isTc(s)
of the variablest i5Sis i and not the Griffiths temperature o
the variablesSi alone, which in our notation isTc(1). ~iii ! If
there is an odd number ofe i , j521 for each elementary cel
~as in Fig. 1!, the system is fully frustrated. This means th
at least one interaction per cell is not satisfied, i.e., the r
tive energy contribution is 0 instead of22sJ ~as for the
edgesb, d, and f in Fig. 1!. The model is called a Potts F
model and is a generalization of the FF Ising model@19#
which is recovered fors51. It has frustration but no disor
der. For any integers>1 the model has in 2D a second-ord
phase transition atT50. Nonexponential correlation func
tions are reported below a finite temperatureT* (s) for s
52, 1, and 1/2~the last case is defined in Sec. III! @14,13#.
This dynamic anomaly cannot be related, as in the previ
case, to the Griffiths temperature. Indeed, the Griffiths te
perature is not defined in FF models for the lack of disord
The aim of this work is to study the phase diagram of the
model as a function ofs and to show thatT* (s) corresponds

FIG. 1. Example of Potts fully frustrated model on a squa
lattice: on each vertex there is variablet i5Sis i561,62 . . .6s
with s54 in the figure. Here we represent the sign (Si) of eacht i

by an open or a full circle~respectively, positive and negative, fo
example! and its orientational state (s i) by an arrow pointing in
four different directions. Ferromagnetic~antiferromagnetic! interac-
tions are represented by full~dotted! lines.
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to a Potts transition. Furthermore, using a percolation
proach, it is possible to show that the Potts transition co
sponds to a percolation transition, defined also for noninte
values ofs.

The previous three cases can be generalized to a cla
Hamiltonians. Consider, as model parameter, the densiX
of frustrated elementary cells. ForX50 there are no frus-
trated cells~as in a ferromagnet!, while for X51 every cell
is frustrated~FF case!. For 0,X,1 it is possible to partition
the lattice into two nonoverlapping subsetsU(X) andF(X)
of unfrustrated cells and frustrated cells, respectively. The
fore Eq.~2! can be written as

Hs,X$t i%[Hs$t i ,e i , j~X!%

522sJ (
^ i , j &PU(X)

dt i ,t j

22sJ (
^ i , j &PF(X)

de i , jt i ,t j
. ~3!

In this way the ferromagnetic Potts model with an even nu
ber of states@case~i!# is recovered forX50, since,F(X
50) is empty; the Potts SG model@case~ii !# for X50.5; the
Potts FF model@case ~iii !# for X51, since U(X51) is
empty; intermediate disordered models are obtained for o
values of 0,X,1.

To make the comparison between theX50.5 andX51
models, we will follow the line of Ref.@18# where the phase
diagram of the former has been studied. In particular, foX
51 we consider a square lattice with onee i , j521 per cell
as shown in Fig. 1.

III. PERCOLATION

We now introduce the percolation map, following Re
@21#. It is a generalization toX>0 of Fortuin-Kasteleyn@22#
cluster formalism, defined originally only forX50. In Ref.
@21# it is shown that the partition functionZs,X of the Hamil-
tonian in Eq.~3! can be written in terms of bond configura
tions C as

Zs,X[(
$t i %

e2Hs,X$t i %/(kBT)5(
C

Ws,X~C!, ~4!

where kB is the Boltzmann constant;Ws,X(C)50 if C in-
cludes anyfrustrated loop~defined below! and otherwise

Ws,X~C!5puCu~12p! uAu~2s!N(C) ~5!

wherep512exp@22sJ/(kBT)# is the probability of placing a
bond between two nearest neighbor sites@23#; N(C) is the
number of clusters~defined as maximal sets of connect
bonds! in the configurationC; uCu is the number of bonds
and uCu1uAu is the total number of interactions. A loop o
bonds is calledfrustratedif the product of all the signse i , j of
the interactions along it is equal to21. For a frustrated loop
there is no$t i% configuration able to minimize the energy
all the interactions along it. An example of such a frustra
loop is the one composed of the edgesa,e,g, andf in Fig. 1
-
-

er

of

e-

-

er

d

or a loop composed of the external edges of any three a
cent elementary cells in a FF lattice~or of any odd number of
adjacent cells!.

