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Current reversals in ratchets driven by trichotomous noise

Romi Mankin and Ain Ainsaar*
Department of Natural Sciences, Tallinn Pedagogical University, Narva maantee 25, 10120 Tallinn, Estonia

Eerik Reiter
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The colored three-level Markovian noise-driven nonequilibrium dynamics of overdamped Brownian par-
ticles in a spatially periodic asymmetric potential~ratchet! is investigated. An explicit second-order linear
ordinary differential equation for the stationary probability density distribution is obtained for the process. In
the case of a piecewise linear potential with an additive three-level~trichotomous! noise the exact formula for
the stationary current is presented. The dependence of the current reversals on the noise parameters is inves-
tigated in detail and illustrated by a phase diagram. Asymptotic formulas for the current for various limits of
the noise parameters are found and compared with the results of other authors. Applications to the fluctuation-
induced separation of particles are also discussed.

PACS number~s!: 05.40.2a, 05.60.2k, 02.50.2r
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I. INTRODUCTION

Within the past few years there has been considera
interest in the problem of noise-induced transport in spati
periodic structures called ratchets~for reference surveys se
@1,2#!. The initial motivation in this field has come from th
cell biology, in particular the study of the mechanism
vesicles transport inside eukariotic cells, via motor prote
along microtubules@2,3#. It has been argued in@3# that a
ratchet~a Brownian motor! could extract energy from non
equilibrium fluctuations even if their mean value is equal
zero. Later on new systems with the same underlying id
for transportation were proposed,~e.g. chemically driven
motility of enzymatic Brownian particles@4#, phase separa
tion engines@5#, growth of surfaces@6#, and rectification in
superconducting rings@7#!. There are several categories
models for stochastic ratchets@1–3,8–12#. It should be noted
that the dynamics in ratchet structures with its inherent s
tial asymmetry generally exhibits a rich complexity, such
the occurrence of multiple current reversals and multipea
current characteristics@1,2#. A particularly appealing feature
of Brownian motors is their ability to separate particles
different friction strength or mass@1#. It is well known that
the net current in a periodic ratchet potential fluctuating r
domly between a flat and a nonflat state is always biase
one direction, independent of the correlation time of the fl
tuation@10,13#. In some cases current reversal~CR! could be
observed, i.e., the current changed its direction in cer
parameter regions of the model@9,11,14–27#. Millonas and
Dykman have discussed the generation of CR in a station
periodic potential induced by a Gaussian force noise wit
nonwhite power spectrum@14#. Chauwin, Ajdari, and Pros
@9# have suggested that CR can be obtained in the two-s
ratchet model if the long arm of the ratchet is kinked. B
and Astumian have also found CR in a fluctuating three-s
model @15#. Doering, Horsthemke, and Riordan@11# intro-
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duced a kangaroo process as the driving force and found
CR depends on the flatness~the ratio of the fourth moment to
the square of the second moment! of the noise. Later, Mielke
@22# developed a method that allows us to calculate the c
rent for a large class of processes including those discu
in @11#, again in the case of a sawtooth potential~piecewise
linear potential!, and found several other cases where C
occurs. Similarly, in@16# it has been shown that a period
force can cause a CR depending on its amplitude and
quency.

Bartussek, Reimann, and Ha¨nggi @20# have presented CR
in a correlation ratchet driven by both an additive Gauss
white and an additive Ornstein–Uhlenbeck noise. Depend
on the choice of the ratchet potential, CR may occur a
specific value of the correlation time. For an inertia ratche
CR can be evoked by modifying the mass of the partic
@21,24#.

The effect of CR in combination with the stationary ca
rier density has been considered in@25,26#, where the diffus-
ing particles were interacting and the ensuing ratchet cur
described a collective dynamics.

In @17–19# calculations are presented for a three-lev
Markovian stochastic force and approximations for the me
current have been carried out for the limits of slow and f
noise. It has been shown that the direction of the current m
depend on the correlation time of the noise as well as on
flatness parameter. These models are potentially very us
because CR could lead to a more efficient fluctuatio
induced separation of particles@9,17#. Nevertheless, most o
the results have been obtained by numerical methods o
limits of slow and fast noises. There are almost no ex
results for correlation ratchets, enabling us to quantitativ
evaluate the values of the noise parameters correspondin
CRs for concrete models, or giving sufficient and necess
conditions for their existence. This is caused, first and fo
most, by the fact that even simple model ratchets displa
rich variety of behaviors that vary remarkably with the sy
tem parameters. Capturing the full range of the
possibilities—and the transitions between them—as sev
6359 ©2000 The American Physical Society
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parameters change, is quite difficult with numerical solutio
alone.

