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Critical behavior of a two-species reaction-diffusion problem
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We present a Monte Carlo study in dimensiond51 of the two-species reaction-diffusion processA1B
→2B andB→A. Below a critical valuerc of the conserved total densityr the system falls into an absorbing
state withoutB particles. Aboverc the steady stateB particle densityrB

st is the order parameter. This system
is related to directed percolation but in a different universality class identified by Kreeet al. @Phys. Rev. A39,
2214~1989!#. We present an algorithm that enables us to simulate simultaneously the full range of densitiesr
between zero and some maximum density. From finite-size scaling we obtain the steady state exponentsb
50.435(10), n52.21(5), andh520.606(4) for the order parameter, the correlation length, and the critical
correlation function, respectively. Independent simulation indicates that the critical initial increase exponent
takes the valueu850.30(2), in agreement with the theoretical relationu852h/2 due to Van Wijlandet al.
@Physica A251, 179 ~1998!#.

PACS number~s!: 64.60.Ht, 02.70.Lq
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I. INTRODUCTION
We consider a system composed ofN particles of two

types,A andB, that perform independent random walks on
d-dimensional hypercubic lattice ofL sites. The walks arise
from jumps between nearest neighbor sites at a transition
D/a2, wherea is the lattice constant. In the limit of larg
times and distancesD becomes the diffusion constant. At
rate k each pair of particles (A,B) on the same site react
according to

A1B→2B. ~1.1!

Furthermore aB particle decays into anA particle,

B→A, ~1.2!

at a rate 1/t. This reaction-diffusion process obviously co
serves the total particle numberN, and hence the total den
sity r5N/Ld. We will denote the nonconservedA and B
densities byrA andrB , respectively.

Obviously the reactions defined in Eqs.~1.1! and ~1.2!
amount to postulating a master equation for the time evo
tion of this system. Since the transition rates do not sat
detailed balancing with respect to any Hamiltonian, there
no equilibrium state described by a Boltzmann factor. O
interest is in the steady states of this system, and in partic
in the stable ones. LetrA

st and rB
st denote the steady stat

densities of theA and B particles, respectively. One stead
state is the state with onlyA particles present, that is, wit
rB

st50. If this state is reached, the reaction rules do not al
the system ever to escape from it any more. It is therefore
absorbing state.Other steady states, if any exist, must
found as solutions of the time evolution equations.

Whereas this is a difficult problem in general, it is easy
deal with in mean field theory, whererA andrB satisfy the
rate equations

]rA

]t
5DDrA1

1

t
rB2krArB ,
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]rB

]t
5DDrB2

1

t
rB1krArB ~1.3!

with k5kad. The stable steady state solution (rA
st ,rB

st) of
these equations at total densityr is given by

rB
st5H 0 for r<rc

r2rc for r.rc
~1.4!

andrA
st5r2rB

st . Hence the order parameter exponentb, de-
fined in general by

rB
st.B~r2rc!

b as r→rc
1 , ~1.5!

whereB is a constant, here has the mean field valueb51.
Further analysis leads to the mean field valuesn51 andh
50 for the correlation length and the critical correlatio
function exponents, respectively. One easily verifies that
r.rc the steady state withrB

st50 still exists but is unstable
The process of Eqs.~1.1! and ~1.2! is most naturally in-

terpreted as a chemical reaction. Alternatively, Kree, Scha
and Schmittmann~KSS! @1#, who in 1989 were the first to
study this process, view it as a model problem in populat
dynamics with a speciesB menaced by a polluting substanc
A. Van Wijland, Oerding, and Hilhorst~WOH! @2# use the
same equations to model the propagation and extinction
an epidemic, with theA particles representing healthy ind
viduals and theB particles sick ones. The process of E
~1.1! then corresponds to a contamination and that of
~1.2! to spontaneous healing; below we will also occasio
ally use this terminology. The higher the population dens
r, the more easily the epidemic propagates. The critical d
sity rc is the threshold below which the epidemic becom
extinct.

