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We present a Monte Carlo study in dimensids 1 of the two-species reaction-diffusion process B
—2B andB—A. Below a critical valuep.. of the conserved total densip/the system falls into an absorbing
state withoutB particles. Abovep, the steady statB particle densitypg' is the order parameter. This system
is related to directed percolation but in a different universality class identified byé€rale[ Phys. Rev. A39,
2214(1989]. We present an algorithm that enables us to simulate simultaneously the full range of densities
between zero and some maximum density. From finite-size scaling we obtain the steady state eyponents
=0.435(10), »=2.21(5), andn= —0.606(4) for the order parameter, the correlation length, and the critical
correlation function, respectively. Independent simulation indicates that the critical initial increase exponent
takes the valu@’' =0.30(2), in agreement with the theoretical relatioh= — 7/2 due to Van Wijlandet al.
[Physica A251, 179(1998].

PACS numbds): 64.60.Ht, 02.70.Lq

I. INTRODUCTION 1
We consider a system composed Mfparticles of two i ~DPAprs~ —petkpape 1.3
types,A andB, that perform independent random walks on a
d-dimensional hypercubic lattice a&f sites. The walks arise
from jumps between nearest neighbor sites at a transition ra
D/a?, wherea is the lattice constant. In the limit of large

with k=«ad. The stable steady state solutiopy(pg) of
fRese equations at total denspiyis given by

times and distancelS becomes the diffusion constant. At a « 0 for p<p.
rate « each pair of particlesA,B) on the same site reacts p= p—p. forp>p (1.4
according to c c
A+B—2B (1.1) andpi=p—pd. Hence the order parameter expongnte-
' ' fined in general by
Furthermore & particle decays into aA particle, pE=B(p—pc)? as p—p; (1.5

B—A, (12 whereB is a constant, here has the mean field vaisel.

Further analysis leads to the mean field valuesl and »

at a rate 1¢. This reaction-diffusion process obviously con- =0 for the correlation length and the critical correlation
serves the total particle numbBt and hence the total den- function exponents, respectively. One easily verifies that for
sity p=N/L®. We will denote the nonconservel and B >, the steady state withS'=0 still exists but is unstable.
densities byp, andpg, respectively. The process of Eq€1.1) and (1.2) is most naturally in-

Obviously the reactions defined in Eqd.1) and(1.2)  terpreted as a chemical reaction. Alternatively, Kree, Schaub,
amount to postulating a master equation for the time evoluyng SchmittmanriKSS) [1], who in 1989 were the first to
tion of this system. Since the transition rates do not satisf)étudy this process, view it as a model problem in population
detailed balancing with respect to any Hamiltonian, there isdynamics with a specieé® menaced by a polluting substance
no equilibrium state described by a Boltzmann factor. Ourp van Wijland, Oerding, and HilhorsWOH) [2] use the
interest is in the steady states of this system, and in particulafame equations to model the propagation and extinction of
in the stable ones. Leta and pg denote the steady state an epidemic, with the particles representing healthy indi-
densities of theA and B particles, respectively. One steady viduals and theB particles sick ones. The process of Eq.
state is the state with onli particles present, that is, with (1.1) then corresponds to a contamination and that of Eq.
pg=0. If this state is reached, the reaction rules do not allow(1.2) to spontaneous healing; below we will also occasion-
the system ever to escape from it any more. It is therefore aally use this terminology. The higher the population density
absorbing stateOther steady states, if any exist, must bep, the more easily the epidemic propagates. The critical den-

found as solutions of the time evolution equations. sity p is the threshold below which the epidemic becomes
Whereas this is a difficult problem in general, it is easy toextinct.
deal with in mean field theory, whegg, and pg satisfy the Phase transitions in steady states fall into universality
rate equations classes. Three of these are relevant to the present model.
Simpler than our problem, but closely related to it, is the
Ipa 1 directed percolationDP) process, which is no doubt the

