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Long jumps in the strong-collision model
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The jump-length probability distribution for a classical particle diffusing in a periodic potential is calculated
in the framework of a strong-collision model, where each collision of the particle with the thermal bath
reequilibrates the velocity. Exact numerical results are obtained by the matrix-continued-fraction method, and
two different analytical approximations are developed. In the first approximations it is assumed that an acti-
vated particle is always retrapped in the cell where it suffers the first collision; in the second approximation it
is assumed that only the collisions giving a final total energy which is lower than the activation barrier are
effective for retrapping. This second analytical approximation is in excellent agreement with the numerical
data.

PACS numbds): 05.40—a, 05.60.—k, 68.35.Fx
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The diffusion of classical particles in periodic potentials is
a topic of great interest in many fields of physics, chemistry,
and biology[1-4]. In the most popular model, diffusion is Equation(1) can be derived also along the lines developed in
treated as a Brownian motion, which can be described byref. [6] by making the above assumption on the effect of
means of some form of the Langevior of the Fokker- particle-bath collisions. A strong collision model, where the
Planck equation[2]. In the simplest Langevin equation, the effect of each collision is to thermalize not only the velocity
particle is coupled to the environment by a frictigrand by (as strictly required in the BGK modebut also the position
a white noise, which are related to each other by theof the particle, has been recently studied by Bicout ef7l.
fluctuation-dissipation theorem. In this model, at low fric- The BGK model can be proposed for the description of
tion, the particle changes its energy gradually, by sufferinghe classical diffusion of atoms or molecules in periodic sys-
many weak collisions with the heat bath. The velocity of thetems (like in the case of adatoms on surfaces or in zeolites
particle is slightly modified by a single collision, and ther- [6]) in the cases in which the following physical assumptions
malization occurs because of the large number of those cohre fulfilled.
lisions. (& The energy exchange between the diffusing particle
On the other hand, it may happen that the particle interand the thermal bath can be modeled by well separated col-
acts with the heat bath by strong and well-separated collitisions.
sions, moving in a deterministic way in between. In this case, (b) Each of these collisions leads to a quite strong energy
the key point is the determination of the effect of one colli-exchange, of the order &f;T.
sion on the particle motion. A reasonably simple approxima- Neither(a) nor (b) can be justified rigorously from a mi-
tion is to assume that after each collision the velocity of thecroscopic point of view; however, these assumptions can be
particle is suddenly thermalized, i.e., after a collision theconsidered reasonable approximations when the vibrational
final velocity is extracted from the Maxwell distribution at period of the diffusing particle in the well is much shorter
the given temperaturg. This gives rise to the Bhatnagar, than the typical inverse frequencies of the substrate phonons
Gross, and KrookBGK) [5,1] kinetic equation for the prob- [6]. Roughly speaking, the latter condition is likely to be
ability density in phase spadéx,v,t): fulfiled when the mass of the adparticle is much smaller
than the mass of the substrate atoms. On the other hand, the
+o0 white-noise Langevin approa¢B—1Q is valid in the oppo-
M(v)f f(x,v,t)dv site conditions, i.e., when the characteristic vibrational times
o of the adparticle are slower than those of the substrate. This
happens usually when the adsorbate has a larger mass or the
—f(X,v,t)}, 1) same mass as the substrate atdfrlg; even in the case of
light adsorbates the time-scale condition leading to the
Langevin approximation can be fulfille®]. However, we
wherey is the collision frequencyk (x) is the periodic force remark that the differences between the Langevin and the
coming from the potential (x), m is the mass of the par- BGK approaches are significant only at intermediate and
ticle, andM (v) is the Maxwell distribution small 7, since the two equations tend to the same lifthie
Smoluchowski equatiorfor 7»— o [1].
When a particle moves in a periodic potential, different
* Author to whom correspondence should be addressed. Electronidiffusion mechanisms are possible, depending on the barrier
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strength of the coupling between the particle and the thermahe decay functionf(q) which coincides, in the jump-
bath(in our case, depending on the collision frequengy If diffusion regime, with the half-widtHin frequency of the

the barrier is sufficiently high, the particle spends the mostuasielastic peak of the dynamic structure facsefq,w)
part of the time by making small-amplitude oscillations [8]. In the following, we give only a brief summary of the
around the well bottoms, and sometimes is activated anchethod. The details can be found in Rdf5,8,20. Si(q,w)
makes a jump from a well to anoth§ump diffusion. This  can be calculated via a matrix-continued-fraction expansion
happens when the barriét, is larger of about 4T [8].  [1]. Si(q,w) is defined by