Phase transitions in steady states fall into universa
classes. Three of these are relevant to the present mode

Simpler than our problem, but closely related to it, is t
directed percolation~DP! process, which is no doubt th
most thoroughly studied one in the field of phase transitio
6330 ©2000 The American Physical Society
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PRE 61 6331CRITICAL BEHAVIOR OF A TWO-SPECIES . . .
into absorbing states. An excellent recent review of DP
lated work is due to Hinrichsen@3#. The ‘‘DP universality
class’’ has been shown@4–6# to contain also Schlo¨gl’s
chemical reaction@7#, the contact@6,5,8# or Gribov @9,10#
process, and Reggeon field theory@11,5#. All these problems
have various equivalent formulations, of which some
convenient for simulations, others more amenable to
methods of exactly soluble lattice models, and still oth
more suitable for field-theoretical calculations. Their co
mon point is the motion of asinglespecies of particles, hav
ing interactions that take place upon encounter, whether i
on the same or on adjacent sites; this in addition to poss
allowed spontaneous one-particle creation and/or annih
tion.

The process represented by Eqs.~1.1! and ~1.2! would
reduce to a problem in the DP universality class, with theB
particles in the role of the single species, if in some kind
effective medium approximation one were to smear theA’s
out as a uniform static background. In reality, however, thA
particles constitute a dynamical fluctuating environme
coupled to theB’s, and this strongly amplifies theB particle
density fluctuations. It was shown by KSS@1# that as a con-
sequence the universality class is changed. The reac
diffusion problem of this paper is in this new ‘‘KSS’’ uni
versality class.

In a slightly generalizedversion of the present mode
introduced by WOH@2#, the A’s andB’s have unequal dif-
fusion constantsDA andDB . Those authors showed, in ane
expansion, that forDB,DA the transition to the absorbin
state becomes first order and that forDB.DA still another
~‘‘WOH’’ ! universality class arises. Monte Carlo simulatio
of theDAÞDB model were performed in dimensiond52 by
Leroy et al. @12#, who focused on the first order transition

Methods developed over the last two decades, and w
have become popular in recent years, allow any stocha
reaction-diffusion process to be cast in the form of a fi
theory with some actionS5S01Sint . HereS0 is Gaussian
andSint an interaction term that constitutes the model’s fie
theoretical fingerprint. General methods of passing from
initial definition of a process to its action are described
e.g., Lee and Cardy@13#. For the particular case of Eqs.~1.1!
and~1.2! the action was derived via a Langevin equation
Janssen@14#, and from the basic master equation by WO
@2#. It appears that the KSS universality class is character
by

Sint5gE dx dt@cc̄~c2c̄ !2cc̄~f1f̄ !#. ~1.6!

Hereg is a coupling constant proportional to the reaction r
k of Eq. ~1.1!, c(x,t) andf(x,t) are the fields describing th
fluctuations of theB particle and the total particle density
respectively, andc̄(x,t) and f̄(x,t) are the corresponding
conjugate or ‘‘response’’ fields. Forf5f̄50 the interaction
Sint of Eq. ~1.6! reduces to that of directed percolation.

The field-theoretical formulation allows the techniques
the renormalization group to be applied. Dimensional ana
sis shows that the upper critical dimension isdc54. KSS@1#
found the leading order of thee expansion of the critica
exponents in dimension 42e,
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b512
e

32
, n5

1

2
1

e

8
, h52

e

8
. ~1.7!

These contrast with the DP exponents, which to lowest or
in e readbDP512 1

6 e, nDP5 1
2 1 1

16 e, and hDP52 1
6 e. We

recall @1# that in steady states, as opposed to equilibri
states, the correlation functiong(r ) at criticality decays with
distancer asg(r );1/r d1h and that the exponents satisfy th
relation 2b5n(d1h).

It is our purpose to perform an accurate determination
the critical exponents in dimensiond51 of the KSS univer-
sality class. We compare our results to their analogs in
d51 DP universality class, and to thee expansion of the
KSS class. The WOH class is beyond the aim of the pres
study.