——=DApat ;PB_kPAPB,

ot most thoroughly studied one in the field of phase transitions
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into absorbing states. An excellent recent review of DP re- €

lated work is due to Hinrichse[8]. The “DP universality B=1- 3 VT

class” has been showfi4—6] to contain also Schig's

chemical reactiorj7], the contact6,5,8 or Gribov [9,10] ) .

process, and Reggeon field thetyl,5]. All these problems These contrast Wltq the DP elxpolnents, which to Ilowest order

have various equivalent formulations, of which some ardn € réadBpp=1—ge€, vpp=3+ 15€, and npp=—ge. We

convenient for simulations, others more amenable to théecall [1] that in steady states, as opposed to equilibrium

methods of exactly soluble lattice models, and still othersStates, the correlation functi@(r) at criticality decays with

more suitable for field-theoretical calculations. Their com-distancer asg(r)~1/r®* 7 and that the exponents satisfy the

mon point is the motion of ainglespecies of particles, hav- relation 28=wv(d+ 7). o

ing interactions that take place upon encounter, whether it be It is our purpose to perform an accurate determination of

on the same or on adjacent sites; this in addition to possibl§he critical exponents in dimensiah=1 of the KSS univer-

allowed spontaneous one-particle creation and/or annihilaSality class. We compare our results to their analogs in the

tion. d=1 DP universality class, and to theexpansion of the
The process represented by E¢s.1) and (1.2) would ~ KSS class. The WOH class is beyond the aim of the present

reduce to a problem in the DP universality class, withBhe study.

particles in the role of the single species, if in some kind of

& =S 1
g """ g (1.7

N| -

effective medium approximation one were to smearAfge II. SIMULATION IN ONE DIMENSION

out as a uniform static background. In reality, however Ahe

particles constitute a dynamical fluctuating environment, A. Simulation rules

coupled to theB’s, and this strongly amplifies th# particle We consider a one-dimensional latticeloites with pe-

density fluctuations. It was shown by K$$ that as a con-  yiggic houndary conditions and lattice constant 1, occu-
sequence the universality class is changed. The reactlorb-led by N independently moving particles. Time is dis-

diffusion problem of this paper is in this new "KSS” uni-  cretized into steps=0,1,2 . . . . Each time step consists of
versality class. , _ the successive application of three rules.
In a slightly generalizedversion of the present model, (1) piffusion rule.Each particle has the possibilitiés to

introduced by WOH?2], the A’'s andB’s have unequal dif- g3y 'on its site(ii) to move to its right neighboring site, or
fusion constant® , andDg . Those authors showed, in @n i) to move to its left neighboring site, each with probability

expansion, that foDg<<D, the transition to the absorbing 1 This amounts to choosing the diffusion constant equal to
state becomes first order and that @g>D, still another p_1

("WOH" ) universality class arises. Monte Carlo simulations _(25) Healing rule.EachB particle is converted into aA

of theD»# Dg model were performed in dimensiak=2 by particle with “healing probability” py=1—e~%", wherer

Leroy et al. [12], who focused on the first order transition. g the average healing time. In the simulations we took
Methods developed over the last two decades, and which 3 ¢ thap,=0.032B. . ..

have become popular in recent years, allow any stochastic (3y contamination ruleWhen a site is occupied by one or
reaction-diffusion process to be cast in the form of a field,5e g particles, then alA’s that may be present addition-
theory with some actio=Sp+ Siy. Here Sy is Gaussian 4y on that site are turned intB’s with probability 1.

andS;y an interaction term that constitutes the model's field-  “these rules fully determine the simulation procedure.
fch_e.oretlcql _fllngerprmt. General methoc_is of passing _from thel'hey imply that at the end of any time step any nonempty
initial definition of a process to its action are described by'lattice site contains onlpne type of particle: eithe’’s or
e.g., Lee and Cardyl3]. For the particular case of Eq4..1) B's (and hence it is possible to speak of the typar B, of

and(1.2) the action was derived via a Langevin equation by sje at any instant of time For consistency the initial state
Jansserj14], and from the basic master equation by WOH ¢t,5.11d also obey this condition.