Note that forX50 there are no frustrated loops and t
original Fortuin-Kasteleyn cluster definition is recovere
Since the above cluster definition holds for anys andX, for
any model described by the general Hamiltonian in Eq.~3! it
is possible to define a percolation temperature for these c
ters.

Moreover, the right-hand side of Eq.~4! is well defined
even for noninteger values ofs. In these cases it does no
define a Hamiltonian model, but it still defines a percolati
model. In particular, thes51/2 case forX.0 is the frus-
trated percolationmodel @14#.

For X50, in the general case in which we consider Po
variablest i with a generic numberq of states instead of an
even (2s) number of states in Eqs.~3! and~5!, it is possible
to show@20# that the percolation temperatureTp(q,X50) of
the above defined clusters coincides with the ferromagn
q-state Potts critical temperatureTc(q). In particular, in 2D it
is possible to prove@20# the relation

kBTc~q!

qJ
5

1

ln~11Aq!
. ~6!

For X50.5 the same kind of relation between the perc
lation temperatureTp(q,X50.5) and the Potts transition
temperature forq52s in 2D has been obtained@18#. Further-
more, it was shown numerically that it is possible to gen
alize Eq.~6! using a fitting parametera(X) @18#. The result-
ing relation is

kBTp~q,X!

a~X!qJ
5

1

ln@11Aa~X!q#
~7!

with a(X50.5)50.80060.003 @18#. Note that Tp(q,X
50.5) represents a percolation temperature for anyq>0 and
also a Potts transition temperature for even integer valueq
52s. Furthermore, for 0,X,1 and q52s Eq. ~6! for
Tc(2s) gives by definition the Griffiths temperature of th
disordered model.

IV. NUMERICAL RESULTS IN 2D FOR X Ä1

To study the phase diagram of the model withX51 ~Potts
FF! we have simulated it fors52,7,20,50 on square FF lat
tices with periodic boundary conditions and linear sizeL
from 10 to 80. At low temperature all the Potts variables te
to order ferromagnetically wherever the Ising spins sati
the ferro/antiferromagnetic interactions~i.e.,de i , jSi ,Sj

51). In

particular, atT50 the system in 2D has a second-ord
phase transition of the Ising spins, as in the FF Ising mo
@19#. We will show that the interplay between Potts variab
and Ising spins affects the phase diagram at finite temp
ture. As in Ref.@18#, to study the finite temperature range w
can use an efficient cluster dynamics with an annealing p
cedure. We define a MC step as an update of the wh
system. At each temperature we average the data over4

MC steps, discarding the first 53103 MC steps.
In our systematic analysis we calculated for eachs the
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Binder parameter@24# for the energy densityE defined as

V512
^E4&

3^E2&2
~8!

~angular brackets denote the thermal average!. This quantity
allows us to distinguish between first-order and second-o
phase transitions. Indeed, in a second-order phase trans
for L→` it is V52/3 for all temperatures, while in a first
order phase transitionV has a well pronounced minimum
near the transition temperature. The thermodynamic of
model is studied by means of the Potts order parameter

M5
s maxi~Mi !21

s21
~9!

~wherei 51, . . .s, Mi is the density of Potts spins in thei th
state!, the susceptibility

x5
1

kBT

^M2&2^M &2

N
~10!

~whereN is the total number of Potts spins!, and the specific
heat

CH5
1

kBT2

^E2&2^E&2

N
. ~11!

To study the Fortuin-Kasteleyn percolation we calculated
percolation probability per spinP512m1 and the mean
cluster sizeS5m2 ~wheremn5(kk

nnk is thenth moment of
the distribution of densitynk of clusters with sizek).

A. The second-order transition for sÄ2

For X51 ands52 the Binder parameterV goes to the
constant value 2/3 for all temperatures asL increases~see
Fig. 2! revealing a second-order phase transition. The tra
tion temperatureTs in the thermodynamic limit can be est
mated, together with all the critical exponents, using
standard scaling analysis@25# for second-order phase trans
tions. By definition of the critical exponentsn, b, g, anda,
it is j;uT2Tsu2n, j being the correlation length,M;uT
2Tsub;j2b/n, x;uT2Tsu2g;jg/n, CH;uT2Tsu2a

;ja/n, for which we expect

M;L2b/n f M„~T2Ts!L
1/n
… ~12!