In this paper we consider one-dimensional overdam
dynamical systems determined by a first-order differen
equation with a periodic potential and an additive noise te
composed of a trichotomous process, which is a three-le
stationary telegraph process characterized by three pa
eters: amplitudea0P(0,̀ ), correlation timetcP(0,̀ ), and
flatnesswP(1,̀ ) @28,29#. In order to get the results in
closed form for all values of the noise parameters, the no
is applied to piecewise linear~sawtooth! potentials, which
have been considered as applicable to scientific and e
neering problems as good approximations to potentials
in the real world@30#.

The purpose of this paper is to provide exact analyti
results for the stationary currentJ over extended noise pa
rameter regimes for the system. Interpreting the qualitativ
different shapes of the dependence ofJ on the correlation
time tc as different phases in the phase space of the par
etersw and a0, we have constructed comprehensive ph
diagrams to demonstrate the noise-induced transitions. H
we succeeded in reaching the exact conditions which b
forth CR.

The structure of the paper is as follows. In Sec. II t
model and exact differential equation for the stationary pr
ability density are presented. The current for periodic pot
tials in the addiabatic limit is investigated. In Sec. III a d
namical system with a periodic sawtooth potential
considered. The exact stationary current is found. In Sec
the behavior of the current at different limits, such as
slow noise limit, large amplitude limit etc., is analyzed.
Sec. V the current reversals are subjected to a closer con
eration. The dependence of CR on the noise paramete
investigated and comprehensive phase diagrams are
sented. Section VI contains some concluding remarks.

II. TRICHOTOMOUS MARKOVIAN NOISE

Here we explicate the idea of dichotomous noise furt
to a symmetric three-level random telegraph processf (t)
called thetrichotomous process@28#. This is a random sta
tionary Markovian process that consists of jumps betw
three valuesa5a0,0,2a0. The jumps follow in time accord-
ing to a Poisson process, while the values occur with
stationary probabilities

Ps~a0!5Ps~2a0!5q, Ps~0!5122q. ~1!

The transition probabilities between the statesf (t)56a0
and 0 can be obtained as follows:

P~6a0 ,t1tu0,t !5P~2a0 ,t1tua0 ,t !5P~a0 ,t1tu2a0 ,t !

5q~12e2nt!,

P~0,t1tu6a0 ,t !5~122q!~12e2nt!, ~2!

t.0, 0,q,1/2, n.0.

The process is completely determined by Eqs.~1! and~2!.
The mean value off (t) and the correlation function are

^ f ~ t !&50, ~3!
s
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^ f ~ t !, f ~ t8!&5^a2&e2nut2t8u52qa0
2e2nut2t8u.

It can be seen that the switching raten is the reciprocal of the
noise correlation time

n51/tc .

The noise intensity is

s252E
0

`

^ f ~ t1t!, f ~ t !&dt54qa0
2/n. ~4!

The flatness parameterw proves to be a very simple expre
sion of the probabilityq

w5^ f 4~ t !&/^ f 2~ t !&251/~2q!. ~5!

Next, we consider an overdamped motion in an asymm
ric periodic potentialU(x) with the periodL. The process is
driven by the trichotomous noisef (t). The motion is de-
scribed by the stochastic differential equation

k
dx

dt
5h~x!1 f ~ t !, h~x![2

dU~x!

dx
, ~6!

wherek is the viscous friction strength. By applying a sca
ing of the form

x̃5x/L, t̃ 5t/t0 , f̃ 5 f L/U0 , V~ x̃!5U~x!/U0

we get a dimensionless formulation of the dynamics with
potentialV with the propertyV( x̃)5V( x̃11). By the choice
t05kL2/U0 the dimensionless friction coefficient turns
unity. The rescaled noise parameters are given by

ñ5kL2n/U0 , ã05La0 /U0 . ~7!

From now on we shall use only the dimensionless dyna
ics and omit the tildes. The dynamics reads

dx

dt
5h~x!1 f ~ t !, h~x![2

dV~x!

dx
. ~8!

The corresponding composite Fokker–Planck master eq
tion for our problem is

]

]t
Pn~x,t !52

]

]x
$@h~x!1an#Pn~x,t !%1(

m
UnmPm~x,t !,

~9!

with Pn(x,t) denoting the probability density for the com
bined process (x,an ,t); n,m51,2,3; a1[2a0 , a2[0, a3
[a0 and

U5nS q21 q q

122q 22q 122q

q q q21
D . ~10!

The stationary currentJ is then evaluated via the curren
densities

j n~x!5@h~x!1an#Pn
s~x!,

J5(
n

j n~x!, ~11!
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wherePn
s(x) is the stationary probability density for the sta

(x,an). It follows from Eq.~9! that the currentJ is constant.
We shall assume that

max
x

h~x!.umin
x

h~x!u.

The following characteristic regions fora0 can be dis-
cerned:

~i! There is no current if 0,a0,uminx h(x)u, as there is a
stationary stable point for any staten.

~ii ! In case ofuminx h(x)u,a0,maxx h(x) there exists at
least one stationary stable point forf (t)52a0, the motion to
the left is switched off and the currentJ is positive.