[2]. It appears that the KSS universality class is characterized
by B. Algorithm

. . . . The simulation data at the basis of the theoretical analysis
Smt:gf dx df yyp(— ) — pip( P+ P)]. (1.6 (see Sec. Il Cwill consist of pg versusp curves at various
system sizes&. At fixed L, due to our time saving algorithm,
there is no need for a whole series of simulations at succes-
Hereg is a coupling constant proportional to the reaction ratesive particle densitiep=p;,p,, ... . Instead we are able
kof Eq.(1.1), ¢(x,t) and¢(x,t) are the fields describing the to consider, in a single simulation wittN particles,
fluctuations of theB particle and the total particle density, simultaneouslythe full range of particle densities=0,1/

respectively, and?(x,t) and g(x,t) are the corresponding L,2L,3L, ...,(N—1)/L,N/L. We describe first the idea at
conjugate or “response” fields. Fab= ¢=0 the interaction the basis of this algorithm, and then its precise mathematical
S, Of Eq. (1.6) reduces to that of directed percolation. implementation.

The field-theoretical formulation allows the techniques of
the renormalization group to be applied. Dimensional analy-
sis shows that the upper critical dimensiorljs=4. KSS[1] The particle trajectories are mutually independent. Along
found the leading order of the expansion of the critical its trajectory a particle will change its tyg&om A to B and
exponents in dimension-4e, vice versa by alternating events of contamination and heal-

1. Relating systems with different particle numbers
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ing. Its trajectory is, however, alsndependenof its instan- From O to N particles.By iteration we may construct
taneous type, sincA’s and B’s move in exactly the same from a collection ofn+1 world lines one ofn+2 world
way. Let us call the trajectory of thgh particle, together lines, etc. At each iteration step the number of possibilities

with the information about its type at each instant of time,for the labelsy; increases.
the jth “world line.” Let us now start from a O-particle system and iteratively

From nto n+1 partic'es_Let us now do a thought experi_ construct the collections of world lines of SyStemS haVing,

ment (we call it this because the actual algorithm is imple-Successively, 0,1,2.. N, ... .N particles. The different
mented differently. Suppose that the simulation of an possibilities for the type of th¢th particle may be distin-

n-particle system on a lattice of size during a time interval  9uished by a labek;, itself characterized by an integey.
T, has produced a collection of world lines indexed byj e indicate by

=1,2,...n. We can then construct, without redoing a full
new simulation, the collection of world lines for a
simulation—strongly correlated to the first one—with one
extra particle, ther{+1)th. This is done as follows.

(i) Choose the initial position and type of tha{1)th
particle.

(ii) Determine by Monte Carlo simulation its trajectory in
the time interval 1,2..., T, independently of the trajec-
tories already known.

(iii) Determine the effect of the type of this new particle
on the types of all the other particles; that is, apply the fol-
lowing rules:(a) the new particle, when of typA, will be-
come aB when arriving on a site with one or moi@’s
present, in accordance with the contamination (8)eabove;
(b) the new particle, when of typB, will spontaneously heal
(become arA) with probability p; at each time step in ac-
cordance with the healing rul@) above; and, until healthy,
it will contaminate any of then original particles that it
meets;(c) an original particle thus contaminated will con-

pi=BnBn-1---By A, 1 A0 1---0:00  (2.D)

that particlej is of type A in the systems withN'=}j,j
+1,...,»—1 particles; of typeB in the systems wittN’
=vj, ....,N particles; and absent in systems with oy
=0,1,...j—1 particles. Herev; ranges throughv;=j,j
+1,... N+1, which givesN—j +2 possibilities. The spe-
cial valuesv;=N+1 (v;=]) correspond to particlg being