II. SIMULATION IN ONE DIMENSION

A. Simulation rules

We consider a one-dimensional lattice ofL sites with pe-
riodic boundary conditions and lattice constanta51, occu-
pied by N independently moving particles. Time is dis
cretized into stepst50,1,2, . . . . Each time step consists o
the successive application of three rules.

(1) Diffusion rule.Each particle has the possibilities~i! to
stay on its site,~ii ! to move to its right neighboring site, o
~iii ! to move to its left neighboring site, each with probabili
1
3 . This amounts to choosing the diffusion constant equa
D5 1

3 .
(2) Healing rule.EachB particle is converted into anA

particle with ‘‘healing probability’’ pH512e21/t, wheret
is the average healing time. In the simulations we tookt
530, so thatpH50.032 78 . . . .

(3) Contamination rule.When a site is occupied by one o
moreB particles, then allA’s that may be present addition
ally on that site are turned intoB’s with probability 1.

These rules fully determine the simulation procedu
They imply that at the end of any time step any nonem
lattice site contains onlyone type of particle: eitherA’s or
B’s ~and hence it is possible to speak of the type,A or B, of
a siteat any instant of time!. For consistency the initial stat
should also obey this condition.

B. Algorithm

The simulation data at the basis of the theoretical anal
~see Sec. II C! will consist of rB versusr curves at various
system sizesL. At fixed L, due to our time saving algorithm
there is no need for a whole series of simulations at suc
sive particle densitiesr5r1 ,r2 , . . . . Instead we are able
to consider, in a single simulation withN particles,
simultaneouslythe full range of particle densitiesr50,1/
L,2/L,3/L, . . . ,(N21)/L,N/L. We describe first the idea a
the basis of this algorithm, and then its precise mathemat
implementation.

1. Relating systems with different particle numbers

The particle trajectories are mutually independent. Alo
its trajectory a particle will change its type~from A to B and
vice versa! by alternating events of contamination and he



e

i-
le
n

ll
a
ne

in

le
ol

l
-
,

-
te
on

va

th
n

b

e

t

ies

ly
g,

s

er
n-

ct,

ple
m-

u-

on

6332 PRE 61de FREITAS, LUCENA, da SILVA, AND HILHORST
ing. Its trajectory is, however, alsoindependentof its instan-
taneous type, sinceA’s and B’s move in exactly the same
way. Let us call the trajectory of thej th particle, together
with the information about its type at each instant of tim
the j th ‘‘world line.’’

From n to n11 particles.Let us now do a thought exper
ment ~we call it this because the actual algorithm is imp
mented differently!. Suppose that the simulation of a
n-particle system on a lattice of sizeL, during a time interval
T, has produced a collection ofn world lines indexed byj
51,2, . . . ,n. We can then construct, without redoing a fu
new simulation, the collection of world lines for
simulation—strongly correlated to the first one—with o
extra particle, the (n11)th. This is done as follows.

~i! Choose the initial position and type of the (n11)th
particle.

~ii ! Determine by Monte Carlo simulation its trajectory
the time interval 1,2, . . . , T, independently of then trajec-
tories already known.

~iii ! Determine the effect of the type of this new partic
on the types of all the other particles; that is, apply the f
lowing rules:~a! the new particle, when of typeA, will be-
come aB when arriving on a site with one or moreB’s
present, in accordance with the contamination rule~3! above;
~b! the new particle, when of typeB, will spontaneously hea
~become anA) with probability pH at each time step in ac
cordance with the healing rule~2! above; and, until healthy
it will contaminate any of then original particles that it
meets;~c! an original particle thus contaminated will con
tinue along its known trajectory, but now has to be subjec
itself also at each time step to the healing rule; it may c
taminate in turn other particles, etc.

So the introduction of the new particle creates an a
lanche of new contaminations~which may either die out or
else will finally affect the entire system!. This completes the
thought experiment in which we constructn11 world lines
from n.