~iii ! In case ofa0.maxx h(x) the stochastic processf (t)
can, although it should not, induce a reversal of the curr
Now we shall discuss this case in some detail.

For the calculation of the stationary probability density
the x spaceP(x)5(nPn

s(x) and the stationary currentJ5
const the results of@31# can be applied. Notably, it is show
there that if a processx(t) satisfies the stochastic differenti
equation~8!, where f (t) is a generalized random telegrap
process, the stationary probability densityP(x) is a solution
of the operator equation

J2h~x!P~x!5n^aL̂a
21&P~x!. ~12!

The angular bracketŝ& mean averaging over the values
the random variablea and the operatorL̂a

21 is the inverse of

the operatorL̂a defined by

L̂ac~x!ªnc~x!1
d

dx
@„h~x!1a…c~x!#. ~13!

In our Eq. ~8! the random variablea takes the valuesa0 ,
2a0 with the probabilityq and the value 0 with the prob
ability 122q. For the stationary probability densityP(x)
corresponding to Eq.~8! the following second-order differ
ential equation can be obtained from Eq.~12!:

J„h8~x!1n…2nh~x!P~x!1
d

dx
@„a0

22h2~x!…P~x!#

1
d

dx H h~x!

h8~x!1n F „h8~x!1n…J2nh~x!P~x!

1
d

dx
@„a0

22h2~x!…P~x!#G J
5~122q!na0

2 d

dxF P~x!

n1h8~x!
G , ~14!

where

h8~x![
d

dx
h~x!.

In the case ofq51/2 ~a dichotomous noise! the last term
vanishes and Eq.~14! is satisfied by every solution of th
equation

J„h8~x!1n…2nh~x!P~x!1
d

dx
@„a0

22h2~x!…P~x!#50.
t.

The latter corresponds to Eq.~8! in the case wheref (t) is a
dichotomous noise. This has been investigated in detai
several authors@11,32#. In order to proceed further with the
calculations in the case of a trichotomous noise it is suita
to impose periodic boundary conditions on the station
probability density

P~x!5P~x11!,

which converts Eq.~12! to the form

J2h~x!P~x!5qa0E
x

x11

dy P~y!
d

dx F x~y!

„x~1!21…x~x!

2
f~y!

„f~1!21…f~x!G , ~15!

where

f~x!ªexpS nE
0

x dy

h~y!1a0
D , x~x!ªexpS nE

0

x dy

h~y!2a0
D .

~16!

The constant stationary currentJ can be specified by the
application of the normalization condition toP(x)

E
0

1

P~x!dx51. ~17!

Thus, a combination of Eqs.~15!–~17! with Eq. ~8! yields
the following relation between the average of the parti
velocity ^dx/dt& and the currentJ:

^dx/dt&5^h~x!&5E
0

1

h~x!P~x!dx5J. ~18!

It is remarkable that in the case of a trichotomous noise
stationary probability densityP(x) corresponding to Eq.~8!
is determined by a relatively simple second-order linear
dinary differential equation and the behavior ofP(x) can be
investigated by the general theory of such equations. Un
tunately exact solutions of Eq.~14! can be obtained but in a
few cases. The simplest example of such is the so-ca
adiabatic limitn→0. For simplicity, we assume thatV(x)
has only one minimum atx5d (0<x,1). If a0
.maxx h(x), then the stationary probability density is give
by

P~x!5
C1

a01h~x!
1

C2

a02h~x!
1~122q!(

k
d~x2d2k!,

~19!

where the constantsC6 are determined by

C6E
0

1 dx

a06h~x!
5q ~20!

and d1k in the arguments of thed function denote the lo-
cations of the minima ofV(x). This leads to the following
expression for the current:

J5E
0

1h~x!@a0~C11C2!1h~x!~C22C1!#

a0
22h2~x!

dx. ~21!
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It is easy to ascertain that in the limita0→maxx h(x) the
current isJ5C1 and therefore is positive. Ifa0@maxx h(x)
then J tends to zero and the following asymptotic equati
holds true:

J5
2q

a0
2E

0

1

h3~x!dx1OS 1

a0
4D .

The effect of the steepness of the slopes of the potentialV is
stressed by the integral ofh3, vanishing if the potential is
symmetric. Trichotomous noise is a particular case of
kangaroo process, at which the leading-order correction
the current has been investigated by Doering, Horsthem
and Riordan@11# in the white noise limit. It is notable tha
there the leading-order correction ofJ is also proportional to
an integral ofh3.

In the case ofuminx h(x)u,a0,maxx h(x) it follows from
Eqs.~9!–~11! that

lim
n→0

J5C1.0. ~22!

Equation ~20! shows that asa0 grows, the current grows
monotonically.