of type A (of typeB) for all N'=j,j+1, ... N. Clearly the
string of symbols on the right-hand si@@HS) of Eq.(2.1) is
entirely determined by the integgrandv; . We will refer to

v; as thetype numberof particlej. Hence the full informa-
tion on the world lines of the whole sequence of 0,1,2 ,N
particle systems is contained (i} the N trajectories indexed
by j=1,2,... N, with the rule that those of indices
1,2,... N' make up the trajectories of tH¢’ particle sys-
tem; (i) for eachj, at each instant of time, the type number
v; . Below we show that there exists an algorithm that gen-

tinue along its known trajectory, but now has to be subjecteérates this full information sequentially in time and, in fact,
itself also at each time step to the healing rule; it may conas a Markov process.

taminate in turn other particles, etc.

So the introduction of the new particle creates an ava
lanche of new contaminatior(svhich may either die out or
else will finally affect the entire systemThis completes the
thought experiment in which we construtt-1 world lines
from n.

It is important to observe that this construction leaves the_
n original trajectories as they are, but changes only anngiclé

certain parts of them the associated particle type ffoio B.
No inverse changedrom B to A) occur. The full informa-
tion of both the originaln-particle simulationand the new

2. Implementation of the algorithm

The mathematical rules of the algorithm are quite simple
to state. They require, moreover, very little extra program-
ming effort with respect to a standard algorithm.

Algorithm. N random walk trajectories indexed by
1,2, ... N are generated in the standard way. Jtiepar-
carries a type number;, which is an integer that may
take the values/j=j,j+1,... N+ 1. The simulation rules
of Sec. Il A translate into two operations on the.

(a) At any time step at whichv; <N+ 1, particlej is sub-

(n+1)-particle simulation may be compactly represented byjected to the healing rule; if healing is not successfl

(i) then+1 indexed trajectories of then(+ 1)-particle simu-
lation, with the rule that those of indices 1,2 . ,n make up
the trajectories of the-particle system(ii) n+1 symbolic
“type labels” u; such that, foj=1,...n,
uj=Bn4 1B, if particle | is of typeB in both simulations,
wj=Bn 1A, if particle  is of typeB in then+ 1 particle
simulation, but of typeA in then particle simulation,
wi=Any 1A, if particle | is of typeA in both simulations,
and furthermore forj=n+1 [recall that the (+1)th
particle was absent in theparticle simulation
Mn+1=Bn110, if particle n+1 is of typeB in then+1
particle simulation,
Mns1=An110, if particle n+1 is of typeA in then+1
particle simulation,

remains unchanged, but if it is successful we replace

v N+ 1, 2.2

(b) The contamination rule implies that for any site occu-
pied byr=2 particlesj, ... Jr we have to carry
out the replacements

P

vjsiemax(js,min( Vi o ,er)) fors=1,...r. (2.3

This completes the description of the algorithm.
At any time during the simulation one may take data on

which exhausts all possibilities for the particle types. WeanyN'-particle system with &N’<N by interpreting they,

emphasize that thg; are time step dependent.

according to the scheme
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absent foN'+1<j<N
particlej is{ presentand of typd forl<j<N’andN’'+1<y;<N+1 (2.9
presentand of typB for 1<sj<N’andj<w;<N’.

The three conditions corresponding to the three possibilities C. Finite-size scaling
in the above equation may be read either as restrictions on

S e . . 1. Finite-size effects
N’ at givenj andv; or as restrictions opandv; at givenN'.