Once the particle has escaped a well, it may be retrapped in

a nearest-neighbor orithus making a single jumpor it may 1 [+ i )

make a flight after which is captured in a cell which is far Ss(d®)= ﬂj_w (explig[x(t) —x(0)]})exp( —i wt)dt.

away from the cell of departur@n this case making what we (3)
shall call a long jump Long jumps in surface diffusion re-

cently attracted noticeable interest both from the experimenm order to calculate the characteristic function in the integral
tal and the theoretical point of views. In fact, experiments inthe computation of the conditional probability
the field of surface diffusion have shown that adsorbed atomp _(x,v,t/x,,v,,0) is needed. The latter is the solution of Eq.
can make a rather large percentage of long jumps in systems) with the initial condition P.(xX,v,0/Xo,v0,0)= 8(X

like Pd/W(211) [12] and Pt/PL10) [13]. From a theoretical ~—x ) 5(v —v,). P, is then expanded on an orthonormal ba-
point of view, many investigations about long jumps havegjs, with the aid of Bloch’s theorem for the spatial part and in
been carried out in the framework of the Langetiokker-  Hermite functions in the velocity part. The decay function

Planck model [14,15,8-10,16-18 Here, we develop a f(q) is recovered fronSy(q,) by the following limit [8]:
theory of long jumps on the basis of the BGK kinetic model
Ss(q, w)

(Eg(1)). Our approach is similar to the one by Beenakker 12
S4(9,0)

and Krylov(BK) in Ref.[19]. In their treatment, BK consid- f(g)=limo (4)

ered a particle with an enerdggT above the maximun,, ©=0
of the potentialU(x) (an unboundparticle in BK terminol- . ) -
ogy). They assumed that any collision of an unbound particle! "& JLPD follows from the Fourier analysis £fq); specifi-
with the thermal bathphonons leads to retrappingthus ~ Cally the probabilityP(n) of a jump of lengthn is given by
becoming aoundparticle, neglecting the role of unbound- 2a (i
unbound transitions, and they calculated the jump-length e
probability distribution(JLPD). In our treatmenti.e., in Eq. P(n) mriJo f(a)cognagyda, ®
(1)], we do not separate unbound-bound transitions from
unbound-unbound transitions, but we assume that the effegthere the jump rate; is obtained as
of any collision is to reequilibrate the velocity distribution.

In the following, we calculate the JLPD for the model of a (ma
Eq. (1) by two different methods. The first method is numeri- r :;L f(a)da. (6)
cal. It is based on the solution of the kinetic equation by the
matrix-continued-fraction metho¢MCFM) [1], which al-
lows the calculation of the dynamic structure facsfq, »).

The results concerning the jump ratewere already shown

. . : . in Ref.[21] and they will not be repeated here; in the fol-
Froms;, the JLPD is extracted by making a Fourier anaIyS|s|Ong we focus on the jump-length distribution. After some

of the energy.W|dth of the quaS|eIast|_c pd8k This humeri- algebra[1,20], it turns out that, in the first Brillouin zon&g
cal method gives exact results, but it can be applied only ins i
S . L ) .Is given by
limited ranges of barriers and collision frequencies. In fact, it
becomes very computationally demanding at high barriers o
and/or low collision frequencies. In some cases, the direct S(q,®)=NRe > GP(kiQMM*t, (7
simulation of the model by means of molecular-dynamics pr=-= P
techniques(see the following could be more convenient.
However, also the direct simulation suffers from the samevhereQ = (a/2m)(m/ksT)*?w, q=2mk/a, |k|<1/2, M, is
drawbacks as the MCFM solution. For the above reasons, igiven by
the following we develop analytical approximations and test
their reliability against the exact numerical results. In par- 1 far q V(x) 2mpX
ticular we show that it is possible to build up a rather simple Mp=3 XOXH ok T/ ¥M Ta
analytical treatment which gives very accurate results.

The paper is structured as _follows. In Sec. Il we descrlbeand N is a normalization factor. The Green functi€h is
the numerical method of solution. In Sec. Il we develop the .

) . . __given by

analytical treatment and in Sec. IV we compare numericaf
and analytical results. Section V contains the conclusions.