III. EXACT SOLUTION FOR A SAWTOOTH POTENTIAL

The integral equation~15! can be solved exactly for som
special forms of the potentialV(x) only. We present an
analysis of the system of Eq.~8! for a piecewise linear
sawtooth-like potential

V~x!5H 2~x2d!/d, xP~0,d! mod 1,

~x2d!/~12d!, xP~d,1! mod 1,
~23!

wheredP(0,1) determines the asymmetry of the potent
which is symmetric ifd51/2. The space being left–righ
symmetric, we may confine ourselves to the cased<1/2. As
our starting equation~15! has been derived at the assumpti
thatV(x) is differentiable at every point, we have to consid
the sawtooth potential as a limit case of a smooth poten
so that

h~d1k!5h~k!50, ~24!

with k being an integer. Such a potential can characterize
example, the force
e
of
e,

,

r
l,

or

dV~x!

dx
5

1

2d~12d!

3F tanhS x2d2e lnAd/~12d!

e D 2112dG ,
where 0,x,1 ande.0. For a smalle/d!1 the shape of
the corresponding potential is close to that of the sawtoo
with h(d)50.

The forceh(x) being periodic, the stationary distributio
P(x) as a solution of Eq.~15! is also periodic and it suffices
to consider the problem in the interval@0,1). The force cor-
responding to the potential, Eq.~23!, is

h~x!52
dV~x!

dx
5H bª1/d, xP~0,d!,

2cª21/~12d!, xP~d,1!,

0, x50, x5d.
~25!

Evidently, from Eq.~14! the following solution can be ob
tained:

P~x!5 P̃~x!1rd~x2d! ~26!

with r5const and

P̃~x!5H C1el11x1C2el12x1J/b, xP~0,d!,

G1el21x1G2el22x2J/c, xP~d,1!,

where

l1i52
n

b~a0
22b2!

~qa0
22b26a0h!,

l2i5
n

c~a0
22c2!

~qa0
22c26a0g!,

hªA~122q!b21q2a0
2, gªA~122q!c21q2a0

2

and i 51,2 with i 51 corresponding to the sign1 and i 52
to the sign2 , respectively. The currentJ and the five con-
stantsr, Ci , Gi ( i 51,2) are determined by Eqs.~15! and
~17!. By substituting Eq.~26! in them we get a nonhomoge
neous system of six linear algebraic equations. Hence,
problem is solved at that and the evaluation of the curr
can be handled by linear algebra. The exact form of
stationary current is
J5
4nqghbc@A~b,c!2A~c,b!#

A~c,b!B~c,b!1A~b,c!B~b,c!24nqgh~b2c!@A~b,c!2A~c,b!#
, ~27!

where

A~b,c!ªa0gh$bc~a11a2!2~122q!@b~b11b2!1c~a11a2!#%1gc~a22a1!@~122q!~b22qa0
2!1qa0

2b#

2hb~122q!~b22b1!~qa0
22c2!,

B~b,c!ªgh$2qa0
2b~b11b2!1~122q!@b~b11b2!~c22qa0

2/c!2c~a11a2!~b22qa0
2/b!#%1ha0~b22b1!$b@c2~122q!

12q2a0
2#2~122q!b@~123q!c12q2a0

2/c#%1ga0c~122q!~a22a1!@~123q!b12q2a0
2/b#, ~28!



,

the

PRE 61 6363CURRENT REVERSALS IN RATCHETS DRIVEN BY . . .
and

a iªexp~l1i /b!21, b iªexp~2l2i /c!21, i 51,2.

It should be noted that in the case ofa0.b and the finite parameters the denominator in Eq.~27! is always positive. Obviously
if the potential is symmetric (b5c), there is no current in the stationary state.

It is also of interest to consider the parameterr, characterizing the probability that the state of the system coincides with
deterministic stationary statex5d ~stationary stable point at the absence of noise!. This reads

r5
~122q!

a0

a0
2@bg~a22a1!1ch~b22b1!#@bA~c,b!1cA~b,c!#2@A~b,c!2A~c,b!#2

A~c,b!B~c,b!1A~b,c!B~b,c!24nqgh~b2c!@A~b,c!2A~c,b!#
. ~29!
s
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It follows from Eq. ~29! that in the case of a dichotomou
noise (q51/2) the parameterr vanishes for anya0 ,n, andd.
It is evident from physical considerations that 0<r<1
22q should always be valid.

Substituting Eqs.~25! and~26! into Eqs.~17! and~18! we
can see that the range ofJ is bounded

~12r!b.J.2c~12r!.

Hence, the current is greater than2c and less thanb for all
values ofn, a0, andw.