Mathematical ~ proof. Choose an arbitrary N’ The critical pointp. and the nontrivial stable steady state
e{1,... N}. According to Eq.(2.4) above this divides the with pi>0 are well defined only in the limit — . At finite
particles into those indexed Gy=N'+1, ... N, which are L and forp sufficiently abovep., there appears a long-lived

“absent,” and the remaining ones, which are “present.” We metastable state instead. In this state, typically, as a function

prove now that thé\’ world lines of the particles present are Of time, pg(t) will fluctuate around a plateau valysgs for a

the result of a faithful execution of the original simulation Very long time, until by an accidental fluctuation &lipar-

rules stated in Sec. Il A. As far as the trajectories go, this idicles disappear and the system enters irreversibly into the

evident. It remains to considéa) healing and(b) contami- ~ @Psorbing state. For smallerand/or forp=p. an initially

nation. The index=1, . .. N’ will denote a particle present, "onzeroB particle density fluctuates wildly in the course of

The schemé2.4) has to be borne in mind throughout. time until it vamshes. We will first extend the notion of
(a) If a particlei is of type B, then it hasy;<N’, so plateau value to this regime &fandp.

certainly v;<N, and the algorithm described above subjects Letn be the set of phase space variables B(u. ) their

) . . . robability distribution. For any finité this distribution will
it to the healing rule in the same way as prescribed by th(gti:-ventually contract onto the absorbing state vpi@ro. Let

original algorithm of Sec. Il A. There is no need to worry . RS
. . P, (n,t) be the decaying probability distribution on the rest
about the fact that the algorithm also subjects some ofAthe of phase space. For large timewe expect

particles present to the healing rule; for any outcome they

remain of typeA. P.(nt)~e UTLP(n) (t—x), (2.5
(b) Suppose that at a certain time, on a certain Site, B
€{j1,---.jss---.r}s thatis, particla is amongr particles  where P(n) is the slowest decaying mode afd(p) its

(out of the full set ofN) that meet on that site. Suppose decay time. In the limit — and forp>p, this decay time
moreover that is of typeA, that is, it hasy;=N'+1. We  tends to infinity and® becomes the probability distribution
ask now under what conditions this particlean be contami-  of the nontrivial steady state. We define npw(p,L) as the

nated, that is, acquire a valug less tharN'+ 1_‘ Equation density ofB particles averaged with respectfo We expect
(2.3 shows that for that to happen we need biofN" and 5+

min(;,, . .. ,»; )<N’. The first condition is automatically

R __ st
satisfied. For the second condition to be satisfied it is neces- lim pg(p,L)=pp (2.6)
sary and sufficient that at least one of the other particles on Lo

the site in question havev; <N'. Now for any k \yith st given by Eq.(1.5) for p—p;" and equal to zero for

€{j1, -- -} corresponding to an absent particle we havep<p, .

k=N’+1, whencey,=N'+1, and therefore if the second

condition is to be fulfilled, this can be due only to one of the 2. Finite-size scaling

particles present. The interpretation of this is that contami-

nation occurs if and only if at least one other particle presenf

is of type B, exactly as prescribed by the original algorithm

of Sec. Il A. This completes the proof that for ahy the

present algorithm is equivalen_t to t_he orig_ingl one. Da(p,L)=CL F"F(L&p") 2.7
Further commentsThe algorithm is not limited to dimen-

siond=1. It is essential, however, that the diffusion con-valid for Sp=p—p. sufficiently small andL sufficiently

stants of the two particle types be equal. Variants of thdarge; hereC is a constant an& a scaling function that may

algorithm are easily imagined. For example, we may simube normalized toF(0)=1 and should satisfyF(x)

late this model also at fixed particle numberut simulta- ~x'* as x—c to ensure the consistency of E¢2.7) and

neously for the full continuum of healing times<or  (2.6) asdp—0". It follows that at the critical poinp=p.