~and analogous scaling laws forx andCH) wheref M(x) is a
universal function of the dimensionless variablex. The val-
ues at which the scaling laws are satisfied give estimate
the critical exponents and ofTs . In Fig. 3 we show the
large-size data collapse using the set of Ising critical ex
nents@26# and leaving onlyTs as a free parameter, giving a
estimatekBTs /J52.7360.03.

Study of the percolation quantities shows a smooth beh
ior of P and a cusp inS increasing withL. Therefore one can
make the ansatz that the percolation transition is of sec
order. Let us define a Fortuin-Kasteleyn percolation tempe
ture Tp and a set of percolation critical exponentsnp , bp ,
andgp by means of the relationsjp;uT2Tpu2np, wherejp
is the connectedness length of the clusters~i.e., the typical
er
ion

e

e

i-

e

of

-

v-

d
a-

linear cluster size! and P;uT2Tpubp;jp
2bp /np ,S;uT

2Tpu2gp;jp
gp /np . Applying the standard scaling analys

for percolation@27#, one obtains in a consistent way the r
sults summarized in Fig. 4 using the corresponding therm
dynamic critical exponents for the 2D Ising model. The n
merical estimate for the percolation temperature iskBTp /J
52.7360.03, coincident with the estimates ofTs . Therefore
the percolation transition and the Potts transition occur at
same temperature and with the same set of critical expone
i.e., they coincide.

FIG. 2. X51 ands52: Binder’s parameterV vs T for the lattice
sizesL listed in the figure. Inset: Enlarged view. Where not show
errors are smaller than symbol size. Lines are only guides for
eyes. For increasingL, V goes to 2/3 for all temperatures, showin
a second-order phase transition.

FIG. 3. X51 ands52: Collapse ofM, CH , andx data in~a!,
~b!, and ~c!, respectively, for the Ising critical exponen
(n,b,a,g). Each collapse gives an independent estimate of
critical temperatureTs ~indicated in each panel!.
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B. The first-order transition for sÄ7, 20, and 50

For X51 ands57, 20, and 50 we have considered sy
tems withL from 10 to 50 lattice steps with periodic boun
ary conditions. On the base of the mean field results@17# for
the Potts FF model and the knowledge of the Potts mo
@20#, we expect that the order of the transition will chan
for s.4. In fact, the thermodynamic order parameterM be-
comes more and more discontinuous ass increases. At the
same time the percolation order parameterP develops a more
and more pronounced discontinuity.

In particular, study of the Binder parameterV reveals that
the model fors57, 20, and 50 has a first-order phase tra

FIG. 5. X51 ands57: Binder’s parameterV as in Fig. 2.V has
a well defined minimum for any size, showing a first-order pha
transition.

FIG. 4. X51 ands52: Collapse ofP andSdata in~a! and~b!,
respectively, for the Ising critical exponents. Each collapse give
estimate of the percolation temperaturekBTp /J52.7360.03.
-

el

-

sition, since, for each considered lattice sizeL between 10
and 50,V has a nonvanishing minimum, as shown in Fig
for s57. In these cases the estimates of infinite-size tra
tion temperaturesTs(s) and Tp(s) for the thermodynamic
and percolation transition, respectively, can be made thro
the relation@25#

Tmax~L !2Tmax~`!;L2D, ~13!

where D52 is the Euclidean dimension,Tmax(L) is the
finite-size temperature of the maximum ofCH or S, and
Tmax(`) is the transition temperature in the thermodynam
limit. ThereforeTs(s) andTp(s) can be evaluated by linea
fits on a log-log scale with one free parameter. The res
are summarized in Table. I. For anys, Ts(s) andTp(s) are
consistent within the numerical error.

C. Phase diagram

The numerical results in Secs. IV A and IV B give rise
the phase diagram forX51. It is qualitatively similar to the
phase diagram forX50.5 @18#. In Fig. 6 we compare both o
them with the phase diagrams forX50.