When investigating by Eq.~27! the dependence ofJ on
the correlation timetc , four different types of the graph
J(n) emerge. In Fig. 1 these four types are represente
depending on the parametersq anda0. ~i! If q50.3 anda0
55.2, no reversals of the current are met and with increas
n the current decreases sigmoidally and monotonically to
~ii ! If q50.3 anda057, we obtain a nonmonotonic beha
ior, where the ratchet current reaches the minimum
maximum at a finiten. The current is not reversed either.~iii !
If q50.3 anda059, the current exhibits two reversals of th
direction at increasing values ofn. ~iv! At q50.1 anda0
59 we have a single reversal from positive to negative a
finally J approaches zero from the negative side. We in
pret these four qualitatively different shapes ofJ(n) as dif-
ferent phases in the phase space (q,a0).

It should be noted that for other model systems the sa
four phases@i.e., the typical forms of the graph ofJ(n)] have
been reached by several authors by means of numerical
culation @17–19#.

The behavior ofJ at different asymptotics and the cond
tions of the occurrence of the phases will be considered
Secs. IV and V.

IV. ASYMPTOTIC REGIMES

Here the asymptotic regimes following from Eq.~27! will
be studied.

A. The long-correlation-time limit

At the adiabatic limitn→0 Eq. ~27! takes the form

J'
2q~b22c2!

a0
22~b2c!2.0, ~30!

that tends monotonically to zero asa0→` or q→0. Equa-
tion ~30! follows also immediately from Eqs.~20! and ~21!.
For r we can get
as

g
0.

d

d
r-

e

al-

in

r'122q. ~31!

This result can be understood intuitively by means of Eq.~1!:
the random variablea takes value 0 for a sufficiently long
time to allow the deterministic stationary state be formed

B. The white noise limit

In the trichotomousd-correlated limit ~i.e., n→`, a0

→`, so thats254qa0
2/n is finite! Eqs.~27! and~29! reduce,

respectively, to

J'
8~b22c2!e2/s2

ns6~e2/s2
21!2

~22w!, w5
1

2q
, ~32!

r'~122q!
~b1c!e2/s2

nqs2~e2/s2
21!

. ~33!

The current and the parameterr in this limit are proportional
to the noise correlation time that in these cases is a mea
of the distance from equilibrium. The current in Eq.~32! has
a factor dependent on the noise statistics via the flatness
rameterw. If the statistics of the trichotomous noise corr
sponds tow.2, i.e.,q,1/4, the sign of the current change
in complete accordance with the results of@11# where the
general kangaroo process is considered. It should also
noted that r decreases monotonically to the value
22q)bc/(2nq) as the noise intensity grows. CurrentJ takes
an extremum ats2'0.7765.

FIG. 1. The currentJ vs the switching raten. The curves~1!–~4!
correspond to the following parameters:~1!: q50.3, a055.2; ~2!:
q50.3, a057; ~3!: q50.3, a059; ~4!: q50.1, a059. In the cases
~3! and ~4! current reversals occur.
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C. The large-flatness limit

In the case ofq→0 (w→`) the current andr are found
to be

J'nq$@en/c(a02c)2e2n/b(a01b)#21

2@en/b(a02b)2e2n/c(a01c)#21%, r'1. ~34!

We can see that the current is reciprocal to the flatness
rameter. Ifa0<a0cr[b1c, thenJ is positive at anyn. If the
noise amplitude exceedsa0cr then the current reverses t
negative atn.n* . The point of reversaln* , being a solution
of a transcendental equationJ(n* )50, can in a general cas
be found by a numerical calculation. Some of its propert
can be analyzed analytically, though. As the noise amplit
grows within the regiona0.b1c, the parametern* de-
creases monotonically from infinity to zero. Ifa0@b1c, the
following asymptotic formula is valid:

n* '2~b1c!2/a0
2 . ~35!

In the vicinity of the critical pointq(b1c)!a02(b1c)
!1, the following asymptotic formula can be used:

n* '
b~a0

22b2!

2a0
lnS 1

a02bcD . ~36!

D. The large-amplitude limit

For a0→` and for fixedn and q, i.e., for the case of a
very large noise intensity, the current saturates at the va

J'2
122q

2qn
@b2~12e22nq/b2

!2c2~12e22nq/c2
!#.

~37!

It can be easily seen thatJ,0 at any values of the param
etersqP(0,1/2) andnP(0,̀ ). This result is not inconsisten
with Eq. ~30!—it is just that the current reversal occurs at t
switching raten50. Obviously,J tends to zero asnq→` or
as nq→0. Consequently, there occurs a minimum ofJ(n).
For b@c, the minimum ofJ(n) occurs atnm'cb/A2q and
Jmin'2(122q). In a general casenm can be found by the
following transcendental equation (x52qnm):

~x1b2!e2x/b2
5~b22c2!1~x1c2!e2x/c2

. ~38!

Parameterr behaves asymptotically as

r'
122q

2nq
@b~12e22nq/b2

!1c~12e22nq/c2
!#. ~39!

We can see that, as the correlation time grows,nq→0, the
share of the particles concentrated in the minimum of
potential grows monotonically from zero to 122q.