<Tmax- IN this case the heuristic discussion relates two sysene haspg(pe,L)=CLF"". The preceding properties imply

tems with healing timesr and 7+ A, and in the actual that the ratios

implementation each particlecarries a real labet; with an ~

interpretation analogous to that of the. We do not pursue pe(p.2L) (2.8

R = ~ 1
this idea any further here. 21.1{p) pe(p,L)

We apply to the averages calculated with resped the
ual scaling hypotheses for equilibrium states. We assume

that pg satisfies the finite-size scaling law
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TABLE |. System sizelL, measuring interval {;, T,), and 0.9
number of runR, .
L T T, R, o
Ror,L
25 500 1000 & 10° ’
50 1000 2000 &10° o8
100 1500 5000 10
200 20000 60 000 810t 0.87
400 50 000 100 000 2610°
0.86
when drawn as functions gb for different L, should all
intersect in the single poinip¢,2™#'"). 085 ‘ .
0.27 0.275 0.28 0.285
P
Ill. RESULTS . . . .
FIG. 2. RatiosR,  defined in Eq.(2.8) for various system
A. Steady state exponentss, 5, v sizesL as a function of the total particle denstjy

1. Determination ofp. and B/ . L .
Pe Blv and the curves were obtained by spline interpolation. The

The practical determination of averages with respe® to statistical error bars in the data points are of the order of
requires the following considerations. Let us consider a larg®.01% for L=25,50,100 and of the order of 0.1% fdr
number of rungrealizations of the stochastic process defined=200,400. Curves with differerit result from independent

in Sec. I1A). ThenP is the distribution of all systems that simulations and are uncorrelated. Due to the algorithm of
have survivedthat is, have not entered the absorbing $tate Sec. Il B statistical errors in neighboring data points with the
at timet, in the limitt—oc. The problem is that in this limit SameL are correlated; it is safest to assume that they are
the fraction of surviving systems tends to zero. Hence iraffected by the same error. Figure 2 shows the ratigs:s,
practice a compromise is needed. Initially all particles wereR100,50 R200,100 @NdR400,2002S @ function op, and we have
taken to beB’s. At given L we determineds by averaging expanded the region of the intersection points. The statistical

ps(t) on an intervalT,<t<T, with T, large enough to error is aboutt 0.001 forRsg osand Ry g spand about=0.01

eliminate transient effects due to the particular initial state,for R200,1008NdR400,200 Because of this we believe that the

and T, not too large compared to the decay tirfig(p). ?hear commdence of thﬁ Ek}lcrete _|tntersect|on p(_)fl_ntst_of ttrr:e first
Table | shows the system sizésthat we considered, the ree curves is somewnhat fortuitolipon magnification they

intervals (T;,T,) used to collect data, and the numbR{sof resolve into three distinct intersection®ur estimate of the
L] 1 - . . - 7ﬁ/v -

independent runs carried out. We have adhered to the cor&ogrzd;gieg ngl Othe d'g‘g{fﬁ‘g'gg 259:06”8”6(120 Tg IS Pe

mon idea that in finite-size scaling it is better to work with —_ ~</2 =" an - JUL0. These error

ars do not take into account any possible systematic errors

not too large system sizes and use the available comput ) . ) . X o
time to increase the accuracy of the data, in our case b at might be inherent in our procedure. With this proviso, it
ollows that 8/v=0.197+0.002.

augmentingR, .
In Fig. 1 we showpg so obtained as a function gf for o
L=25,50,100,200,400. The squares represent the data points 2. Determination of 8

We now proceed to determineand 8 separately. Know-
ing the critical pointp., we determine the best fit of the data
compatible with the power law of E@l.4). Since we do not
have direct data for the infinite-volume quantityg

=pg(p,*), we first extrapolateg(p,L) to theL=oo limit

and then fit the power law to the extrapolated data. The ex-
trapolation may be performed fairly accurately in the density
regimep=0.3, away from the critical point, where the prob-
lem of slow relaxation is much less severe and we were
able to consider system sizkes=400, 800, 1600, and 3200.