It is important to observe that this construction leaves
n original trajectories as they are, but changes only alo
certain parts of them the associated particle type fromA to B.
No inverse changes~from B to A) occur. The full informa-
tion of both the originaln-particle simulationand the new
(n11)-particle simulation may be compactly represented
~i! then11 indexed trajectories of the (n11)-particle simu-
lation, with the rule that those of indices 1,2, . . . ,n make up
the trajectories of then-particle system;~ii ! n11 symbolic
‘‘type labels’’ m j such that, forj 51, . . . ,n,

m j5Bn11Bn if particle j is of typeB in both simulations,
m j5Bn11An if particle j is of typeB in the n11 particle

simulation, but of typeA in then particle simulation,
m j5An11An if particle j is of typeA in both simulations,

and furthermore for j 5n11 @recall that the (n11)th
particle was absent in then-particle simulation#

mn115Bn110n if particle n11 is of typeB in the n11
particle simulation,

mn115An110n if particle n11 is of typeA in the n11
particle simulation,

which exhausts all possibilities for the particle types. W
emphasize that them j are time step dependent.
,

-

-

d
-

-
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g

y

From 0 to N particles.By iteration we may construc
from a collection ofn11 world lines one ofn12 world
lines, etc. At each iteration step the number of possibilit
for the labelsm j increases.

Let us now start from a 0-particle system and iterative
construct the collections of world lines of systems havin
successively, 0,1,2, . . . ,N8, . . . ,N particles. The different
possibilities for the type of thej th particle may be distin-
guished by a labelm j , itself characterized by an integern j .
We indicate by

m j5BNBN21•••Bn j
An j 21•••Aj0 j 21•••0100 ~2.1!

that particle j is of type A in the systems withN85 j , j
11, . . . ,n j21 particles; of typeB in the systems withN8
5n j , . . . ,N particles; and absent in systems with onlyN8
50,1, . . . ,j 21 particles. Heren j ranges throughn j5 j , j
11, . . . ,N11, which givesN2 j 12 possibilities. The spe-
cial valuesn j5N11 (n j5 j ) correspond to particlej being
of type A ~of type B) for all N85 j , j 11, . . . ,N. Clearly the
string of symbols on the right-hand side~RHS! of Eq. ~2.1! is
entirely determined by the integersj andn j . We will refer to
n j as thetype numberof particle j. Hence the full informa-
tion on the world lines of the whole sequence of 0,1,2, . . . ,N
particle systems is contained in~i! theN trajectories indexed
by j 51,2, . . . ,N, with the rule that those of indice
1,2, . . . ,N8 make up the trajectories of theN8 particle sys-
tem; ~ii ! for eachj, at each instant of time, the type numb
n j . Below we show that there exists an algorithm that ge
erates this full information sequentially in time and, in fa
as a Markov process.

2. Implementation of the algorithm

The mathematical rules of the algorithm are quite sim
to state. They require, moreover, very little extra progra
ming effort with respect to a standard algorithm.

Algorithm. N random walk trajectories indexed byj
51,2, . . . ,N are generated in the standard way. Thej th par-
ticle carries a type numbern j , which is an integer that may
take the valuesn j5 j , j 11, . . . ,N11. The simulation rules
of Sec. II A translate into two operations on then j .

(a) At any time step at whichn j,N11, particlej is sub-
jected to the healing rule; if healing is not successfuln j
remains unchanged, but if it is successful we replace

n j°N11. ~2.2!

(b) The contamination rule implies that for any site occ
pied by r>2 particles j 1 , . . . ,j s , . . . ,j r we have to carry
out the replacements

n j s
°max„j s ,min~n j 1

, . . . ,n j r
!… for s51, . . . ,r . ~2.3!

This completes the description of the algorithm.
At any time during the simulation one may take data

anyN8-particle system with 0<N8<N by interpreting then j
according to the scheme
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particle j isH absent forN811< j <N

present and of typeA for 1< j <N8andN811<n j<N11

present and of typeB for 1< j <N8and j <n j<N8.