It is quite remarkable that in case of fixedw and tc the
current saturates to a finite value at great noise amplitu
This counterintuitive result is due to both an effective inh
mogeneous diffusion, which becomes more homogene
with increasinga0, and a so-called ‘‘flashing barrier’’ effec
as stated in@17#. Let us look into the latter statement mo
closely with the assumptions thata0

2@b2/q2(122q) and n
!2q(122q)a0

2. For these assumptions the probability d
tributions P1,3

s (x) at the noise source states6a0 are, evi-
a-

s
e

e

e

s.
-
us

-

dently, homogeneous and within the interval~0,1! the center
of mass is aty051/2. Let the noise in the initial time be a
the statea50. The first time when the noise turns to eith
a5a0 or a52a0 is denoted byt0. The center of mass a
time t0 is located aty. It is easy to find that the center o
mass is shifted byDy[y2y0

Dy5H 2~b2c!/2bc, t0>1/c2,

1/2b22t0~12c2t0/2!, 1/b2<t0<1/c2,

2t0
2~b22c2!/2, t0<1/b2.

In the case of a trichotomous noise the probabilityW(t0)
that in a certain time interval (0,t0) the transitionsa50
→a56a0 do not occur, is given byW(t0)5exp(22qnt0).
The probability that such a transition occurs within the tim
interval (t0 ,t01dt0) is 2qndt0. Consequently,

^Dy&52qnE
0

`

e22qnt0Dy~ t0!dt0 . ~40!

Considering that the average number of transitions per
of time into the 0 state is 2qn(122q), we obtain

J52qn~122q!^Dy&.

When calculating by Eq.~40! the mean value of the shift o
the center of mass we can reach the earlier result Eq.~37!.
Thus, at sufficiently large noise amplitudes and the corre
tion times satisfyingn!2q(122q)a0

2 the behavior of the
current is determined only by the ‘‘flashing barrier’’ effec

E. The fast noise limit

In the fast noise limit we allown to become large, hold-
ing all other parameters fixed, and usen21 as the smallness
parameter in our expansion. Thus, in the largen limit the
current is exponentially small:

J;H nel22 /c, a2.b2 ,

2ne2l12 /b, b2.a2 ,
~41!

andJ tends to zero asn→`. It is remarkable that for smal
correlation time the current cannot be expanded into a po
series with respect to 1/n. The current is positive fora2
.b2 and negative forb2.a2. The latter can happen only i
the flatness is greater than 2, i.e., ifq,1/4, anda0 is greater
than a critical valueac

ac
25

~122q!~b21c2!

124q F11A12
~b22c2!2~124q!

~122q!2~b21c2!2G .
~42!

Obviously,ac>b1c, where the sign of equality correspond
to q50.

In general, at large values ofn the parameterr stabilizes
at a finite value. The expression for this being cumberso
we bring it but for the limit ofn@qa0→`

r'~122q!
bc

4q2a0
2 . ~43!

Thus, at a small correlation time and large noise amplitu
r→0.
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F. The dichotomous Markovian noise

For dichotomous noisesq51/2, the exact stationary cur
rent and the parameterr are

J5
nbc~a22b2!

a0
2bca2b22n~b2c!~a22b2!

.0, r50, ~44!

where

a25exp@n/~a0
22b2!#21,

b25exp@n/~a0
22c2!#21.

As the correlation time decreases,J decreases monotonicall
from J5(b22c2)/@a0

22(b2c)2# to zero. No current rever
sal occurs. Equation~44! accords with the expression in@11#
for the stationary current in the case of a dichotomous no
if its general smooth potentialV(x) is replaced by our po-
tential Eq.~23! and the second derivative ofV(x) is substi-
tuted to the delta function:d2V(x)/dx2→(b1c)d(x2d),
respectively.

V. REVERSALS OF NOISE-INDUCED CURRENT

Next, we shall consider the most general properties of
stationary currentJ(n) in the phase space of the noise p
rametersq and a0. Proceeding from Eqs.~27! and ~28! we
can distinguish between four domains in the tw
dimensional phase space (q,a0) ~see Fig. 2!.

~1! b,a0,a1(q). In this domain the currentJ(n) is posi-
tive and decreases monotonically to zero asn increases. The
ratchet model with dichotomous noise belongs here as a l
case. The boundary of the domain~a! is given by the system
of transcendental equations

S ]

]n
J~n! D U

a05a1(q)

50,

S ]2

]n2 J~n! D U
a05a1(q)

50. ~45!