For X50 ~Potts model with 2s state variables! for any
integers there is a paramagnetic/ferromagnetic phase tra
tion at finite temperatureTc(s). The transition is of second
order for 2s<4 and of first order for 2s.4 @20#. Tc(s) is
given by Eq.~6! with q52s. It coincides with the Fortuin-

e

n

TABLE I. X51 ands57,20,50: Numerical estimates of the
modynamic transition temperatureTs(s) and percolation transition
temperatureTp(s). For anys they are consistent within the numer
cal error.

s Ts Tp

7 6.8760.04 6.8560.06
20 15.360.1 15.360.1
50 31.760.1 31.560.1

FIG. 6. Numerical phase diagram in 2D forX50 ~Potts model:
Tc), X50.5 ~Potts SG model:Tp

PSG) and X51 ~Potts FF model:
Tp

PFF). The data are fitted with Eq.~7! with fit parametera(X)
shown in the inset. Errors are smaller than symbol size.
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6388 PRE 61GIANCARLO FRANZESE
Kasteleyn percolation temperature. The percolation temp
ture is defined even for noninteger values ofs.

For X50.5 ~Potts SG model with frustration induced b
disorder and with 2s state variables! there are two phase
transitions for integer values ofs. The lower transition is a
SG transition. It is assumed to occur atTSG50 for anys in
2D and atTSG(s).0 in higher dimensions as in the Ising S
@28#. The high-temperature transition is ans state Potts fer-
romagnetic transition occurring atTp(s,X) given by Eq.~7!
with q52s and a(X50.5)50.80060.003 @18#. It is a
second-order transition fors<4 and a first-order transition
for s.4. Tp(s,X) corresponds also to the Fortuin-Kastele
percolation temperature, which is defined even for nonin
gers @18#. This model is disordered and its Griffiths temper
ture is by definition the transition temperature of the 2s state
Potts modelTc(s), given by Eq.~6! with q52s. It is pos-
sible to see thatTc(s) is numerically consistent with the
onset of nonexponential relaxations atT5T* (s) for s52 in
2D @13# and fors51 ~Ising SG! in 2D and 3D@12,29#.

For X51 ~Potts FF model with frustration and no diso
der and with 2s state variables! considered here, there ar
two transitions for integer values ofs, as well as forX
50.5. The lower transition is atTFF50 in 2D and at
TFF(s).0 in higher dimensions, as for the FF Ising mod
(s51) @19,32#. As seen in this section, in this case the upp
transition is ans state Potts ferromagnetic transition
Tp(s,X51). As shown in Fig. 6, Eq.~7! describesTp(s,X
51) well, using a fit parametera(X51)50.69060.003.
Furthermore we have shown that it coincides with a Fortu
Kasteleyn percolation transition. As a consequence
Fortuin-Kasteleyn clusters represent the regions of correl
Potts variables. This means that the cluster’s character
linear size is equal to the correlation length of the Potts v
ables. Analyses fors51/2 ~frustrated percolation! ands51
~FF Ising model! in 2D and 3D are given in Ref.@14#.

The main difference between theX51 andX50.5 cases
is that the Griffiths temperature is defined in the latter~dis-
ordered model!, but not in the former~for the lack of disor-
der!. The important consequence of this fact is that forX
51 the dynamic anomalies are present only belowTp(s,X
51) @30#, while for X50.5 they are present also abov
Tp(s,X50.5) and belowTc(s) @31#.

Note that all the Potts percolation transition temperatu
for X50, 0.5, and 1 can be described by the same form
Eq. ~7! as a function ofs with an X-dependent paramete
a(X). This parameter has a regular behavior as function oX
~see the inset in Fig. 6!.

V. DYNAMIC CRITICAL EXPONENT

As shown in Sec. IV A, atTp(s52,X51) the Potts vari-
ables have a second-order phase transition. Therefore
correlation length diverges and their dynamics slows do
A measure of the slowing down for any observableA is
given by the dynamic critical exponentz defined by
tA„Tp(L),L…;Lz. Here, omitting for the sake of simplicity
the dependence ons andX, Tp(L) is the transition tempera
ture for the system with finite sizeL @33# andtA(T,L) is the
correlation time at temperatureT and sizeL associated with
the correlation function forA,
a-
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f A~ t,T!5
^A~ t,T!A~0,T!&2^A~T!&2

^A~0,T!2&2^A~T!&2
, ~14!

wheret is the time. More then one definition oftA is possible
for anyA, but all of them, even if numerically different, hav
the same qualitative behavior@12#. In particular, facing the
difficulty that the greater the size, the greatertA„Tp(L),L…,
we definetM andtE for the Potts order parameterM and the
energy densityE as the timet0 ~in units of MC steps! at
which f M„t0 ,Tp(L)…50.4 and f E„t0 ,Tp(L)…50.3, respec-
tively. The data for sizesL520, 24, 30, 40, 50 are shown i
Fig. 7 and the dynamic critical exponents are estimated
linear fits on a log-log plot aszM50.960.1 andzE51.1
60.1 @34#.