~2.4!
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The three conditions corresponding to the three possibili
in the above equation may be read either as restrictions
N8 at givenj andn j or as restrictions onj andn j at givenN8.

Mathematical proof. Choose an arbitrary N8
P$1, . . . ,N%. According to Eq.~2.4! above this divides the
particles into those indexed byj 5N811, . . . ,N, which are
‘‘absent,’’ and the remaining ones, which are ‘‘present.’’ W
prove now that theN8 world lines of the particles present a
the result of a faithful execution of the original simulatio
rules stated in Sec. II A. As far as the trajectories go, this
evident. It remains to consider(a) healing and(b) contami-
nation. The indexi 51, . . . ,N8 will denote a particle present
The scheme~2.4! has to be borne in mind throughout.

~a! If a particle i is of type B, then it hasn i<N8, so
certainlyn i<N, and the algorithm described above subje
it to the healing rule in the same way as prescribed by
original algorithm of Sec. II A. There is no need to wor
about the fact that the algorithm also subjects some of thA
particles present to the healing rule; for any outcome t
remain of typeA.

~b! Suppose that at a certain time, on a certain sitei
P$ j 1 , . . . ,j s , . . . ,j r%, that is, particlei is amongr particles
~out of the full set ofN) that meet on that site. Suppos
moreover thati is of type A, that is, it hasn i>N811. We
ask now under what conditions this particlei can be contami-
nated, that is, acquire a valuen i less thanN811. Equation
~2.3! shows that for that to happen we need bothi<N8 and
min(nj1

, . . . ,n j r
)<N8. The first condition is automatically

satisfied. For the second condition to be satisfied it is ne
sary and sufficient that at least one of the other particles
the site in question haven j s

<N8. Now for any k

P$ j 1 , . . . ,j r% corresponding to an absent particle we ha
k>N811, whencenk>N811, and therefore if the secon
condition is to be fulfilled, this can be due only to one of t
particles present. The interpretation of this is that conta
nation occurs if and only if at least one other particle pres
is of typeB, exactly as prescribed by the original algorith
of Sec. II A. This completes the proof that for anyN8 the
present algorithm is equivalent to the original one.

Further comments.The algorithm is not limited to dimen
sion d51. It is essential, however, that the diffusion co
stants of the two particle types be equal. Variants of
algorithm are easily imagined. For example, we may sim
late this model also at fixed particle numberN but simulta-
neously for the full continuum of healing times 0,t
,tmax. In this case the heuristic discussion relates two s
tems with healing timest and t1Dt, and in the actual
implementation each particlej carries a real labelt j with an
interpretation analogous to that of then j . We do not pursue
this idea any further here.
s
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C. Finite-size scaling

1. Finite-size effects

The critical pointrc and the nontrivial stable steady sta
with rB

st.0 are well defined only in the limitL→`. At finite
L and forr sufficiently aboverc , there appears a long-live
metastable state instead. In this state, typically, as a func
of time, rB(t) will fluctuate around a plateau valuer̃B for a
very long time, until by an accidental fluctuation allB par-
ticles disappear and the system enters irreversibly into
absorbing state. For smallerL and/or forr&rc an initially
nonzeroB particle density fluctuates wildly in the course
time until it vanishes. We will first extend the notion o
plateau value to this regime ofL andr.

Let n be the set of phase space variables andP(n,t) their
probability distribution. For any finiteL this distribution will
eventually contract onto the absorbing state withrB

st50. Let
P1(n,t) be the decaying probability distribution on the re
of phase space. For large timest we expect

P1~n,t !;e2t/TL(r)P̃~n! ~ t→`!, ~2.5!

where P̃(n) is the slowest decaying mode andTL(r) its
decay time. In the limitL→` and forr.rc this decay time
tends to infinity andP̃ becomes the probability distributio
of the nontrivial steady state. We define nowr̃B(r,L) as the
density ofB particles averaged with respect toP̃. We expect
that

lim
L→`

r̃B~r,L !5rB
st ~2.6!

with rB
st given by Eq.~1.5! for r→rc

1 and equal to zero for
r<rc .