~2! a1(q),a0,a2(q). The stationary currentJ(n).0 is
bimodal and reaches a local minimum and a local maxim

FIG. 2. The (q,a0) phase diagram for the dependence of t
stationary currentJ on n in the case ofd50.25. The shape of the
function J(n) for the different domains formed by the curves~a!–
~c! are sketched. Current reversals occur in domain Nos. 3 an
The curves~a!, ~b!, and~c! are determined by Eqs.~45!, ~46!, and
~42!, respectively.
e,

e
-

-

it

at a finiten. The curve~b! wherea05a2(q), is given by the
system of transcendental equations

A~b,c!ua05a2(q)5A~c,b!ua05a2(q) ,

S ]

]n
A~b,c! D U

a05a2(q)

5S ]

]n
A~c,b! D U

a05a2(q)

, ~46!

whereA(b,c) has been defined in Eq.~28!.
~3! a2(q),a0,ac(q). The current exhibits a double re

versal of the direction for increasing values ofn. The current
starts from a positive value, decreasing to a negative lo
minimum, next it grows, attaining a positive maximum, a
then J approaches zero asn→`. The curve~c! where a0
5ac(q), is given by the explicit result of Eq.~42!.

~4! In this domaina0.ac(q) the flatness of the noise i
greater than 2. A single current reversal occurs, andJ→
20 asn→`.

It should be noted that though the phase boundary~c! can
be described by an exact analytical formula, the bound
lines ~a! and ~b! cannot. The latter can be expressed fro
Eqs. ~45! and ~46! by numerical methods or by using ap
proximate equations. For~b!, the following approximate
equation seems acceptable:

a2
2~q!'

2qb2

122q F11
3

2 S exp
2A2c

3b
21D G1~b1c!2.

~47!

According to numerical calculations with various values
the system parameters (0.01<d<0.49, 0.001<q<0.4995)
the application of Eq.~47! does not cause the relative error
exceed 1%.

At very large values of the flatness parameter, whenq
→0, all three phase boundaries approach each other

a1~q!'a2~q!'ac~q!5~11q!~b1c!1O~q2!. ~48!

Notably, unlikea2(q) and ac(q), the functiona1(q) is
not always monotonically growing but may have a loc
maximum and a minimum. It is interesting to note that in t
domains~1–3! r is a monotonically decreasing function th
stabilizes at a nonzero value asn grows, but in the domain
~4! r is nonmonotonic and has a minimum at a certain fin
value ofn.

For the calculation of the current reversal pointsn* ,
J(n* )50, by numerical calculation we propose the tra
scendental equationA(b,c)5A(c,b), i.e.,

g@h~a11a2!1qa0~a22a1!#

5h@g~b11b2!1qa0~b22b1!#. ~49!

The dependence of these points on the noise amplitudea0
and the flatness parameterw51/2q is illustrated in Fig. 3. As
the noise amplitudea0 grows, a current reversal first appea
at the noise amplitude valuea05a2(q). When the flatness
parameter is less than 2, the growth ofa0 always causes
double reversal. The current changes its sign at the two n
correlation time valuest1* 51/n1* and t2* 51/n2* . An in-
crease of the amplitude (a0→`) causes the first solution o
Eq. ~49! n1* to drop monotonically to zero, while the secon

4.
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solution n2* increases monotonically to infinity. As the fla
ness parameter decreases, the critical amplitudea2(q) in-
creases;n1* , corresponding to a fixed amplitude, increas
monotonically, butn2* monotonically decreases at a decre
ing w. In the case ofw.2, n1* behaves the same way, b
the switching raten2* corresponding to the second reversal

FIG. 3. The noise amplitudea0 vs log of the switching raten*
corresponding to the current reversal points,J(n* )50, for several
flatness values. The curves~1!–~5! correspond to the values ofd
50.25 andq50.45, 0.255, 0.245, 0.2, and 0.01, respectively. T
minima of the curves lie at the noise amplitude valuea05a2(q)
@see Eqs.~46!#. As q→1/2, the value ofn* corresponding toa2(q)
saturates atn0* @Eq. ~38! with x5n0* ]. If q,1/4, then at a fixed
noise amplitudea0.ac @Eq. ~42!# only one current reversal poin
n* occurs.
-

om
s.

th
s
-

f

the current tends to infinity at a finite noise amplitudea0
5ac(q)—at greater amplitudes there is only one reversa
the current. Asq→1/2, the value ofn* corresponding to the
critical amplitudea2(q) decreases and saturates at a fin
valuen0* . The exact value of the parametern0* is given by
the solution of Eq.~38! with n0* 5x.

In the case of a large potential asymmetry,b@c, the value
of n0* can be estimated by the following equation:

n0* 'A2bcS 11
A2c

3b
1

11c2

36b2D . ~50!

Though in general, the zero pointsn1,2* of the currentJ(n)
cannot be expressed by elementary functions, at certain
straints rather simple approximate solutions can be found
them. Here we give two such formulas, neither of them
plicable near the phase boundary~b!, a0@a2(q).

The first reversal point of the current can be given as

n1* '
2b2c2

~122q!a0
2 F11

b21c2

a0
2~122q!