Figure 3 showspg(p,L) as a function ofL for p

400 =0.305-0.330. The simulation data, represented by the open

squares, exhibit the expect€l1/L) finite size effect. The

closed squares &t=c0 are the extrapolation results. Statis-

0 ; , tical errors range from much smaller than the symbols when

02 028 o o2 p=0.330 to roughly the size of the symbols when

=0.305. Forp=0.300 extrapolation of the data seemed too

FIG. 1. B particle densitypg (see textin systems of different uncertain and was not attempted. By fitting the extrapolated

sizesL as a function of the total particle densjty values to Eq(1.5 with p.=0.2757 we arrive at the estimate
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0.22

as a power lant?", pass through a maximum at some time

R b e t=tmhax and only then start its final decay to zero. Hétds

the critical initial increase exponent(called simply 6 by

0.325
0.2 W ] some authops This phenomenon, first pointed out and ex-
B M/ 0.320 plained theoretically in 1989 by Janssen, Schaub, and
PB

Schmittmann[16] (see also Diehl and Ritschél7]), has

o1 W 0'3157 since been discovered in Monte Carlo simulations”by many
M/ 0.310 authors(see, e.g., Li, Ritschel, and Zhehtg], Li, Schuke,
0.305 and Zhend 19], Grassberge20], and Ritschel and Czerner
— [21], who all deal with the Ising model near criticalityThe
0.18 r—/a/ﬁ’//k/ ] exponentd’ is observable in a time regimg,<t<<tmax
where ti.; IS the microscopic time scale and whetig,,
—o when the initial order parameter goes to zero and the
‘ , system size to infinity.
0 D) A 0.008 When these ideas are applied to the reaction-diffusion
problem of this work, we are led to expel@] that atp

FIG. 3. B particle densityg as a function of inverse system size = p. @ small positivepg(0) will initially increase as
L~ for various densitiep above the critical density,=0.2757.

0.14

~ o'
The open squares are measured values, the straight lines are best pa(t)~pe(0)t”. (3.2
linear fits, and the closed squares result from extrapolation. The ] )
extrapolated values serve to determjgie In the general casé’ is not related in any known way to the

other exponents of the problem. Theoretical work by WOH
B=0.435+0.010. The uncertainties i are mainly due to [2] has shown that for the DP and KSS universality classes
the uncertainty in the value ¢f.. Employing again the ex- the relation
ponent relation ¥ »=2p/v we arrive at our final estimates,

B=0.435+0.010, »=2.21+0.05, 5= —0.606+0.004. 0'=—
(3.1)

These exponent values show that theexpansion of Eq. must_hold. The dynamical_ critical exponetthqt occurs
(1.7), unsurprisingly, becomes highly inaccurate when the'ere is for the KSS class give,2] by the mean field value
dimension goes down as far as=1. They may also be z=2 in all dimensiond, so that ford=4—emie have from
compared to the analogous exponents indkel DP uni- EGS- (3.3 and (1.7 that to linear orderd’=ige. The DP
versality class. These are known with an impressive numeri€XPONnenipp has a nontrivial dimensional dependence which
cal accuracy(based on low density series expansions bylo linear order ine leads[2] to 65p= 1z €. In dimensiond
Jensen[15]) and take the value@pp=0.2764868), rpp  — 1 the value ofy found in the preceding section together
=1.096 8544), and, via the exponent relation given above, With Eq. (3.3) implies the numerical valued’=0.303
npp= — 0.495 86(2). Thedifference between the DP and the *0.002.

KSS universa"ty C|asseS, which starts to appear when the We present here the first Monte Carlo observation to our
spatial dimensiord falls below its upper critical valuel, ~ knowledge of critical initial increase in a steady state, i.e., in

7
- 3.3

=4, has become very large indeed in dimension1. a system that does not have a Boltzmann equilibrium. We
considered systems of side=127,254,508,1016 wittN
3. Algorithmic efficiency =35,70,140,280 patrticles, respectively, and hence having a