2. Finite-size scaling

We apply to the averages calculated with respect toP̃ the
usual scaling hypotheses for equilibrium states. We ass
that r̃B satisfies the finite-size scaling law

r̃B~r,L !.CL2b/nF~Ldrn! ~2.7!

valid for dr[r2rc sufficiently small andL sufficiently
large; hereC is a constant andF a scaling function that may
be normalized to F(0)51 and should satisfyF(x)
;xb/n as x→` to ensure the consistency of Eqs.~2.7! and
~2.6! as dr→01. It follows that at the critical pointr5rc

one hasr̃B(rc ,L).CLb/n. The preceding properties impl
that the ratios

R2L,L~r!5
r̃B~r,2L !

r̃B~r,L !
, ~2.8!
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when drawn as functions ofr for different L, should all
intersect in the single point (rc,2

2b/n).

III. RESULTS

A. Steady state exponentsb,h,n

1. Determination ofrc and bÕn

The practical determination of averages with respect tP̃
requires the following considerations. Let us consider a la
number of runs~realizations of the stochastic process defin
in Sec. II A!. Then P̃ is the distribution of all systems tha
have survived~that is, have not entered the absorbing sta!
at time t, in the limit t→`. The problem is that in this limit
the fraction of surviving systems tends to zero. Hence
practice a compromise is needed. Initially all particles w
taken to beB’s. At given L we determinedr̃B by averaging
rB(t) on an intervalT1<t<T2 with T1 large enough to
eliminate transient effects due to the particular initial sta
and T2 not too large compared to the decay timeTL(r).
Table I shows the system sizesL that we considered, the
intervals (T1 ,T2) used to collect data, and the numbersRL of
independent runs carried out. We have adhered to the c
mon idea that in finite-size scaling it is better to work wi
not too large system sizes and use the available comp
time to increase the accuracy of the data, in our case
augmentingRL .

In Fig. 1 we showr̃B so obtained as a function ofr for
L525,50,100,200,400. The squares represent the data p

TABLE I. System sizeL, measuring interval (T1 , T2), and
number of runsRL .

L T1 T2 RL

25 500 1 000 83106

50 1 000 2 000 43106

100 1 500 5 000 106

200 20 000 60 000 93104

400 50 000 100 000 163103

FIG. 1. B particle densityr̃B ~see text! in systems of different
sizesL as a function of the total particle densityr.
e
d

n
e

,

m-

ter
y

nts

and the curves were obtained by spline interpolation. T
statistical error bars in the data points are of the order
0.01% for L525,50,100 and of the order of 0.1% forL
5200,400. Curves with differentL result from independen
simulations and are uncorrelated. Due to the algorithm
Sec. II B statistical errors in neighboring data points with t
sameL are correlated; it is safest to assume that they
affected by the same error. Figure 2 shows the ratiosR50,25,
R100,50, R200,100, andR400,200as a function ofr, and we have
expanded the region of the intersection points. The statist
error is about60.001 forR50,25andR100,50and about60.01
for R200,100andR400,200. Because of this we believe that th
near coincidence of the three intersection points of the fi
three curves is somewhat fortuitous~upon magnification they
resolve into three distinct intersections!. Our estimate of the
coordinates of the intersection point (rc,2

2b/n) is rc
50.275760.0010 and 22b/n50.872560.0010. These erro
bars do not take into account any possible systematic er
that might be inherent in our procedure. With this proviso
follows thatb/n50.19760.002.