, ®

—al2

G(k,iQ)=[iQ1+B [(iQ+ )| +2B [(1Q+ )l

-1R-1-1Rp-7-1
Il. NUMERICAL METHOD +...17 B B 9

As said in the introduction, a reliable numerical methodIn the above equation the normalized collision frequepdy
for calculating the JLPD is based on the Fourier analysis oflefined as
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pointP in Fig. 1) and then makes a junifor example, to the
right). Let E, be the initial kinetic energy at the crossing of
the Oth saddle poinfsee Fig. 1, and taket=0 at the cross-
ing of this saddle point. By definition,

1 2
Eo==mvl. (12)
5 2

FIG. 1. Periodic potentidl (x); the particle starts from the cell The total energy at=0 is Eor

around pointP and then crosses the barriers in 0,1,2 .

Etot=Um+Eo, (13
. a m 10 where U\, is the potential energy at saddle points. Let us
=152\ igT (10 gefine
| is the identity matrix and™ are given, for an even poten- B U Uy
tial, by £ T’ u(x)= kaT uM_kBT' (14
+ 1+ - The probablity of suffering a collision during the tingk is
Bar<k>=<p+k>5prrﬂj_ﬂdxF(x)sw{(r—p)x]. g Py O SHTIEING & COTIRIon CHInG The A
11
The MCFM becomes very cumbersome at high barriers or dP= ndt=17 X2’ (15
at low friction. This is especially true in the BGK model, vir.e
where the continued fraction converges much slower than i qre
the Langevin(Fokker-Planck case. In fact, even ag=0.1
more than 1000 iterations in E() are necessary to obtain a 2K T
good convergence, whereas in the Fokker-Planck case 200 v(X,e)= \/ m [etuy—u(x)]. (16)

iterations were sufficient to guarantee the same degree of
Conventent to soive e BGK model by means of dreet simu \OW: 1€ €an proceed according o wo different approxima-
lation (while the MCFM is more rec)i/se and convenient attion schemes. In the first case, we assume that all collisions
higher friction. In the direct simuﬁation the particle moves o effective, in the sense that the particle is always trapped
degterministical.l in the periodic field of forcepb the Newton in the cell where it suffers its first collision. This approxima-
equations of myotion uFr)1tiI it suffers a collisi0¥1 In fact, at tion is analogous to the one by BK9] and overestimates
egch time stept (&%7’,1) the particle has a .probabil,ity the probability of single jumps. In this case, the probability
nét of experiencing a collision with the thermal bath. After of not being trapped up to theth saddle pointwhich is at

the collision, the velocity of the particle is extracted ran_dlstancex—na and itis crossed at timg) is
domly from the Maxwell distribution at the given tempera- 5 na dx
ture. This procedure essentially coincides with the one of the Q(n,e)=exp(— nty) =ex;{ - nf )
Andersen thermostat in canonical molecular-dynamics simu- o v(X.e)
lations(see for examplg22]). We have used the direct simu-

lation in order to check the MCFM results. All the results =exg—ne(e)], (17)
reported in the figures are, however, obtained by the MCFM
where
method.
Finally, we remark that, even by direct simulation, it a dx
would be very difficult to accumulate a reasonable statistics o(e)= nf o)’ (18
ov , €

of events aty< 103, because jumps become less frequent as
vy decreases. Moreover, both numerical methods become . , . i
practically useless at high barriefs{>20kgT), where ana- | "€ Probability of being trapped in theh cell is then

lytical approaches are needéubth for Langevin, as already ~ ~ ~

developed in14,10,23 and for BGK, where an analytical P(n,e)=Q(n—1e)—Q(n,e). (19
formulation is still lacking. For this reason, we devote the - o
following section to the development of accurate analytical\OW We have to average over the initial energy distribution,
expressions for the probability distribution of jump lengths Which is exponentialas checked by direct simulatiprand

in the BGK model. find

. ANALYTICAL SOLUTION FOR THE JUMP-LENGTH ﬁ(n)=(§(n,s)>=f deexp(—e)P(n,e). (20
PROBABILITY DISTRIBUTION 0

Let us consider a particle in a periodic potenti®{x). Now we average the arguments of the exponentials instead
The particle is initially at equilibrium in a lattice celhear  of averaging the exponentials themselves:
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B(n)=(exd — (n—1)p(e)]—exdd —ng(e)]) with
~exp(—(N—1)¢)—exp —ng), (21) . m. (= a erf [Vuy—u(x)]
¢*=n\/=—=| deexp—e) | dx .
2kgT Jo 0 Vetuy—u(x)
where (29
o={0p(e)). (220 Equations(28) and (29) underestimatethe probability of

. single jumpsP(1), since they assume that particles experi-
The_ exchange betvyee_n_ the average an_d the exponential d ing a noneffective collision proceed undisturbed as if
not introduce any significant difference in the results. Indeed»zhey had not collided at all. We recall that E¢R1) and(23)
except for a weak logarithmic divergence &t-0, ¢(¢)  lead to anoverestimateof P(1). As we shall show in the
varies much more slowly thaa [in fact, at larges, ¢(¢)  following by direct comparison with the numerical results,