To study the behavior off M and f E in the thermodynamic
limit we have extrapolated the data in the infinite-size lim
following the procedure suggested in Ref.@36#. It consists in
plotting at anyt the genericf A(t,T,L) for finite-sizeL versus
1/L and in extrapolating for 1/L→0. We consider the tem
perature range 2.65,kBT/J,3.25 @35#. The results are
shown in Figs. 8 and 9. To check the form off M and f E , we
have fitted the data with three different plausible functio
~a! a simple exponentialf 0exp(2t/t); ~b! a Kolraush-
Williams-Watts stretched exponentialf 0exp@2(t/t)b#; ~c! the
Ogielski form

f ~ t,T!5 f 0

e2(t/t)b

tx
, ~15!

which is a combination of form~b! with a power law. In the
previous functions,f 0 , t, x, andb areT-dependent param
eters. Note that for the form~c! it is possible to estimatef 0
and x separately fromb and t, since the first two describe
the short-time behavior and the second two the long-ti
regime.

FIG. 7. X51 ands52: The logarithm of correlation timet0

~see text! at the finite-size transition temperatureTp(L) @33# as
function of the logarithm~base 10! of size L, for the correlation
function of the Potts order parameterM ~circles! and of the energy
densityE ~squares!, for L520,24,30,40, and 50. The slopes give t
exponentszM andzE .
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The Ogielski form turns out to describef M and f E very
well as shown in Figs. 8 and 9. The fitting parameters
presented in Fig. 9 and 10. The forms~b! and~c! always give
compatible estimates of theb exponent, consistent with th
very low values ofx ~which is approximately the slope of th
function att50 in Figs. 8 and 9!.

FIG. 8. X51 ands52: Correlation function of the Potts orde
parameterM in the thermodynamic limit~see text!. For clarity we
show only some of the recorded data for the simulated temp
tures. Symbols are results of simulations, solid lines are fits with
form in Eq. ~15!, dashed lines~on this scale indistinguishable from
solid lines! with stretched exponential form and dotted lines w
exponential form. Where not shown, the errors are smaller than
symbol size. Temperature is measured inJ/kB .

FIG. 9. X51 ands52: Correlation function of the energy den
sity E in the thermodynamic limit as in Fig. 8. Inset: The correlati
times estimated by exponential fit~circles! and by Eq. ~16!
~squares!. The arrow shows the numerical estimate ofTp .
e

From Fig. 10 for the parameterb of f M , we see that it is
b51 above the Potts transition atkBTp /J52.7360.03 and
b,1 belowTp . Therefore there is a dynamic transition b
tween a high-temperature exponential behavior and a l
temperature stretched exponential behavior off M . This re-
sult shows the presence of a complex dynamics belowTp ,
consistent with analysis of the nonlinear susceptibility cor
lation function of the Ising spins@13#. It is important to note
that, while the Potts variables have a transition atTp , the
Ising spins have no transition atTp and, in principle, no
dynamical anomalies are expected for them.

On the other hand, the data forf E show that the long-time
behavior is well described by an exponential function.
particular, the form~c! with b51 and a nonzerox fits very
well also the data for the lowest temperature considered h
Note that, in principle, one can expect a dynamical anom
even for the energy densityE, since it depends explicitly on
the critical Potts variables.

In the fitting forms used, the correlation timet is defined
as a fitting parameter. Another possible definition is the f
lowing ~integral correlation time!:

t int,A~T!5 lim
tmax→`

1

2
1(

t50

tmax

f A~ t,T!. ~16!