Updating the type numbers; costs only very little extra densityp=0.275% ... almost identical to the value qgf,
time compared to a standard algorithm. Since at fixed Systenqetelrrr;ned a?ovg: Eacr;r s;;]stem vr\]/as s_tgrltta_d In "?‘;t"?“e W']Eh a
size L all densities are simulated simultaneously, the gai pngle pa_rt|c e. Figure 4 shows the initial rise .W't time o
with respect to a standard algorithm is roughly a factor equa;Veernaorg]sUz?dlg Bdoeor Pt?rngoerﬁg)s/iiz(sol)’Z? bztgllnggzasaﬁg
to the number of density points required. This, however, e 290 000 forl. = 1016. The dashed line i £he tr,1eo ét'call
overestimates the efficiency when the different density pointé)v r T S IN€ IS reticatly
require very different run lengths and/or numbers of runseXpeCted §tra|ght line W'th slope equal' o Monte Carlo
(i.e., different values of the quantities denoted, respectivelyValue of § _0'303 found in the preceding section. For the
Smaller system sizes the order parameter passes through a

by T, andR,_ in Table ), in which case the actual run must maximum inside the measuring time interval; for the larger
have the largest of those, andR, and the efficiency of the . 1easuring ) ' 9
system sizes only the initial increase is seen.

algorithm is reduced. In our case the actual gain in simula- ; ,
In order to estimat®’ from these curves let us now con-

tion time has been a factor of around 10. sider the one fot. =1016. In view of the value=30 of the
single particle healing timésee Sec. Il A the time regime
t=<100 should certainly be considered as microscopic and
Preciselyat the critical point of a continuous phase tran- unsuitable for extracting’, even though it is not clear ex-
sition the stationary value of the order parameter is zeroactly where the microscopic regime ends. arl0 000 the
Critical initial increaseis the phenomenon that at that point order parameter rises more and more slowly under the influ-
an initially nonzero order parameter will first rise with time ence of the approaching maximum. From the condition

B. Critical initial increase exponent 6’
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the KSS universality class, which is closely related to, but
distinct from, the directed percolation universality class. The
values of the static exponeng v, and » were estimated
after an independent determination of the critical point via
finite-size scaling. The uncertainties in the final values are
mainly due to the uncertainty in locating the critical point.
The critical initial increase exponert’ may then be ob-
tained from the theoretical scaling lai®.3) derived for this
system by WOH[2]. Independent time dependent simula-
tions performed at the critical point show agreement with
this value and hence confirm that scaling law.

It is interesting to note that the simple fractions

B=5, v=%, n=-1% 0'=% 4.0

are consistent with the data of this work. There is, however,
no compelling reason why the exponents of this nonconfor-
mal system should be rationals. Rational values conjectured
[22] at one time for the DP universality class had to be aban-

total densityp~p.. The straight line represents the theoretical doned later(see, e.g.[15]) after higher precision numerics

power law with the exponem’ =0.303 determined in Sec. Il.

were obtained.
We have compared our results to the analogous values of

tmier<t<tma We may conclude that in the present case  the DP exponents in dimensiak=1 and to thee expansions
should be extracted from a time regime such that<d00 of both the KSS and DP classes. It is interesting to observe
<10000. The best fit o’ decreases from’=0.317 inthe  that the four inequalities3>Bpp, v>vpp, 7> 7pp, and

interval 500<t<800 to 6’ =0.288 f.0r 1508<t<2400. This 0 < GI,DP’ known to hold ana|ytica||y inthe expansion, con-
leads us to the independent estimate=0.30+0.02, less tinue to be satisfied numerically in dimensidr-1.
precise than, but in full agreement with, the val@é
=0.303 deduced from the static measurements in Sec. Il.
A comparison with the DP universality class is again in-
teresting. This class hd8] for the correspondingl=1 ex- The authors acknowledge fruitful discussions with F. van
ponentdj,=0.313 6848). Although the KSS and DP val- Wij_land and J.-P. Leroy. The curve crossing method for ana-
ues are numerically close, tleexpansion provides a strong 1yzing the data was suggested to them by M. Henkel. Their
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