~&~2: if ‘p(e) would have been a constant, the exchange®* (n) is a much better approximation &(n) thanP(n).
between the average and the exponential would have been

exact. However, one can retain the average outside of the IV. COMPARISON OF THE ANALYTICAL
exponentials and use the second member of Et).to com- APPROXIMATIONS WITH THE NUMERICAL RESULTS

puteP(n), instead of the third member. This is simply a little In the following we compare the analytical solutions of

?r']t more expeﬂslwe from a.cor;;]puta'\t/ll(ér::al\lﬂ po'g.t Oft VIEW sec. 11l with the exact numerical results from the Fourier
OWEVET, much 1ess expensive than or direc SImu'analysis of the decay functioi{q) (see Sec. )lin the case

lation), but we have checked that it does not introduce anys - cosine potential:

significant change in the results in the parameter range that

we consider in the following. The same considerations apply U(Xx)=A[1—cogx)], (30)

also to the derivation oP* (n) (see the following
Explicitly, the formula fore is

m ([ a dx
=np\/=-—=| deexp— f—
e 2kBTfO eexp—e) 0 e+ uy—u(x)

(23

A second approximation scheme relies on the assumption
that only the collisions in which the final energy is below
Uy are effective. In this case, the particle is not trapped
always in the cell where it experiences its first collision, but
it is trapped there only if the collision is effective, i.e., if its

final velocity v after that collision(experienced at point)
satisfies

1
Emu$+U(x)suM. (24)

This gives an effective collision frequenay.;(x)

J2kgTTm)[Uy —u(x)

neff<x>=2nf M(0)do

0
=nerfJuy—u(x)], (29

whereM (v) is the Maxwell equilibrium distribution, and

2 (X
erf(x =—f dtexp —t?). 26
(x) Tlo p—t9) (26)
The probability of suffering an effective collision is thus
dx dx
dP* = nesi(X) k) nerflJuy— U(X)]m-

(27)
Following the same lines as before, we find

P*(n)=exd —(n—L)¢*]—exp(—ne*) (28

having defined the parametgr

A E,
97 2T~ 2k T

(31)

(EA=2A is the activation barrigrone has

"‘_l o0 B 2 dz
e \/Efo deexpl S)JO Ve+2g[1+coqz)]

*:lfwdsexli(—s)f%dzerf{ 29L1+ cos2) i
’ V2Jo 0 Je+2g[1+cogz)]
(33

. (32

with the normalized frictiony given by Eq.(10).

In Fig. 2 the behavior oP(n) for n=1,2,...,8 is re-
ported as a function ofy at fixed activation barrier
=1.5,E,=6kgT). The symbols correspond to the exact nu-
merical results and the lines to the analytical approximation
P*(n) of Egs.(28) and (29). As expected, the single-jump
probability P(1) decreases witly, because an increase of
the collision frequency causes an easier retrapping. More-
over, eachP(n) for n=2 has a maximum which is shifted to
lower and lowery at increasing. This is analogous to what
happens in the case of the Lange#okker-Planck model
[8] and can be easily understood by noticing that B{a),
n=2 tend to 0 both ay— « (retrapping is always in the first
cell) and aty—0 (retrapping tends to be equally likely in
any cel).

Concerning the comparison of the analytical results with
the numerical data, it is evident that th& (n) are very
accurate in a wide range of, and also for largen. On the
other hand, the approximatidd(n) [Egs.(21) and (23)] is
less satisfactory, as can be seen in Fig. 3. There, the numeri-
cal results forP(1) (black circle$ andP(2) (black squares
are compared t&* (1) (full line), P*(2) (dash-dotted ling

P(1) (dashed ling andP(2) (dotted ling.
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FIG. 2. Jump probabilities for lengths from one to eight cells.
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The symbols refer to the exact numerical resfiR¢n)], whereas
the full lines correspond to the analytical approximati@fi(n). _ _ _
The error bars on the numerical points are smaller than the size of In Fig. 4 we report the behavior ¢f(n) at fixed y andg

the dots.