2. Determination ofb

We now proceed to determinen andb separately. Know-
ing the critical pointrc , we determine the best fit of the da
compatible with the power law of Eq.~1.4!. Since we do not
have direct data for the infinite-volume quantityrB

st

5 r̃B(r,`), we first extrapolater̃B(r,L) to the L5` limit
and then fit the power law to the extrapolated data. The
trapolation may be performed fairly accurately in the dens
regimer*0.3, away from the critical point, where the prob
lem of slow relaxation is much less severe and we w
able to consider system sizesL5400, 800, 1600, and 3200
Figure 3 shows r̃B(r,L) as a function of L for r
50.305–0.330. The simulation data, represented by the o
squares, exhibit the expectedO(1/L) finite size effect. The
closed squares atL5` are the extrapolation results. Stati
tical errors range from much smaller than the symbols wh
r50.330 to roughly the size of the symbols whenr
50.305. Forr<0.300 extrapolation of the data seemed t
uncertain and was not attempted. By fitting the extrapola
values to Eq.~1.5! with rc50.2757 we arrive at the estimat

FIG. 2. RatiosR2L,L defined in Eq.~2.8! for various system
sizesL as a function of the total particle denstityr.
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b50.43560.010. The uncertainties inb are mainly due to
the uncertainty in the value ofrc . Employing again the ex-
ponent relation 11h52b/n we arrive at our final estimates

b50.43560.010, n52.2160.05, h520.60660.004.
~3.1!

These exponent values show that thee expansion of Eq.
~1.7!, unsurprisingly, becomes highly inaccurate when
dimension goes down as far asd51. They may also be
compared to the analogous exponents in thed51 DP uni-
versality class. These are known with an impressive num
cal accuracy~based on low density series expansions
Jensen@15#! and take the valuesbDP50.276 486(8), nDP
51.096 854(4), and, via the exponent relation given abov
hDP520.495 86(2). Thedifference between the DP and th
KSS universality classes, which starts to appear when
spatial dimensiond falls below its upper critical valuedc
54, has become very large indeed in dimensiond51.

3. Algorithmic efficiency

Updating the type numbersn j costs only very little extra
time compared to a standard algorithm. Since at fixed sys
size L all densities are simulated simultaneously, the g
with respect to a standard algorithm is roughly a factor eq
to the number of density points required. This, howev
overestimates the efficiency when the different density po
require very different run lengths and/or numbers of ru
~i.e., different values of the quantities denoted, respectiv
by T2 andRL in Table I!, in which case the actual run mu
have the largest of thoseT2 andRL and the efficiency of the
algorithm is reduced. In our case the actual gain in simu
tion time has been a factor of around 10.

B. Critical initial increase exponent u8

Preciselyat the critical point of a continuous phase tra
sition the stationary value of the order parameter is ze
Critical initial increase is the phenomenon that at that poi
an initially nonzero order parameter will first rise with tim

FIG. 3. B particle densityr̃B as a function of inverse system siz
L21 for various densitiesr above the critical densityrc50.2757.
The open squares are measured values, the straight lines are
linear fits, and the closed squares result from extrapolation.
extrapolated values serve to determineb.
e

ri-
y

,

e

m
n
al
r,
ts
s
y,

-

o.

as a power lawtu8, pass through a maximum at some tim
t5tmax, and only then start its final decay to zero. Hereu8 is
the critical initial increase exponent~called simply u by
some authors!. This phenomenon, first pointed out and e
plained theoretically in 1989 by Janssen, Schaub,
Schmittmann@16# ~see also Diehl and Ritschel@17#!, has
since been discovered in Monte Carlo simulations by ma
authors~see, e.g., Li, Ritschel, and Zheng@18#, Li, Schülke,
and Zheng@19#, Grassberger@20#, and Ritschel and Czerne
@21#, who all deal with the Ising model near criticality!. The
exponentu8 is observable in a time regimetmicr!t!tmax,
where tmicr is the microscopic time scale and wheretmax
→` when the initial order parameter goes to zero and
system size to infinity.

When these ideas are applied to the reaction-diffus
problem of this work, we are led to expect@2# that at r
5rc a small positiverB(0) will initially increase as

rB~ t !;rB~0!tu8. ~3.2!