S 12
2q

3 D G . ~51!

The aforementioned monotonic decrease ofn1* at a growth
of eithera0 or w can be deduced easily. At fixeda0 andq it
can be seen thatn1* increases as the potential asymme
grows, i.e., asd decreases@see Eq.~25!#.

For the estimation of the high values of the second rev
sal point of the current the following equation would do:

e

n2* '
b2c2~a0

22b2!~a0
22c2!ln@~11qa0 /g!/~11qa0 /h!#

c2~a0
22c2!~b21a0h2qa0

2!2b2~a0
22b2!~c21a0g2qa0

2!
, ~52!
’
nsi-

t re-
cle
red
th
mit-
for

ap-
ore
as

sid-
with n* @b(a01b). Evidently, Eq.~52! is applicable only in
region ~3! of the phase space~see Fig. 2!. If condition a0
@b/q is also fulfilled, Eq.~52! can be given a more trans
parent form:

n2* '2qa0
2~122q!@4q211~b21c2!~6q21!/8q2a0

2#21.
~53!

The monotonic growth ofn2* at the growth of both noise
amplitude and flatness parameter immediately follows fr
Eq. ~53!, wheren2* drops if the potential asymmetry grow

In the vicinity of the critical lines~b! and~c! ~see Fig. 2!
we can see that the dependence ofn1* and n2* on the noise
amplitude has obtained some formally similar features to
second kind phase transitions, e.g., ifq→1/2, b@c and a0

2

→a2
2, a0

2.a2
2, then

n1,2* 2n0* '6A2n0* ~b21n0* !

a2
2 ~a0

22a2
2!;~a0

22a2
2!1/2,

where the sign1 is for n2* and the sign2 is for n1* . If
1/4.q→1/4 anda0

2→ac
2 , a0

2,ac
2 , then
e

n2* '
qac

6

~b21c2!~ac
22a0

2!
;~ac

22a0
2!21.

Most likely, the different values of the ‘‘critical indices’
indicate different physical mechanisms for the phase tra
tions at the critical phase lines~b! and ~c!.

VI. CONCLUDING REMARKS

Above, we have presented some analytical and exac
sults for the dynamics of an overdamped Brownian parti
in a sawtooth ratchet potential subjected to external colo
trichotomous fluctuations. A major virtue of the models wi
trichotomous noise is that they constitute another case ad
ting an exact analytical solution for the stationary current
any value of the correlation timetc51/n, the noise ampli-
tude a0, and the flatness parameterw. Although both di-
chotomous and trichotomous noises may be too rough
proximations in most practical cases, the latter is m
flexible, including all cases of dichotomous noises and,
such, revealing the essence of its peculiarities.

The behavior of the system, the current reversals con
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ered, is dominated by the correlation time. In the phase sp
of the parametersw, a0 one can distinguish between fou
domains of qualitatively different shapes of the currentJ(n),
characterized also by sign reversals~Fig. 2!. Our major re-
sults are perhaps the exact conditions for the noise par
eters leading to the sign reversals ofJ @Eq. ~49!#. Three cir-
cumstances should be pointed out at that:~i! there is a lower
limit for the noise amplitude, namelya05b1c, for smaller
values of which there is no current reversal at anytc andw;
~ii ! the correlation time has an upper limittc51/n0* , where
n0* is the solution of Eq.~38!, for greater values of which
there cannot be more than one current reversal;~iii ! the flat-
ness parameter has a critical valuew52—if w,2, then, as
the correlation time grows from 0 tò , there can be eithe
two reversals or none, and ifw.2, there can also occur on
reversal. For both slow and fast fluctuating forces we h
presented approximations, which agree with the results
@11,17#. It is remarkable that at sufficiently large noise am
plitudes,a0

2@max$b2/q2(122q), n/2q(122q)%, the behavior
of the current is completely due to the effect of the ‘‘flashi
barrier’’ for all values of the correlation time and the flatne
parameter. It should be noted that in earlier papers@17,19#
x

ev

v

ce

m-

e
of
-

the flashing barrier effect of the current has been evalua
only at the adiabatic limit.

We envisage possible applications of the described c
rent reversal phenomena in natural sciences such as biop
ics and microtechnology. Particles with different dampi
constants moving in the same potential and driven by
same stochastic force are controled by different effectivetc
@see Eq.~7!#. This can lead to an efficient mechanism f
separating particles as suggested in@1,5,9,17#. Examination
of the curves in Fig. 1 shows that two regimes of extre
sensitivity to noise parameters might be applied for sepa
tion purposes: for the correlation timest151/n1* and t2

51/n2* , where n1* and n2* are solutions of Eq.~49!, the
current reversals lead to rather selective behaviors. Note
Eq. ~49! enables one to findt1 and t2 with any precision.
Finally, details known about the solutions of Eq.~14! can be
of use in testing approximate methods in the theory of s
chastic differential equations.
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