Due to the divergence of the correlation time, the definiti
in Eq. ~16! does not converge near the transition temperatu
Therefore it is not shown in Figs. 9 and 10 for the tempe
ture with the largestt. However, where it converges, all th
different estimates of the correlation time are numerica
consistent as shown in Figs. 9 and 10. Note that, even if
data are extrapolated to the thermodynamic limit, finite-s
effects are still present. Indeed, the critical temperature e

a-
e

he

FIG. 10. X51 ands52: Fit parameters forf M data with form
as in Eq. ~15! ~circles! and for stretched exponential form~tri-
angles!. In the lower panel we show also the integral correlati
times t int estimated with Eq.~16! ~squares!. The arrow and the
vertical lines showTp and the numerical indeterminacy on it, re
spectively.
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mated fromt measurements, within our temperature mesh
between 2.75J/kB and 2.85J/kB , which is at variance with
the estimate ofTp .

VI. SUMMARY AND CONCLUSIONS

We have studied a schematic model for glasses wh
frustrated orientational degrees of freedom, associated
2s state Potts variablest i , induce complex dynamics. In rea
systems the frustration can be associated, for example,
steric hindrance of nonspherical molecules in structu
glasses. Eacht i has an absolute value (s i51, . . . ,s) and a
sign (Si561). The frustration is over the signs and can
with disorder orwithout disorder, depending on a model p
rameterX. For 0,X,1 there is disorder, while forX51 the
model is~fully ! frustrated without disorder. ForX50 there
is no frustration, and the model recovers the 2s state ferro-
magnetic Potts model.

For 0,X<1 the model has two thermodynamic tran
tions. The high-temperature transition atTp(s,X) for the
model with 2s states is in the universality class of thes-state
ferromagnetic Potts model. Therefore the fluctuations (x and
CH) of the orientational degrees of freedom diverge
Tp(s,X) ~for s<4), as well as the correlation times of qua
tities depending on them~like the Potts order parameterM or
the energy densityE). For them we estimated the dynam
critical exponentszM andzE . The low-temperature transitio
is a spin glass transition forX50.5, or a fully frustrated
transition forX51, and marks the ordering transition of th
signsSi ~Ising variables!.

The diverging fluctuations at the upper and lower tran
tion temperatures are expected to be experimentally obs
able only using specific probes that couple with them. E
amples of such probes could be those associated
dielectric measurements in supercooled liquids and pla
glassy crystals or with electron spin resonance spectrosc
measurements@6,7#.

For X51 ands52 the model shows a complex dynami
corresponding toTp . In particular, the correlation function
for M and the correlation function for the signsSi change
n,

nd

ra
is

re
ith

ith
l

t

i-
rv-
-
ith
ic
py

their behaviors. They have an exponential behavior aboveTp
and a nonexponential behavior belowTp . This behavior is
expected at least for anys<4, because it is associated wit
the free energy singularity occurring at the second-or
transition of the Potts variables. Therefore the complex
namics corresponds to a real thermodynamic transition.

For X50.5 ands52 the onset of this dynamic anomaly
shifted to a higher temperature,above Tp . It occurs in cor-
respondence with the Griffiths essential singularity of t
free energy. This singularity is not defined in theX51 case.
For zero external field it goes to the transition temperature
the ferromagnetic 2s-state Potts modelTc(2s) and vanishes.
Therefore the onset of complex behavior does not co
spond to a real thermodynamic transition.

We have shown that the Potts transition atTp(s,X) for
any s and X considered here coincides with a percolati
transition. It is not worthless to note that the dynamic tra
sition atTp(s,X51) persists also fors51 ands51/2 @14#.
In these casesTp(s,X51) does not correspond to a therm
dynamic transition, but only to a percolation transitio
Therefore fors,2 the dynamic anomaly is no longer relate
to a thermodynamic transition, but to a percolation transit
in real space@14#. This result could be related to experime
tal results on microemulsions@8#.

Finally, we have shown that it is possible to generalize
exact relation for the ferromagnetic Potts transition tempe
tureTc(s) in 2D to a transition temperatureTp(s,X) for any
0<X<1, using a fitting parametera(X). In particular,a(X)
acts like a renormalization factor for the number of states
the model; it isa(X50)51 ~ferromagnetic case! anda(X)
decreasing regularly with increasingX.
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