In the general caseu8 is not related in any known way to th
other exponents of the problem. Theoretical work by WO
@2# has shown that for the DP and KSS universality clas
the relation

u852
h

z
~3.3!

must hold. The dynamical critical exponentz that occurs
here is for the KSS class given@1,2# by the mean field value
z52 in all dimensionsd, so that ford542e we have from
Eqs. ~3.3! and ~1.7! that to linear orderu85 1

16 e. The DP
exponentzDP has a nontrivial dimensional dependence wh
to linear order ine leads@2# to uDP8 5 1

12 e. In dimensiond
51 the value ofh found in the preceding section togeth
with Eq. ~3.3! implies the numerical valueu850.303
60.002.

We present here the first Monte Carlo observation to
knowledge of critical initial increase in a steady state, i.e.
a system that does not have a Boltzmann equilibrium.
considered systems of sizeL5127,254,508,1016 withN
535,70,140,280 particles, respectively, and hence havin
densityr50.275 59 . . . almost identical to the value ofrc
determined above. Each system was started in a state w
singleB particle. Figure 4 shows the initial rise with time o
the normalized order parameterrB(t)/rB(0), obtained as an
average over 10 000 runs for the sizesL5127,254,512, and
over 20 000 forL51016. The dashed line is the theoretica
expected straight line with slope equal to the Monte Ca
value of u850.303 found in the preceding section. For t
smaller system sizes the order parameter passes throu
maximum inside the measuring time interval; for the larg
system sizes only the initial increase is seen.

In order to estimateu8 from these curves let us now con
sider the one forL51016. In view of the valuet530 of the
single particle healing time~see Sec. II A!, the time regime
t&100 should certainly be considered as microscopic
unsuitable for extractingu8, even though it is not clear ex
actly where the microscopic regime ends. Fort*10 000 the
order parameter rises more and more slowly under the in
ence of the approaching maximum. From the condit

est
e
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tmicr!t!tmax we may conclude that in the present caseu8
should be extracted from a time regime such that 100!t
!10 000. The best fit ofu8 decreases fromu850.317 in the
interval 500,t,800 tou850.288 for 1500,t,2400. This
leads us to the independent estimateu850.3060.02, less
precise than, but in full agreement with, the valueu8
50.303 deduced from the static measurements in Sec. I

A comparison with the DP universality class is again
teresting. This class has@3# for the correspondingd51 ex-
ponentuDP8 50.313 686(8). Although the KSS and DP val
ues are numerically close, thee expansion provides a stron
argument that they are nevertheless different.

IV. CONCLUSION

We have made Monte Carlo estimates of the critical
ponents in dimensiond51 of one of the simplest paradigm
of steady state reaction-diffusion systems, representativ

FIG. 4. Initial increase of the densityrB(t) from a starting con-
figuration with a singleB particle in systems of various sizesL at
total densityr'rc . The straight line represents the theoretic
power law with the exponentu850.303 determined in Sec. II.
-

-

of

the KSS universality class, which is closely related to, b
distinct from, the directed percolation universality class. T
values of the static exponentsb, n, and h were estimated
after an independent determination of the critical point
finite-size scaling. The uncertainties in the final values
mainly due to the uncertainty in locating the critical poin
The critical initial increase exponentu8 may then be ob-
tained from the theoretical scaling law~3.3! derived for this
system by WOH@2#. Independent time dependent simul
tions performed at the critical point show agreement w
this value and hence confirm that scaling law.

It is interesting to note that the simple fractions

b5 4
9 , n5 20

9 , h52 3
5 , u85 3

10 ~4.1!

are consistent with the data of this work. There is, howev
no compelling reason why the exponents of this noncon
mal system should be rationals. Rational values conjectu
@22# at one time for the DP universality class had to be ab
doned later~see, e.g.,@15#! after higher precision numeric
were obtained.

We have compared our results to the analogous value
the DP exponents in dimensiond51 and to thee expansions
of both the KSS and DP classes. It is interesting to obse
that the four inequalitiesb.bDP, n.nDP, h.hDP, and
u8,uDP8 , known to hold analytically in thee expansion, con-
tinue to be satisfied numerically in dimensiond51.
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