As underlined in Sec. lll, the numerical results lie always
in between the two analytical approximations. However, thef

almost coincide with theP*, especially at largey. This

shows that retrapping is not occurring at each collision; th

P(n)

107"

FIG. 3. Comparison of the analytical approximatids(n) and
P(n) with the exact numerical resul®(n) for n=1 and 2. The
black circles correspond tB(1), thefull line to P*(1), and the

dashed line td(1); theblack squares correspondB§2), and the
dash-dotted line t&®*(2), and thedotted line toP(2). Theerror

bars on the numerical points are smaller than the size of the dotsrier at fixed collision frequency.
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FIG. 4. Jump probabilites at fixed barrierg€1.5, Ex
=6kgT) and collision frequency. The black circles correspond to
the exact numerical dafd(n) and the open circles to the analytical
result P*(n). The error bars on the numerical points are smaller
than the size of the dots.

retrapping frequency at a given poixts very well approxi-
mated by the effective collision frequeney.:(x) of Eq.
(25).

for two differenty values. The numerical results are repre-
sented by black circles, and the open circles correspond to
the P*(n) [Egs. (28) and (29)]. The decay withn is very
lose to an exponential, with small deviatigne., a slightly
faster decayat smalin. The analytical approximation is very
egood (and it is exactly exponentially decayingrhe devia-
tions from an exponential decay were much more evident in
the case of the Fokker-Planck equat{&}, and were attrib-
uted to the nonequilibrium distributiofat low y) of the
particles coming out from the well of departure. Here, the
direct simulation of the model has not revealed any deviation
from the Maxwell distribution for the escaping particles.

~1F
C o _
P r=0.3
FP(2)
[P (3)
-1
10 E—P.(4
Fp (s
:F"(G
(7
1021
-P(8
_3 'l IIIIIIII 'l IIIIIIII 1 L1 L 0 111
10
1 10 10 10°
d

FIG. 5. P*(n) forn=1,2, ..., 8 adunctions of the energy bar-
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Finally, in Fig. 5, the behavior ofP*(n) for n collision model(in which each collision with the thermal
=1,2,...,8igeported as a function gfat fixedy. Only the  bath suddenly thermalizes the velogityas been calculated
analytical results are reported because the numerical solutionith different methods, numerical and analytical. The nu-
is not feasible at very large barriers. We testegd tog=4,  merical results have been obtained mainly by the matrix-
the highest value at which the numerical calculations requirgontinued-fraction method, which becomes cumbersome at
a reasonable effortthat the accuracy of the analytical ap- high barriers and/or low collision frequencies. On the other
proximation improves as the activation barrier is raised. Wehand, also the direct simulation of the model can cover only
notice that the probability of single jumi(1) decreases g jimited range of parameters with a reasonable computa-
when the barrier is raised at fixegl and temperaturéi.e.,  tjonal effort. Because of that, the development of reliable
when g is increased keeping fixed). Therefore, in the gnaivtical approximations is important. Two different ap-
strong-collision model, we have more and more long jumps, qyimations have been proposed. In the first approximation,
increasing the barrier height. This is the opposite of whaii \a¢ heen assumed that all the particle is always trapped in
happens in the case of Fokker-Plari and can be under- the cell where it suffers its first collision, thus identifying, for

stood in the following terms. In the strong-collision model, . . i
to the first approximation, the probability of being trapped in2 unboundparticle, the collision frequency and the retrap

the first cell, thus making a single jump, increases with theé’'"Y frequency: It can be easily understooq that. this approxi-
. ) S ~ mation overestimates the percentage of single jumps, as it is
time spent in the cell, which is given hy/ 5 [see Eq(18)].

. o confirmed by the comparison with the numerical results. A
This time decreases at larger barrigfshe other parameters ¥ b

are kept fixedl because the velocity(x,e) increases with second(and better approximation has been obtained with

the barrier: at larger barriers, the particle suffers a strongetrhe assumption that only a part of the collisions are effective,

acceleration towards the bottom of the well. On the contrary"e" those collisions after which the total energy of the par-

in the Fokker-Planck case, the probability of being trapped irJ}iCk.e ."?S below the ;addle-pqint energy. This !ead; _to the
the first cell increases with the dissipation parametesee definition of an effective collision frequency, which is iden-

for example[8]) defined as tified with the retrapping frequency.. In this case, the re;ults
are very close to the exact numerical ones, and the single-
a jump fraction is underestimated. The fact that the second

A(e)= dxv(X,e) (39

approximation works better than the first can be understood
by noticing that the second approximation treats practically
which contains the velocity at the numerator and thus has am an exact way what happens at the first collision, whereas
opposite behavior at increasing barrier. In fact, in thethe first approximation is not even exact at this stage.
Fokker-Planck case, due to the frictional foreepv, a larger

velocity causes a larger dissipation and a larger retrapping
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